0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADV3221

ADV3221

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    ADV3221 - 800 MHz, 4:1 Analog Multiplexer - Analog Devices

  • 详情介绍
  • 数据手册
  • 价格&库存
ADV3221 数据手册
800 MHz, 4:1 Analog Multiplexer ADV3221/ADV3222 FEATURES Excellent ac performance −3 dB bandwidth 800 MHz (200 mV p-p) 750 MHz (2 V p-p) Slew rate: 2400 V/μs Low power: 75 mW, VS = ±5 V Excellent video performance 100 MHz, 0.1 dB gain flatness 0.02% differential gain error/0.02° differential phase error (RL = 150 Ω) ADV3221 is a pin-for-pin upgrade to the HA4344 Gain = +1 (ADV3221) or gain = +2 (ADV3222) Low all hostile crosstalk of −85 dB @ 5 MHz, and −58 dB @ 100 MHz Latched control lines for synchronous switching High impedance output disable allows connection of multiple devices without loading the output bus 16-lead SOIC CS D FUNCTIONAL BLOCK DIAGRAM Q D Q ENABLE LATCH A0 D Q LATCH D Q DECODE LATCH A1 CK1 CK2 100kΩ D Q LATCH D Q IN0 IN1 IN2 IN3 G = +1 (G = +2) OUT LATCH LATCH 100kΩ Figure 1. APPLICATIONS Routing of high speed signals including Video (NTSC, PAL, S, SECAM, YUV, RGB) Compressed video (MPEG, wavelet) 3-level digital video (HDB3) Data communications Telecommunications GENERAL DESCRIPTION The ADV3221 and ADV3222 are high speed, high slew rate, buffered 4:1 analog multiplexers. They offer a −3 dB signal bandwidth greater than 800 MHz and channel switch times of less than 20 ns with 1% settling. With lower than −58 dB of crosstalk and −67 dB isolation (at 100 MHz), the ADV3221 and ADV3222 are useful in many high speed applications. The differential gain error of less than 0.02% and differential phase error of less than 0.02°, together with 0.1 dB gain flatness out to 100 MHz while driving a 75 Ω back terminated load, make the ADV3221 and ADV3222 ideal for all types of signal switching. The ADV3221/ADV3222 include an output buffer that can be placed into a high impedance state. This allows multiple outputs to be connected together for cascading stages without the off channels loading the output bus. The ADV3221 has a gain of +1, and the ADV3222 has a gain of +2; they both operate on ±5 V supplies while consuming less than 7.5 mA of idle current. The channel switching is performed via latched control lines, allowing synchronous updating in a multiple ADV3221/ADV3222 environment. The ADV3221/ADV3222 are offered in a 16-lead SOIC package and are available over the extended industrial temperature range of −40°C to +85°C. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved. 08652-001 ADV3221/ADV3222 TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Timing and Logic Characteristics .............................................. 4 Absolute Maximum Ratings............................................................ 6 Thermal Resistance ...................................................................... 6 Power Dissipation ......................................................................... 6 ESD Caution .................................................................................. 6 Pin Configuration and Function Descriptions ............................. 7 Typical Performance Characteristics ..............................................8 Circuit Diagrams ............................................................................ 16 Theory of Operation ...................................................................... 17 Applications Information .............................................................. 18 CK1/CK2 Operation .................................................................. 18 Circuit Layout ............................................................................. 18 Termination................................................................................. 18 Capacitive Load .......................................................................... 18 Outline Dimensions ....................................................................... 19 Ordering Guide .......................................................................... 19 REVISION HISTORY 3/10—Revision 0: Initial Version Rev. 0 | Page 2 of 20 ADV3221/ADV3222 SPECIFICATIONS VS = ±5 V, TA = 25°C, RL = 150 Ω, CL = 2 pF, ADV3221 at G = +1, ADV3222 at G = +2, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Gain Flatness Propagation Delay Settling Time Slew Rate NOISE/DISTORTION PERFORMANCE Differential Gain Error Differential Phase Error Crosstalk, All Hostile Off Isolation, Input to Output Input Second-Order Intercept (ADV3222 Only) Input Third-Order Intercept (ADV3222 Only) Output 1 dB Compression Point (ADV3222 Only) Input Voltage Noise DC PERFORMANCE Gain Error Gain Matching OUTPUT CHARACTERISTICS Output Impedance Output Disable Capacitance Output Leakage Current Output Voltage Range Short-Circuit Current INPUT CHARACTERISTICS Input Offset Voltage Input Offset Voltage Drift Input Voltage Range Input Capacitance Input Resistance Input Bias Current SWITCHING CHARACTERISTICS Enable On Time Switching Time, 2 V Step Switching Transient (Glitch) Test Conditions/Comments 200 mV p-p 2 V p-p 0.1 dB, 200 mV p-p 0.1 dB, 2 V p-p 2 V p-p 1%, 2 V step 2 V step, peak NTSC or PAL NTSC or PAL f = 100 MHz f = 5 MHz f = 100 MHz, one channel f = 70 MHz, RL = 100 Ω f = 70 MHz, RL = 100 Ω f = 70 MHz, RL = 100 Ω 10 MHz to 100 MHz No load RL = 150 Ω Channel-to-channel, no load DC, enabled Disabled Disabled Disabled No load RL = 150 Ω Min ADV3221 Typ Max 1000 750 100 100 700 5 2400 0.01 0.01 −87 −100 −67 Min ADV3222 Typ Max 800 750 100 100 650 5 2700 0.02 0.02 −58 −85 −72 54 17 18.5 17 1 0.75 1 0.02 1 2.8 2 ±3 ±3 50 ±5 ±10 ±3 1.8 10 5 15 20 28 ±21 1 3 2 ±3 ±3 50 ±5 ±10 ±1.5 1.8 10 6 15 20 55 ±21 0.75 1 0.04 1 Unit MHz MHz MHz MHz ps ns V/μs % Degrees dB dB dB dBm dBm dBm nV/√Hz % % % Ω MΩ pF μA V V mA mV μV/°C V pF MΩ μA ns ns mV p-p 16 ±2.9 ±2.8 ±2.9 ±2.75 Worst case (all configurations) Any switch configuration Output enabled Output enabled 1 1 12 12 50% A0 to 1% settling IN0 to IN1 switching Rev. 0 | Page 3 of 20 ADV3221/ADV3222 Parameter POWER SUPPLIES Supply Current Test Conditions/Comments V+, output enabled, no load V+, output disabled (CS high) V−, output enabled, no load V−, output disabled (CS high) Supply Voltage Range Power Supply Rejection (PSR) TEMPERATURE Operating Temperature Range Junction-to-Ambient Thermal Impedance (θJA) ±4.5 f = 100 kHz f = 1 MHz Still air Operating (still air) −40 81 −70 −60 +85 −40 81 Min ADV3221 Typ Max 7 1.6 7 1.6 8 2.0 8 2.0 ±5.5 ±4.5 −65 −55 +85 Min ADV3222 Typ Max 7.5 1.8 7.5 1.8 9 2.2 9 2.2 ±5.5 Unit mA mA mA mA V dB dB °C °C/W TIMING AND LOGIC CHARACTERISTICS Table 2. Parameter A0, A1, CS Setup Time CK1 Pulse Width CK1 to CK2 Pulse Separation CK2 Pulse Width A0, A1, CS Hold Time Symbol t1 t2 t3 t4 t5 Min 20 40 40 40 20 Typ Max Unit ns ns ns ns ns Table 3. Logic Levels VIH A0, A1, CK1, CK2, CS +2.0 V min VIL A0, A1, CK1, CK2, CS +0.8 V max IIH A0, A1, CS ±2 μA max IIL A0, A1, CS ±2 μA max IIH CK1, CK2 +60 μA max IIL CK1, CK2 +10 μA max Rev. 0 | Page 4 of 20 ADV3221/ADV3222 Timing and Programming Diagrams t1 1 CK1 0 t2 t3 t4 1 CK2 0 1 A0, A1, CS 0 t5 08652-002 Figure 2. Timing Diagram CK1 CK2 A0 A1 CS 08652-003 OUTPUT XX IN0 IN1 HIGH-Z Figure 3. Programming Example Rev. 0 | Page 5 of 20 ADV3221/ADV3222 ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Supply Voltage (V+ − V−) Analog Input Voltage Digital Input Voltage Output Voltage (Disabled Output) Output Short-Circuit Duration Output Short-Circuit Current Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec) Junction Temperature Rating 12 V V− to V+ 0 V to V+ (V+ − 1 V) to (V− + 1 V) Momentary 50 mA −65°C to +150°C −40°C to +85°C 300°C 150°C POWER DISSIPATION The ADV3221/ADV3222 are operated with ±5 V supplies and can drive loads down to 150 Ω, resulting in a wide range of possible power dissipations. For this reason, extra care must be taken to adjust the operating conditions based on ambient temperature. Packaged in a 16-lead narrow-body SOIC, the ADV3221 and ADV3222 junction-to-ambient thermal impedance (θJA) is 81°C/W. For long-term reliability, the maximum allowed junction temperature of the die, TJ, should not exceed 125°C. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in stresses exerted on the die by the package. Figure 4 shows the range of the allowed internal die power dissipations that meet these conditions over the −40°C to +85°C ambient temperature range. When using Figure 4, do not include the external load power in the maximum power calculation, but do include the load current through the die output transistors. 1.50 TJ = 125°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 5. Thermal Resistance Package Type 16-Lead Narrow-Body SOIC θJA 81 θJC 43 Unit °C/W MAXIMUM POWER (W) THERMAL RESISTANCE 1.25 1.00 0.75 25 35 45 55 65 75 85 AMBIENT TEMPERATURE (°C) Figure 4. Maximum Die Power Dissipation vs. Ambient Temperature ESD CAUTION Rev. 0 | Page 6 of 20 08652-004 0.50 15 ADV3221/ADV3222 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS IN0 1 GND 2 IN1 3 GND 4 16 15 V+ A0 A1 CS TOP VIEW IN2 5 (Not to Scale) 12 OUT 11 CK2 GND 6 13 ADV3221/ ADV3222 14 GND 8 9 V– Figure 5. Pin Configuration Table 6. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mnemonic IN0 GND IN1 GND IN2 GND IN3 GND V− CK1 CK2 OUT CS A1 A0 V+ Description Analog Input Ground Analog Input Ground Analog Input Ground Analog Input Ground Negative Power Supply First Rank Clock Second Rank Clock Analog Output Chip Select (Output Enable) Select Address Most Significant Bit Select Address Least Significant Bit Positive Power Supply Table 7. Truth Table CS 0 0 0 0 1 1 A1 0 0 1 1 X1 A0 0 1 0 1 X1 CK1 0 0 0 0 0 CK2 0 0 0 0 0 08652-005 IN3 7 10 CK1 Output IN0 IN1 IN2 IN3 High-Z X is don’t care. Rev. 0 | Page 7 of 20 ADV3221/ADV3222 TYPICAL PERFORMANCE CHARACTERISTICS 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1 GAIN (dB) 0pF 2pF 4.7pF 10pF 08652-012 GAIN (dB) 0pF 2pF 4.7pF 10pF 10 100 FREQUENCY (MHz) 1k 10k 08652-015 08652-017 08652-016 10 100 FREQUENCY (MHz) 1k 10k Figure 6. ADV3221 Small Signal Response vs. Capacitive Load, 200 mV p-p 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1 Figure 9. ADV3222 Small Signal Response vs. Capacitive Load, 200 mV p-p 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1 GAIN (dB) 0pF 2pF 4.7pF 10pF 10 100 FREQUENCY (MHz) 1k 10k 08652-013 GAIN (dB) 0pF 2pF 4.7pF 10pF 10 100 FREQUENCY (MHz) 1k 10k Figure 7. ADV3221 Large Signal Response vs. Capacitive Load, 2 V p-p 0.2 Figure 10. ADV3222 Large Signal Response vs. Capacitive Load, 2 V p-p 0.2 0pF 2pF 4.7pF 10pF 0pF 2pF 4.7pF 10pF 0.1 0.1 VOUT (V) 0 VOUT (V) 0 –0.1 –0.1 0 5 10 TIME (ns) 15 20 08652-014 –0.2 –0.2 0 5 10 TIME (ns) 15 20 Figure 8. ADV3221 Small Signal Pulse Response vs. Capacitive Load, 200 mV p-p Figure 11. ADV3222 Small Signal Pulse Response vs. Capacitive Load, 200 mV p-p Rev. 0 | Page 8 of 20 ADV3221/ADV3222 2 0pF 2pF 4.7pF 10pF 2 0pF 2pF 4.7pF 10pF 1 1 VOUT (V) 0 VOUT (V) 08652-018 0 –1 –1 0 5 10 TIME (ns) 15 20 0 5 10 TIME (ns) 15 20 Figure 12. ADV3221 Large Signal Pulse Response vs. Capacitive Load, 2 V p-p 3000 1.5 Figure 15. ADV3222 Large Signal Pulse Response vs. Capacitive Load, 2 V p-p 4000 3000 1.5 2000 1.0 2000 1.0 SLEW RATE (V/µs) SLEW RATE (V/µs) 1000 dv/dt 0 0.5 VOUT (V) 0.5 1000 0 –1000 –0.5 –2000 VOUT –3000 dv/dt 0 VOUT (V) VOUT (V) 08652-023 08652-022 0 –1000 VOUT –0.5 –2000 –1.0 –1.0 08652-019 –3000 0 1 2 TIME (ns) 3 4 –1.5 –4000 0 1 2 TIME (ns) 3 4 –1.5 Figure 13. ADV3221 Large Signal Rising Slew Rate with 3 pF Load, 2 V p-p 3000 VOUT 1.5 Figure 16. ADV3222 Large Signal Rising Slew Rate with 3 pF Load, 2 V p-p 4000 3000 1.5 2000 1.0 2000 VOUT SLEW RATE (V/µs) 1.0 SLEW RATE (V/µs) 1000 dv/dt 0 0.5 VOUT (V) 0.5 1000 0 –1000 –0.5 –2000 dv/dt 0 0 –1000 –0.5 –2000 –1.0 –3000 –1.0 08652-020 –3000 0 1 2 TIME (ns) 3 4 –1.5 –4000 0 1 2 TIME (ns) 3 4 –1.5 Figure 14. ADV3221 Large Signal Falling Slew Rate with 3 pF Load, 2 V p-p Figure 17. ADV3222 Large Signal Falling Slew Rate with 3 pF Load, 2 V p-p Rev. 0 | Page 9 of 20 08652-021 –2 –2 ADV3221/ADV3222 1.5 VOUT FALLING EDGE 2.1 1.9 1.7 0.5 VOUT (V) A0 (V) 1.5 VOUT FALLING EDGE 2.1 1.9 1.7 1.0 1.0 0.5 A0 (V) CS (V) CS (V) 08652-029 08652-028 08652-027 A0 0 VOUT (V) 1.5 1.3 A0 0 1.5 1.3 –0.5 1.1 –1.0 VOUT RISING EDGE 0.9 0.7 0 10 TIME (ns) 20 30 –0.5 1.1 –1.0 VOUT RISING EDGE 0.9 0.7 0 10 TIME (ns) 20 30 Figure 18. ADV3221 Switching Time 100 80 5 60 40 OUTPUT VOUT (mV) CS (V) 08652-024 –1.5 –1.5 Figure 21. ADV3222 Switching Time 6 100 80 OUTPUT 60 4 3 2 1 0 –80 08652-025 6 5 4 3 2 1 0 –1 0 10 20 TIME (ns) 30 40 50 40 VOUT (mV) 20 0 –20 –40 –60 –80 –100 0 10 20 TIME (ns) 30 40 50 CS 20 0 –20 –40 –60 CS –1 –100 Figure 19. ADV3221 Enable Glitch 3 2.1 1.9 CS 1 VOUT (V) Figure 22. ADV3222 Enable Glitch 3 2.1 1.9 CS 1 VOUT (V) CS (V) 2 INPUT +1V 2 INPUT +0.5V 1.7 1.5 1.7 1.5 0 1.3 –1 INPUT –1V 1.1 –2 0.9 0.7 0 10 20 TIME (ns) 30 40 0 1.3 –1 INPUT –0.5V 1.1 –2 0.9 0.7 0 10 20 TIME (ns) 30 40 Figure 20. ADV3221 Enable On Timing 08652-026 –3 –3 Figure 23. ADV3222 Enable On Timing Rev. 0 | Page 10 of 20 ADV3221/ADV3222 1.5 2.1 1.9 INPUT +1V 1.7 0.5 VOUT (V) CS (V) 0.5 1.5 2.1 1.9 INPUT +0.5V 1.7 1.5 1.3 –0.5 1.1 0.9 0.7 0 10 20 TIME (ns) 30 40 1.0 1.0 0 1.3 –0.5 INPUT –1V –1.0 1.1 0.9 0.7 0 10 20 TIME (ns) 30 40 0 INPUT –0.5V –1.0 Figure 24. ADV3221 Disable Timing 100 80 60 40 VOUT (mV) Figure 27. ADV3222 Disable Timing 6 5 60 100 80 6 5 4 3 2 1 0 –80 08652-034 08652-031 A0 A0 4 3 2 1 0 VOUT (mV) 40 20 OUTPUT 0 –20 –40 –60 20 OUTPUT 0 –20 –40 –60 –80 –100 0 10 20 TIME (ns) 30 40 50 A0 (V) –1 –100 0 10 20 TIME (ns) 30 40 50 –1 Figure 25. ADV3221 Switching Glitch Rising Edge 100 80 5 60 40 4 60 40 Figure 28. ADV3222 Switching Glitch Rising Edge 6 5 4 3 OUTPUT –20 –40 –60 2 1 0 –1 0 10 20 TIME (ns) 30 40 50 100 80 6 VOUT (mV) A0 (V) 0 OUTPUT –20 –40 –60 –80 –100 0 10 20 TIME (ns) 30 40 50 A0 0 –1 2 1 0 –80 08652-032 A0 Figure 26. ADV3221 Switching Glitch Falling Edge Figure 29. ADV3222 Switching Glitch Falling Edge Rev. 0 | Page 11 of 20 08652-035 –100 A0 (V) 3 VOUT (mV) 20 20 A0 (V) 08652-033 08652-030 –1.5 –1.5 CS (V) CS VOUT (V) 1.5 CS ADV3221/ADV3222 5 INPUT 4 3 2 1.00 0.75 0.50 4 3 2 INPUT 1.25 5 OUTPUT 1.00 0.75 0.50 0.25 ERROR 0 –1 –2 –3 –4 08652-036 1.25 OUTPUT (V) ERROR (%) ERROR 0 –1 OUTPUT –2 –3 –4 –5 0 1 2 3 4 5 TIME (ns) 6 7 8 9 10 –0.50 –0.75 –1.00 –1.25 0 –0.25 ERROR (%) 1 0.25 1 0 –0.25 –0.50 –0.75 –1.00 0 1 2 3 4 5 TIME (ns) 6 7 8 9 10 Figure 30. ADV3221 Settling Time, 2 V Step 10 0 –10 –20 10 0 –10 –20 Figure 33. ADV3222 Settling Time, 2 V Step PSR (dB) PSR (dB) –30 PSR (V–) –40 PSR (V+) –50 –60 –70 –80 08652-037 –30 PSR (V–) –40 PSR (V+) –50 –60 –70 –80 08652-040 –90 0.1 1 10 100 1k 10k –90 0.1 1 10 100 1k 10k FREQUENCY (MHz) FREQUENCY (MHz) Figure 31. ADV3221 PSR 200 180 160 140 NOISE (nV/ Hz) NOISE (nV/ Hz) 120 100 80 60 40 20 08652-038 Figure 34. ADV3222 PSR 200 180 160 140 120 100 80 60 40 20 08652-041 0 1k 10k 100k 1M 10M 100M 0 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) Figure 32. ADV3221 Output Noise vs. Frequency Figure 35. ADV3222 Output Noise vs. Frequency Rev. 0 | Page 12 of 20 08652-039 –5 –1.25 OUTPUT (V) ADV3221/ADV3222 –20 –30 –40 CROSSTALK (dB) CROSSTALK (dB) 08652-042 –20 –30 –40 –50 –60 –70 –80 –90 –100 1 10 100 FREQUENCY (MHz) 1k 10k –50 –60 –70 –80 –90 –100 –110 1 10 100 FREQUENCY (MHz) 1k 10k Figure 36. ADV3221 All Hostile Crosstalk –20 –30 –40 CROSSTALK (dB) CROSSTALK (dB) Figure 39. ADV3222 All Hostile Crosstalk –20 –30 –40 –50 –60 –70 –80 –90 –100 08652-043 08652-046 08652-047 –50 –60 –70 –80 –90 –100 –110 1 10 100 FREQUENCY (MHz) 1k 10k –110 1 10 100 FREQUENCY (MHz) 1k 10k Figure 37. ADV3221 Crosstalk, Adjacent Channel 0 –10 –20 FEEDTHROUGH (dB) FEEDTHROUGH (dB) Figure 40. ADV3222 Crosstalk, Adjacent Channel 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 08652-044 –30 –40 –50 –60 –70 –80 –90 –100 1 10 100 FREQUENCY (MHz) 1k 10k –100 1 10 100 FREQUENCY (MHz) 1k 10k Figure 38. ADV3221 Off Isolation Figure 41. ADV3222 Off Isolation Rev. 0 | Page 13 of 20 08652-045 ADV3221/ADV3222 1M 0 –5 100k –10 –15 10k INPUT IMPEDANCE (Ω) INPUT S11 (dB) 08652-048 –20 –25 –30 –35 1k 100 –40 –45 08652-051 08652-053 08652-052 10 0.1 1 10 100 1k –50 0.1 1 10 100 1k 10k FREQUENCY (MHz) FREQUENCY (MHz) Figure 42. ADV3221/ADV3222 Input Impedance 1M Figure 45. ADV3221/ADV3222 S11 (Including Evaluation Board) 1M DISABLED OUTPUT IMPEDANCE (Ω) 100k DISABLED OUTPUT IMPEDANCE (Ω) 08652-049 100k 10k 10k 1k 1k 100 100 10 10 1 0.1 1 10 100 1k 1 0.1 1 10 100 1k FREQUENCY (MHz) FREQUENCY (MHz) Figure 43. ADV3221 Disabled Output Impedance 10k 10k Figure 46. ADV3222 Disabled Output Impedance ENABLED OUTPUT IMPEDANCE (Ω) 1k ENABLED OUTPUT IMPEDANCE (Ω) 1 10 100 1k 10k 08652-050 1k 100 100 10 10 1 1 0.1 0.1 0.01 0.1 0.01 0.1 1 10 100 1k 10k FREQUENCY (MHz) FREQUENCY (MHz) Figure 44. ADV3221 Enabled Output Impedance Figure 47. ADV3222 Enabled Output Impedance Rev. 0 | Page 14 of 20 ADV3221/ADV3222 5 INPUT 4 3 4 3 5 5 INPUT 4 3 OUTPUT VOLTAGE (V) INPUT VOLTAGE (V) 2.5 2.0 1.5 OUTPUT INPUT VOLTAGE (V) 08652-059 08652-058 OUTPUT VOLTAGE (V) 2 1 0 –1 –2 –3 –4 –5 100 OUTPUT 2 1 0 –1 –2 –3 –4 2 1 0 –1 –2 –3 –4 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 08652-054 120 140 160 TIME (ns) 180 0 20 40 TIME (ns) 60 80 Figure 48. ADV3221 Overdrive Recovery 0 –10 HD3 10dBm –20 HD2 10dBm –30 –40 –50 HD3 0dBm –60 –70 –80 08652-055 Figure 51. ADV3222 Overdrive Recovery 70 60 50 40 30 20 10 0 10 HD2 0dBm –90 10 100 INPUT FREQUENCY (MHz) 1k SECOND-ORDER INTERCEPT (dBm) HARMONIC DISTORTION (dBc) 100 INPUT FREQUENCY (MHz) 1k Figure 49. ADV3222 Harmonic Distortion, RL = 100 Ω, CL = 4 pF 30 Figure 52. ADV3222 Input Second-Order Intercept, RL = 100 Ω, CL = 4 pF 20 18 P1dB GAIN COMPRESSION (dBm) THIRD-ORDER INTERCEPT (dBm) 25 16 14 12 10 8 6 4 2 20 15 10 5 100 INPUT FREQUENCY (MHz) 1k 08652-056 0 10 0 10 100 FREQUENCY (MHz) 1k Figure 50. ADV3222 Input Third-Order Intercept, RL = 100 Ω, CL = 4 pF Figure 53. ADV3222 Output P1dB, RL = 100 Ω, CL = 4 pF Rev. 0 | Page 15 of 20 08652-057 –5 200 –5 –2.5 100 ADV3221/ADV3222 CIRCUIT DIAGRAMS V+ IN 1.8pF 08652-006 V– Figure 54. ADV3221/ADV3222 Analog Input Figure 57. ADV3221/ADV3222 Disabled Output V+ OUT A0, A1, CS CK1, CK2 100kΩ (CK1, CK2 ONLY) 08652-007 1kΩ GND Figure 55. ADV3221 Enabled Analog Output Figure 58. ADV3221/ADV3222 Logic Input V+ OUT 1kΩ A0, A1, CK1, CK2, CS IN, OUT 08652-008 GND V– GND Figure 56. ADV3222 Enabled Analog Output Figure 59. ADV3221/ADV3222 ESD Schematic Rev. 0 | Page 16 of 20 08652-011 1kΩ 08652-010 V– 08652-009 OUT 2.8pF (ADV3221) 3.0pF (ADV3222) ADV3221/ADV3222 THEORY OF OPERATION The ADV3221/ADV3222 are dual-supply, high performance 4:1 analog multiplexers, optimized for switching between multiple video sources. High peak slew rates enable wide bandwidth operation for large input signals. Internal compensation provides for high phase margin, allowing low overshoot and fast settling for pulsed inputs. Low enabled and disabled power consumption make the ADV3221 and ADV3222 ideal for constructing larger arrays. The ADV3221/ADV3222 are organized as four input transconductance stages tied in parallel with a single output transimpedance stage followed by a unity-gain buffer. Internal voltage feedback sets the gain. The ADV3221 is configured as a gain of 1, while the ADV3222 uses a resistive feedback network and ground buffer to realize gain-of-two operation (see Figure 60). V+ IN0 ×1 V– V+ IN1 OUT When not in use, the output can be placed in a low power, high impedance disabled mode via the CS logic input. This is useful when paralleling multiple ADV3221/ADV3222 devices in a system to create larger switching arrays. Switching between the inputs is controlled with the A0, A1, and CS logic inputs, which are latched through two stages of asynchronous latches. CK1 controls the first stage latch, and CK2 controls the second stage latch. The latch state is dependent on the level of the CK1 and CK2 signals, and it is not edge triggered. When using multiple ADV3221/ADV3222 devices in a switch design, this double buffered logic allows the use of the CK2 signal to simultaneously update all ADV3221/ADV3222 devices in a system. The A0 and A1 logic inputs select which input is connected to the output (A1 is the most significant bit, A0 is the least significant bit), and the CS logic input determines whether the output is enabled or disabled. V– (2 MORE INPUTS) V+ GND 1kΩ 08652-060 1kΩ V– Figure 60. Conceptual Diagram of ADV3222 Rev. 0 | Page 17 of 20 ADV3221/ADV3222 APPLICATIONS INFORMATION The ADV3221 and ADV3222 are high speed multiplexers used to switch video or RF signals. The low output impedance of the ADV3221/ADV3222 allows the output environment to be optimized for use in 75 Ω or 50 Ω systems by choosing the appropriate series termination resistor. For composite video applications, the ADV3222 (gain of +2) is typically used to provide compensation for the loss of the output termination. TERMINATION For a controlled impedance situation, termination resistors are required at the inputs and output of the device. The input termination should be a shunt resistor to ground with a value matching the characteristic impedance of the input trace. To reduce reflections, place the input termination resistor as close to the device input pin as possible. To minimize the input-toinput crosstalk, it is important to utilize a low inductance shield between input traces to isolate each input. Consideration of ground current paths must be taken to minimize loop currents in the shields to prevent them from providing a coupling medium for crosstalk. For proper matching, the output series termination resistor should be the same value as the characteristic impedance of the output trace and placed as close to the output of the device as possible. This placement reduces the high frequency effect of series parasitic inductance, which can affect gain flatness and −3 dB bandwidth. CK1/CK2 OPERATION The ADV3221/ADV3222 provide a double latched architecture for the A0, A1 (channel selection) and CS (output enable) logic. This allows for simultaneous update of multiple devices in bank switching applications or large multiplexer systems consisting of multiple devices connected to common output busses. Holding CK1 and CK2 low places the ADV3221/ADV3222 in a transparent mode. In transparent mode, all logic changes to A0, A1, and CS immediately affects the input selection and output enable/disable. CIRCUIT LAYOUT Use of proper high speed design techniques is important to ensure optimum performance. Use a low inductance ground plane for power supply bypassing and to provide high quality return paths for the input and output signals. For best performance, it is recommended that power supplies be bypassed with 0.1 μF ceramic capacitors as close to the body of the device as possible. To provide stored energy for lower frequency, high current output driving, place 10 μF tantalum capacitors farther from the device. The input and output signal paths should be stripline or microstrip controlled impedance. Video systems typically use 75 Ω characteristic impedance, whereas RF systems typically use 50 Ω. Various calculators are available to calculate the trace geometry required to produce the proper characteristic impedance. CAPACITIVE LOAD A high frequency output can have difficulties when driving a large capacitive load, usually resulting in peaking in the frequency domain or overshoot in the time domain. If these effects become too large, oscillation can result. The response of the device under various capacitive loads is shown in Figure 6 through Figure 12, and in Figure 15. If a condition arises where excessive load capacitance is encountered and the overshoot is too great or the device oscillates, a small series resistor of a few tens of ohms can be used to improve the performance. Rev. 0 | Page 18 of 20 ADV3221/ADV3222 OUTLINE DIMENSIONS 10.00 (0.3937) 9.80 (0.3858) 16 1 9 8 4.00 (0.1575) 3.80 (0.1496) 6.20 (0.2441) 5.80 (0.2283) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 0.50 (0.0197) 0.25 (0.0098) 8° 0° 1.27 (0.0500) 0.40 (0.0157) 45° 0.25 (0.0098) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012-AC CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 060606-A Figure 61. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body [R-16] Dimensions shown in millimeters and (inches) ORDERING GUIDE Model 1 ADV3221ARZ ADV3221ARZ-RL ADV3221ARZ-R7 ADV3222ARZ ADV3222ARZ-RL ADV3222ARZ-R7 ADV3221-EVALZ ADV3222-EVALZ 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 16-Lead SOIC_N 16-Lead SOIC_N, 13” Reel 16-Lead SOIC_N, 7” Reel 16-Lead SOIC_N 16-Lead SOIC_N, 13” Reel 16-Lead SOIC_N, 7” Reel Evaluation Board Evaluation Board Package Option R-16 R-16 R-16 R-16 R-16 R-16 Z = RoHS Compliant Part. Rev. 0 | Page 19 of 20 ADV3221/ADV3222 NOTES ©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08652-0-3/10(0) Rev. 0 | Page 20 of 20
ADV3221
### 物料型号 - ADV3221ARZ:-40°C至+85°C温度范围内的16引脚SOIC封装。 - ADV3222ARZ:与ADV3221ARZ相同,但增益为+2。

### 器件简介 ADV3221和ADV3222是高速、高 slew rate的缓冲4:1模拟多路选择器,提供超过800 MHz的-3 dB信号带宽和小于20 ns的通道切换时间。它们适用于多种高速应用,具有低于-58 dB的串扰和-67 dB的隔离度(在100 MHz时)。

### 引脚分配 - IN0-IN3:模拟输入端。 - GND:接地端。 - CK1/CK2:时钟输入,用于控制通道选择。 - A0/A1:地址输入,用于选择活动通道。 - CS:片选,用于使能/禁用输出。 - V+/V-:正负电源端。

### 参数特性 - 带宽:ADV3221为800 MHz,ADV3222为750 MHz。 - 增益平坦度:100 MHz时为0.1 dB。 - 传播延迟:100 MHz时ADV3221为100 ps,ADV3222为650 ps。 - 建立时间:5 ns。 - 压摆率:ADV3221为2400 V/μs,ADV3222为2700 V/μs。 - 串扰:100 MHz时ADV3221为-87 dB,ADV3222为-58 dB。

### 功能详解 ADV3221/ADV3222包含一个输出缓冲器,可以被置于高阻态,允许多个设备连接而不会负载输出总线。它们还具有锁定控制线,用于同步切换。

### 应用信息 适用于高速信号路由,包括视频(NTSC、PAL、S、SECAM、YUV、RGB)、压缩视频(MPEG、小波)、3级数字视频(HDB3)和数据通信。

### 封装信息 提供16引脚SOIC封装,并在-40°C至+85°C的扩展工业温度范围内可用。
ADV3221 价格&库存

很抱歉,暂时无法提供与“ADV3221”相匹配的价格&库存,您可以联系我们找货

免费人工找货