Ultra Low Power Arm Cortex-M3 MCU with
Integrated Power Management
ADuCM3027/ADuCM3029
Data Sheet
FEATURES
Digital peripherals
3 SPI interfaces to enable glueless interface to sensors,
radios, and converters
I2C and UART interfaces
SPORT for natively interfacing with converters and radios
Programmable GPIOs (44 in LFCSP and 34 in WLCSP)
3 general-purpose timers with PWM support
RTC and FLEX_RTC with SensorStrobe and time stamping
Programmable beeper
25-channel DMA controller
Clocking features
26 MHz clock: on-chip oscillator, external crystal oscillator
32 kHz clock: on-chip oscillator, low power crystal oscillator
Integrated PLL with programmable divider
Analog peripherals
12-bit SAR ADC, 1.8 MSPS, 8 channels, and digital comparator
EEMBC ULPMark™-CP score: 245.5
Ultra low power active and hibernate mode
Active mode dynamic current: 30 μA/MHz (typical)
Flexi mode: 300 μA (typical)
Hibernate mode: 750 nA (typical)
Shutdown mode: 60 nA (typical)
ARM Cortex-M3 processor with MPU
Up to 26 MHz with serial wire debug interface
Power management
Single-supply operation (VBAT): 1.74 V to 3.6 V
Optional buck converter for improved efficiency
Memory options
128 kB/256 kB of embedded flash memory with ECC
4 kB of cache memory to reduce active power
64 kB of configurable system SRAM with parity up to 32 kB
of SRAM retained in hibernate mode
Safety
Watchdog with dedicated on-chip oscillator
Hardware CRC with programmable polynomial
Multiparity bit protected SRAM
ECC protected embedded flash
Security
TRNG
User code protection
Hardware cryptographic accelerator supporting AES-128,
AES-256, and SHA-256
APPLICATIONS
Internet of Things (IoT)
Electronic shelf label (ESL) and signage
Smart infrastructure
Smart lock
Asset tracking
Smart machine, smart metering, smart building, smart city,
and smart agriculture
Wearables
Fitness and clinical
Machine learning and neural network
FUNCTIONAL BLOCK DIAGRAM
26MHz CORE RATE
PLL
SERIAL WIRE
INSTRUCTION
RAM/CACHE
(32kB)
HFXTAL
LFXTAL
ARM
CORTEX-M3
HFOSC
NVIC
LFOSC
REF BUFFER
TEMPERATURE
SENSOR
ADC
WIC
MPU
MULTILAYER
AMBA
BUS
MATRIX
SPORT
SRAM0
(16kB)
POWER
MANAGEMENT
BUCK
SRAM1
(16kB)
DMA
CRYPTO
(AES 128/256,
SHA 256)
FLASH
(256kB)
UART
TMR0
TMR1
RTC0
RTC1
TMR2
TRNG
BEEPER
GPIO
PROGRAMMABLE
CRC POLYNOMIAL
SPI
SPI
SPI
I2C
WDT
14168-001
AHB-APB
BRIDGE
Figure 1.
Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.
Technical Support
http://www.analog.com
ADuCM3027/ADuCM3029
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
ARM Cortex-M3 Processor ...................................................... 22
Applications ....................................................................................... 1
Memory Architecture ................................................................ 23
Functional Block Diagram .............................................................. 1
Cache Controller ........................................................................ 24
Revision History ............................................................................... 2
System and Integration Features .............................................. 24
General Description ......................................................................... 3
On-Chip Peripheral Features .................................................... 28
Product Highlights ....................................................................... 3
Development Support ................................................................ 29
Specifications..................................................................................... 4
Additional Information ............................................................. 29
Operating Conditions and Electrical Characteristics.............. 4
Reference Designs ...................................................................... 29
Embedded Flash Specifications .................................................. 4
MCU Test Conditions ................................................................ 29
Power Supply Current Specifications......................................... 5
Driver Types ................................................................................ 29
ADC Specifications ...................................................................... 7
EEMBC ULPMark™-CP Score .................................................. 30
System Clocks ............................................................................... 8
GPIO Multiplexing ......................................................................... 31
Timing Specifications .................................................................. 9
Applications Information .............................................................. 33
Absolute Maximum Ratings.......................................................... 15
About ADuCM3027/ADuCM3029 Silicon Anomalies ............ 36
Thermal Resistance .................................................................... 15
Functionality Issues.................................................................... 36
ESD Caution ................................................................................ 15
Outline Dimensions ....................................................................... 38
Pin Configuration and Function Descriptions ........................... 16
Ordering Guide .......................................................................... 39
Typical Performance Characteristics ........................................... 20
Theory of Operation ...................................................................... 22
REVISION HISTORY
5/2019—Rev. A to Rev. B
Change to Features Section ............................................................. 1
Changes to General Description Section ...................................... 3
Change to VBAT_ADC Current (IVBAT_ADC) Parameter ,Table 7....... 7
Added Crystal Equivalent Series Resistance Parameter, Table 8 ..... 8
Change to SPT_CLK Period Parameter, Table 12 ........................ 9
Changes to Figure 5 and Figure 6 ................................................. 10
Changed Timer PWM_OUT Cycle Timing Section to Timer
Pulse-Width Modulation (PWM) Output Cycle
Timing Section ................................................................................ 14
Change to Figure 13 Caption ........................................................ 14
Change to Table 19 ......................................................................... 15
Changes to Figure 14 and Table 20............................................... 16
Changes to Figure 15 and Table 21............................................... 18
Changes to Figure 16 to Figure 19 ................................................ 20
Changes to Figure 20 and Figure 21 ............................................. 21
Change to MMRs (Peripheral Control and Status) Section ..... 23
Changes to Cache Controller Section and Booting Section ..... 24
Changes to Programmable GPIOs Section ................................. 26
Changes to I2C Section .................................................................. 28
Changes to Additional Information Section............................... 29
Changes to Figure 26...................................................................... 33
Changes to Figure 27...................................................................... 34
Changes to Figure 28...................................................................... 35
Added About ADuCM3027/ADuCM3029 Silicon Anomalies
Section, Table 30, Table 31, and Table 32; Renumbered
Sequentially ..................................................................................... 36
Added Table 33 ............................................................................... 37
Changes to Ordering Guide .......................................................... 39
12/2018—Revision A: Initial Version
Rev. B | Page 2 of 39
Data Sheet
ADuCM3027/ADuCM3029
GENERAL DESCRIPTION
The ADuCM3027/ADuCM3029 microcontroller units (MCUs)
are ultra low power microcontroller systems with integrated
power management for processing, control, and connectivity.
The MCU system is based on the ARM® Cortex®-M3 processor,
a collection of digital peripherals, embedded SRAM and flash
memory, and an analog subsystem which provides clocking,
reset, and power management capability in addition to an
analog-to-digital converter (ADC) subsystem. For a feature
comparison across the ADuCM3027/ADuCM3029 product
offerings, see Table 1.
Table 1. Product Flash Memory Options
Device
ADuCM3029
ADuCM3027
Embedded Flash Memory Size
256 kB
128 kB
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The ADuCM3029-1 and ADuCM3029-2 MCU models share the
same features and functionality as that of the ADuCM3029 MCU.
All specifications pertaining to the ADuCM3027 and
ADuCM3029 are also applicable to the ADuCM3029-1 and
ADuCM3029-2.
For full details on the ADuCM3027/ADuCM3029 MCUs, refer to
the ADuCM302x Ultra Low Power ARM Cortex-M3 MCU with
Integrated Power Management Hardware Reference Manual.
PRODUCT HIGHLIGHTS
System features that are common across the ADuCM3027/
ADuCM3029/ADuCM3029-1/ADuCM3029-2 MCUs include
the following:
•
•
To support low dynamic and hibernate power management, the
ADuCM3027/ADuCM3029 MCUs provide a collection of
power modes and features, such as dynamic and software
controlled clock gating and power gating.
Up to 26 MHz ARM Cortex-M3 processor
Up to 256 kB of embedded flash memory with error
correction code (ECC)
Optional 4 kB cache for lower active power
64 kB system SRAM with parity
Power management unit (PMU)
Multilayer advanced microcontroller bus architecture
(AMBA) bus matrix
Central direct memory access (DMA) controller
Beeper interface
Serial port (SPORT), serial peripheral interface (SPI),
inter-integrated circuit (I2C), and universal asynchronous
receiver/transmitter (UART) peripheral interfaces
Cryptographic hardware support with advanced encryption
standard (AES) and secure hash algorithm (SHA)-256
Real-time clock (RTC)
General-purpose and watchdog timers
Programmable general-purpose input/output (GPIO) pins
Hardware cyclic redundancy check (CRC) calculator with
programmable generator polynomial
Power-on reset (POR) and power supply monitor (PSM)
12-bit successive approximation register (SAR) ADC
True random number generator (TRNG)
1.
2.
3.
4.
5.
Rev. B | Page 3 of 39
Industry leading ultralow power consumption.
Robust operation, including full voltage monitoring in
deep sleep modes, ECC support on flash, and parity error
detection on SRAM memory.
Leading edge security. Fast encryption provides read
protection to customer algorithms. Write protection
prevents device reprogramming by unauthorized code.
Failure detection of 32 kHz LFXTAL via interrupt.
SensorStrobe™ for precise time synchronized sampling of
external sensors. Works in hibernate mode, resulting in
drastic current reduction in system solutions. Current
consumption reduces by 10 times when using, for example,
the ADXL363 accelerometer. Software intervention is not
required after setup. No pulse drift due to software execution.
ADuCM3027/ADuCM3029
Data Sheet
SPECIFICATIONS
OPERATING CONDITIONS AND ELECTRICAL CHARACTERISTICS
Table 2.
Parameter
EXTERNAL BATTERY SUPPLY VOLTAGE 1, 2
INPUT VOLTAGE
High Level
Low Level
ADC SUPPLY VOLTAGE
OUTPUT VOLTAGE 3
High Level
Low Level
INPUT CURRENT PULL-UP 4
High Level
Low Level
THREE-STATE LEAKAGE CURRENT
High Level 5
Pull-Up 6
Pull-Down 7
Low Level5
Pull-Up6
Pull-Down7
INPUT CAPACITANCE
JUNCTION TEMPERATURE
Symbol
VBAT
Min
1.74
VIH
VIL
VBAT_ADC
2.5
VOH
VOL
1.4
1.74
Typ
3.0
Max
3.6
Unit
V
Test Conditions/Comments
V
V
V
VBAT = 3.6 V
VBAT = 1.74 V
3.0
0.45
3.6
0.4
V
V
VBAT = 1.74 V, IOH = −1.0 mA
VBAT = 1.74 V, IOL = 1.0 mA
IIHPU
IILPU
0.01
0.2
100
µA
µA
VBAT = 3.6 V, VIN = 3.6 V
VBAT =3.6 V, VIN = 0 V
IOZH
IOZHPU
IOZHPD
IOZL
IOZLPU
IOZLPD
CIN
TJ
0.01
0.15
0.30
100
0.15
100
0.15
µA
µA
µA
µA
µA
µA
pF
°C
VBAT = 3.6 V, VIN = 3.6 V
VBAT = 3.6 V, VIN = 3.6 V
VBAT = 3.6 V, VIN = 3.6 V
VBAT = 3.6 V, VIN = 0 V
VBAT = 3.6 V, VIN = 0 V
VBAT = 3.6 V, VIN = 0 V
TJ = 25°C
TAMBIENT = -40°C to +85°C
Unit
Test Conditions/Comments
0.01
10
−40
+85
Value applies to VBAT_ANA1, VBAT_ANA2, VBAT_DIG1, and VBAT_DIG2 pins.
Must remain powered (even if the associated function is not used).
3
Applies to the output and bidirectional pins: P0_00 to P0_15, P1_00 to P1_15, and P2_00 to P2_11.
4
Applies to the SYS_HWRST input pin with pull-up.
5
Applies to the three-state pins: P0_00 to P0_05, P0_08 to P0_15, P1_00 to P1_15, and P2_00 to P2_11.
6
Applies to the three-state pins with pull-ups: P0_00 to P0_05, P0_07 to P0_15, and P1_00 to P1_11.
7
Applies to the P0_06 three-state pin with pull-down.
1
2
EMBEDDED FLASH SPECIFICATIONS
Table 3.
Parameter
FLASH
Endurance
Data Retention
Symbol
Min
Typ
10,000
10
Rev. B | Page 4 of 39
Max
Cycles
Years
Data Sheet
ADuCM3027/ADuCM3029
POWER SUPPLY CURRENT SPECIFICATIONS
Active Mode
Table 4.
Parameter
ACTIVE MODE 3
Buck Enabled
Min Typ 1 Max 2 Unit
Dynamic Current
0.40
0.98
1.28
0.95
1.08
2.71
1.29
1.64
1.36
1.43
1.37
1.78
1.08
30
1.75
2.34
1.78
1.99
1.49
2.55
3.29
2.03
60
2.74
8.05
3.0
2.48
2.67
Test Conditions/Comments
Current consumption when VBAT = 3.0 V
mA
Code executing from flash, cache enabled, peripheral clocks off, HCLK = 6.5 MHz
mA
Code executing from flash, cache enabled, peripheral clocks off, HCLK = 26 MHz
mA
Code executing from flash, cache disabled, peripheral clocks off, HCLK = 26 MHz
mA
Code executing from SRAM, peripheral clocks off, HCLK = 26 MHz
Code executing from flash, cache enabled, peripheral clocks on, HCLK = 26 MHz,
mA
PCLK = 26 MHz
Code executing from flash, cache disabled, peripheral clocks on, HCLK = 26 MHz,
mA
PCLK = 26 MHz
mA
Code executing from SRAM, peripheral clocks on, HCLK = 26 MHz, PCLK = 26 MHz
µA/MHz Code executing from flash, cache enabled
mA
Code executing from flash, cache enabled, peripheral clocks off, HCLK = 26 MHz
mA
Code executing from flash, cache disabled, peripheral clocks off, HCLK = 26 MHz
mA
Code executing from SRAM, peripheral clocks off, HCLK = 26 MHz
Code executing from flash, cache enabled, peripheral clocks on, HCLK = 26 MHz,
mA
PCLK = 26 MHz
Code executing from flash, cache disabled, peripheral clocks on, HCLK = 26 MHz,
mA
PCLK = 26 MHz
mA
Code executing from SRAM, peripheral clocks on, HCLK = 26 MHz, PCLK = 26 MHz
µA/MHz Code executing from flash, cache enabled
TJ = 25°C.
TJ = 85°C.
3
The code being executed is a prime number generation in a continuous loop, with HFOSC as the system clock source.
1
2
Flexi Mode
Table 5.
Parameter
FLEXI™ MODE
Buck Enabled
Buck Disabled
1
2
Min
Typ 1
Max 2
Unit
0.3
0.39
0.52
0.7
0.67
0.80
1.11
1.38
mA
mA
mA
mA
Test Conditions/Comments
Current consumption when VBAT = 3.0 V
Peripheral clocks off
Peripheral clocks on, PCLK = 26 MHz
Peripheral clocks off
Peripheral clocks on, PCLK = 26 MHz
TJ = 25°C.
TJ = 85°C.
Rev. B | Page 5 of 39
ADuCM3027/ADuCM3029
Data Sheet
Deep Sleep Modes—VBAT = 3.0 V
Table 6.
Parameter
HIBERNATE MODE
TJ = 25°C
TJ = 85°C
SHUTDOWN MODE 1
TJ = 25°C
TJ = 85°C
1
Min Typ
0.75
0.77
0.79
0.81
0.78
0.83
0.93
2.0
2.4
2.6
3.0
2.05
2.1
2.25
0.31
0.056
0.49
0.26
Max
Unit Test Conditions/Comments
VBAT = 3.0V
µA
RTC1 and RTC0 disabled, 8 kB SRAM retained, LFXTAL off
µA
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off
µA
RTC1 and RTC0 disabled, 24 kB SRAM retained, LFXTAL off
µA
RTC1 and RTC0 disabled, 32 kB SRAM retained, LFXTAL off
µA
RTC1 enabled, 8 kB SRAM retained, LFOSC as source for RTC1
µA
RTC1 enabled, 8 kB SRAM retained, LFXTAL as source for RTC1
µA
RTC1 and RTC0 enabled, 8 kB SRAM retained, LFXTAL as source for RTC1 and RTC0
6.05
µA
RTC1 and RTC0 disabled, 8 kB SRAM retained, LFXTAL off
6.4
µA
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off
6.75
µA
RTC1 and RTC0 disabled, 24 kB SRAM retained, LFXTAL off
7.1
µA
RTC1 and RTC0 disabled, 32 kB SRAM retained, LFXTAL off
6.1
µA
RTC1 enabled, 8 kB SRAM retained, LFOSC as source for RTC1
6.15
µA
RTC1 enabled, 8 kB SRAM retained, LFXTAL as source for RTC1
6.3
µA
RTC1 and RTC0 enabled, 8 kB SRAM retained, LFXTAL as source for RTC1 and RTC0
VBAT = 3.0 V
µA
RTC0 enabled, LFXTAL as source for RTC0
µA
RTC0 disabled
1.180 µA
RTC0 enabled, LFXTAL as source for RTC0
0.95
µA
RTC0 disabled
Buck enable/disable does not affect power consumption.
Rev. B | Page 6 of 39
Data Sheet
ADuCM3027/ADuCM3029
ADC SPECIFICATIONS
Table 7.
Parameter1, 2
INTEGRAL NONLINEARITY ERROR
64-Lead LFCSP
64-Lead LFCSP
54-Ball WLCSP
DIFFERENTIAL NONLINEARITY ERROR
64-Lead LFCSP
64-Lead LFCSP
54-Ball WLCSP
OFFSET ERROR
64-Lead LFCSP
64-Lead LFCSP
54-Ball WLCSP
GAIN ERROR
64-Lead LFCSP
64-Lead LFCSP
54-Ball WLCSP
VBAT_ADC CURRENT (IVBAT_ADC)5
64-Lead LFCSP
64-Lead LFCSP
54-Ball WLCSP
INTERNAL REFERENCE VOLTAGE
INTEGRAL NONLINEARITY ERROR
64-Lead LFCSP
64-Lead LFCSP
54-Ball WLCSP
54-Ball WLCSP
ADC SAMPLING FREQUENCY (fS)8
Min
1.22
2.45
1.22
2.45
0.01
Typ3
Unit
Test Conditions/Comments
±1.6
±1.4
±1.8
LSB
LSB
LSB
1.8 V (VBAT)/1.25 V (internal/external VREF)4
3.0 V (VBAT)/2.5 V (internal/external VREF)4
1.8 V (VBAT)/1.25 V (internal/external VREF)4
−0.7 to +1.15
−0.7 to +1.1
−0.75 to +1.2
LSB
LSB
LSB
1.8 V (VBAT)/1.25 V (internal/external VREF)4
3.0 V (VBAT)/2.5 V (internal/external VREF)4
1.8 V (VBAT)/1.25 V (internal/external VREF)4
±0.5
±0.5
±0.5
LSB
LSB
LSB
1.8 V (VBAT)/1.25 V (external VREF)4
3.0 V (VBAT)/2.5 V (external VREF)4
1.8 V (VBAT)/1.25 V (external VREF)4
±2.5
±0.5
±3.0
LSB
LSB
LSB
1.8 V (VBAT)/1.25 V (external VREF)4
3.0 V (VBAT)/2.5 V (external VREF)4
1.8 V (VBAT)/1.25 V (external VREF)4
104
131
108
1.25
2.50
μA
μA
μA
V
V
1.8 V (VBAT)/1.25 V (internal VREF)6
3.0 V (VBAT)/2.5 V (internal VREF)6
1.8 V (VBAT)/1.25 V (internal VREF)6
Internal reference, 1.25 V selected
Internal reference, 2.5 V selected
V
V
V
V
MSPS
1.25 V (internal)7
2.5 V (internal)
1.25 V (internal)
2.5 V (internal)
1.25
2.5
1.25
2.5
Max
1.275
2.545
1.275
2.545
1.8
1
The ADC is characterized in standalone mode without core activity and minimal or no switching on the adjacent ADC channels and digital inputs/outputs.
The specifications are characterized after performing internal ADC offset calibration.
TJ = 25°C.
4
fIN = 1068 Hz, fS = 100 kSPS, internal reference in low power mode, 400,000 samples end point method used.
5
Current consumption from VBAT_ADC supply when ADC is performing the conversion.
6
fIN = 1068 Hz, fS = 100 kSPS, internal reference in low power mode.
7
No load current, CL = 0.1 μF and 4.7 μF, reference buffer low power mode is enabled.
8
Effects of analog source impedance must be considered when selecting ADC sampling frequency.
2
3
Rev. B | Page 7 of 39
ADuCM3027/ADuCM3029
Data Sheet
SYSTEM CLOCKS
External Crystal Oscillator Specifications
Table 8.
Parameter
LOW FREQUENCY EXTERNAL CRYSTAL
OSCILLATOR (LFXTAL)
Frequency
External Capacitance from
SYS_LFXTAL_IN Pin to Ground and
from SYS_LFXTAL_OUT Pin to Ground
Crystal Equivalent Series Resistance
HIGH FREQUENCY EXTERNAL CRYSTAL
OSCILLATOR (HFXTAL)
Frequency
External Capacitance from
SYS_HFXTAL_IN Pin to Ground and
from SYS_HFXTAL_OUT Pin to Ground
Crystal Equivalent Series Resistance
Symbol
Min
fLFXTAL
CLFXTAL
6
Typ
Max
Unit
10
Hz
pF
30
kΩ
20
MHz
pF
50
Ω
32,768
ESRLFXTAL
fHFXTAL
CHFXTAL
26
ESRHFXTAL
Test Conditions/Comments
External capacitors on SYS_LFXTAL_IN
and SYS_LFXTAL_OUT pins must be
selected considering the printed circuit
board (PCB) trace capacitance due to
routing
External capacitors on SYS_HFXTAL_IN
and SYS_HFXTAL_OUT pins must be
selected considering the PCB trace
capacitance due to routing
On-Chip RC Oscillator Specifications
Table 9.
Parameter
LOW FREQUENCY RC OSCILLATOR (LFOSC)
Frequency
HIGH FREQUENCY RC OSCILLATOR (HFOSC)
Frequency
Symbol
Min
Typ
Max
Unit
fLFOSC
30,800
32,768
34,407
Hz
fHFOSC
25.09
26
26.728
MHz
Symbol
Min
Typ
Max
Unit
fPLLIN
fPLLOUT
fPCLK
fHCLK
16
16
0.8125
0.8125
26
60
26
26
MHz
MHz
MHz
MHz
System Clocks and PLL Specifications
Table 10.
Parameter
PLL SPECIFICATIONS
PLL Input Clock Frequency1
PLL Output Clock Frequency2, 3
System Peripheral Clock (PCLK) Frequency
Advanced High Performance Bus Clock (HCLK) Frequency
1
The input to the PLL can come from either the high frequency external crystal (HFXTAL), SYS_CLKIN pin or from the high frequency internal RC oscillator (HFOSC).
For the maximum value, the recommended settings are PLL_MSEL = 13, PLL_NSEL = 16, PLL_DIV2 = 1 for PLL input clock = 26 MHz; and PLL_MSEL = 13, PLL_NSEL =
26, PLL_DIV2 = 1 for PLL input clock = 16 MHz.
3
For the minimum value, the recommended settings are PLL_MSEL = 13, PLL_NSEL = 30, PLL_DIV2 = 0 for PLL input clock = 26 MHz; and PLL_MSEL = 8, PLL_NSEL = 30,
PLL_DIV2 = 0 for 16 MHz.
2
Rev. B | Page 8 of 39
Data Sheet
ADuCM3027/ADuCM3029
TIMING SPECIFICATIONS
Reset Timing
Table 11.
Parameter
RESET TIMING REQUIREMENTS
SYS_HWRST Asserted Pulse Width Low 1
1
Symbol
Min
tWRST
4
Typ
Max
Unit
µs
Applies after power-up sequence is complete.
14168-002
tWRST
SYS_HWRST
Figure 2. Reset Timing
Serial Ports Timing
Table 12.
Parameter
EXTERNAL CLOCK SERIAL PORTS
Timing Requirements
Frame Sync Setup Before SPT_CLK 1
Frame Sync Hold After SPT_CLK1
Receive Data Setup Before Receive SPT_CLK1
Receive Data Hold After SPT_CLK1
SPT_CLK Width 2
SPT_CLK Period2
Switching Characteristics 3
Frame Sync Delay After SPT_CLK
Frame Sync Hold After SPT_CLK
Transmit Data Delay After Transmit SPT_CLK
Transmit Data Hold After Transmit SPT_CLK
INTERNAL CLOCK SERIAL PORTS
Timing Requirements1
Receive Data Setup Before SPT_CLK
Receive Data Hold After SPT_CLK
Switching Characteristics
Frame Sync Delay After SPT_CLK 3
Frame Sync Hold After SPT_CLK 3
Transmit Data Delay After SPT_CLK3
Transmit Data Hold After SPT_CLK3
SPT_CLK Width
SPT_CLK Period
ENABLE AND THREE-STATE SERIAL PORTS
Switching Characteristics
Data Enable from Internal Transmit SPT_CLK3
Data Disable from Internal Transmit SPT_CLK3
Symbol
Min
tSFSE
Unit
Test Conditions/Comments
5
ns
tHFSE
5
ns
Externally generated frame sync
in transmit or receive mode
Externally generated frame sync
in transmit or receive mode
tSDRE
tHDRE
tSCLKW
tSPTCLK
5
8
38.5
77
ns
ns
ns
ns
tDFSE
Typ
Max
20
ns
tHOFSE
2
tDDTE
tHDTE
1
ns
ns
tSDRI
tHDRI
25
0
ns
ns
20
tDFSI
20
tHOFSI
−8
tDDTI
tHDTI
tSCLKIW
tSPTCLK
−7
tPCLK − 1.5
(2 × tPCLK) − 1
tDDTIN
tDDTTI
ns
ns
ns
20
5
160
ns
ns
ns
ns
Internally generated frame sync in
transmit or receive mode
Internally generated frame sync in
transmit or receive mode
Internally generated frame sync in
transmit or receive mode
Internally generated frame sync in
transmit or receive mode
Not shown in Figure 3 to Figure 7
ns
ns
This specification is referenced to the sample edge.
This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPT_CLK.
3
These specifications are referenced to the drive edge.
1
2
Rev. B | Page 9 of 39
ADuCM3027/ADuCM3029
Data Sheet
DRIVE EDGE
SAMPLE EDGE
tSCLKIW
SPT0_ACLK/SPT0_BCLK
(SPORT CLOCK)
tDFSI
tHOFSI
SPT_0AFS/SPT_0BFS
(FRAME SYNC)
tHDRI
14168-003
tSDRI
SPT_AD0/SPT_BD0
(DATA CHANNEL A/B)
Figure 3. Serial Ports (Data Receive Mode through Internal Clock)
DRIVE EDGE
SAMPLE EDGE
tSCLKIW
SPT0_ACLK/SPT0_BCLK
(SPORT CLOCK)
tDFSI
tHOFSI
SPT_0AFS/SPT_0BFS
(FRAME SYNC)
14168-004
tDDTI
tHDTI
SPT_AD0/SPT_BD0
(DATA CHANNEL A/B)
Figure 4. Serial Ports (Data Transmit Mode through Internal Clock)
DRIVE EDGE
SAMPLE EDGE
tSCLKW
SPT0_ACLK/SPT0_BCLK
(SPORT CLOCK)
tDFSE
tHOFSE
tSFSE
tHFSE
tSDRE
tHDRE
14168-005
SPT0_AFS/SPT0_BFS
(FRAME SYNC)
SPT0_AD0/SPT0_BD0
(DATA CHANNEL A/B)
Figure 5. Serial Ports (Data Receive Mode through External Clock)
DRIVE EDGE
SAMPLE EDGE
tSCLKW
SPT0_ACLK/SPT0_BCLK
(SPORT CLOCK)
tDFSE
tHOFSE
tSFSE
tHFSE
SPT_0AFS/SPT_0BFS
(FRAME SYNC)
14168-006
tDDTE
tHDTE
SPT_AD0/SPT_BD0
(DATA CHANNEL A/B)
Figure 6. Serial Ports (Data Transmit Mode through External Clock)
Rev. B | Page 10 of 39
Data Sheet
ADuCM3027/ADuCM3029
DRIVE EDGE
DRIVE EDGE
SPT0_ACLK/SPT0_BCLK
(SPORT CLOCK INTERNAL)
tDDTIN
tDDTTI
14168-007
SPT0_AD0/SPT0/BD0
(DATA CHANNEL A/B)
Figure 7. Enable and Three-State Serial Ports
Rev. B | Page 11 of 39
ADuCM3027/ADuCM3029
Data Sheet
SPI Timing
Table 13.
Parameter1
SPI MASTER MODE TIMING
Timing Requirements
Chip Select (CS) to Serial Clock (SCLK) Edge
SCLK Low Pulse Width
SCLK High Pulse Width
Data Input Setup Time Before SCLK Edge
Data Input Hold Time After SCLK Edge
Switching Characteristics
Data Output Valid After SCLK Edge
Data Output Setup Before SCLK Edge
CS High After SCLK Edge
SPI SLAVE MODE TIMING
Timing Requirements
CS to SCLK Edge
SCLK Low Pulse Width
SCLK High Pulse Width
Data Input Setup Time Before SCLK Edge
Data Input Hold Time After SCLK Edge
Switching Characteristics
Data Output Valid After SCLK Edge
Data Output Valid After CS Edge
CS High After SCLK Edge
Min
Typ
Max
Unit
tCS
tSL
tSH
tDSU
tDHD
(0.5 × tPCLK) − 3
tPCLK − 3.5
tPCLK − 3.5
5
20
tDAV
tDOSU
tSFS
tPCLK − 2.2
(0.5 × tPCLK) − 3
ns
ns
ns
tCS
tSL
tSH
tDSU
tDHD
38.5
38.5
38.5
6
8
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
25
tDAV
tDOCS
tSFS
20
20
ns
ns
ns
38.5
These specifications are characterized with respect to double drive strength.
CS
tSFS
tCS
SCLK
(POLARITY = 0)
tSH
tSL
SCLK
(POLARITY = 1)
tDAV
MSB
MOSI
MSB IN
MISO
BIT 6 TO BIT 1
BIT 6 TO BIT 1
LSB
LSB IN
14168-008
1
Symbol
tDSU
tDHD
Figure 8. SPI Master Mode Timing (Phase Mode = 1)
Rev. B | Page 12 of 39
Data Sheet
ADuCM3027/ADuCM3029
CS
tSFS
tCS
SCLK
(POLARITY = 0)
tSH
tSL
SCLK
(POLARITY = 1)
tDAV
tDOSU
MOSI
MSB
BIT 6 TO BIT 1
BIT 6 TO
BIT 1
tDSU
LSB IN
14168-009
MSB IN
MISO
LSB
tDHD
Figure 9. SPI Master Mode Timing (Phase = 0)
CS
tSFS
tCS
SCLK
(POLARITY = 0)
tSH
tSL
SCLK
(POLARITY = 1)
tDAV
MISO
MSB
MOSI
BIT 6 TO BIT 1
LSB
LSB IN
BIT 6 TO BIT 1
14168-010
MSB IN
tDSU
tDHD
Figure 10. SPI Slave Mode Timing (Phase Mode = 1)
CS
tSFS
tCS
SCLK
(POLARITY = 0)
tSH
tSL
SCLK
(POLARITY = 1)
tDAV
tDOCS
MOSI
MSB
MSB IN
BIT 6 TO BIT 1
BIT 6 TO BIT 1
LSB
LSB IN
14168-011
MISO
tDSU
tDHD
Figure 11. SPI Slave Mode Timing (Phase Mode = 0)
Rev. B | Page 13 of 39
ADuCM3027/ADuCM3029
Data Sheet
I2C Specifications
Table 14.
Parameter
I2C SCLK FREQUENCY
Standard Mode
Fast Mode
Symbol
Min
Typ
Max
Unit
100
400
kHz
kHz
General-Purpose Port Timing
Table 15.
Parameter
TIMING REQUIREMENTS
General-Purpose Port Pin Input Pulse Width
Symbol
Min
tWFI
4 × tPCLK
Typ
Max
Unit
ns
14168-012
tWFI
GPIO INPUT
Figure 12. General-Purpose Timing
RTC1 (FLEX_RTC) Specifications
Table 16.
Parameter
SENSORSTROBE
Minimum Output Frequency
Maximum Output Frequency
RTC1 ALARM
Minimum Time Resolution
Symbol
Min
Typ
Max
Unit
0.5
16.384
Hz
kHz
30.52
µs
Timer Pulse-Width Modulation (PWM) Output Cycle Timing
Table 17.
Symbol
Min
tPWMO
(4 × tPCLK) − 6
PWM OUTPUTS
tPWMO
Figure 13. Timer PWM Output Cycle Timing
Rev. B | Page 14 of 39
Typ
Max
Unit
256 × (216 − 1)
ns
14168-013
Parameter
SWITCHING REQUIREMENTS
Timer Pulse Width Output
Data Sheet
ADuCM3027/ADuCM3029
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 18.
Parameter
Supply
VBAT_ANA1, VBAT_ANA2, VBAT_ADC,
VBAT_DIG1, VBAT_DIG2, and
VREF_ADC
Analog
VDCDC_CAP1N, VDCDC_CAP1P,
VDCDC_OUT, VDCDC_CAP2N, and
VDCDC_CAP2P
VLDO_OUT, SYS_HFXTAL_IN, SYS_
HFXTAL_OUT, SYS_LFXTAL_IN, and
SYS_LFXTAL_OUT
Digital Input/Output
P0_xx, P1_xx, P2_xx, and SYS_HWRST
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required. θJA can be used for a first-order
approximation of TJ by the following equation:
Rating
−0.3 V to +3.6 V
TJ = TA + (θJA × PD)
−0.3 V to +1.32 V
where:
TJ is junction temperature (°C).
TA is ambient temperature (°C).
PD is power dissipation (to calculate power dissipation).
−0.3 V to +3.6 V
Package Type
CP-64-16
−0.3 V to +3.6 V
Table 19. Thermal Resistance
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
ESD CAUTION
Rev. B | Page 15 of 39
θJA
26.3
θJC
1.0
Unit
°C/W
ADuCM3027/ADuCM3029
Data Sheet
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
10
12
VBAT_ADC
8
6
11
9
7
VLDO_OUT
VDCDC_
CAP2N
VDCDC_
CAP1P
13
4
2
5
3
SYS_
LFXTAL_IN
SYS_
HFXTAL_OUT
1
VBAT_ANA1
A
VREF_ADC
P2_03
SYS_
LFXTAL_OUT
VDCDC_
CAP1N
VDCDC_
CAP2P
SYS_
HFXTAL_IN
P0_00
B
P2_05
GND_ VREFADC VDCDC_OUT
VBAT_ANA2
P0_02
P0_03
P0_01
C
P0_05
P2_06
P2_04
P1_10
P0_11
GND_ANA
P0_10
D
P0_06
P0_07
P0_04
SYS_HWRST
GND_DIG
P1_03
P1_02
E
P1_07
P1_09
P1_08
P1_04
P1_05
P2_01
F
VBAT_DIG1
P1_06
P2_11
P1_01
P0_15
P0_13
VBAT_DIG2
G
P0_12
P0_09
P0_08
P1_14
P1_14
P1_00
BOTTOM VIEW
(BALL SIDE UP)
Not to Scale
14168-014
H
Figure 14. ADuCM3027/ADuCM3029 54-Ball WLCSP Configuration
Table 20. ADuCM3027/ADuCM3029 54-Ball WLCSP Pin Function Descriptions
Pin No.
A1
A3
A5
A7
A9
A11
Mnemonic
VBAT_ANA1
SYS_HFXTAL_OUT
SYS_LFXTAL_IN
VDCDC_CAP1P
VDCDC_CAP2N
VLDO_OUT
Signal Name
Not Applicable
Not Applicable
Not Applicable
Not Applicable
Not Applicable
Not Applicable
A13
B1
B3
B5
B7
B9
B11
B13
C1
VBAT_ADC
P0_00
SYS_HFXTAL_IN
SYS_LFXTAL_OUT
VDCDC_CAP1N
VDCDC_CAP2P
VREF_ADC
P2_03
P0_03
C3
C5
C7
P0_01
P0_02
VBAT_ANA2
Not Applicable
SPI0_CLK/SPT0_BCLK/GPIO00
Not Applicable
Not Applicable
Not Applicable
Not Applicable
Not Applicable
ADC0_VIN0/GPIO35
SPI0_CS0/SPT0_BCNV/
SPI2_RDY/GPIO03
SPI0_MOSI/SPT0_BFS/GPIO01
SPI0_MISO/SPT0_BD0/GPIO02
Not Applicable
Description
External Supply for Analog Circuits in the MCU.
High Frequency Crystal Output.
High Frequency Crystal Input.
Buck Converter Capacitor 1 Positive Terminal.
Buck Converter Capacitor 2 Negative Terminal.
Low Drop Out Regulator Output. This pin is only for connecting the
decoupling capacitor. Do not connect this pin to the external load.
External Supply for Internal ADC.
GPIO. See the GPIO Multiplexing section for more information.
High Frequency Crystal Input.
Low Frequency Crystal Output.
Buck Converter Capacitor 1 Negative Terminal.
Buck Converter Capacitor 2 Positive Terminal.
External Reference Voltage for Internal ADC.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
External Supply for Analog Circuits in the MCU.
Rev. B | Page 16 of 39
Data Sheet
ADuCM3027/ADuCM3029
Pin No.
C9
Mnemonic
VDCDC_OUT
Signal Name
Not Applicable
C11
C13
D1
D3
GND_VREFADC
P2_05
P0_10
P1_10
D5
D7
D9
D11
D13
E1
E3
E5
E7
E9
E11
E13
F2
F4
F6
F8
F10
F12
G1
G3
G5
G7
G9
G11
P0_11
GND_ANA
P2_04
P2_06
P0_05
P1_03
P1_02
GND_DIG
SYS_HWRST
P0_04
P0_07
P0_06
P2_01
P1_05
P1_04
P1_09
P1_08
P1_07
VBAT_DIG2
P0_15
P0_13
P1_01
P1_06
P2_11
G13
H2
H4
H6
H8
H10
H12
VBAT_DIG1
P1_00
P0_14
P1_14
P0_08
P0_09
P0_12
Not Applicable
ADC0_VIN2/GPIO37
UART0_TX/GPIO10
SPI0_CS1/SYS_CLKIN/
SPI1_CS3/GPIO26
UART0_RX/GPIO11
Not Applicable
ADC0_VIN1/GPIO36
ADC0_VIN3/GPIO38
I2C0_SDA/GPIO05
SPI2_MOSI/GPIO19
SPI2_CLK/GPIO18
Not Applicable
Not Applicable
I2C0_SCL/GPIO04
GPIO07/SWD0_DATA
GPIO06/SWD0_CLK
XINT0_WAKE3/TMR2_OUT/GPIO33
SPI2_CS0/GPIO21
SPI2_MISO/GPIO20
SPI1_CS0/GPIO25
SPI1_MISO/GPIO24
SPI1_MOSI/GPIO23
Not Applicable
XINT0_WAKE0/GPIO15
XINT0_WAKE2/GPIO13
GPIO17/SYS_BMODE0
SPI1_CLK/GPIO22
SPI1_CS1/SYS_CLKOUT/GPIO43/
RTC1_SS1
Not Applicable
XINT0_WAKE1/GPIO16
TMR0_OUT/SPI1_RDY/GPIO14
SPI0_RDY/GPIO30
BPR0_TONE_N/GPIO08
BPR0_TONE_P/SPI2_CS1/GPIO09
SPT0_AD0/GPIO12/
UART0_SOUT_EN
Description
Buck Converter Output. This pin is only for connecting the decoupling
capacitor. Do not connect this pin to the external load.
Ground for Internal ADC.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
Ground Reference for Analog Circuits in the MCU.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
Ground Reference for Digital Circuits in the MCU.
Hardware Reset Pin.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
External Supply for Digital Circuits in the MCU.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
External Supply for Digital Circuits in the MCU.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
GPIO. See the GPIO Multiplexing section for more information.
Rev. B | Page 17 of 39
Data Sheet
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
GND_ANA
P0_00
P0_01
P0_02
P0_03
P1_10
P0_10
P0_11
P1_02
P1_03
P1_04
P1_05
P2_01
P0_13
P0_15
VBAT_DIG2
ADuCM3027/ADuCM3029
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
ADuCM3027/ADuCM3029/
ADuCM3029-1/ADuCM3029-2
TOP VIEW
(Not to Scale)
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
GND_DIG
P1_00
P0_14
P2_02
P1_14
P1_13
P1_12
P1_11
P0_08
P0_09
P1_01
P1_15
P2_00
P0_12
VBAT_DIG1
P2_11
NOTES
1. EXPOSED PAD. THE EXPOSED PAD MUST BE GROUNDED.
14168-015
P2_04
P2_05
P2_06
P2_07
P2_08
P2_09
P2_10
P0_05
SYS_HWST
P0_04
P0_07
P0_06
P1_09
P1_08
P1_07
P1_06
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
VBAT_ANA1
SYS_HFXTAL_IN
SYS_HFXTAL_OUT
SYS_LFXTAL_IN
SYS_LFXTAL_OUT
VDCDC_CAP1N
VDCDC_CAP1P
VBAT_ANA2
VDCDC_OUT
VDCDC_CAP2N
VDCDC_CAP2P
VLDO_OUT
VREF_ADC
VBAT_ADC
GND_VREFADC
P2_03
Figure 15. ADuCM3027/ADuCM3029/ADuCM3029-1/ADuCM3029-2 64-Lead LFCSP Configuration
Table 21. ADuCM3027/ADuCM3029/ADuCM3029-1/ADuCM3029-2, 64-Lead LFCSP Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
Mnemonic
VBAT_ANA1
SYS_HFXTAL_IN
SYS_HFXTAL_OUT
SYS_LFXTAL_IN
SYS_LFXTAL_OUT
VDCDC_CAP1N
VDCDC_CAP1P
VBAT_ANA2
VDCDC_OUT
Signal Name
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
10
11
12
VDCDC_CAP2N
VDCDC_CAP2P
VLD0_OUT
Not applicable
Not applicable
Not applicable
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
VREF_ADC
VBAT_ADC
GND_VREFADC
P2_03
P2_04
P2_05
P2_06
P2_07
P2_08
P2_09
P2_10
P0_05
SYS_HWRST
P0_04
P0_07
P0_06
Not applicable
Not applicable
Not applicable
ADC0_VIN0/GPIO35
ADC0_VIN1/GPIO36
ADC0_VIN2/GPIO37
ADC0_VIN3/GPIO38
ADC0_VIN4/SPI2_CS3/GPIO39
ADC0_VIN5/SPI0_CS2/GPIO40
ADC0_VIN6/SPI0_CS3/GPIO41
ADC0_VIN7/SPI2_CS2/GPIO42
I2C0_SDA/GPIO05
Not applicable
I2C0_SCL/GPIO04
GPIO07/SWD0_DATA
GPIO06/SWD0_CLK
Description
External Supply for Analog Circuits in the MCU.
High Frequency Crystal Input.
High Frequency Crystal Output.
Low Frequency Crystal Input.
Low Frequency Crystal Output.
Buck Converter Capacitor 1 Negative Terminal.
Buck Converter Capacitor 1 Positive Terminal.
External Supply for Analog Circuits in the MCU
Buck Converter Output. This pin is only for connecting the decoupling
capacitor. Do not connect this pin to the external load.
Buck Converter Capacitor 2 Negative Terminal.
Buck Converter Capacitor 2 Positive Terminal.
Low Drop Out Regulator Output. This pin is only for connecting the
decoupling capacitor. Do not connect this pin to the external load.
External Reference Voltage for Internal ADC.
External Supply for Internal ADC.
Ground for Internal ADC.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
Hardware Reset Pin.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
Rev. B | Page 18 of 39
Data Sheet
Pin No.
29
30
31
32
33
Mnemonic
P1_09
P1_08
P1_07
P1_06
P2_11
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
VBAT_DIG1
P0_12
P2_00
P1_15
P1_01
P0_09
P0_08
P1_11
P1_12
P1_13
P1_14
P2_02
P0_14
P1_00
GND_DIG
VBAT_DIG2
P0_15
P0_13
P2_01
P1_05
P1_04
P1_03
P1_02
P0_11
P0_10
P1_10
60
P0_03
61
62
63
64
P0_02
P0_01
P0_00
GND_ANA
EPAD
ADuCM3027/ADuCM3029
Signal Name
SPI1_CS0/GPIO25
SPI1_MISO/GPIO24
SPI1_MOSI/GPIO23
SPI1_CLK/GPIO22
SPI1_CS1/SYS_CLKOUT/GPIO43/
RTC1_SS1
Not applicable
SPT0_AD0/GPIO12
SPT0_AFS/GPIO32
SPT0_ACLK/GPIO31
GPIO17/SYS_BMODE0
BPR0_TONE_P/SPI2_CS1/GPIO09
BPR0_TONE_N/GPIO08
TMR1_OUT/GPIO27
GPIO28
GPIO29
SPI0_RDY/GPIO30
SPT0_ACNV/SPI1_CS2/GPIO34
TMR0_OUT/SPI1_RDY/GPIO14
XINT0_WAKE1/GPIO16
Not applicable
Not applicable
XINT0_WAKE0/GPIO15
XINT0_WAKE2/GPIO13
XINT0_WAKE3/TMR2_OUT/GPIO33
SPI2_CS0/GPIO21
SPI2_MISO/GPIO20
SPI2_MOSI/GPIO19
SPI2_CLK/GPIO18
UART0_RX/GPIO11
UART0_TX/GPIO10
SPI0_CS1/SYS_CLKIN/SPI1_CS3/
GPIO26
SPI0_CS0/SPT0_BCNV/SPI2_RDY/
GPIO03
SPI0_MISO/SPT0_BD0/GPIO02
SPI0_MOSI/SPT0_BFS/GPIO01
SPI0_CLK/SPT0_BCLK/GPIO00
Not applicable
Description
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
External Supply for Digital Circuits in the MCU.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
Ground Reference for Digital Circuits in the MCU.
External Supply for Digital Circuits in the MCU.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
GPIO. See the GPIO Multiplexing section.
Ground Reference for Analog Circuits in the MCU.
Exposed Pad. The exposed pad must be grounded.
Rev. B | Page 19 of 39
ADuCM3027/ADuCM3029
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
Figure 16 through Figure 21 show the typical current voltage characteristics for the output drivers of the MCU. The curves represent the
current drive capability of the output drivers as a function of output voltage.
VOH (V)
VOH (V)
1.4
1.5
1.6
2.70
5
1.8
1.7
5
SOURCE/SINK VBAT CURRENT (mA)
SOURCE/SINK VBAT CURRENT (mA)
2
1
0
–1
–2
VOL TYPE A
VOL TYPE B
VOL TYPE C
VOL TYPE D
–3
–4
2.85
2.90
4
VOH TYPE A
VOH TYPE B
VOH TYPE C
VOH TYPE D
3
2.80
3.00
VOH TYPE A
VOH TYPE B
VOH TYPE C
VOH TYPE D
3
2
1
0
–1
–2
VOL TYPE A
VOL TYPE B
VOL TYPE C
VOL TYPE D
–3
–4
VOL, VBAT = 3.0V
VOL, VBAT = 1.74V
0
0.1
0.2
0.3
0.4
0.6
0.5
VOL (V)
14168-016
–5
–5
Figure 16. Output Double Drive Strength Characteristics (VBAT = 1.74 V)
0.05
0
0.10
0.15
1.3
1.4
0.20
VOH (V)
1.5
1.6
1.7
2.75
2.5
2.80
2.85
2.90
VOH, VBAT = 1.74V
2.0
2.0
1.0
SOURCE/SINK VBAT CURRENT (mA)
1.5
0.5
0
–0.5
VOL TYPE A
VOL TYPE B
VOL TYPE C
VOL TYPE D
–2.0
2.95
3.00
VOH, VBAT = 3.0V
VOH TYPE A
VOH TYPE B
VOH TYPE C
VOH TYPE D
–1.5
0.30
Figure 18. Output Double Drive Strength Characteristics (VBAT = 3.0 V)
2.5
–1.0
0.25
VOL (V)
VOH (V)
1.2
SOURCE/SINK VBAT CURRENT (mA)
2.95
VOH, VBAT = 3.0V
VOH, VBAT = 1.74V
4
2.75
14168-018
1.3
VOH TYPE A
VOH TYPE B
VOH TYPE C
VOH TYPE D
1.5
1.0
0.5
0
–0.5
VOL TYPE A
VOL TYPE B
VOL TYPE C
VOL TYPE D
–1.0
–1.5
–2.0
VOL, VBAT = 1.74V
VOL, VBAT = 3.0V
0
0.1
0.2
0.3
VOL (V)
0.4
0.5
0.6
14168-017
–2.5
–2.5
Figure 17. Output Single Drive Strength Characteristics (VBAT = 1.74 V)
Rev. B | Page 20 of 39
0
0.05
0.10
0.15
0.20
0.25
VOL (V)
Figure 19. Output Single Drive Strength Characteristics (VBAT = 3.0 V)
14168-019
1.2
Data Sheet
ADuCM3027/ADuCM3029
VOH (V)
3.35
3.40
VOH (V)
3.45
3.50
3.55
3.60
3.38
2.5
3.40
3.42
3.44 3.46
3.48
3.50
VOH, VBAT = 3.6V
2.0
VOH TYPE A
VOH TYPE B
VOH TYPE C
VOH TYPE D
3
2
SOURCE/SINK VBAT CURRENT (mA)
SOURCE/SINK VBAT CURRENT (mA)
4
1
0
–1
–2
VOL TYPE A
VOL TYPE B
VOL TYPE C
VOL TYPE D
–3
–4
3.56
3.58
1.0
0.5
0
–0.5
–1.0
VOL TYPE A
VOL TYPE B
VOL TYPE C
VOL TYPE D
–1.5
VOL, VBAT = 3.6V
0.10
0.15
VOL (V)
0.20
0.25
14168-020
0.05
3.54
VOH TYPE A
VOH TYPE B
VOH TYPE C
VOH TYPE D
1.5
–2.0
VOL, VBAT = 3.6V
–5
0
3.52
VOH, VBAT = 3.6V
Figure 20. Output Double Drive Strength Characteristics (VBAT = 3.6 V)
Rev. B | Page 21 of 39
–2.5
0
0.05
0.10
0.15
0.20
0.25
VOL (V)
Figure 21. Output Single Drive Strength Characteristics (VBAT = 3.6 V)
14168-021
3.30
5
ADuCM3027/ADuCM3029
Data Sheet
THEORY OF OPERATION
ARM CORTEX-M3 PROCESSOR
Code Region
The ARM Cortex-M3 core is a 32-bit reduced instruction set
computer (RISC). The length of the data can be 8 bits, 16 bits,
or 32 bits. The length of the instruction word is 16 bits or 32 bits.
The processor has the following features:
Accesses in this region (0x0000 0000 to 0x0001 FC00 for the
ADuCM3027 and 0x0000 0000 to 0x0003 FFFF for the
ADuCM3029) are performed by the core and target the
memory and cache resources.
SRAM Region
Cortex-M3 architecture
Thumb-2 instruction set architecture (ISA)
technology
Three-stage pipeline with branch speculation
Low latency interrupt processing with tail chaining
Single-cycle multiply
Hardware divide instructions
Nested vectored interrupt controller (NVIC)
(64 interrupts and 8 priorities)
Two hardware breakpoints and one watchpoint
(unlimited software breakpoints using Segger JLink)
Memory protection unit (MPU)
Eight region MPU with subregions and background
region
Programmable clock generator unit
Configurable for ultra low power operation
Deep sleep mode, dynamic power management
Programmable clock generator unit
ARM Cortex-M3 Memory Subsystem
Accesses in this region (0x2000 0000 to 0x2004 7FFF) are
performed by the ARM Cortex-M3 core. The SRAM region of
the core can otherwise act as a data region for an application.
System Region
Accesses in this region (0xE000 0000 to 0xF7FF FFFF) are performed by the ARM Cortex-M3 core and are handled within
the Cortex-M3 platform.
The memory map of the ADuCM3027/ADuCM3029 is based
on the Cortex-M3 model from ARM. By retaining the standardized
memory mapping, it is easier to port applications across M3
platforms.
Internal SRAM data region. This space can contain read/write
data. Internal SRAM can be partitioned between code and
data (SRAM region in M3 space) in 32 kB blocks. Access to
this region occurs at core clock speed with no wait states.
It also supports read/write access by the ARM Cortex-M3
core and read/write DMA access by system devices. It
supports exclusive memory accesses via the global
exclusive access monitor within the Cortex-M3 platform.
System memory mapped registers (MMRs). Various system
MMRs reside in this region.
The ADuCM3027/ADuCM3029 application development is
based on memory blocks across code/SRAM regions. Internal
memory is available via internal SRAM and internal flash.
Rev. B | Page 22 of 39
CoreSight™ ROM. The read-only memory (ROM) table
entries point to the debug components of the processor.
ARM APB Peripheral. This space is defined by ARM and
occupies the bottom 256 kB/128 kB of the system (SYS) region
(0xE000 0000 to 0xE004 0000) depending on the device used.
The space supports read/write access by the M3 core to the
internal peripherals of the ARM core (NVIC, system control
space (SCS), wake-up interrupt controller (WIC)), and
CoreSight ROM. It is not accessible by system DMA.
Data Sheet
ADuCM3027/ADuCM3029
MEMORY ARCHITECTURE
MMRs (Peripheral Control and Status)
The internal memory of the ADuCM3027/ADuCM3029 is
shown in Figure 22. The internal memory incorporates up to
256 kB of embedded flash memory for program code and
nonvolatile data storage, 32 kB of data SRAM, and 32 kB of
SRAM (configured as instruction space or data space).
For the address space containing MMRs, refer to Figure 22.
These registers provide control and status for on-chip
peripherals of the ADuCM3027/ADuCM3029. For more
information about the MMRs, refer to the ADuCM302x Ultra
Low Power ARM Cortex-M3 MCU with Integrated Power
Management Hardware Reference.
SRAM Region
This memory space contains the application instructions and
literal (constant) data that must be accessed in real-time. It
supports read/write access by the ARM Cortex-M3 core and
read/write DMA access by system peripherals. Byte, half-word,
and word accesses are supported.
SRAM is divided into 32 kB data SRAM and 32 kB instruction
SRAM. If instruction SRAM is not enabled, then the associated
32 kB can be mapped as data SRAM, resulting in 64 kB of data
SRAM.
Parity bit error detection (optional) is available on all SRAM
memories. Two parity bits are associated with each 32-bit word.
When the cache controller is enabled, 4 kB of the instruction
SRAM is reserved as cache memory.
Flash Memory
The ADuCM3027/ADuCM3029 MCUs include 128 kB to
256 kB of embedded flash memory, which is accessed using a
flash controller. For memory available on each product, see
Table 1. The flash controller is coupled with a cache controller.
A prefetch mechanism is implemented in the flash controller to
optimize code performance.
Flash writes are supported by a key hole mechanism via
advanced peripheral bus (APB) writes to MMRs. The flash
controller provides support for DMA-based key hole writes.
With respect to flash integrity, the devices support the
following:
Users can select the SRAM configuration modes depending on
the instruction SRAM and cache needed.
In hibernate mode, 8 kB to 32 kB of the SRAM can be retained
in increments of 8 kB. 8 kB of data SRAM is always retained.
Users can additionally retain
16 kB out of 32 kB of instruction SRAM
8 kB out of 32 kB of data SRAM
Rev. B | Page 23 of 39
A fixed user key required for running protected
commands, including mass erase and page erase.
An optional and user definable user failure analysis key
(FAA key). Analog Devices personnel need this key while
performing failure analysis.
An optional and user definable write protection for user
accessible memory.
8-bit ECC.
ADuCM3027/ADuCM3029
Data Sheet
0x4001 0FE0
0x4001 0000
0x4000 1000
0x4000 0824
0x4000 0800
0x4000 0424
0x4000 0400
0x4000 0424
0x4000 0400
RESERVED
0x4000 70C4
REAL-TIME CLOCK 0 (RTC 0)
0x4000 7000
RESERVED
0x4000 5C0C
GENERAL-PURPOSE TIMER 2
0x4000 5C00
0x2004 0000
0x2000 3FFF
0x2000 0000
0x0003 FFFC
0x0000 0000
POWER MGT, EXT IRQ,
CLOCKING, MISC MMR
0x4004 C000
RESERVED
0x4004 406C
BEEPER 0
0x4004 4000
RESERVED
RESERVED
0x4000 5030
GENERAL-PURPOSE TIMER 1
0x4000 5000
RESERVED
0x4000 4438
GENERAL-PURPOSE TIMER 0
0x4000 4400
0x4004 0414
UART 0
0x4004 0400
RESERVED
0x4000 3058
0x4000 3000
0x4000 2C18
INSTRUCTION SRAM (32kB)
0x4000 2C00
I2C 0 MASTER/SLAVE
RESERVED
0x4000 2040
0x4000 2000
SYSTEM ID AND DEBUG
ENABLE
0x4002 00B4
0x4002 0000
SPIH 0 MASTER/SLAVE
GPIO
RESERVED
0x4001 8088
0x4001 8000
RESERVED
0x4000 1444
0x4002 4038
0x4002 4000
RESERVED
WATCHDOG TIMER
RESERVED
256kB FLASH MEMORY
SPORT 0
RESERVED
RESERVED
RESERVED
0x4003 8078
0x4003 8000
RESERVED
RAM BANK 0 (16kB)
PROGRAMMABLE
CRC ENGINE
RESERVED
SPI 0 MASTER/SLAVE
0x4000 4000
0x4004 000C
0x4004 0000
RESERVED
RAM BANK 1 (16kB)
RANDOM NUMBER
GENERATOR
RESERVED
SPI 1 MASTER/SLAVE
0x4000 4038
CRYPTO
RESERVED
RESERVED
0x1000 7FFF
0x1000 0000
RESERVED
0x4004 C80C
RESERVED
RESERVED
0x2004 3FFF
0x400F FFFF
ADC0
FLASH CONTROLLER
RESERVED
REAL-TIME CLOCK 1 (RTC1)
0x4000 1400
14168-022
0x4000 1044
DMA0
RESERVED
Figure 22. ADuCM3027/ADuCM3029 Memory Map—SRAM Mode 0
Table 22. Boot Modes
CACHE CONTROLLER
The ADuCM3027/ADuCM3029 MCUs have an optional 4 kB
instruction cache. In certain applications, enabling the cache
and executing the code can result in lower power consumption
rather than operating directly from flash. When enabling the
cache controller, 4 kB of instruction SRAM is reserved as cache
memory. In hibernate mode, the cache memory is not retained.
SYSTEM AND INTEGRATION FEATURES
The ADuCM3027/ADuCM3029 MCUs provide several features
that ease system integration.
Reset
There are four types of resets: external, power-on, watchdog
timeout, and software system reset. The software system reset is
provided as part of the ARM Cortex-M3 core.
The SYS_HWRST pin is toggled to perform a hardware reset.
Booting
The ADuCM3027/ADuCM3029 MCUs support two boot
modes: booting from internal flash and upgrading software
through UART download. If SYS_BMODE0 (Pin P1_01) is
pulled low during power-up or a hard reset, the MCU enters
into serial download mode. In serial download mode, an
on-chip routine initiates in the kernel, which configures the
UART port and communicates with the host to manage the
firmware upgrade via a specific serial download protocol.
Boot Mode
0
1
Description
UART download mode.
Flash boot. Boot from integrated flash memory.
Power Management
The ADuCM3027/ADuCM3029 MCUs have an integrated
power management system that optimizes performance and
extends battery life of the devices.
The power management system consists of the following:
•
•
Integrated 1.2 V low dropout regulator (LDO) and optional
capacitive buck regulator
Integrated power switches for low standby current in
hibernate and shutdown modes.
Additional power management features include the following:
•
•
•
•
•
•
Customized clock gating for active and Flexi™ modes
Power gating to reduce leakage in hibernate and shutdown
modes
Flexible sleep modes
Shutdown mode with no retention
Optional high efficiency buck converter to reduce power
Integrated low power oscillators
Power Modes
The PMU provides control of the ADuCM3027/ADuCM3029
power modes and allows the ARM Cortex-M3 to control the
clocks and power gating to reduce the power consumption.
Rev. B | Page 24 of 39
Data Sheet
ADuCM3027/ADuCM3029
Several power modes are available. Each mode provides an
additional low power benefit with a corresponding reduction in
functionality.
VBAT
VDCDC_CAP1P
VDCDC_CAP1N
BUCK
ENABLED
Active Mode
0.1µF
VDCDC_OUT
0.47µF
VDCDC_CAP2P
In active mode, all peripherals can be enabled. Active power is
managed by optimized clock management. See Table 4 for
details on active mode power.
VDCDC_CAP2N
Flexi Mode
0.1µF
VLDO_OUT
0.47µF
LDO
NOTES
1. FOR DESIGNS IN WHICH THE OPTIONAL BUCK IS NOT USED,
THE FOLLOWING PINS MUST BE LEFT UNCONNECTED:
VDCDC_CAP1P, VDCDC_CAP1N, VDCDC_OUT, VDCDC_CAP2P, AND VDCDC_CAP2N
Hibernate Mode
Figure 23. Buck Enabled Design
This mode provides state retention, configurable SRAM and
port pin retention, a limited number of wake-up interrupts
(XINT0_WAKEn and UART0_RX), and, optionally, two
RTCs—RTC0 and RTC1 (FLEX_RTC).
For designs in which the optional buck is not used, the
following pins must be left unconnected: VDCDC_CAP1P,
VDCDC_CAP1N, VDCDC_OUT, VDCDC_CAP2P, and
VDCDC_CAP2N.
Shutdown Mode
Security Features
This mode is the deepest sleep mode, in which all the digital
and analog circuits are powered down with an option to wake
from four possible wake-up sources: three external interrupts
and RTC0. The RTC0 can be optionally enabled in this mode
and the device can be periodically woken up by the RTC0
interrupt. See Table 6 for deep sleep (hibernate and shutdown)
mode specifications.
The ADuCM3027/ADuCM3029 MCUs provide a combination
of hardware and software protection mechanisms that lock out
access to the devices in secure mode but grant access in open
mode. These mechanisms include password protected slave
boot mode (UART), as well as password protected serial wire
debug (SWD) interfaces.
The following features are available for power management and
control:
•
•
•
•
•
A voltage range of 1.74 V to 3.6 V using a single supply
(such as the CR2032 coin cell battery).
GPIOs are driven directly from the battery. The pin state is
retained in hibernate and shutdown modes. The GPIO
configuration is only retained in hibernate mode.
Wake-up from external interrupt (via GPIOs), UART0_RX
interrupt, and RTCs for hibernate mode.
Wake-up from external interrupt (via GPIOs) and RTC0
for shutdown mode.
Optional high power buck converter for 1.2 V full on
support (for MCU use only). See Figure 23 for the
suggested external circuitry.
Mechanisms are provided to protect the device contents (flash,
SRAM, CPU registers, and peripheral registers) from being read
through an external interface by an unauthorized user, which is
referred to as read protection.
It is possible to protect the device from being reprogrammed in
circuit with unauthorized code. This is referred to as in circuit
write protection.
The devices can be configured with no protection, read
protection, or read and in circuit write protection. It is not
necessary to provide in circuit write protection without read
protection.
Cryptographic Accelerator
The cryptographic accelerator is a 32-bit APB DMA capable
peripheral. There are two 32-bit buffers provided for data
input/output operations. These buffers read in or read out
128 bits in four data accesses. Big endian and little endian data
formats are supported, as are the following modes:
•
•
•
•
•
•
Rev. B | Page 25 of 39
Electronic code book (ECB) mode—AES mode
Counter (CTR) mode
Cipher block chaining (CBC) mode
Message authentication code (MAC) mode
Cipher block chaining-message authentication code
(CCM/CCM*) mode
SHA-256 modes
14168-023
In Flexi mode, the ARM Cortex-M3 core is clock gated, but the
remainder of the system is active. No instructions can be
executed in this mode, but DMA transfers can continue
between peripherals and memory as well as memory to
memory. See Table 5 for details on Flexi mode power.
ADuCM3027/ADuCM3029
Data Sheet
True Random Number Generator (TRNG)
Timers
The TRNG is used during operations where nondeterministic
values are required. These operations can include generating
challenges for secure communication or keys for an encrypted
communication channel. The generator can run multiple times
to generate a sufficient number of bits for the strength of the
intended operation. The TRNG can seed a deterministic
random bit generator.
The ADuCM3027/ADuCM3029 MCUs have three generalpurpose timers and a watchdog timer.
Reliability and Robustness Features
The ADuCM3027/ADuCM3029 MCUs provide a number of
features that can enhance or help achieve certain levels of
system safety and reliability. While the level of safety is mainly
dominated by system considerations, the following features are
provided to enhance robustness.
ECC Enabled Flash Memory
The entire flash array can be protected to either correct singlebit errors or detect two-bit errors per 64-bit flash data.
Multiparity Bit Protected SRAM
Each word of the SRAM and cache memory is protected by
multiple parity bits to allow detection of random soft errors.
Software Watchdog
The on-chip watchdog timer can provide software-based
supervision of the ADuCM3027/ADuCM3029.
Cyclic Redundancy Check (CRC) Accelerator
The CRC accelerator computes the CRC for a block of memory
locations. The exact memory location can be in the SRAM,
flash, or any combination of MMRs. The CRC accelerator
generates a checksum that can be compared with an expected
signature.
The main features of the CRC include the following:
Generates a CRC signature for a block of data.
Supports programmable polynomial length of up to 32 bits.
Operates on 32 bits of data at a time.
Supports MSB first and LSB first CRC implementations.
Various data mirroring capabilities.
Initial seed to be programmed by user.
DMA controller (memory to memory transfer) used for
data transfer to offload the MCU.
General-Purpose Timers
The ADuCM3027/ADuCM3029 MCUs have three identical
general-purpose timers, each with a 16-bit up and down
counter. The up and down counter can be clocked from one of
four user selectable clock sources. Any selected clock source
can be scaled down using a prescaler of 1, 16, 64, or 256.
Watchdog Timer (WDT)
The WDT is a 16-bit count down timer with a programmable
prescaler. The prescaler source is selectable and can be scaled by
a factor of 1, 16, or 256. The WDT is clocked by the 32 kHz onchip oscillator (LFOSC) and recovers from an illegal software
state. The WDT requires periodic servicing to prevent it from
forcing a reset or interrupt to the MCU.
Analog-to-Digital Converter (ADC) Subsystem
The ADuCM3027/ADuCM3029 MCUs integrate a 12-bit SAR
ADC with up to eight external channels. Conversions can be
performed in single or autocycle mode. In single mode, the
ADC can be configured to convert on a particular channel by
selecting one of the channels. Autocycle mode is provided to
reduce MCU overhead of sampling and reading individual
channel registers. The ADC can also be used for temperature
sensing and measuring battery voltage using dedicated
channels. Temperature sensing and battery monitoring cannot
be included with external channels in autocycle mode.
A digital comparator triggers an interrupt if ADC input is above
or below a programmable threshold. The ADC0_VIN0,
ADC0_VIN1, ADC0_VIN2, and ADC0_VIN3 input channels
can be used with the digital comparator.
Use the ADC in DMA mode to reduce MCU overhead by
moving ADC results directly into SRAM with a single interrupt
asserted when the required number of ADC conversions has
been completely logged to memory.
Programmable GPIOs
The ADuCM3027 and ADuCM3029 MCUs have 44 and 34
GPIO pins in the LFCSP and WLCSP packages, respectively.
Note that the ADuCM3029-1 and ADuCM3029-2 models have
44 GPIO pins and are available in the LFCSP only. These GPIO
pins have multiple, configurable functions defined by user code.
They can be configured as an input/output and have
programmable pull-up resistors. All GPIO pins are functional
over the full supply range.
In deep sleep mode, the GPIO pins retain their state. On reset,
the GPIO pins tristate.
Rev. B | Page 26 of 39
Data Sheet
ADuCM3027/ADuCM3029
The main features of the ADC subsystem include the following:
Clocking
12-bit resolution.
Programmable ADC update rate from 10 KSPS to
1.8 MSPS.
Integrated input multiplexer that supports up to eight
channels.
Temperature sensing support.
Battery monitoring support.
Software selectable on-chip reference voltage generation—
1.25 V and 2.5 V.
Software selectable internal or external reference.
Autocycle mode—ability to automatically select a sequence
of input channels for conversion.
Averaging function—converted data on single-channel or
multiple channels can be averaged up to 256 samples.
Alert function—internal digital comparator for
ADC0_VIN0, ADC0_VIN1, ADC0_VIN2, and
ADC0_VIN3 channels. An interrupt is generated if the
digital comparator detects an ADC result above or below a
user defined threshold.
Dedicated DMA channel support.
Each channel, including temperature sensor and battery
monitoring, has a data register for conversion result.
The ADuCM3027/ADuCM3029 MCUs have the following
clocking options:
26 MHz
Internal oscillator—HFOSC (26 MHz)
External crystal oscillator—HFXTAL (26 MHz or
16 MHz)
GPIO clock in—SYS_CLKIN
32 kHz
Internal oscillator—LFOSC
External crystal oscillator—LFXTAL
The clock options have software configurability with the
following exceptions:
HFOSC cannot be disabled when using an internal buck
regulator.
LFOSC cannot be disabled even if using LFXTAL.
Table 23. RTC Features
Features
Resolution of
Time Base
(Prescaling)
Source Clock
RTC0
Counts time at 1 Hz in units of seconds. Operationally,
RTC0 always prescales to 1 Hz (for example, divide by
32,768) and always counts real time in units of
seconds.
LFXTAL.
Wake-Up
Timer
Number of
Alarms
SensorStrobe
Mechanism
Wake-up time is specified in units of seconds.
Input Capture
Not available.
One alarm only. Uses an absolute, nonrepeating
alarm time, specified in units of 1 sec.
Not available.
RTC1 (FLEX_RTC)
Can prescale the clock by any power of two from 0 to 15. It can
count time in units of any of these 16 possible prescale settings.
For example, the clock can be prescaled by 1, 2, 4, 8, …, 16,384, or
32,768.
Depending on the low frequency multiplexer (LFMUX)
configuration, the RTC is clocked by the LFXTAL or the LFOSC.
Supports alarm times down to a resolution of 30.52 μs, that is,
where the time is specified down to a specific 32 kHz clock cycle.
Two alarms. One absolute alarm time and one periodic alarm,
repeating every 60 prescaled time units.
SensorStrobe is an alarm mechanism in the RTC that sends an
output pulse via GPIOs to an external device to instruct the device
to take a measurement or perform some action at a specific time.
SensorStrobe events are schedule data specific target time
relative to the real-time count of the RTC. SensorStrobe can be
enabled in active, Flexi, and hibernate modes.
Input capture takes a snapshot of the RTC when an external
device signals an event via a transition on one of the GPIO inputs
to the ADuCM3027/ADuCM3029. Typically, an input-capture
event is triggered by an autonomous measurement or action on
such a device, which then signals to the ADuCM3027/
ADuCM3029 that the RTC must take a snapshot of time
corresponding to the event. Taking the snapshot can wake up the
ADuCM3027/ADuCM3029 and cause an interrupt to the CPU. The
CPU can subsequently obtain information from the RTC on the
exact 32 kHz cycle on which the input capture event occurred.
Rev. B | Page 27 of 39
ADuCM3027/ADuCM3029
Data Sheet
Beeper Driver
The ADuCM3027/ADuCM3029 MCUs have an integrated
audio driver for a beeper.
The beeper driver module in the ADuCM3027/ADuCM3029
MCUs generate a differential square wave of programmable
frequency. It drives an external piezoelectric sound component
with two terminals that connect to the differential square wave
output.
The beeper driver consists of a module that can deliver
frequencies ranging from 8 kHz to approximately 0.25 kHz; the
minimum frequency is determined by the maximum value of a
divide register that can be programmed to 127. This results in a
beeper frequency of
32.768 kHz/127 = 0.25802 kHz
The beeper driver allows programmable tone durations in 4 ms
increments. Pulse (single-tone) and sequence (multitone)
modes provide versatile playback options.
In sequence mode, the beeper can be programmed to play any
number of tone pairs from 1 to 254 (2 tones to 508 tones) or be
programmed to play forever (until stopped by the user).
Interrupts are available to indicate the start or end of any beep,
the end of a sequence, or when the sequence is nearing
completion.
Debug Capability
The ADuCM3027/ADuCM3029 MCUs support SWD. The
ADuCM3027/ADuCM3029 MCUs have a reduced flash patch
and breakpoint (FPB) unit with support for up to two hardware
breakpoints.
ON-CHIP PERIPHERAL FEATURES
The ADuCM3027/ADuCM3029 MCUs have a rich set of
peripherals connected to the core via several concurrent high
bandwidth buses, providing flexibility in system configuration
as well as excellent overall system performance (see Figure 1).
The ADuCM3027/ADuCM3029 MCUs contain high speed
serial ports, an interrupt controller for flexible management of
interrupts from the on-chip peripherals or external sources, and
power management control functions to tailor the performance
and power characteristics of the MCU and system to many
application scenarios.
Serial Ports (SPORT)
The ADuCM3027/ADuCM3029 MCUs provide two single
direction half SPORTs or one bidirectional full SPORT. The
synchronous serial ports provide an inexpensive interface to a
wide variety of digital and mixed-signal peripheral devices such
as Analog Devices audio codecs, ADCs, and DACs. The serial
ports contain two data lines, a clock, and a frame sync. The data
lines can be programmed to either transmit or receive, and each
data line has a dedicated DMA channel.
channels. The frame sync and clock can be shared. Some of the
ADCs and DACs require two control signals for their
conversion process. To interface with such devices, the
SPT0_ACNV and SPT0_BCNV signals are provided. To use
these signals, enable the timer enable mode. In this mode, a
PWM timer inside the module generates the programmable
SPT0_ACNV and SPT0_BCNV signals.
Serial ports operate in two modes:
•
•
Standard digital signal processor (DSP) serial mode
Timer enable mode
SPI Ports
The ADuCM3027/ADuCM3029 MCUs provide three SPIs. SPI
is an industry standard, full-duplex, synchronous serial interface that allows eight bits of data to be synchronously
transmitted and simultaneously received. Each SPI incorporates
two DMA channels that interface with the DMA controller. One
DMA channel transmits and the other receives. The SPI on the
MCU eases interfacing to external serial flash devices.
The SPI features include the following:
•
•
•
•
•
•
•
•
•
Serial clock phase mode and serial clock polarity mode
Loopback mode
Continuous and repeated transfer mode
Wired OR output mode
Read command mode for half-duplex operation (transmit
followed by receive)
Flow control support in read command mode
Support for 3-pin SPI in read command mode
Multiple CS line support
CS software override support
UART Port
The ADuCM3027/ADuCM3029 MCUs provide a full-duplex
UART port, which is fully compatible with PC standard UARTs.
The UART port provides a simplified UART interface to other
peripherals or hosts, supporting full-duplex, DMA, and
asynchronous transfers of serial data. The UART port includes
support for five to eight data bits, and none, even, or odd parity.
A frame is terminated by one, one and a half, or two stop bits.
I2C
The ADuCM3027/ADuCM3029 MCUs provide an I2C bus
peripheral that has two pins for data transfer. SCL (Pin P0_04)
is a serial clock pin, and SDA (Pin P0_05) is a serial data pin.
The pins are configured in a wired AND format that allows
arbitration in a multimaster system. A master device can be
configured to generate the serial clock. The frequency is
programmed by the user in the serial clock divisor register. The
master channel can operate in fast mode (400 kHz) or standard
mode (100 kHz).
Serial port data can be automatically transferred to and from
on-chip memory or external memory via dedicated DMA
Rev. B | Page 28 of 39
Data Sheet
ADuCM3027/ADuCM3029
MCU TEST CONDITIONS
Development support for the ADuCM3027/ADuCM3029 MCU
includes documentation, evaluation hardware, and
development software tools.
The ac signal specifications (timing parameters) appearing in
this data sheet include output disable time, output enable time,
and others. Timing is measured on signals when they cross the
voltage threshold (VMEAS) level as described in Figure 24. All
delays (in nanoseconds or microseconds) are measured between
the point that the first signal reaches VMEAS and the point that
the second signal reaches VMEAS. The value of VMEAS is set to
VBAT/2. The tester pin electronics is shown in Figure 25.
Documentation
The ADuCM302x Ultra Low Power ARM Cortex-M3 MCU
with Integrated Power Management Hardware Reference details
the functionality of each block on the ADuCM3027/ADuCM3029
MCUs. It includes power management, clocking, memories, and
peripherals.
INPUT
OR
OUTPUT
Hardware
The EV-COG-AD3029LZ is available to prototype sensor
configurations with the ADuCM3027/ADuCM3029 MCUs.
Figure 24. Voltage Reference Levels for AC Measurements (Except Output
Enable/Disable)
Software
VLOAD
The EV-COG-AD3029LZ includes a complete development and
debug environment for the ADuCM3027/ADuCM3029 MCUs.
The device family pack (DFP) for the ADuCM3027/
ADuCM3029 is provided for the IAR Embedded Workbench
for ARM, Keil™, and CrossCore® embedded studio (CCES)
environments.
4pF
The applicable documentation for programming the ARM
Cortex-M3 processor include the following:
14168-025
DRIVER TYPES
Table 24 shows the driver types.
Table 24. Driver Types
Driver Type1, 2, 3
Type A
1
The Circuits from the Lab® page provides the following for the
ADuCM3027/ADuCM3029 reference design:
Figure 25. Equivalent Device Loading for AC Measurements
(Includes All Fixtures)
Type C
Type D
REFERENCE DESIGNS
ZO = 50Ω (IMPEDANCE)
TD = 4.04ns ± 1.18ns
NOTES
1. THE WORST-CASE TRANSMISSION LINE DELAY (TD) IS SHOWN AND
CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE
TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED.
TRANSMISSION LINE IS FOR LOAD ONLY AND DOES NOT AFFECT
THE DATA SHEET TIMING SPECIFICATIONS.
2. ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING
FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM
CAN INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR
ANY TIMING DIFFERENCES.
Type B
ARM Cortex-M3 Devices Generic User Guide
ARM Cortex-M3 Technical Reference Manual
2pF
0.5pF
DUT
OUTPUT
400Ω
The following documentation that describe the ADuCM3027/
ADuCM3029 MCUs can be ordered from any Analog Devices
sales office or accessed electronically on the Analog Devices
website:
This data sheet describes the ARM Cortex-M3 core and
memory architecture used on the ADuCM3027/ADuCM3029
MCUs but does not provide detailed programming information
for the ARM processor. For more information about
programming the ARM processor, visit the ARM Infocenter
web page.
T1
45Ω
50Ω
ADDITIONAL INFORMATION
ADuCM302x Ultra Low Power ARM Cortex-M3 MCU
with Integrated Power Management Hardware Reference.
50Ω
70Ω
The DFP also includes operating system (OS) aware drivers and
example code for all the peripherals on the devices.
VMEAS
VMEAS
14168-024
DEVELOPMENT SUPPORT
Associated Pins
P0_00 to P0_03, P0_07, P0_10 to P0_13,
P0_15, P1_00 to P1_10, P1_15, P2_00, P2_01,
P2_04 to P2_14, P3_00 to P3_03, and
SYS_HWRST.
P0_08, P0_09, P0_14, P1_11 to P1_14, and
P2_02
P0_04 and P0_05
P0_06
In single drive mode, the maximum source/sink capacity is 2 mA.
In double drive mode, the maximum source/sink capacity is 4 mA.
3
At maximum drive capacity, only 16 GPIOs are allowed to switch at any
given point of time.
2
Graphical circuit block diagram presentation of signal
chains for a variety of circuit types and applications
Drill down links for components in each chain to selection
guides and application information
Reference designs applying best practice design techniques
Rev. B | Page 29 of 39
ADuCM3027/ADuCM3029
Data Sheet
EEMBC ULPMARK™-CP SCORE
Table 26. EEMBC ULPMark™-CP Profile Configuration
Using the software configuration and the profile configuration
shown in the following tables, the EEMBC ULPMark-CP score
is 245.5.
Profile Configuration
Wakeup Timer Module
Wakeup Timer Clock Source
Wakeup Timer Frequency
Wakeup Timer Accuracy
Active Power Mode Name
Active Mode Clock Configuration
Active Mode Voltage Integrity
Inactive Power Mode Name
Inactive Clock Configuration
Inactive Mode Voltage Integrity
Table 25. EEMBC ULPMark™-CP Software Configuration
Software Configuration
Compiler Name and Version
Compiler Flags
Value
IAR EWARM 7.50.2.10505
ULPBench Profile and Version
EnergyMonitor Software Version
Core Profile v1.1
V1.1.3
-Ohs -endian=little -cpu=Cortex-M3 -D
__ADuCM3029__
Rev. B | Page 30 of 39
Value
RTC1
External crystal
32768 Hz
20 PPM
Active mode
26 MHz (CPU), 32 kHz (RTC)
1.74 V
Hibernate
Off (CPU), 32 kHz (RTC)
1.74 V
Data Sheet
ADuCM3027/ADuCM3029
GPIO MULTIPLEXING
Table 27 through Table 29 show the signal multiplexing options for the GPIO pins.
Table 27. Signal Multiplexing for PORT 0
Pin
P0_00
P0_01
P0_02
P0_03
P0_04
P0_05
P0_06
P0_07
P0_08
P0_09
P0_10
P0_11
P0_12
P0_13
P0_14
P0_15
Availability
WLCSP LFCSP
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Multiplexed Function 0
GPIO00
GPIO01
GPIO02
GPIO03
GPIO04
GPIO05
SWD0_CLK
SWD0_DATA
GPIO08
GPIO09
GPIO10
GPIO11
GPIO12
GPIO13/XINT0_WAKE2
GPIO14
GPIO15/XINT0_WAKE0
Multiplexed Function 1
SPI0_CLK
SPI0_MOSI
SPI0_MISO
SPI0_CS0
I2C0_SCL
I2C0_SDA
GPIO06
GPIO07
BPR0_TONE_N
BPR0_TONE_P
UART0_TX
UART0_RX
SPT0_AD0
Not available
TMR0_OUT
Not available
Multiplexed Function 2
SPT0_BCLK
SPT0_BFS
SPT0_BD0
SPT0_BCNV
Not available
Not available
Not available
Not available
Not available
SPI2_CS1
Not available
Not available
Not available
Not available
SPI1_RDY
Not available
Multiplexed Function 3
Not available
Not available
Not available
SPI2_RDY
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
UART0_SOUT_EN
Not available
Not available
Not available
Multiplexed Function 1
Not available
GPIO17
SPI2_CLK
SPI2_MOSI
SPI2_MISO
SPI2_CS0
SPI1_CLK
SPI1_MOSI
SPI1_MISO
SPI1_CS0
SPI0_CS1
Not available
Not available
Not available
Not available
SPT0_ACLK
Multiplexed Function 2
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
SYS_CLKIN
TMR1_OUT
Not available
Not available
SPI0_RDY
Not available
Multiplexed Function 3
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
SPI1_CS3
Not available
Not available
Not available
Not available
Not available
Table 28. Signal Multiplexing for PORT 1
Pin
P1_00
P1_01
P1_02
P1_03
P1_04
P1_05
P1_06
P1_07
P1_08
P1_09
P1_10
P1_11
P1_12
P1_13
P1_14
P1_15
Availability
WLCSP LFCSP
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
No
Yes
Yes
Yes
No
Yes
Multiplexed Function 0
GPIO16/XINT0_WAKE1
SYS_BMODE0
GPIO18
GPIO19
GPIO20
GPIO21
GPIO22
GPIO23
GPIO24
GPIO25
GPIO26
GPIO27
GPIO28
GPIO29
GPIO30
GPIO31
Rev. B | Page 31 of 39
ADuCM3027/ADuCM3029
Data Sheet
Table 29. Signal Multiplexing for PORT 2
Pin
P2_00
P2_01
P2_02
P2_03
P2_04
P2_05
P2_06
P2_07
P2_08
P2_09
P2_10
P2_11
Availability
WLCSP LFCSP
No
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
No
Yes
No
Yes
Yes
Yes
Multiplexed Function 0
GPIO32
GPIO33/XINT0_WAKE3
GPIO34
GPIO35
GPIO36
GPIO37
GPIO38
GPIO39
GPIO40
GPIO41
GPIO42
GPIO43
Multiplexed Function 1
SPT0_AFS
Not available
SPT0_ACNV
ADC0_VIN0
ADC0_VIN1
ADC0_VIN2
ADC0_VIN3
ADC0_VIN4
ADC0_VIN5
ADC0_VIN6
ADC0_VIN7
SPI1_CS1
Rev. B | Page 32 of 39
Multiplexed Function 2
Not available
TMR2_OUT
SPI1_CS2
Not available
Not available
Not available
Not available
SPI2_CS3
SPI0_CS2
SPI0_CS3
SPI2_CS2
SYS_CLKOUT
Multiplexed Function 3
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
RTC1_SS1
Data Sheet
ADuCM3027/ADuCM3029
APPLICATIONS INFORMATION
This section contains circuit diagrams that show the
recommended external components for proper operation of the
ADuCM3027/ADuCM3029 in example application scenarios.
VBAT
0.1µF
0.1µF
1
14
VBAT_ADC
2
SYS_HFXTAL_IN
4
SYS_LFXTAL_IN
VBAT_ANA1
IO
0.1µF
0.1µF
8
34
49
VBAT_ANA2
VBAT_DIG1
VBAT_DIG2
13 VREF_ADC
25 SYS_HWRST
0.1µF
6
VDCDC_CAP1N
7
VDCDC_CAP1P
0.1µF
ADuCM3027/ADuCM3029/
ADuCM3029-1/ADuCM3029-2
SYS_HFXTAL_OUT
3
SYS_LFXTAL_OUT
5
VDCDC_OUT
9
0.47µF
VLDO_OUT 12
0.47µF
P1_09 29
P1_08 30
10 VDCDC_CAP2N
P1_06 32
11 VDCDC_CAP2P
P2_11 33
16 P2_03
RTC1_SS1
IO
P1_07 31
17 P2_04
P1_05 53
18 P2_05
P1_04 54
19 P2_06
P1_03 55
20 P2_07
P1_02 56
21 P2_08
22 P2_09
P0_12 35
23 P2_10
P2_00 36
P1_15 37
39 P0_09
P2_02 45
40 P0_08
P1_00 47
28 P0_06
P0_15 50
27 P0_07
P0_13 51
38 P1_01
P2_01 52
42 P1_12
P1_11 41
43 p1_13
P0_14 46
24 P0_05
26 P0_04
P0_11 57
P0_14 58
44 P1_14
59 P1_10
P0_01 62
60 P0_03
P0_00 63
61 P0_02
GND_ANA
GND_DIG
GND_VREFADC
64
48
15
PAD
14168-026
0.1µF
Figure 26. Recommended External Components when Using the Internal Buck Converter
Rev. B | Page 33 of 39
ADuCM3027/ADuCM3029
Data Sheet
VBAT
LFXTAL_IN
HFCLK CRYSTAL
26.000MHz
IO
LFCLK CRYSTAL
32.7680kHz
LFXTAL_OUT
8pF
HFXTAL_IN
8pF
14
SYS_HFXTAL_IN
4
SYS_LFXTAL_IN
VBAT_ANA1
0.1µF
8
34
49
VBAT_DIG1
VBAT_DIG2
13 VREF_ADC
25 SYS_HWRST
6
VDCDC_CAP1N
7
VDCDC_CAP1P
ADuCM3027/ADuCM3029/
ADuCM3029-1/ADuCM3029-2
18pF
0.1µF
VBAT_ANA2
1
VBAT_ADC
0.1µF
0.1µF
0.1µF
2
HFXTAL_OUT
18pF
SYS_HFXTAL_OUT
3
SYS_LFXTAL_OUT
5
VDCDC_OUT
9
VLDO_OUT 12
0.47µF
P1_09 29
P1_08 30
10 VDCDC_CAP2N
P1_06 32
11 VDCDC_CAP2P
P2_11 33
16 P2_03
RTC1_SS1
IO
P1_07 31
17 P2_04
P1_05 53
18 P2_05
P1_04 54
19 P2_06
P1_03 55
20 P2_07
P1_02 56
21 P2_08
22 P2_09
P0_12 35
23 P2_10
P2_00 36
P1_15 37
39 P0_09
P2_02 45
40 P0_08
P1_00 47
28 P0_06
P0_15 50
27 P0_07
P0_13 51
38 P1_01
P2_01 52
42 P1_12
P1_11 41
43 p1_13
P0_14 46
24 P0_05
26 P0_04
P0_11 57
P0_14 58
44 P1_14
59 P1_10
P0_01 62
60 P0_03
P0_00 63
61 P0_02
GND_DIG
GND_VREFADC
64
48
15
PAD
14168-027
GND_ANA
Figure 27. Recommended External Components when Using LFXTAL and HFXTAL
Rev. B | Page 34 of 39
Data Sheet
ADuCM3027/ADuCM3029
VBAT
0.1µF
0.1µF
14
1
VBAT_ADC
VREF_ADC
IO
2
SYS_HFXTAL_IN
4
SYS_LFXTAL_IN
0.1µF
0.1µF
8
34
49
VBAT_DIG1
VBAT_DIG2
ADuCM3027/ADuCM3029/
ADuCM3029-1/ADuCM3029-2
4.7µF
6 VDCDC_CAP1N
0.1µF
VBAT_ANA2
13 VREF_ADC
25 SYS_HWRST
0.1µF
VBAT_ANA1
IO
SYS_HFXTAL_OUT
3
SYS_LFXTAL_OUT
5
VDCDC_OUT
9
VLDO_OUT 12
0.47µF
P1_09 29
7 VDCDC_CAP1P
P1_08 30
10 VDCDC_CAP2N
P1_06 32
11 VDCDC_CAP2P
ANALOG_IN 33Ω
IO
P2_11 33
16 P2_03
RTC1_SS1
IO
P1_07 31
0.0056µF 17 P2_04
P1_05 53
18 P2_05
P1_04 54
19 P2_06
P1_03 55
20 P2_07
P1_02 56
21 P2_08
22 P2_09
P0_12 35
23 P2_10
P2_00 36
P1_15 37
39 P0_09
P2_02 45
40 P0_08
P1_00 47
28 P0_06
P0_15 50
27 P0_07
P0_13 51
38 P1_01
P2_01 52
42 P1_12
43 p1_13
P1_11 41
P0_14 46
24 P0_05
26 P0_04
P0_11 57
P0_14 58
44 P1_14
59 P1_10
P0_01 62
60 P0_03
P0_00 63
61 P0_02
GND_DIG
GND_VREFADC
64
48
15
PAD
14168-028
GND_ANA
Figure 28. Recommended External Components on VREF_ADC Pin and ADC Input Channel (ADC0_VIN0 Used as Example) when Using the Internal ADC
Rev. B | Page 35 of 39
ADuCM3027/ADuCM3029
Data Sheet
ABOUT ADuCM3027/ADuCM3029 SILICON ANOMALIES
This anomaly list describes the known bugs, anomalies, and workarounds for the ADuCM3027/ADuCM3029. These anomalies represent
the currently known differences between revisions of the ADuCM3027/ADuCM3029 product(s) and the functionality specified in the
ADuCM3027/ADuCM3029 data sheet(s) and the Hardware Reference manual.
Analog Devices, Inc., is committed, through future silicon revisions, to continuously improve silicon functionality. Analog Devices tries
to ensure that these future silicon revisions remain compatible with your present software/systems by implementing the recommended
workarounds outlined in this section.
ADuCM30297/ADuCM3029 FUNCTIONALITY ISSUES
Silicon Revision Identifier
1.2
Silicon Status
Released
No. of Reported Anomalies
4 (21000011, 21000015, 21000016, 21000017)
A silicon revision number with the form x.y is branded on all devices. The silicon revision can be electronically determined by reading
Bits[3:0] of the SYS_CHIPID register. SYS_CHIPID = 0x4 indicates Silicon Revision 1.2.
FUNCTIONALITY ISSUES
Table 30 through Table 33 detail all known silicon anomalies for the ADuCM3027/ADuCM3029 including a description, workaround,
and identification of applicable silicon revisions.
Table 30. 21000011—I2C Master Mode Fails to Generate Clock
Background
Issue
Workaround
Related Issues
When the I2C clock dividers are configured in master mode such that the sum of the LOW bit in the I2C_DIV register
and the HIGH bit in the I2C_DIV register is less than 16, the I2C fails to generate a clock.
The I2C master mode fails to generate clock when clock dividers are too small.
Program the I2C clock dividers such that I2C_DIV.LOW + I2C_DIV.HIGH ≥ 16.
None.
Table 31. 21000015—Pin P2_11 Not Retained
Background
Issue
Workaround
Related Issues
The state of the P2_11 pin is not retained after waking up from shutdown mode.
Pin P2_11 is not retained after shutdown wake up.
None. To retain the pin state through shutdown, use any other GPIO pin instead of P2_11.
None.
Table 32. 21000016—Data Loss with I2C Automatic Clock Stretching
Background
Issue
Workaround
Related Issues
When the I2C Rx FIFO is full and new I2C data is received, a data overflow occurs. When automatic clock stretching is
enabled, the transaction is paused by holding the SCL line low. This pause function works as expected when the
next read happens after the clock is stretched (for example, after the overflow is detected). However, if the read
occurs after the last bit of the I2C data is received but before the clock is stretched, the received data is not written
to the Rx FIFO and is lost.
Possible receive data loss with I2C automatic clock stretching.
After I2C automatic clock stretching is enabled, read the FIFO only after the overflow flag is set in the status register
to ensure the Rx FIFO is never read at the same time the overflow is asserted.
None.
Rev. B | Page 36 of 39
Data Sheet
ADuCM3027/ADuCM3029
Table 33. 21000017—SPI Read Command Mode Does Not Work
Background
Issue
Workaround
Related Issues
When the SPI master is enabled and uses the DMA mode with SPI_CNT = 1, the read command mode may not
function properly. Consider the following configurations: SPI_RD_CTL = 0x07, SPI_CNT = 1, and the Tx and Rx DMA
channels configured for one half-word. In this configuration, the read command sent in the first byte on the MOSI
output is repeated in the second byte (in the address slot); thus, the slave device responds on the MISO line with
whatever content is at the address equivalent to the read command value (for example, if the read command is 0xB,
the response is the data read from Slave Address 0xB).
SPI read command mode does not work properly when SPI_CNT is 1 and DMA is enabled.
Use the overlap mode to align the transmit/receive SPI operations and discard the junk bytes, as follows:
Set the OVERLAP bit in the SPI_RD_CTL register = 1 to enable overlap mode.
Set the TXBYTES bit in the SPI_RD_CTL register = 1 to configure a single transmit byte (8-bit address register).
Set SPI_CNT.VALUE = 3 to configure the transfer count: one byte for the address register, one byte for the command,
and one dummy byte to obtain the read value, and on the receive side, discard the first two bytes received during
the transfer of the address and command bytes before processing the actual read value in the third byte.
Do not use Tx DMA operation on the SPI transmit side, as follows: enable only the SPI Rx DMA requests, fill the SPI Tx
FIFO by using core accesses to write to the SPI_TX register, and perform a dummy read of the SPI_RX register to
start the SPI transfers.
None.
Rev. B | Page 37 of 39
ADuCM3027/ADuCM3029
Data Sheet
OUTLINE DIMENSIONS
PIN 1
INDICATOR
AREA
DETAIL A
(JEDEC 95)
9.10
9.00 SQ
8.90
0.30
0.25
0.20
49
P IN 1
IN D IC ATO R AR E A OP T IO N S
(SEE DETAIL A)
64
1
48
0.50
BSC
4.60
4.50 SQ
4.40
EXPOSED
PAD
16
33
0.80
0.75
0.70
END VIEW
PKG-004540
SEATING
PLANE
32
0.50
0.40
0.30
17
0.20 MIN
BOTTOM VIEW
7.50 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.203 REF
08-29-2018-A
TOP VIEW
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD
Figure 29. 64-Lead Frame Chip Scale Package [LFCSP]
9 mm × 9 mm Body and 0.75 mm Package Height
(CP-64-16)
Dimensions shown in millimeters
2.800
2.760 SQ
2.720
0.210
0.108
13
12
11
10
9
8
7
6
5
4
3
2
1
A
0.35
BSC
BALL A1
IDENTIFIER
B
C
D
E
0.303
BSC
F
G
0.350
BSC
(BALL SIDE UP)
(BALL SIDE DOWN)
PKG-004742
SEATING
PLANE
END VIEW
0.103
0.320
0.290
0.260
COPLANARITY
0.05
0.280
0.240
0.200
0.210
0.180
0.150
Figure 30. 54-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-54-1)
Dimensions shown in millimeters
Rev. B | Page 38 of 39
07-30-2015-A
0.530
0.470
0.410
H
BOTTOM VIEW
TOP VIEW
Data Sheet
ADuCM3027/ADuCM3029
ORDERING GUIDE
Model1
ADuCM3027BCBZ-RL
ADuCM3027BCBZ-R7
ADuCM3027BCPZ
ADuCM3027BCPZ-RL
ADuCM3027BCPZ-R7
ADuCM3029BCBZ-RL
ADuCM3029BCBZ-R7
ADuCM3029BCPZ
ADuCM3029BCPZ-RL
ADuCM3029BCPZ-R7
ADuCM3029-1BCPZ
ADuCM3029-1BCPZ-R7
ADuCM3029-2BCPZ
ADuCM3029-2BCPZ-R7
EV-COG-AD3029LZ
EV-COG-AD3029WZ
1
2
Description
ULP ARM Cortex-M3 with 128 kB Embedded Flash
ULP ARM Cortex-M3 with 128 kB Embedded Flash
ULP ARM Cortex-M3 with 128 kB Embedded Flash
ULP ARM Cortex-M3 with 128 kB Embedded Flash
ULP ARM Cortex-M3 with 128 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ULP ARM Cortex-M3 with 256 kB Embedded Flash
ADuCM3029 LFCSP Development Board
ADuCM3029 WLCSP Development Board
Temperature2
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
54-Ball WLCSP, 13" Reel
54-Ball WLCSP, 7” Reel
64-Lead LFCSP
64-Lead LFCSP, 13” Reel
64-Lead LFCSP, 7” Reel
54-Ball WLCSP, 13” Reel
54-Ball WLCSP, 7” Reel
64-Lead LFCSP
64-Lead LFCSP, 13” Reel
64-Lead LFCSP, 7” Reel
64-Lead LFCSP
64-Lead LFCSP, 7” Reel
64-Lead LFCSP
64-Lead LFCSP, 7” Reel
Package
Option
CB-54-1
CB-54-1
CP-64-16
CP-64-16
CP-64-16
CB-54-1
CB-54-1
CP-64-16
CP-64-16
CP-64-16
CP-64-16
CP-64-16
CP-64-16
CP-64-16
Z = RoHS Compliant Part.
Referenced temperature is ambient temperature. The ambient temperature is not a specification. See the Absolute Maximum Ratings section for junction temperature
(TJ) specification which is the only temperature specification.
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D14168-0-5/19(B)
Rev. B | Page 39 of 39