0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADuM3211

ADuM3211

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    ADuM3211 - Dual-Channel Digital Isolators, Enhanced System-Level ESD Reliability - Analog Devices

  • 数据手册
  • 价格&库存
ADuM3211 数据手册
Dual-Channel Digital Isolators, Enhanced System-Level ESD Reliability ADuM3210/ADuM3211 FEATURES Enhanced system-level ESD performance per IEC 61000-4-x High temperature operation: 125°C Default low output Narrow body, RoHS-compliant, 8-lead SOIC Low power operation 5 V operation 1.6 mA per channel maximum @ 0 Mbps to 2 Mbps 3.7 mA per channel maximum @ 10 Mbps 3 V operation 1.4 mA per channel maximum @ 0 Mbps to 2 Mbps 2.4 mA per channel maximum @ 10 Mbps 3 V/5 V level translation High data rate: dc to 10 Mbps (NRZ) Precise timing characteristics 3 ns maximum pulse-width distortion at 5 V operation 3 ns maximum channel-to-channel matching High common-mode transient immunity: >25 kV/μs Safety and regulatory approvals UL recognition: 2500 V rms for 1 minute per UL 1577 CSA Component Acceptance Notice #5A VDE Certificate of Conformity DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 VIORM = 560 V peak GENERAL DESCRIPTION The ADuM321x1 are dual-channel, digital isolators based on Analog Devices, Inc., iCoupler® technology. Combining high speed CMOS and monolithic transformer technology, this isolation component provides outstanding performance characteristics superior to alternatives such as optocoupler devices. By avoiding the use of LEDs and photodiodes, iCoupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple iCoupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these iCoupler products. Furthermore, iCoupler devices consume one-tenth to onesixth the power of optocouplers at comparable signal data rates. The two channels of the ADuM321x are independent isolation channels and are available in two channel configurations with two different data rates up to 10 Mbps (see the Ordering Guide). They operate with the supply voltage on either side ranging from 2.7 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The ADuM321x isolators have a default output low characteristic in comparison to the ADuM3200/ ADuM3201 models that have a default output high characteristic. The ADuM321x are also available in 125°C temperature grade. In comparison to the ADuM120x isolator, the ADuM321x isolators contain various circuit and layout changes providing increased capability relative to system-level IEC 61000-4-x testing (ESD, burst, and surge). The precise capability in these tests for either the ADuM120x or ADuM321x products is strongly determined by the design and layout of the user’s board or module. For more information, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products. APPLICATIONS Size-critical multichannel isolation SPI interface/data converter isolation RS-232/RS-422/RS-485 transceiver isolation Digital field bus isolation Gate drive interfaces FUNCTIONAL BLOCK DIAGRAMS VDD1 1 VIA 2 VIB 3 GND1 4 ENCODE ENCODE ADuM3210 DECODE DECODE 8 VDD2 VOA VOB 06866-001 VDD1 1 VOA 2 VIB 3 GND1 4 ENCODE ENCODE ADuM3211 DECODE DECODE 8 VDD2 VIA VOB GND2 06866-017 7 7 6 6 5 GND2 5 Figure 1. ADuM3210 Functional Block Diagram 1 Figure 2. ADuM3211 Functional Block Diagram Protected by U.S. Patents 5,952,849; 6,873,065; 7,075,239. Other patents pending. Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007–2009 Analog Devices, Inc. All rights reserved. ADuM3210/ADuM3211 TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagrams ............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics—5 V, 105° Operation....................... 3 Electrical Characteristics—3 V, 105°C Operation ................... 4 Electrical Characteristics—Mixed 5 V/3 V, 105°C Operation 5 Electrical Characteristics—Mixed 3 V/5 V, 105°C Operation 6 Electrical Characteristics—5 V, 125°C Operation .................... 7 Electrical Characteristics—3 V, 125°C Operation ..................... 8 Electrical Characteristics—Mixed 5 V/3 V, 125°C Operation 9 Electrical Characteristics—Mixed 3 V/5 V, 125°C Operation ....................................................................................................... 10 Package Characteristics ............................................................. 11 Regulatory Information ............................................................. 11 Insulation and Safety-Related Specifications .......................... 11 DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics ............................................................................ 12 Recommended Operating Conditions .................................... 12 Absolute Maximum Ratings ......................................................... 13 ESD Caution................................................................................ 13 Pin Configuration and Function Descriptions........................... 14 Truth Tables................................................................................. 14 Typical Performance Characteristics ........................................... 15 Applications Information .............................................................. 16 PC Board Layout ........................................................................ 16 System-Level ESD Considerations and Enhancements ........ 16 Propagation Delay-Related Parameters ................................... 16 DC Correctness and Magnetic Field Immunity........................... 16 Power Consumption .................................................................. 17 Insulation Lifetime ..................................................................... 18 Outline Dimensions ....................................................................... 19 Ordering Guide .......................................................................... 19 REVISION HISTORY 9/09 –Rev. B to Rev. C Added ADuM3210A and ADuM3211A .................... Throughout Changes to General Description Section ...................................... 1 Reformatted Electrical Characteristics Tables .............................. 3 Moved Truth Tables Section.......................................................... 14 Changes to Ordering Guide .......................................................... 20 7/09—Rev. A to Rev. B Added ADuM3211 ........................................................ Throughout Changes to Specifications Section .................................................. 3 Added Table 16 ............................................................................... 19 Added Figure 5 and Table 18 ........................................................ 20 Added Figure 11.............................................................................. 21 Changes to Power Consumption Section .................................... 23 Changes to Ordering Guide .......................................................... 25 9/08—Rev. Sp0 to Rev. A Changes to Features and General Description Sections ............. 1 Changes to Specifications Section .................................................. 3 Changes to Recommended Operating Conditions Section ...... 11 Changes to Ordering Guide .......................................................... 18 7/07—Revision Sp0: Initial Version Rev. C | Page 2 of 20 ADuM3210/ADuM3211 SPECIFICATIONS ELECTRICAL CHARACTERISTICS—5 V, 105° OPERATION All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Table 1. Parameter SWITCHING SPECIFICATIONS Data Rate Propagation Delay Pulse Width Distortion Change vs. Temperature Pulse Width Propagation Delay Skew Channel Matching Codirectional Opposing-Direction Output Rise/Fall Time Symbol Min A Grade Typ Max 1 50 5 6 PW tPSK tPSKCD tPSKOD tR/tF 1000 20 5 20 2.5 2.5 100 15 3 15 Min B Grade Typ Max 10 50 3 5 Unit Mbps ns ns ps/°C ns ns ns ns ns Test Conditions Within PWD limit 50% input to 50% output |tPLH − tPHL| Within PWD limit Between any two units tPHL, tPLH PWD 20 20 10% to 90% Table 2. Parameter SUPPLY CURRENT ADuM3210 ADuM3211 Symbol IDD1 IDD2 IDD1 IDD2 1 Mbps—A Grade, B Grade Min Typ Max 1.3 1.0 1.1 1.3 1.7 1.6 1.5 1.8 10 Mbps–B Grade Min Typ Max 3.5 1.7 2.6 3.1 4.6 2.8 3.4 4.0 Unit mA mA mA mA Test Conditions Table 3. For All Models Parameter DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltages Logic Low Output Voltages Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current AC SPECIFICATIONS Common-Mode Transient Immunity 1 Refresh Rate Symbol VIH VIL VOH VOL II IDDI(Q) IDDO(Q) IDDI(D) IDDO(D) |CM| fr 25 −10 Min 0.7 VDDX 0.3 VDDX VDDX − 0.1 VDDX − 0.5 5.0 4.8 0.0 0.2 +0.01 0.4 0.5 0.19 0.05 35 1.2 Typ Max Unit V V V V V V μA mA mA mA/Mbps mA/Mbps kV/μs Mbps VIx = VDDX, VCM = 1000 V, transient magnitude = 800 V Test Conditions 0.1 0.4 +10 0.8 0.6 IOx = −20 μA, VIx = VIxH IOx = −4 mA, VIx = VIxH IOx = 20 μA, VIx = VIxL IOx = 4 mA, VIx = VIxL 0 V ≤ VIx ≤ VDDX 1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. C | Page 3 of 20 ADuM3210/ADuM3211 ELECTRICAL CHARACTERISTICS—3 V, 105°C OPERATION All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire recommended operation range: ADuM3210 supply voltages 2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; ADuM3211 supply voltages 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Table 4. Parameter SWITCHING SPECIFICATIONS Data Rate Propagation Delay Pulse Width Distortion ADuM3210 ADuM3211 Change vs. Temperature Pulse Width Propagation Delay Skew Channel Matching Codirectional Opposing-Direction Output Rise/Fall Time Symbol Min A Grade Typ Max 1 60 5 6 6 PW tPSK tPSKCD tPSKOD tR/tF 1000 29 5 29 3.0 3.0 100 22 3 22 5 Min B Grade Typ Max 10 60 3 4 Unit Mbps ns ns ns ps/°C ns ns ns ns ns Test Conditions Within PWD limit 50% input to 50% output |tPLH − tPHL| tPHL, tPLH PWD 20 20 Within PWD limit Between any two units 10% to 90% Table 5. Parameter SUPPLY CURRENT ADuM3210 ADuM3211 Symbol IDD1 IDD2 IDD1 IDD2 1 Mbps—A Grade, B Grade Min Typ Max 0.8 0.7 0.7 0.8 1.3 1.0 1.3 1.6 10 Mbps—B Grade Min Typ Max 2.0 1.1 1.5 1.9 3.2 1.7 2.1 2.4 Unit mA mA mA mA Test Conditions Table 6. For All Models Parameter DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltages Logic Low Output Voltages Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current AC SPECIFICATIONS Common-Mode Transient Immunity 1 Refresh Rate 1 Symbol VIH VIL VOH VOL II IDDI(Q) IDDO(Q) IDDI(D) IDDO(D) |CM| fr Min 0.7 VDDX Typ Max Unit V V V V V V μA mA mA mA/Mbps mA/Mbps kV/μs Mbps Test Conditions 0.3 VDDX VDDX − 0.1 VDDX − 0.5 3.0 2.8 0.0 0.2 +0.01 0.3 0.3 0.10 0.03 25 35 1.1 −10 0.1 0.4 +10 0.5 0.5 IOx = −20 μA, VIx = VIxH IOx = −4 mA, VIx = VIxH IOx = 20 μA, VIx = VIxL IOx = 4 mA, VIx = VIxL 0 V ≤ VIx ≤ VDDX VIx = VDDX, VCM = 1000 V, transient magnitude = 800 V |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. C | Page 4 of 20 ADuM3210/ADuM3211 ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V, 105°C OPERATION All typical specifications are at TA = 25°C, VDD1 = 5 V, VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire recommended operation range: ADuM3210 supply voltages 4.5 V ≤ VDD1 ≤ 5.5V, 2.7 V ≤ VDD2 ≤ 3.6 V; ADuM3211 supply voltages 4.5 V ≤ VDD1 ≤ 5.5V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF, and CMOS signal levels, unless otherwise noted. Table 7. Parameter SWITCHING SPECIFICATIONS Data Rate Propagation Delay Pulse Width Distortion Change vs. Temperature Pulse Width Propagation Delay Skew Channel Matching Codirectional Opposing-Direction Output Rise/Fall Time Symbol Min A Grade Typ Max 1 55 5 6 PW tPSK tPSKCD tPSKOD tR/tF 1000 29 5 29 3.0 3.0 100 22 3 22 Min B Grade Typ Max 10 55 3 5 Unit Mbps ns ns ps/°C ns ns ns ns ns Test Conditions Within PWD limit 50% input to 50% output |tPLH − tPHL| Within PWD limit Between any two units tPHL, tPLH PWD 15 15 10% to 90% Table 8. Parameter SUPPLY CURRENT ADuM3210 ADuM3211 Symbol IDD1 IDD2 IDD1 IDD2 1 Mbps—A Grade, B Grade Min Typ Max 1.3 0.7 1.1 0.8 1.7 1.0 1.5 1.6 10 Mbps—B Grade Min Typ Max 3.5 1.1 2.6 1.9 4.6 1.7 3.4 2.4 Unit mA mA mA mA Test Conditions Table 9. For All Models Parameter DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltages Logic Low Output Voltages Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current AC SPECIFICATIONS Common-Mode Transient Immunity 1 Refresh Rate 1 Symbol VIH VIL VOH VOL II IDDI(Q) IDDO(Q) IDDI(D) IDDO(D) |CM| fr Min 0.7 VDDX 0.8 VDDX − 0.1 VDDX − 0.5 Typ Max Unit V V V V V V μA mA mA mA/Mbps mA/Mbps kV/μs Mbps Test Conditions 0.3 VDDX VDDX VDDX − 0.2 0.0 0.2 +0.01 0.4 0.3 0.19 0.03 −10 0.1 0.4 +10 0.8 0.5 IOx = −20 μA, VIx = VIxH IOx = −4 mA, VIx = VIxH IOx = 20 μA, VIx = VIxL IOx = 4 mA, VIx = VIxL 0 V ≤ VIx ≤ VDDX 25 35 1.2 VIx = VDDX, VCM = 1000 V, transient magnitude = 800 V |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. C | Page 5 of 20 ADuM3210/ADuM3211 ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V, 105°C OPERATION All typical specifications are at TA = 25°C, VDD1 = 3 V, VDD2 = 5.0 V. Minimum/maximum specifications apply over the entire recommended operation range: ADuM3210 supply voltages 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; ADuM3211 supply voltages 3.0 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Table 10. Parameter SWITCHING SPECIFICATIONS Data Rate Propagation Delay Pulse Width Distortion ADuM3210 ADuM3211 Change vs. Temperature Pulse Width Propagation Delay Skew Channel Matching Codirectional Opposing-Direction Output Rise/Fall Time Symbol Min A Grade Typ Max 1 55 5 6 6 PW tPSK tPSKCD tPSKOD tR/tF 1000 29 15 29 2.5 2.5 100 22 3 22 5 Min B Grade Typ Max 10 55 3 4 Unit Mbps ns ns ns ps/°C ns ns ns ns ns Test Conditions Within PWD limit 50% input to 50% output |tPLH − tPHL| tPHL, tPLH PWD 15 15 Within PWD limit Between any two units 10% to 90% Table 11. Parameter SUPPLY CURRENT ADuM3210 ADuM3211 Symbol IDD1 IDD2 IDD1 IDD2 1 Mbps—A Grade, B Grade Min Typ Max 0.8 1.0 0.7 1.3 1.3 1.6 1.3 1.8 10 Mbps—B Grade Min Typ Max 2.0 1.7 1.5 3.1 3.2 2.8 2.1 4.0 Unit mA mA mA mA Test Conditions Table 12. For All Models Parameter DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltages Logic Low Output Voltages Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current AC SPECIFICATIONS Common-Mode Transient Immunity 1 Refresh Rate 1 Symbol VIH VIL VOH VOL II IDDI(Q) IDDO(Q) IDDI(D) IDDO(D) |CM| fr Min 0.7 VDDX 0.4 VDDX − 0. 1 VDDX − 0.5 Typ Max Unit V V V V V V μA mA mA mA/Mbps mA/Mbps kV/μs Mbps Test Conditions 0.3 VDDX VDDX VDDX − 0.2 0.0 0.2 +0.01 0.3 0.5 0.10 0.05 −10 0.1 0.4 +10 0.5 0.6 IOx = −20 μA, VIx = VIxH IOx = −4 mA, VIx = VIxH IOx = 20 μA, VIx = VIxL IOx = 4 mA, VIx = VIxL 0 V ≤ VIx ≤ VDDX 25 35 1.1 VIx = VDDX, VCM = 1000 V, transient magnitude = 800 V |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. C | Page 6 of 20 ADuM3210/ADuM3211 ELECTRICAL CHARACTERISTICS—5 V, 125°C OPERATION All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Table 13. Parameter SWITCHING SPECIFICATIONS Data Rate Propagation Delay Pulse Width Distortion Change vs. Temperature Pulse Width Propagation Delay Skew Channel Matching Codirectional Opposing-Direction Output Rise/Fall Time Min Typ Max 10 50 3 5 PW tPSK tPSKCD tPSKOD tR/tF 100 15 3 15 2.5 Unit Mbps ns ns ps/°C ns ns ns ns ns Test Conditions/Comments Within PWD limit 50% input to 50% output |tPLH − tPHL| Within PWD limit Between any two units tPHL, tPLH PWD 20 10% to 90% Table 14. Parameter SUPPLY CURRENT ADuM3210 ADuM3211 Symbol IDD1 IDD2 IDD1 IDD2 Min 1 Mbps Typ Max 1.3 1.0 1.1 1.3 1.7 1.6 1.5 1.8 Min 10 Mbps Typ Max 3.5 1.7 2.6 3.1 4.6 2.8 3.4 4.0 Unit mA mA mA mA Test Conditions Table 15. For All Models Parameter DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltages Logic Low Output Voltages Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current AC SPECIFICATIONS Common-Mode Transient Immunity 1 Refresh Rate 1 Symbol VIH VIL VOH VOL II IDDI(Q) IDDO(Q) IDDI(D) IDDO(D) |CM| fr Min 0.7 VDDX Typ Max Unit V V V V V V μA mA mA mA/Mbps mA/Mbps kV/μs Mbps Test Conditions 0.3 VDDX VDDX − 0.1 VDDX − 0.5 5.0 4.8 0.0 0.2 +0.01 0.4 0.5 0.19 0.05 25 35 1.2 −10 0.1 0.4 +10 0.8 0.6 IOx = −20 μA, VIx = VIxH IOx = −4 mA, VIx = VIxH IOx = 20 μA, VIx = VIxL IOx = 4 mA, VIx = VIxL 0 V ≤ VIx ≤ VDDX VIx = VDDX, VCM = 1000 V, transient magnitude = 800 V |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. C | Page 7 of 20 ADuM3210/ADuM3211 ELECTRICAL CHARACTERISTICS—3 V, 125°C OPERATION All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire recommended operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Table 16. Parameter SWITCHING SPECIFICATIONS Data Rate Propagation Delay Pulse Width Distortion ADuM3210 ADuM3211 Change vs. Temperature Pulse Width Propagation Delay Skew Channel Matching Codirectional Opposing-Direction Output Rise/Fall Time Symbol Min Typ Max 10 60 3 4 5 PW tPSK tPSKCD tPSKOD tR/tF 100 22 3 22 3.0 Unit Mbps ns ns ns ps/°C ns ns ns ns ns Test Conditions Within PWD limit 50% input to 50% output |tPLH − tPHL| tPHL, tPLH PWD 20 Within PWD limit Between any two units 10% to 90% Table 17. Parameter SUPPLY CURRENT ADuM3210 ADuM3211 Symbol IDD1 IDD2 IDD1 IDD2 Min 1 Mbps Typ Max 0.8 0.7 0.7 0.8 1.3 1.0 1.3 1.6 Min 10 Mbps Typ Max 2.0 1.1 1.5 1.9 3.2 1.7 2.1 2.4 Unit mA mA mA mA Test Conditions Table 18. For All Models Parameter DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltages Logic Low Output Voltages Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current AC SPECIFICATIONS Common-Mode Transient Immunity 1 Refresh Rate 1 Symbol VIH VIL VOH VOL II IDDI(Q) IDDO(Q) IDDI(D) IDDO(D) |CM| fr Min 0.7 VDDX Typ Max Unit V V V V V V μA mA mA mA/Mbps mA/Mbps kV/μs Mbps Test Conditions 0.3 VDDX VDDX − 0.1 VDDX − 0.5 3.0 2.8 0.0 0.2 +0.01 0.3 0.3 0.10 0.03 25 35 1.1 −10 0.1 0.4 +10 0.5 0.5 IOx = −20 μA, VIx = VIxH IOx = −4 mA, VIx = VIxH IOx = 20 μA, VIx = VIxL IOx = 4 mA, VIx = VIxL 0 V ≤ VIx ≤ VDDX VIx = VDDX, VCM = 1000 V, transient magnitude = 800 V |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. C | Page 8 of 20 ADuM3210/ADuM3211 ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V, 125°C OPERATION All typical specifications are at TA = 25°C, VDD1 = 5 V, VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire recommended operation range: 4.5 V ≤ VDD1 ≤ 5.5V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Table 19. Parameter SWITCHING SPECIFICATIONS Data Rate Propagation Delay Pulse Width Distortion Change vs. Temperature Pulse Width Propagation Delay Skew Channel Matching Codirectional Opposing-Direction Output Rise/Fall Time Symbol Min Typ Max 10 55 3 5 PW tPSK tPSKCD tPSKOD tR/tF 100 22 3 22 3.0 Unit Mbps ns ns ps/°C ns ns ns ns ns Test Conditions Within PWD limit 50% input to 50% output |tPLH − tPHL| Within PWD limit Between any two units tPHL, tPLH PWD 15 10% to 90% Table 20. Parameter SUPPLY CURRENT ADuM3210 ADuM3211 Symbol IDD1 IDD2 IDD1 IDD2 Min 1 Mbps Typ Max 1.3 0.7 1.1 0.8 1.7 1.0 1.5 1.6 Min 10 Mbps Typ Max 3.5 1.1 2.6 1.9 4.6 1.7 3.4 2.4 Unit mA mA mA mA Test Conditions Table 21. For All Models Parameter DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltages Logic Low Output Voltages Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current AC SPECIFICATIONS Common-Mode Transient Immunity 1 Refresh Rate 1 Symbol VIH VIL VOH VOL II IDDI(Q) IDDO(Q) IDDI(D) IDDO(D) |CM| fr Min 0.7 VDDX 0.8 VDDX − 0.1 VDDX − 0.5 Typ Max Unit V V V V V V μA mA mA mA/Mbps mA/Mbps kV/μs Mbps Test Conditions 0.3 VDDX VDDX VDDX − 0.2 0.0 0.2 +0.01 0.4 0.3 0.19 0.03 −10 0.1 0.4 +10 0.8 0.5 IOx = −20 μA, VIx = VIxH IOx = −4 mA, VIx = VIxH IOx = 20 μA, VIx = VIxL IOx = 4 mA, VIx = VIxL 0 V ≤ VIx ≤ VDDX 25 35 1.2 VIx = VDDX, VCM = 1000 V, transient magnitude = 800 V |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. C | Page 9 of 20 ADuM3210/ADuM3211 ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V, 125°C OPERATION All typical specifications are at TA = 25°C, VDD1 = 3 V, VDD2 = 5.0 V. Minimum/maximum specifications apply over the entire recommended operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Table 22. Parameter SWITCHING SPECIFICATIONS Data Rate Propagation Delay Pulse Width Distortion ADuM3210 ADuM3211 Change vs. Temperature Pulse Width Propagation Delay Skew Channel Matching Codirectional Opposing-Direction Output Rise/Fall Time Symbol Min Typ Max 10 55 3 4 5 PW tPSK tPSKCD tPSKOD tR/tF 100 22 3 22 2.5 Unit Mbps ns ns ns ps/°C ns ns ns ns ns Test Conditions Within PWD limit 50% input to 50% output |tPLH − tPHL| tPHL, tPLH PWD 15 Within PWD limit Between any two units 10% to 90% Table 23. Parameter SUPPLY CURRENT ADuM3210 ADuM3211 Symbol IDD1 IDD2 IDD1 IDD2 Min 1 Mbps Typ Max 0.8 1.0 0.7 1.3 1.3 1.6 1.3 1.8 Min 10 Mbps Typ Max 2.0 1.7 1.5 3.1 3.2 2.8 2.1 4.0 Unit mA mA mA mA Test Conditions Table 24. For All Models Parameter DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltages Logic Low Output Voltages Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current AC SPECIFICATIONS Common-Mode Transient Immunity 1 Refresh Rate 1 Symbol VIH VIL VOH VOL II IDDI(Q) IDDO(Q) IDDI(D) IDDO(D) |CM| fr Min 0.7 VDDX 0.4 VDDX − 0.1 VDDX − 0.5 Typ Max Unit V V V V V V μA mA mA mA/Mbps mA/Mbps kV/μs Mbps Test Conditions 0.3 VDDX VDDX VDDX − 0.2 0.0 0.2 +0.01 0.3 0.5 0.10 0.05 −10 0.1 0.4 +10 0.5 0.6 IOx = −20 μA, VIx = VIxH IOx = −4 mA, VIx = VIxH IOx = 20 μA, VIx = VIxL IOx = 4 mA, VIx = VIxL 0 V ≤ VIx ≤ VDDX 25 35 1.1 VIx = VDDX, VCM= 1000 V, transient magnitude = 800 V |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. Rev. C | Page 10 of 20 ADuM3210/ADuM3211 PACKAGE CHARACTERISTICS Table 25. Parameter Resistance (Input-to-Output) 1 Capacitance (Input-to-Output)1 Input Capacitance IC Junction-to-Case Thermal Resistance, Side 1 IC Junction-to-Case Thermal Resistance, Side 2 1 Symbol RI-O CI-O CI θJCI θJCO Min Typ 1012 1.0 4.0 46 41 Max Unit Ω pF pF °C/W °C/W Test Conditions f = 1 MHz Thermocouple located at center of package underside The device is considered a 2-terminal device; Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together. REGULATORY INFORMATION The ADuM321x are approved by the organizations listed in Table 26. Table 26. UL Recognized under UL 1577 Component Recognition Program 1 Single/basic 2500 V rms isolation voltage CSA Approved under CSA Component Acceptance Notice #5A VDE Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 2 Reinforced insulation, 560 V peak File E214100 1 2 Basic insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak) maximum working voltage Functional insulation per CSA 60950-1-03 and IEC 60950-1, 800 V rms(1131 V peak) maximum working voltage File 205078 File 2471900-4880-0001 In accordance with UL 1577, each ADuM321x is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (current leakage detection limit = 5 μA). In accordance with DIN V VDE V 0884-10, each ADuM321x is proof tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection limit = 5 pC). An asterisk (*) marking on the component designates DIN V VDE V 0884-10 approval. INSULATION AND SAFETY-RELATED SPECIFICATIONS Table 27. Parameter Rated Dielectric Insulation Voltage Minimum External Air Gap (Clearance) Minimum External Tracking (Creepage) Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Isolation Group Symbol L(I01) L(I02) Value 2500 4.90 min 4.01 min 0.017 min >175 IIIa Unit V rms mm mm mm V Conditions 1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Insulation distance through insulation DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1) CTI Rev. C | Page 11 of 20 ADuM3210/ADuM3211 DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS These isolators are suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (*) marking on the package denotes DIN V VDE V 0884-10 approval for a 560 V peak working voltage. Table 28. Description Installation Classification per DIN VDE 0110 For Rated Mains Voltage ≤ 150 V rms For Rated Mains Voltage ≤ 300 V rms For Rated Mains Voltage ≤ 400 V rms Climatic Classification Pollution Degree per DIN VDE 0110, Table 1 Maximum Working Insulation Voltage Input-to-Output Test Voltage, Method B1 Input-to-Output Test Voltage, Method A After Environmental Tests Subgroup 1 After Input and/or Safety Test Subgroup 2 and Subgroup 3 Highest Allowable Overvoltage Safety-Limiting Values Case Temperature Side 1 Current Side 2 Current Insulation Resistance at TS 200 180 Conditions Symbol Characteristic I to IV I to III I to II 40/105/21 2 560 1050 Unit VIORM × 1.875 = VPR, 100% production test, tm = 1 sec, partial discharge < 5 pC VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC Transient overvoltage, tTR = 10 sec Maximum value allowed in the event of a failure (see Figure 3) VIORM VPR VPR V peak V peak 896 672 VTR 4000 V peak V peak V peak VIO = 500 V TS IS1 IS2 RS 150 150 160 >109 °C mA mA Ω RECOMMENDED OPERATING CONDITIONS Table 29. SIDE #1 SIDE #2 SAFETY-LIMITING CURRENT (mA) 160 140 120 100 80 60 40 20 0 50 100 150 CASE TEMPERATURE (°C) 200 06866-002 0 Parameter Operating Temperature ADuM3210AR/ADuM3210BR ADuM3211AR/ADuM3211BR ADuM3210TR/ADuM3211TR Supply Voltages 1 ADuM3210AR/ADuM3210BR ADuM3210TR/ADuM3211AR ADuM3211BR/ADuM3211TR Input Signal Rise and Fall Times 1 Symbol TA Rating −40°C to +105°C −40°C to +105°C −40°C to +105°C VDD1, VDD2 2.7 V to 5.5 V 3 V to 5.5 V 1 ms Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting Values on Case Temperature per DIN V VDE V 0884-10 All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields. Rev. C | Page 12 of 20 ADuM3210/ADuM3211 ABSOLUTE MAXIMUM RATINGS Ambient temperature = 25°C, unless otherwise noted. Table 30. Parameter Storage Temperature Ambient Operating Temperature Supply Voltages1 Input Voltage1, 2 Output Voltage1, 2 Average Output Current per Pin3 Common-Mode Transients4 1 2 Table 31. Maximum Continuous Working Voltage1 Symbol TST TA VDD1, VDD2 VIA, VIB VOA, VOB IO CMH, CML Rating −55°C to +150°C −40°C to +105°C −0.5 V to +7.0 V −0.5 V to VDDI + 0.5 V −0.5 V to VDDO + 0.5 V −35 mA to +35 mA −100 kV/μs to +100 kV/μs DC Voltage Functional Insulation Parameter AC Voltage, Bipolar Waveform AC Voltage, Unipolar Waveform Functional Insulation Max 565 Unit V peak Constraint 50-year minimum lifetime 1131 V peak Basic Insulation 560 V peak Maximum approved working voltage per IEC 60950-1 Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10 Maximum approved working voltage per IEC 60950-1 Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10 All voltages are relative to their respective ground. VDDI and VDDO refer to the supply voltages on the input and output sides of a given channel, respectively. 3 See Figure 3 for information on maximum allowable current for various temperatures. 4 Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Rating can cause latch-up or permanent damage. 1131 V peak Basic Insulation 560 V peak Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime for more details. ESD CAUTION Rev. C | Page 13 of 20 ADuM3210/ADuM3211 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS VDD1 1 VIA 2 VIB 3 8 VDD2 VOA 06866-003 VDD1 1 VOA 2 VIB 3 8 VDD2 VIA 06866-016 ADuM3210 7 ADuM3211 7 6 VOB TOP VIEW GND1 4 (Not to Scale) 5 GND2 6 VOB TOP VIEW GND1 4 (Not to Scale) 5 GND2 Figure 4. ADuM3210 Pin Configuration Figure 5. ADuM3211 Pin Configuration Table 32. ADuM3210 Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic VDD1 VIA VIB GND1 GND2 VOB VOA VDD2 Description Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V. Logic Input A. Logic Input B. Ground 1. Ground reference for Isolator Side 1. Ground 2. Ground reference for Isolator Side 2. Logic Output B. Logic Output A. Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V. Table 33. ADuM3211 Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic VDD1 VOA VIB GND1 GND2 VOB VIA VDD2 Description Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V. Logic Output A. Logic Input B. Ground 1. Ground reference for Isolator Side 1. Ground 2. Ground reference for Isolator Side 2. Logic Output B. Logic Input A. Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V. TRUTH TABLES Table 34. ADuM3210 Truth Table (Positive Logic) VIA Input H L H L X X VIB Input H L L H X X VDD1 State Powered Powered Powered Powered Unpowered Powered VDD2 State Powered Powered Powered Powered Powered Unpowered VOA Output H L H L L Indeterminate VOB Output H L L H L Indeterminate Notes Outputs return to the input state within 1 μs of VDDI power restoration Outputs return to the input state within 1 μs of VDDO power restoration Table 35. ADuM3211 Truth Table (Positive Logic) VIA Input H L H L X X VIB Input H L L H X X VDD1 State Powered Powered Powered Powered Unpowered Powered VDD2 State Powered Powered Powered Powered Powered Unpowered VOA Output H L H L Indeterminate L VOB Output H L L H L Indeterminate Notes Outputs return to the input state within 1 μs of VDDI power restoration Outputs return to the input state within 1 μs of VDDO power restoration Rev. C | Page 14 of 20 ADuM3210/ADuM3211 TYPICAL PERFORMANCE CHARACTERISTICS 10 20 8 CURRENT/CHANNEL (mA) 15 6 CURRENT (mA) 10 4 5V 5V 5 2 3V 3V 06866-004 0 10 20 DATA RATE (Mbps) 30 0 10 20 DATA RATE (Mbps) 30 Figure 6. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation 4 4 Figure 9. Typical ADuM3210 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation CURRENT/CHANNEL (mA) 3 3 CURRENT (mA) 5V 2 2 5V 1 3V 06866-005 3V 1 0 10 20 DATA RATE (Mbps) 30 0 10 20 DATA RATE (Mbps) 30 Figure 7. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load) 4 10 Figure 10. ADuM3210 Typical VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation 8 CURRENT/CHANNEL (mA) 3 CURRENT (mA) 6 2 5V 4 5V 1 2 3V 3V 06866-006 06866--015 0 0 10 20 DATA RATE (Mbps) 30 0 0 10 20 DATA RATE (Mbps) 30 Figure 8. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load) Figure 11. ADuM3211 Typical VDD1 or VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation Rev. C | Page 15 of 20 06866-008 0 0 06866-007 0 0 ADuM3210/ADuM3211 APPLICATIONS INFORMATION PC BOARD LAYOUT The ADuM321x digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins. The capacitor value should be between 0.01 μF and 0.1 μF. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm. DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY Positive and negative logic transitions at the isolator input cause narrow (~1 ns) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions of more than 2 μs at the input, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than approximately 5 μs, the input side is assumed to be unpowered or nonfunctional, in which case, the isolator output is forced to a default state (see Table 34 and Table 35) by the watchdog timer circuit. The ADuM321x is immune to external magnetic fields. The limitation on the ADuM321x magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM321x is examined because it represents the most susceptible mode of operation. The pulses at the transformer output have an amplitude greater than 1.0 V. The decoder has a sensing threshold at about 0.5 V, therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by V = (−dβ/dt) ∑π rn2, n = 1, 2, ... , N where: β is the magnetic flux density (gauss). N is the number of turns in the receiving coil. rn is the radius of the nth turn in the receiving coil (cm). Given the geometry of the receiving coil in the ADuM321x and an imposed requirement that the induced voltage is at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 13. 100 SYSTEM-LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS System-level ESD reliability (for example, per IEC 61000-4-x) is highly dependent on system design, which varies widely by application. The ADuM321x incorporate many enhancements to make ESD reliability less dependent on system design. The enhancements include: • • • ESD protection cells were added to all input/output interfaces. Key metal trace resistances reduced using wider geometry and paralleling of lines with vias. The SCR effect inherent in CMOS devices is minimized by use of a guarding and isolation technique between the PMOS and NMOS devices. Areas of high electric field concentration are eliminated using 45° corners on metal traces. Supply pin overvoltage is prevented with larger ESD clamps between each supply pin and its respective ground. • • While the ADuM321x improves system-level ESD reliability, it is no substitute for a robust system-level design. For detailed recommendations on board layout and system-level design, see AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products. PROPAGATION DELAY-RELATED PARAMETERS Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high output. INPUT (VIx) 50% MAXIMUM ALLOWABLE MAGNETIC FLUX DENSITY (kgauss) 10 tPLH OUTPUT (VOx) tPHL 50% 06866-009 1 Figure 12. Propagation Delay Parameters Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal timing is preserved. Channel-to-channel matching refers to the maximum amount that the propagation delay differs between channels within a single ADuM321x component. Propagation delay skew refers to the maximum amount that the propagation delay differs between multiple ADuM321x components operating under the same conditions. 0.1 0.01 10k 1M 10M 100k MAGNETIC FIELD FREQUENCY (Hz) 100M Figure 13. Maximum Allowable External Magnetic Flux Density Rev. C | Page 16 of 20 06866-010 0.001 1k ADuM3210/ADuM3211 For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and had the worst-case polarity), it would reduce the received pulse from >1.0 V to 0.75 V, which is still well above the 0.5 V sensing threshold of the decoder. The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM321x transformers. Figure 14 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM321x is immune and can be affected only by extremely large currents operated at a high frequency and very close to the component. For the 1 MHz example, one would have to place a 0.5 kA current 5 mm away from the ADuM321x to affect the operation of the component. 1000 MAXIMUM ALLOWABLE CURRENT (kA) POWER CONSUMPTION The supply current at a given channel of the ADuM321x isolator is a function of the supply voltage, channel data rate, and channel output load. For each input channel, the supply current is given by IDDI = IDDI (Q) IDDI = IDDI (D) × (2f – fr) + IDDI (Q) IDDO = IDDO (Q) −3 f ≤ 0.5fr f > 0.5fr f ≤ 0.5fr For each output channel, the supply current is given by IDDO = (IDDO (D) + (0.5 × 10 ) × CLVDDO) × (2f – fr) + IDDO (Q) f > 0.5fr where: IDDI (D), IDDO (D) are the input and output dynamic supply currents per channel (mA/Mbps). IDDI (Q), IDDO (Q) are the specified input and output quiescent supply currents (mA). CL is the output load capacitance (pF). VDDO is the output supply voltage (V). f is the input logic signal frequency (MHz, half of the input data rate, NRZ signaling). fr is the input stage refresh rate (Mbps). To calculate the total IDD1 and IDD2 supply current, the supply currents for each input and output channel corresponding to IDD1 and IDD2 are calculated and totaled. Figure 6 provides per-channel input supply currents as a function of data rate. Figure 7 and Figure 8 provide per-channel output supply currents as a function of data rate for an unloaded output condition and for a 15 pF output condition, respectively. Figure 9 through Figure 11 provide total IDD1 and IDD2 supply current as a function of data rate for the ADuM3210 and ADuM3211 channel configurations. DISTANCE = 1m 100 10 DISTANCE = 100mm 1 DISTANCE = 5mm 0.1 1k 10k 100k 1M 10M 100M MAGNETIC FIELD FREQUENCY (Hz) Figure 14. Maximum Allowable Current for Various Current-to-ADuM3210/ADuM3211 Spacings Note that at combinations of strong magnetic fields and high frequencies, any loops formed by PCB traces may induce sufficiently large error voltages to trigger the threshold of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility. Rev. C | Page 17 of 20 06866-011 0.01 ADuM3210/ADuM3211 INSULATION LIFETIME All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM321x. Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Table 31 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than the 50-year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases. The insulation lifetime of the ADuM321x depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 15, Figure 16, and Figure 17 illustrate these different isolation voltage waveforms. A bipolar ac voltage environment is the most stringent. The goal of a 50-year operating lifetime under the ac bipolar condition determines the Analog Devices recommended maximum working voltage. In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50-year service life. The working voltages listed in Table 31 can be applied while maintaining the 50-year minimum lifetime provided that the voltage conforms to either the unipolar ac or dc voltage cases. Any cross-insulation voltage waveform that does not conform to Figure 16 or Figure 17 should be treated as a bipolar ac waveform, and its peak voltage should be limited to the 50-year lifetime voltage value listed in Table 31. Note that the voltage presented in Figure 16 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V. RATED PEAK VOLTAGE 0V 06866-012 Figure 15. Bipolar AC Waveform RATED PEAK VOLTAGE 06866-013 0V Figure 16. Unipolar AC Waveform RATED PEAK VOLTAGE 06866-014 0V Figure 17. DC Waveform Rev. C | Page 18 of 20 ADuM3210/ADuM3211 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 5 4 4.00 (0.1574) 3.80 (0.1497) 1 6.20 (0.2441) 5.80 (0.2284) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 1.75 (0.0688) 1.35 (0.0532) 0.50 (0.0196) 0.25 (0.0099) 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 45° 0.51 (0.0201) 0.31 (0.0122) COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 18. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters (inches) ORDERING GUIDE Model ADuM3210ARZ 2 ADuM3210ARZ-RL72 ADuM3210BRZ2 ADuM3210BRZ-RL72 ADuM3210TRZ2 ADuM3210TRZ-RL72 ADuM3211ARZ2 ADuM3211ARZ-RL72 ADuM3211BRZ2 ADuM3211BRZ-RL72 ADuM3211TRZ2 ADuM3211TRZ-RL72 1 2 Number of Inputs, VDD1 Side 2 2 2 2 2 2 1 1 1 1 1 1 Number of Inputs, VDD2 Side 0 0 0 0 0 0 1 1 1 1 1 1 Maximum Data Rate (Mbps) 1 1 10 10 10 10 1 1 10 10 10 10 Maximum Propagation Delay, 5 V (ns) 100 100 50 50 50 50 100 100 50 50 50 50 Maximum Pulse Width Distortion (ns) 5 5 3 3 3 3 6 6 4 4 4 4 012407-A Temperature Range −40°C to +105°C −40°C to +105°C −40°C to +105°C −40°C to +105°C −40°C to +125°C −40°C to +125°C −40°C to +105°C −40°C to +105°C −40°C to +105°C −40°C to +105°C −40°C to +125°C −40°C to +125°C Package Option 1 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 = 8-lead, narrow body SOIC_N. Z = RoHS Compliant Part. Rev. C | Page 19 of 20 ADuM3210/ADuM3211 NOTES ©2007–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06866-0-9/09(C) Rev. C | Page 20 of 20
ADuM3211 价格&库存

很抱歉,暂时无法提供与“ADuM3211”相匹配的价格&库存,您可以联系我们找货

免费人工找货