Click here for production status of specific part numbers.
DS28C16
I2C Low-Voltage SHA-3 Authenticator
General Description
Benefits and Features
The
DS28C16
secure
authenticator
combines
FIPS202-compliant Secure Hash Algorithm (SHA-3) challenge and response authentication with secured EEPROM.
● Robust Countermeasures Protect Against Security
Attacks
• All Stored Data Cryptographically Protected from
Discovery
The device provides a core set of cryptographic tools derived from integrated blocks including a SHA-3 engine,
256 bits of secured user EEPROM, a decrement-only
counter, and a unique 64-bit ROM identification number
(ROM ID). The unique ROM ID is used as a fundamental
input parameter for cryptographic operations and serves
as an electronic serial number within the application.
● Efficient Secure Hash Algorithm to Authenticate
Peripherals
• FIPS 202-Compliant SHA-3 Algorithm for
Challenge/Response Authentication
• FIPS 198-Compliant Keyed-Hash Message
Authentication Code (HMAC)
Applications
● Medical Tools/Accessories Authentication and
Calibration
● Accessory and Peripheral Secure Authentication
● Battery Authentication and Charge Cycle Tracking
● Supplemental Features Enable Easy Integration into
End Applications
• 17-Bit One-Time Settable, Nonvolatile DecrementOnly Counter with Authenticated Read
• Secure Storage for Secrets
• 256 Bits of Secure EEPROM for User Data
• Unique and Unalterable Factory Programmed
64-Bit Identification Number (ROM ID)
• I2C Communications Up to 1MHz
• Operating Range: 1.62V–3.63V, -40°C to +85°C
• 8-Pin, 2mm x 2mm TDFN-EP Package
Ordering Information appears at end of data sheet.
Typical Application Circuit
VCC
VCC
µC
GND
19-100753; Rev 0; 3/20
I2C
PORT
VCC
SDA
SCL DS28C16
GND
DS28C16
I2C Low-Voltage SHA-3 Authenticator
TABLE OF CONTENTS
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
8 TDFN-EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TDFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Design Resource Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Decrement Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
I 2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
I2C Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Bus Idle or Not Busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
START Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
STOP Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Repeated START Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data Valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
www.maximintegrated.com
Maxim Integrated | 2
DS28C16
I2C Low-Voltage SHA-3 Authenticator
LIST OF FIGURES
Figure 1. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. I2C Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3. I2C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. I2C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
www.maximintegrated.com
Maxim Integrated | 3
I2C Low-Voltage SHA-3 Authenticator
DS28C16
Absolute Maximum Ratings
Voltage Range on Any Pin Relative to GND ........... -0.5V to 4.0V
Maximum Current into Any Pin ............................ -20mA to 20mA
Operating Temperature Range ............................ -40°C to +85°C
Junction Temperature ...................................................... +150°C
Storage Temperature Range ..............................-40°C to +125°C
Lead Temperature (soldering, 10s)................................... +300°C
Soldering Temperature (reflow) ........................................ +260°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Package Information
8 TDFN-EP
Package Code
T822+3C
Outline Number
21-0168
Land Pattern Number
90-0065
Thermal Resistance, Single-Layer Board:
Junction to Ambient (θJA)
—
Junction to Case (θJC)
—
Thermal Resistance, Four-Layer Board:
Junction to Ambient (θJA)
85.1°C/W
Junction to Case (θJC)
20.8°C/W
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal
considerations, refer to www.maximintegrated.com/thermal-tutorial.
Electrical Characteristics
(Limits are 100% tested at TA = +25ºC and TA = +85ºC. Limits over the operating temperature range and relevant supply voltage
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.
Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
(Note 1)
MIN
TYP
MAX
UNITS
1.62
3.3
3.63
V
Standby
3.5
12
60
Communicating (Note 2)
μA
I2C SCL AND SDA PINS (Note 3)
Low-Level Input Voltage
High-Level Input Voltage
-0.3
0.3 ×
VCC
VCC > 1.98V
0.7 ×
VCC
VCC +
0.3
VCC ≤ 1.98V
0.8 ×
VCC
VCC +
0.3
VIL
VIH
Hysteresis of Schmitt
Trigger Inputs
VHYS
(Note 4)
Low-Level Output
Voltage at 4mA Sink
Current
VOL
(Note 5)
www.maximintegrated.com
0.05 ×
VCC
V
V
V
0.4
V
Maxim Integrated | 4
I2C Low-Voltage SHA-3 Authenticator
DS28C16
Electrical Characteristics (continued)
(Limits are 100% tested at TA = +25ºC and TA = +85ºC. Limits over the operating temperature range and relevant supply voltage
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.
Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)
PARAMETER
SYMBOL
Output Fall Time from
VIH(MIN) to VIL(MAX)
with a Bus Capacitance
from 10pF to 400pF
tOF
Pulse Width of Spikes
that are Suppressed by
the Input Filter
tSP
Input Current with an
Input Voltage Between
0.1VCCmax and
0.9VCCmax
II
Input Capacitance
CONDITIONS
MIN
CI
(Note 4)
SCL Clock Frequency
fSCL
(Note 1)
Hold Time (Repeated)
START Condition
tHD:STA
Low Period of the SCL
Clock
tLOW
High Period of the SCL
Clock
MAX
30
(Note 4)
(Note 4, Note 6)
TYP
-1
UNITS
ns
50
ns
+1
µA
1
MHz
10
pF
0.45
µs
0.65
µs
tHIGH
0.35
µs
Setup Time for a
Repeated START
Condition
tSU:STA
0.35
µs
Data Hold Time
tHD:DAT
(Note 4, Note 7, Note 8)
Data Setup Time
tSU:DAT
(Note 7, Note 9)
Setup Time for STOP
Condition
Bus Free Time Between
a STOP and START
Condition
Capacitive Load for
Each Bus Line
Warm-Up Time
(Note 7)
0.35
µs
100
ns
tSU:STO
0.35
µs
tBUF
0.6
µs
CB
(Note 1, Note 10)
400
pF
tOSCWUP
(Note 1, Note 11)
1
ms
CRYPTO FUNCTIONS
Computation Current
ICMP
3
mA
Read Memory Time
tRM
5
ms
Write Memory Time
tWM
60
ms
Short Write Memory
Time
tWMS
15
ms
Computation Time
tCMP
15
ms
EEPROM
Write/Erase Cycles
(Endurance)
www.maximintegrated.com
NCY
(Note 12)
100K
Maxim Integrated | 5
I2C Low-Voltage SHA-3 Authenticator
DS28C16
Electrical Characteristics (continued)
(Limits are 100% tested at TA = +25ºC and TA = +85ºC. Limits over the operating temperature range and relevant supply voltage
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.
Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)
PARAMETER
Data Retention
SYMBOL
tDR
CONDITIONS
MIN
TA = +85ºC (Note 13)
10
TYP
MAX
UNITS
years
Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
Note 6:
Note 7:
System requirement.
Operating current during I2C communication at 1MHz with < 25ns rise and fall times on SDA and SCL.
All I2C timing values are referred to VIH(MIN) and VIL(MAX) levels.
Guaranteed by design and/or characterization only. Not production tested.
The I-V characteristic is linear for voltages less than 1V.
I/O pins of the DS28C16 do not obstruct the SDA and SCL lines if VCC is switched off.
tLOW min = tHD:DAT max + 200ns for rise or fall time + tSU:DAT min. Values greater than these can be accommodated by
extending tLOW accordingly.
Note 8: The DS28C16 provides a hold time of at least 100ns for the SDA signal (referenced to the VIH(MIN) of the SCL signal) to bridge
the undefined region of the falling edge of SCL.
Note 9: The DS28C16 can be used in a standard-mode I2C-bus system, but the requirement tSU:DAT ≥ 250ns must then be met. Also,
the acknowledge timing must meet this setup time (I2C bus specification Rev. 03, 19 June 2007).
Note 10: CB = Total capacitance of one bus line in pF. The maximum bus capacitance allowable may vary from this value depending
on the actual operating voltage and frequency of the application (I2C bus specification Rev. 03, 19 June 2007).
Note 11: I2C communication should not take place for at least tOSCWUP after VCC reaches VCC(MIN).
Note 12: Write-cycle endurance is tested in compliance with JESD47H.
Note 13: Data retention is tested in compliance with JESD47H.
Pin Configuration
TDFN
TOP VIEW
VCC
SDA
SCL
DNC
8
7
6
5
DS28C16
EP*
+
1
2
3
4
DNC
DNC
DNC
GND
TDFN-EP
2mm x 2mm
*EP = EXPOSED PAD
www.maximintegrated.com
Maxim Integrated | 6
I2C Low-Voltage SHA-3 Authenticator
DS28C16
Pin Description
PIN
NAME
FUNCTION
1–3, 5
DNC
Do Not Connect
4
GND
Ground Reference. Connect all contacts to GND.
6
SCL
I2C Clock. Connect to VCC with pullup resistor.
7
SDA
I2C Data. Connect to VCC with pullup resistor.
8
VCC
Supply Voltage
—
EP
www.maximintegrated.com
Exposed Pad (TDFN Only). Solder evenly to the board's ground plane for proper operation. Refer
to Application Note 3273: Exposed Pads: A Brief Introduction for additional information.
Maxim Integrated | 7
I2C Low-Voltage SHA-3 Authenticator
DS28C16
Detailed Description
The DS28C16 integrates the Maxim DeepCover® capability to protect all device stored data from invasive discovery. In
addition to the SHA-3 engine for signatures, 256-bit EEPROM for user memory, SHA-3 secret storage, 17-bit decrement
counter, and control registers. The device operates from an I2C interface.
VCC
64-BIT ROM ID
SDA
SCL
I2C FUNCTION
CONTROL
AND
COMMAND
BUFFER
SHA3-256
SECRET
E2 ARRAY
USER MEMORY
DECREMENT COUNTER
DS28C16
Figure 1. Block Diagram
Design Resource Overview
Operation of the DS28C16 involves use of device EEPROM and execution of device function commands. The following
section provides an overview including the decrement counter. Refer to the DS28C16 Security User Guide for details.
Memory
A secured EEPROM array provides SHA-3 secret storage, along with a decrement counter, and/or general-purpose,
user-programmable memory. Depending on the memory space, there are either default or user-programmable options to
set protection modes.
Decrement Counter
The optional 17-bit decrement counter can be written one time on a page of memory. A dedicated device function
command is used to decrement the count value by one with each call. Once the count value reaches a value of 0, no
additional decrements are possible.
I 2C
General Characteristics
The I2C bus uses a data line (SDA) plus a clock signal (SCL) for communication. Both SDA and SCL are bidirectional
lines, connected to a positive supply voltage through a pullup resistor. When there is no communication, both lines are
high. The output stages of devices connected to the bus must have an open drain or open collector to perform the wired-
www.maximintegrated.com
Maxim Integrated | 8
I2C Low-Voltage SHA-3 Authenticator
DS28C16
AND function. Data on the I2C bus can be transferred at rates up to 100kbps in standard mode and up to 400kbps in
fast mode. The DS28C16 works in both modes or up to a clock rate of 1MHz. A device that sends data on the bus is
defined as a transmitter, and a device receiving data is defined as a receiver. The device that controls communication is
called a master. Devices controlled by the master are slaves. To be individually accessed, each device must have a slave
address that does not conflict with other devices on the bus. Data transfers can be initiated only when the bus is not busy.
The master generates the serial clock (SCL), controls the bus access, generates the START and STOP conditions, and
determines the number of data bytes transferred between START and STOP (Figure 2). Data is transferred in bytes with
the most significant bit being transmitted first. An acknowledge bit follows each byte to allow synchronization between
master and slave.
Slave Address
The slave address to which the DS28C16 responds is shown in Figure 3. The slave address is part of the slave address/
control byte. The last bit of the slave address/control byte (R/W) defines the data direction. When set to 0, subsequent
data flows from master to slave (write access); when set to 1, data flows from slave to master (read access).
IDLE
S
MSB FIRST
LSB
MSB
P
LSB
MSB
SDA
SLAVE
ADDRESS
SCL
R/W
ACK
8
9
1-7
DATA
1-7
8
ACK/
NACK
DATA
ACK
9
1-7
8
9
REPEATED IF MORE BYTES
ARE TRANSFERRED
Figure 2. I2C Protocol Overview
7-BIT SLAVE ADDRESS
A6
A5
A4
A3
A2
A1
A0
0
1
1
0
0
0
1
MSB
R/W
DETERMINES READ OR
WRITE
Figure 3. I2C Slave Address
I2C Definitions
The following terminology is commonly used to describe I2C data transfers. The timing references are defined in Figure
4.
Bus Idle or Not Busy
Both SDA and SCL are inactive and in their logic-high states.
www.maximintegrated.com
Maxim Integrated | 9
I2C Low-Voltage SHA-3 Authenticator
DS28C16
START Condition
To initiate communication with a slave, the master must generate a START condition. A START condition is defined as a
change in state of SDA from high to low while SCL remains high.
STOP Condition
To end communication with a slave, the master must generate a STOP condition. A STOP condition is defined as a
change in state of SDA from low to high while SCL remains high.
Repeated START Condition
Repeated STARTs are commonly used for read accesses after having specified a memory address to read from in a
preceding write access. The master can use a repeated START condition at the end of a data transfer to immediately
initiate a new data transfer following the current one. A repeated START condition is generated the same way as a normal
START condition, but without leaving the bus idle after a STOP condition.
Data Valid
With the exception of the START and STOP condition, transitions of SDA can occur only during the low state of SCL.
The data on SDA must remain valid and unchanged during the entire high pulse of SCL plus the required setup and hold
time (tHD:DAT after the falling edge of SCL and tSU:DAT before the rising edge of SCL; see Figure 4). There is one clock
pulse per bit of data. Data is shifted into the receiving device during the rising edge of the SCL pulse.
When finished with writing, the master must release the SDA line for a sufficient amount of setup time (minimum tSU:DAT,
+ tR in Figure 4) before the next rising edge of SCL to start reading. The slave shifts out each data bit on SDA at the
falling edge of the previous SCL pulse and the data bit is valid at the rising edge of the current SCL pulse. The master
generates all SCL clock pulses, including those needed to read from a slave.
tF IF MASTER DRIVEN OR tOF IF SLAVE DRIVEN
tF/tOF
Sr
S
P
S
SDA
tF
tR
tSU:DAT
tSU:STA
tLOW
tBUF
tSP
SCL
tHD:STA
tHD:DAT
tHIGH
tSU:STO
NOTE: TIMING REFERENCED TO VIH(MIN) AND VIL(MAX).
Figure 4. I2C Timing Diagram
www.maximintegrated.com
Maxim Integrated | 10
I2C Low-Voltage SHA-3 Authenticator
DS28C16
Ordering Information
PART NUMBER
DS28C16Q+T
TEMP RANGE
PIN-PACKAGE
-40°C to +85°C
8 TDFN-EP* (2.5k pcs)
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
*EP = Exposed pad.
www.maximintegrated.com
Maxim Integrated | 11
I2C Low-Voltage SHA-3 Authenticator
DS28C16
Revision History
REVISION
NUMBER
REVISION
DATE
0
3/20
DESCRIPTION
Initial release
PAGES
CHANGED
—
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
© 2020 Maxim Integrated Products, Inc.