Click here for production status of specific part numbers.
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
General Description
Benefits and Features
The DS28S60 DeepCover® cryptographic coprocessor
easily integrates into embedded systems enabling confidentiality, authentication and integrity of information. With
a fixed command set and no device-level firmware development required, the DS28S60 makes it fast and easy
to implement full security for IoT devices. Communication
with the device is performed using the industry standard
SPI slave interface at up to 20Mbps with a simple set of
commands that provide a comprehensive security toolbox
utilizing HW-based cryptographic blocks. As a coprocessor to an SPI- interfaced host controller, the command
functionality includes ECDSA-P256 signature and verification, SHA-256 based digital signature, AES-128 packet
encryption/decryption, ECDHE key exchange for session
key generation, and access to high-quality random numbers. A NIST SP800-90B compliant true random number
generator (TRNG) is integrated for on-chip cryptographic
operations as well as providing random data and nonces
to the host controller, if required. Nonvolatile storage for
secrets, certificates, public/private keys, and applicationspecific sensitive data is supported with 3.6KB of secured
flash memory. The DS28S60 integrates Maxim’s patented ChipDNA™ feature, a physically unclonable function
(PUF) to provide a cost-effective solution with the ultimate
protection against security attacks. Using the random variation of semiconductor device characteristics that naturally occur during wafer fabrication, the ChipDNA circuit generates a unique output value that is repeatable over time,
temperature, and operating voltage. Attempts to probe or
observe ChipDNA operation modifies the underlying circuit characteristics, preventing discovery of the unique value used by the chip's cryptographic functions. ChipDNA
output is utilized as key content to cryptographically secure all device stored data and optionally, under user control, key content for specific cryptographic operations.
● Secure Coprocessor with NIST-Compliant HardwareBased Crypto
• FIPS-180 SHA-256 MAC and FIPS-198 HMAC
Hash
• FIPS-197 AES-128 with GCM
• FIPS-186 ECDSA-P256 Elliptic Curve Digital
Signature/Verification
• SP800-56A ECDHE-P256 Key Exchange
• SP800-90B Compliant TRNG
Applications
● -40°C to +105°C, 1.62V to 3.63V
●
●
●
●
●
Internet of Things (IoT) Device Security
Key Management and Exchange
End-to-End Encryption
End-Point Authentication
Prevention of Counterfeit Products
● Robust Countermeasures Protect Against Security
Attacks
• ChipDNA Produced Key Cryptographically Protects
All Stored Data
• Actively Monitored Die Shield Detects and Reacts
to Intrusion Attempts
● Enables Fast Time-to-Market with Easy End
Application Integration
• Fixed-Function Command Set, No Device-Level
Firmware
• C-Source SDK for Host Micro SW Development
• 3.6KB Flash Array for Secure Key, Certificate, and
Data Storage
● High-Speed Interface for Host Microcontroller
Communication
• 20MHz SPI with Mode 0 or Mode 3 Operation
● Supplemental Features Enable Easy Integration into
End Applications
• Unique and Unalterable Factory-Programmed,
64-Bit Identification Number (ROM ID)
• Low-Power Operation
• 100nA Power-Down Mode
• 0.35mA Idle
• 12-Pin 3mm x 3mm TDFN
Ordering Information appears at end of data sheet.
DeepCover is a registered trademark of Maxim Integrated Products, Inc.
ChipDNA is a trademark of Maxim Integrated Inc.
19-000793; Rev 0; 3/20
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Simplified Block Diagram
DS28S60
CEXT
VDD
POWER
MANAGER
SHA-256
ECDSA
ECDHE
PDWN
AES-128
SPIS_SS
3.6KB FLASH MEMORY
SPIS_SCK
SPIS_MOSI
FUNCTION CONTROL
AND
COMMAND INTERFACE
SPI
SLAVE
USER MEMORY
KEYS & SECRETS
SPIS_MISO
ChipDNA
PUF
64-BIT
ROM ID
TRNG
GND
www.maximintegrated.com
19-100793
Maxim Integrated | 2
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
TABLE OF CONTENTS
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
12 TDFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DS28S60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
ChipDNA Physically Unclonable Function (PUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Cryptographic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Memory Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
64-Bit ROM ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Device Function Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Simple Application Level Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
www.maximintegrated.com
19-100793
Maxim Integrated | 3
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
LIST OF FIGURES
Figure 1. 64-Bit ROM ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. SPI Mode 0 and 3 Data Sampling Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
www.maximintegrated.com
19-100793
Maxim Integrated | 4
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
LIST OF TABLES
Table 1. Typical Cryptographic Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
www.maximintegrated.com
19-100793
Maxim Integrated | 5
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Absolute Maximum Ratings
VDD to GND........................................................... -0.3V to 3.63V
Any Pin to GND except VDD....................... -0.3V to (VDD + 0.3)V
Operating Temperature Range .......................... -40°C to +105°C
Storage Temperature Range .............................. -40°C to +150°C
Junction Temperature ...................................................... +150°C
Soldering Temperature (reflow) ........................................ +260°C
Continuous Package Power Dissipation 12-Pin TDFN (SingleLayer Board) TA = +70°C, (derate 15.90mW/°C above
+70°C) .........................................................................1269.8 mW
Continuous Package Power Dissipation 12-Pin TDFN (Multilayer
Board)
TA
=
+70°C
(derate
24.40mW/°C
above
+70°C) ..........................................................................1951.2mW
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Package Information
12 TDFN
Package Code
TD1233+1C
Outline Number
21-0664
Land Pattern Number
90-0397
Thermal Resistance, Single-Layer Board:
Junction to Ambient (θJA)
63°C/W
Junction to Case (θJC)
8.5°C/W
Thermal Resistance, Four-Layer Board:
Junction to Ambient (θJA)
41°C/W
Junction to Case (θJC)
8.5°C/W
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal
considerations, refer to www.maximintegrated.com/thermal-tutorial.
Electrical Characteristics
(Limits are 100% tested at TA = +25ºC and TA = +105ºC. Limits over the operating temperature range and relevant supply voltage
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.
Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
3.3
3.63
V
POWER SUPPLY
Supply Voltage
Power-On Reset
VDD
Idle Current
Power-Down Current
www.maximintegrated.com
1.62
1.33
V
TA = +25°C, no I/O or cryptographic
operation are active
1.28
IECDSA
TA = +25°C, performing signature
operation
1.62
ISHA
TA = +25°C, performing SHA-256
operation
0.95
IIDLE
TA = +25°C, PDWN = VDD, CPU/
peripherals inactive, I/O pins in inactive
state
0.4
mA
IPDWN
TA = +25°C, VPDWN = 0V, VDD = 1.8V
100
nA
IA
Active Current
(Note 1)
VPOR
19-100793
3
mA
Maxim Integrated | 6
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Electrical Characteristics (continued)
(Limits are 100% tested at TA = +25ºC and TA = +105ºC. Limits over the operating temperature range and relevant supply voltage
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.
Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)
PARAMETER
SYMBOL
Power-Down Resistance
RPDWN
CONDITIONS
MIN
Pulldown to ground
TYP
MAX
1
UNITS
MΩ
FUNCTIONAL TIMING
Operation Time
tOP
1
ms
DIGITAL I/O: GENERAL
Output Voltage High
(SPIS_MISO)
VOH
ISOURCE = 2mA
VDD 0.4
Output Voltage Low
(SPIS_MISO)
VOL
ISINK = 2mA
Input Voltage High
(SPIS_SCK, SPIS_SS,
SPIS_MOSI)
VIH
Input Voltage Low
(SPIS_SCK, SPIS_SS,
SPIS_MOSI)
VIL
Input Leakage Current
Low
IIL
VDD = 3.63V, VIN = 0V
-500
+500
nA
Input Leakage Current
High
IIH
VDD = 3.63V, VIN = 3.63V
-500
+500
nA
20
MHz
V
0.4
0.7 x
VDD
V
V
0.3 x
VDD
SPI SLAVE
Operating Frequency
fSCK
Clock Period
tSCK
1/fSCK
μs
Clock Input High Time
tSCH
(Note 2)
tSCK/2
μs
Clock Input Low Time
tSCL
(Note 2)
tSCK/2
μs
SS Active Setup Time
tSSE
10
ns
Data Input Setup Time
tSIS
5
ns
Data Input Hold Time
tSIH
1
ns
Clock Edge to Data
Output Valid
tSOV
5
ns
SS Inactive Setup Time
tSSD
10
ns
SS Inactive Time
tSSH
1/fSCK
μs
Output Disable Time
tSLH
10
ns
Clock Stable to SS
Active
tSAD
10
ns
10
ms
8
μs
FLASH MEMORY
Flash Erase Time
tP_ERASE
Flash Programming
Time per Word
tPROG
Flash Endurance
NEND
Data Retention
tRET
www.maximintegrated.com
Page erase
TA = +85°C
19-100793
10
kcycles
10
years
Maxim Integrated | 7
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Note 1: System requirement.
Note 2: tSCH + tSCL ≥ 1/fSCK (MAX)
www.maximintegrated.com
19-100793
Maxim Integrated | 8
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Typical Operating Characteristics
(TA = TMIN to TMAX unless otherwise noted.)
Pin Configuration
DS28S60
VDD
DNC
DNC
DNC
DNC
PDWN
TOP VIEW
12
11
10
9
8
7
DS28S60
*EP
2
3
4
5
6
SPIS_MOSI
SPIS_MISO
SPIS_SS
GND
CEXT
1
SPIS_SCK
+
TDFN-EP
3mm x 3mm x 0.75mm
www.maximintegrated.com
19-100793
*EP =
EXPOSED PAD
Maxim Integrated | 9
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Pin Description
PIN
NAME
FUNCTION
POWER
1
CEXT
External Capacitor. Connect to ground through a 1µF external ceramic chip capacitor. Place the
capacitor as close as possible to the CEXT pin. No other components should be connected to the
CEXT pin.
6
GND
Digital Ground. Connect directly to the ground plane.
7
PDWN
12
VDD
—
EP
Power Down. Controls the power state of the DS28S60. Setting this pin to GND places the
DS28S60 into power-down mode. In power-down mode, all volatile/ephemeral registers and data
are erased. Set this pin high prior to communicating with the device. This pin should remain in a
high state for the duration of any cryptography computations and as long as any ephemeral data/
keys are required by the host application.
Supply Voltage. Connect to the external power supply for the DS28S60.
Exposed Pad. Solder evenly to the board's ground plane for proper operation. Refer to Application
Note 3273: Exposed Pads: A Brief Introduction for additional information.
SPI Slave
2
SPIS_SCK
Slave Clock (SCK). The SPI clock input from an external SPI master controller.
3
SPIS_MOSI
Master Out Slave In (MOSI). This is the SPI data input line from the SPI master.
4
SPIS_MISO
Master In Slave Out (MISO). This is the SPI data output line for data going from the DS28S60 to
an external SPI master.
5
SPIS_SS
8–11
DNC
www.maximintegrated.com
Slave Select (SS). An input from a SPI master to select the DS28S60 for communication.
Do Not Connect. Leave unconnected.
19-100793
Maxim Integrated | 10
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Detailed Description
The DS28S60 secure coprocessor provides a comprehensive cryptographic toolbox, command set and nonvolatile
memory for securing a broad range of embedded equipment. It includes a 3.6KB flash memory array that provides
secure storage for keys, certificates, secrets, and application/user data. As a fixed function device, there is no firmware
development involved. A simple to use command set provides functions and capabilities for:
●
●
●
●
●
●
Asymmetric key authentication with ECDSA-P256 signature and verification
Symmetric key authentication with SHA-256 HMAC
ECDHE secure key exchange
Encryption/decryption of bulk data with AES-128
Securely store certificates, keys and data
Generation of NIST SP800-90B compliant random data
ChipDNA Physically Unclonable Function (PUF)
ChipDNA PUF security technology provides an exponential increase in protection against the invasive and reverse
engineering attacks that hackers apply. Attempts to probe or observe ChipDNA operation modifies the underlying circuit
characteristics, preventing the discovery of the unique value used by the chip cryptographic functions. Similarly, more
exhaustive reverse-engineering attempts are defeated due to the factory conditioning required to make the ChipDNA
PUF circuitry operational. The per-device unique key is generated by the ChipDNA PUF circuitry only when needed for
cryptographic operations and is then instantaneously deleted.
Most importantly, the ChipDNA secure key never resides statically in registers or memory, nor does it ever leave the
electrical boundary of the IC. In addition to the protection benefits, ChipDNA simplifies or eliminates the need for secure
IC key management.
Cryptographic Functions
Designed to meet the security requirements of IoT devices, the DS28S60 includes HW-based cryptographic accelerators.
The cryptographic toolbox enables client/server applications to communicate over the Internet in a way that is designed
to prevent eavesdropping, tampering, and message forgery. Segregating the cryptographic functions from the main IoT
microcontroller simplifies the overall IoT development effort and ensures the application level code does not interfere with
the security implementation. Typical cryptographic command times are listed in Table 1.
Table 1. Typical Cryptographic Times
CRYPTOGRAPHIC TASK
TIME
ECDSA computation
tOP x 100
SHA-256 computation
tOP x 50
Memory
Memory Resources
A secured flash memory array is configured to provide up to 92 pages (32 bytes per page) of programmable user
memory. In addition, the flash memory includes reserved pages for keys and secrets. Multiple user-programmable
protection modes exist for the user memory space including ECDSA and SHA-256 HMAC R/W authentication protections
or optionally left unprotected. With these options, general-purpose memory can be flexibly configured to store end
application data ranging from nonsensitive calibration constants to critically sensitive host-system crypto keys.
64-Bit ROM ID
Each DS28S60 contains a unique ROM ID that is 64 bits long. The first 8 bits are a family code. The next 48 bits are a
unique serial number. The last 8 bits are a cyclic redundancy check (CRC) of the first 56 bits. See Figure 1 for details.
The CRC is generated using a polynomial generator consisting of a shift register and XOR gates. The polynomial is X8
+ X5 + X4 + 1. Additional information about the CRC is available in Application Note 27: Understanding and Using Cyclic
www.maximintegrated.com
19-100793
Maxim Integrated | 11
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Redundancy Checks with Maxim 1-Wire and iButton Products.
LSB
MSB
8-BIT CRC CODE
MSB
48-BIT SERIAL NUMBER
LSB
MSB
8-BIT FAMILY CODE [55h]
LSB
MSB
LSB
Figure 1. 64-Bit ROM ID
Device Function Commands
After configuring the SPI interface for communication with the DS28S60, a device function command can be transmitted.
The data transfer is verified when writing and reading by a CRC of 16-bit type (CRC-16). The CRC-16 is computed as
described in Application Note 27: Understanding and Using Cyclic Redundancy Checks with Maxim 1-Wire and iButton
Products.
Refer to the DS28S60 Security User Guide for a list of supported commands. Each command requires a code and one or
more parameters. Commands are used to configure, read, write, and perform cryptographic operations. All commands,
parameters and data are 8-bit each and require eight serial clock cycles to transmit. The commands, parameters and
data are always transferred most significant bit first.
All commands are synchronized to the falling edge of the slave select (SS) input signal. Prior to transmitting a command
code, the SPIS_SS signal must be driven low and must remain low until the completion of the command including the
command code, the parameters and all data bits. Any low-to-high transition of the SPIS_SS input prior to completion of
the command terminates the in-process command and results in the DS28S60 entering standby mode.
SPI Modes
The DS28S60 supports SPI communications running in either of the following two SPI modes:
● Mode 0 (CPOL = 0, CPHA = 0): Data is sampled at the leading rising edge of the clock.
● Mode 3 (CPOL = 1, CPHA =1): Data is sampled on the trailing rising edge of the clock.
Details of the timing are described in Figure 2.
If enabled, an autodetect feature is available to detect between Mode 0 and Mode 3. The feature works by checking if the
SPIS_SCK signal is low (Mode 0) or high (Mode 3) before the falling edge of the SPIS_SS signal during the tSAD time.
Mode 1 and Mode 2 are not supported.
www.maximintegrated.com
19-100793
Maxim Integrated | 12
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
CPHA = 0:
CPHA = 1:
SPIS_SS
(SHOWN ACTIVE LOW)
SAMPLE SHIFT SAMPLE SHIFT
SHIFT SAMPLE SHIFT SAMPLE
tSSE
tSAD
tSSH
tSCK
tSSD
tSCH
tSCL
SPIS_SCK
CPOL/CPHA
0/0 OR 1/1
SPIS_MOSI
(INPUT)
tSIS
MSB
tSIH
MSB-1
LSB
tSOV
SPIS_MISO
(OUTPUT)
MSB
MSB-1
tSLH
LSB
Figure 2. SPI Mode 0 and 3 Data Sampling Edges
www.maximintegrated.com
19-100793
Maxim Integrated | 13
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Typical Application Circuits
Simple Application Level Diagram
1.8V
1.8V
MCU
VDD
VDD
DS28S60
PWDN
GPIO
SPIM_SS
SPIS_SS
SPIM_SCK
SPIS_SCK
SPIM_MOSI
SPIS_MOSI
SPIM_MISO
SPIS_MISO
GND
GND
CEXT
1µF
Ordering Information
PART NUMBER
DS28S60Q+
USER FLASH MEMORY (KB)
TEMP RANGE
PIN-PACKAGE
3.6KB
-40°C to +105°C
12 TDFN
+Denotes a lead(Pb)-free/RoHS-compliant package.
www.maximintegrated.com
19-100793
Maxim Integrated | 14
DS28S60
DeepCover Cryptographic Coprocessor
with ChipDNA
Revision History
REVISION
NUMBER
REVISION
DATE
0
3/20
DESCRIPTION
Initial release
PAGES
CHANGED
—
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
© 2020 Maxim Integrated Products, Inc.