0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EV1HMC787ALC3B

EV1HMC787ALC3B

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVALBOARDFORHMC787ALC3B

  • 详情介绍
  • 数据手册
  • 价格&库存
EV1HMC787ALC3B 数据手册
GaAs, MMIC, Fundamental Mixer, 3 GHz to 10 GHz HMC787A Data Sheet NIC NIC 12 11 10 HMC787A RF GND 3 7 GND 4 5 6 GND GND 8 IF 9 LO 2 GND 1 PACKAGE BASE 13608-001 NIC FUNCTIONAL BLOCK DIAGRAM Conversion loss: 9 dB typical at 3 GHz to 9 GHz Local oscillator (LO) to radio frequency (IF) isolation: 43 dB typical at 3 GHz to 9 GHz RF to intermediate frequency (IF) isolation: 26 dB typical at 3 GHz to 9 GHz Input third-order intercept (IP3): 24 dBm typical at 3 GHz to 9 GHz Input 1 dB compression point (P1dB): 17 dBm typical at 3 GHz to 9 GHz Input second-order intercept (IP2): 67 dBm typical at 3 GHz to 9 GHz Passive double-balanced topology Wide IF frequency range: dc to 4 GHz 12-terminal, ceramic, leadless chip carrier (LCC) package GND FEATURES Figure 1. APPLICATIONS Microwave radio Industrial, scientific, and medical (ISM) band and ultrawide band (UWB) radio Test equipment and sensors Military end use GENERAL DESCRIPTION The HMC787A is a general-purpose, double balanced mixer in a 12-terminal, RoHS compliant, ceramic leadless chip carrier (LCC) package that can be used as an upconverter or downconverter from 3 GHz to 10 GHz. This mixer is fabricated in a gallium arsenide (GaAs), metal semiconductor field effect transistor (MESFET) process and requires no external components or matching circuitry. Rev. C The HMC787A provides excellent local oscillator (LO) to radio frequency (RF) and LO to intermediate frequency (IF) isolation due to optimized balun structures and operates with a LO drive level of 17 dBm. The ceramic LCC package eliminates the need for wire bonding and is compatible with high volume, surfacemount manufacturing techniques. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016–2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com HMC787A Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Downconverter Performance ......................................................6 Applications ....................................................................................... 1 Upconverter Performance ......................................................... 10 Functional Block Diagram .............................................................. 1 Isolation and Return Loss Performance .................................. 12 General Description ......................................................................... 1 Spurious and Harmonics Performance ................................... 14 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 15 Specifications..................................................................................... 3 Applications Information .............................................................. 16 Absolute Maximum Ratings ............................................................ 4 Typical Application Circuit ....................................................... 16 Thermal Resistance ...................................................................... 4 Evaluation PCB Information .................................................... 16 ESD Caution .................................................................................. 4 Outline Dimensions ....................................................................... 17 Pin Configuration and Function Descriptions ............................. 5 Ordering Guide .......................................................................... 17 Interface Schematics..................................................................... 5 Typical Performance Characteristics ............................................. 6 REVISION HISTORY 9/2017—Rev. B to Rev. C Changes to Table 4 ............................................................................ 5 5/2017—Rev. A to Rev. B Changed E-12-1 to E-12-4............................................ Throughout Change to Figure 1 ........................................................................... 1 Change to Figure 2 ........................................................................... 5 Updated Outline Dimensions ....................................................... 17 Changes to Ordering Guide .......................................................... 17 2/2017—Rev. 0 to Rev. A Changes to Storage Temperature Range Parameter, Table 2....... 4 10/2016—Revision 0: Initial Version Rev. C | Page 2 of 17 Data Sheet HMC787A SPECIFICATIONS TA = 25°C, IF = 100 MHz, LO = 17 dBm, and all measurements performed as downconverter, unless otherwise noted. Table 1. Parameter FREQUENCY RANGE RF LO IF LO DRIVE LEVEL PERFORMANCE AT RF = 3 GHz to 9 GHz Conversion Loss Single Sideband (SSB) Noise Figure Input Third-Order Intercept (IP3) Input 1 dB Compression Point (P1dB) Input Second-Order Intercept (IP2) RF to IF Isolation LO to RF Isolation LO to IF Isolation PERFORMANCE AT RF = 9 GHz to 10 GHz Conversion Loss SSB Noise Figure Input IP3 Input P1dB Input IP2 RF to IF Isolation LO to RF Isolation LO to IF Isolation Min Typ Max Unit 10 10 4 GHz GHz GHz dBm 9 9 24 17 67 26 48 43 11 dB dB dBm dBm dB dB dB dB 9 9 24 15 66 26 47 42 11 dB dB dBm dBm dB dB dB dB 3 3 DC 17 15 15 35 15 15 25 Rev. C | Page 3 of 17 HMC787A Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter RF Input Power LO Input Power IF Input Power IF Source and Sink Current Continuous Power Dissipation, PDISS (TA = 85°C, Derate 11.6 mW/°C Above 85°C) Maximum Junction Temperature Maximum Peak Reflow Temperature (MSL3)1 Operating Temperature Range Storage Temperature Range Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM) Field Induced Charged Device Model (FICDM) 1 Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. Rating 28 dBm 28 dBm 28 dBm 12 mA 1044 mW Table 3. Thermal Resistance Package Type E-12-41 175°C 260°C −40°C to +85°C −65°C to +150°C 1 θJA 120 θJC 86 Unit °C/W See JEDEC standard JESD51-2 for additional information on optimizing the thermal impedance (PCB with 3 × 3 vias). ESD CAUTION 1500 V (Class 1C) 1000 V (Class C5) See the Ordering Guide section. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. C | Page 4 of 17 Data Sheet HMC787A NIC HMC787A TOP VIEW (Not to Scale) 4 5 6 9 GND 8 RF 7 GND PACKAGE BASE NOTES 1. NIC = NOT INTERNALLY CONNECTED. 2. EXPOSED PAD. EXPOSED PAD MUST BE CONNECTED TO RF/DC GROUND. 13608-002 NIC 10 GND GND 3 11 IF LO 2 12 GND GND 1 NIC PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 2. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1, 3, 4, 6, 7, 9 2 5 Mnemonic GND LO IF 8 10 to 12 RF NIC EPAD Description Ground. Connect the package bottom to RF/dc ground. See Figure 3 for the GND interface schematic. Local Oscillator. This pin is ac-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic. Intermediate Frequency. This pin is dc-coupled. For applications not requiring operation to dc, externally block this pin using a series capacitor whose value is chosen to pass the necessary IF frequency range. For operation to dc, this pin must not source or sink more than 12 mA of current or device nonfunction and possible device failure results. See for Figure 5 the IF interface schematic. Radio Frequency. This pin is ac-coupled and matched to 50 Ω. See Figure 6 for the RF interface schematic. Not Internally Connected. Exposed Pad. Exposed pad must be connected to RF/dc ground. INTERFACE SCHEMATICS 13608-005 IF 13608-003 GND Figure 5. IF Interface Schematic Figure 3. GND Interface Schematic RF 13608-004 13608-006 LO Figure 4. LO Interface Schematic Figure 6. RF Interface Schematic Rev. C | Page 5 of 17 HMC787A Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS DOWNCONVERTER PERFORMANCE Data taken as downconverter, lower sideband (high-side LO), TA = 25°C, and LO drive level = 17 dBm, unless otherwise noted. Measurements taken with LO amplifier in line with lab bench LO source. 0 0 CONVERSION GAIN (dB) –6 –8 –10 –12 –14 –12 –14 –18 –18 3 4 5 6 7 8 9 10 11 –20 5 6 7 8 9 10 11 50 45 +85°C +25°C –40°C 40 13dBm 15dBm 17dBm 19dBm 21dBm 40 35 INPUT IP3 (dBm) 35 30 25 20 30 25 20 15 15 10 10 5 5 4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 0 13608-008 3 Figure 8. Input Third-Order Intercept (IP3) vs. RF Frequency for Various Temperatures, IF = 100 MHz, LO Power = 17 dBm 3 4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 13608-011 45 Figure 11. Input Third-Order Intercept (IP3) vs. RF Frequency for Various LO Powers, IF = 100 MHz, Temperature = 25°C) 100 100 90 90 +85°C +25°C –40°C 80 80 70 60 40 60 50 40 30 30 20 20 10 10 4 5 6 7 8 RF FREQUENCY (GHz) 9 10 11 0 13608-009 3 Figure 9. Input Second-Order Intercept (IP2) vs. RF Frequency for Various Temperatures, IF = 100 MHz, LO Power = 17 dBm 13dBm 15dBm 17dBm 19dBm 21dBm 3 4 5 6 7 8 RF FREQUENCY (GHz) 9 10 11 13608-012 INPUT IP2 (dBm) 70 50 0 4 Figure 10. Conversion Gain vs. RF Frequency for Various LO Powers, IF = 100 MHz, Temperature = 25°C 50 0 3 RF FREQUENCY (GHz) Figure 7. Conversion Gain vs. RF Frequency for Various Temperatures, IF = 100 MHz, LO Power = 17 dBm INPUT IP3 (dBm) –8 –10 –16 RF FREQUENCY (GHz) INPUT IP2 (dBm) –6 –16 –20 13dBm 15dBm 17dBm 19dBm 21dBm –4 13608-007 CONVERSION GAIN (dB) –2 +85°C +25°C –40°C –4 13608-010 –2 Figure 12. Input Second-Order Intercept (IP2) vs. RF Frequency for Various LO Powers, IF = 100 MHz, Temperature = 25°C Rev. C | Page 6 of 17 Data Sheet HMC787A 20 18 NOISE FIGURE (dB) 14 12 10 8 6 10 8 6 2 2 3.5 4.5 6.5 5.5 7.5 8.5 9.5 10.5 Figure 13. Single Sidband Noise Figure vs. RF Frequency for Various Temperatures, IF = 100 MHz, LO Power = 17 dBm 0 2.5 5.5 6.5 7.5 8.5 9.5 10.5 0 –2 –10 –12 –14 –6 –8 –10 –12 –14 –16 –16 –18 –18 5 6 7 8 9 10 RF FREQUENCY (GHz) –20 13608-014 4 3 4 5 6 7 8 9 10 RF FREQUENCY (GHz) Figure 14. Conversion Gain vs. RF Frequency for Various Temperatures, IF = 1100 MHz, LO Power = 17 dBm 13608-017 CONVERSION GAIN (dB) –8 3 13dBm 15dBm 17dBm 19dBm 21dBm –4 –6 Figure 17. Conversion Gain vs. RF Frequency for Various LO Powers, IF = 1100 MHz, Temperature = 25°C 50 50 45 45 +85°C +25°C –40°C 40 40 35 25 20 30 25 20 15 15 10 10 5 5 4 5 6 7 RF FREQUENCY (GHz) 8 9 10 0 13608-015 3 Figure 15. Input Third-Order Intercept (IP3) vs. RF Frequency for Various Temperatures, IF = 1100 MHz, LO Power = 17 dBm 13dBm 15dBm 17dBm 19dBm 21dBm 3 4 5 6 7 RF FREQUENCY (GHz) 8 9 10 13608-018 INPUT IP3 (dBm) 35 30 0 4.5 Figure 16. Single Sidband Noise Figure vs. RF Frequency for Various LO Powers, IF = 100 MHz, Temperature = 25°C +85°C +25°C –40°C –4 –20 3.5 RF FREQUENCY (GHz) 0 –2 CONVERSION GAIN (dB) 12 4 RF FREQUENCY (GHz) INPUT IP3 (dBm) 14 4 0 2.5 15dBm 17dBm 19dBm 16 13608-013 NOISE FIGURE (dB) 18 +85°C +25°C –40°C 16 13608-016 20 Figure 18. Input Third-Order Intercept (IP3) vs. RF Frequency for Various LO Powers, IF = 1100 MHz, Temperature = 25°C Rev. C | Page 7 of 17 HMC787A Data Sheet 0 0 CONVERSION GAIN (dB) –6 –8 –10 –12 –14 –12 –14 –18 –18 5 6 7 8 9 10 –20 7 8 9 10 50 45 13dBm 15dBm 17dBm 19dBm 21dBm 45 +85°C +25°C –40°C 40 40 35 25 20 30 25 20 15 15 10 10 5 5 6 7 8 9 10 RF FREQUENCY (GHz) 0 13608-020 5 Figure 20. Input Third-Order Intercept (IP3) vs. RF Frequency for Various Temperatures, IF = 3000 MHz, LO Power = 17 dBm 5 6 7 8 9 10 RF FREQUENCY (GHz) 13608-023 INPUT IP3 (dBm) 35 30 Figure 23. Input Third-Order Intercept (IP3) vs. RF Frequency for Various LO Powers, IF = 3000 MHz, Temperature = 25°C 100 100 90 90 +85°C +25°C –40°C 80 80 70 60 50 40 60 50 40 30 30 20 20 10 10 6 7 8 RF FREQUENCY (GHz) 9 10 0 13608-021 5 Figure 21. Input Second-Order Intercept (IP2) vs. RF Frequency at Various Temperatures, IF = 3000 MHz, LO Power = 17 dBm 13dBm 15dBm 17dBm 19dBm 21dBm 5 6 7 8 RF FREQUENCY (GHz) 9 10 13608-024 INPUT IP2 (dBm) 70 0 6 Figure 22. Conversion Gain vs. RF Frequency for Various LO Powers, IF = 3000 MHz, Temperature = 25°C 50 0 5 RF FREQUENCY (GHz) Figure 19. Conversion Gain vs. RF Frequency for Various Temperatures, IF = 3000 MHz, LO Power = 17 dBm INPUT IP3 (dBm) –8 –10 –16 RF FREQUENCY (GHz) INPUT IP2 (dBm) –6 –16 –20 13dBm 15dBm 17dBm 19dBm 21dBm –4 13608-019 CONVERSION GAIN (dB) –2 +85°C +25°C –40°C –4 13608-022 –2 Figure 24. Input Second-Order Intercept (IP2) vs. RF Frequency for Various LO Powers, IF = 3000 MHz, Temperature = 25°C Rev. C | Page 8 of 17 Data Sheet HMC787A 0 0 CONVERSION GAIN (dB) –8 –10 –12 –14 –12 –14 –18 –18 0 1 2 3 4 5 –20 2 3 4 5 50 40 13dBm 15dBm 17dBm 19dBm 20dBm 45 +85°C +25°C –40°C 40 35 INPUT IP3 (dBm) 35 30 25 20 30 25 20 15 15 10 10 5 5 1 2 3 4 5 IF FREQUENCY (GHz) 0 13608-026 0 Figure 26. Input Third-Order Intercept (IP3) vs. IF Frequency for Various Temperatures, LO = 9510 MHz, LO Power = 17 dBm 20 15 10 5 6 7 8 RF FREQUENCY (GHz) 9 10 11 13608-027 5 4 2 3 4 5 Figure 29. Input Third-Order Intercept (IP3) vs. IF Frequency for Various LO Powers, LO = 9510 MHz, LO Power = 17 dBm +85°C +25°C –40°C 3 1 IF FREQUENCY (GHz) 30 25 0 13608-029 45 0 1 Figure 28. Conversion Gain vs. IF Frequency for Various LO Powers, LO = 9510 MHz, LO Power = 17 dBm 50 0 0 IF FREQUENCY (GHz) Figure 25. Conversion Gain vs. IF Frequency for Various Temperatures, LO = 9510 MHz, LO Power = 17 dBm INPUT IP3 (dBm) –8 –10 –16 IF FREQUENCY (GHz) P1dB (dBm) –6 –16 13608-025 CONVERSION GAIN (dB) –4 –6 –20 13dBm 15dBm 17dBm 19dBm 20dBm –2 +85°C +25°C –40°C –4 13608-028 –2 Figure 27. Input 1 dB Gain Compression (P1dB) vs. RF Frequency for Various Temperatures, IF = 100 MHz, LO = 17 dBm Rev. C | Page 9 of 17 HMC787A Data Sheet UPCONVERTER PERFORMANCE Data taken as upconverter, lower sideband (high-side LO), TA = 25°C, and LO drive level = 17 dBm, unless otherwise noted. Measurements taken with LO amplifier in line with lab bench LO source. 0 –2 CONVERSION GAIN (dB) –4 –6 –8 –10 –12 –14 –12 –14 –18 –18 3 4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) –20 5 6 7 8 9 10 11 50 45 15dBm 17dBm 19dBm 21dBm 45 +85°C +25°C –40°C 40 40 35 25 20 30 25 20 15 15 10 10 5 5 4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 0 13608-031 3 Figure 31. Input Third-Order Intercept (IP3) vs. RF Frequency for Various Temperatures, IF = 100 MHz, LO Power = 17 dBm 3 4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 13608-034 INPUT IP3 (dBm) 35 30 Figure 34. Input Third-Order Intercept (IP3) vs. RF Frequency for Various LO Powers, IF = 100 MHz, Temperature = 25°C 0 0 –2 +85°C +25°C –40°C –6 –8 –10 –12 –14 –6 –8 –10 –12 –14 –16 –18 –18 4 5 6 7 8 RF FREQUENCY (GHz) 9 10 11 13608-032 –16 3 13dBm 15dBm 17dBm 19dBm 21dBm –4 CONVERSION GAIN (dB) –4 Figure 32. Conversion Gain vs. RF Frequency for Various Temperatures, IF = 1100 MHz, LO Power = 17 dBm Rev. C | Page 10 of 17 –20 3 4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 35. Conversion Gain vs. RF Frequency for Various LO Powers, IF = 1100 MHz, Temperature = 25°C 13608-035 –2 –20 4 Figure 33. Conversion Gain vs. RF Frequency for Various LO Powers, IF = 100 MHz, Temperature = 25°C 50 0 3 RF FREQUENCY (GHz) Figure 30. Conversion Gain vs. RF Frequency for Various Temperatures, IF = 100 MHz, LO Power = 17 dBm INPUT IP3 (dBm) –8 –10 –16 –20 CONVERSION GAIN (dB) –6 –16 13608-030 CONVERSION GAIN (dB) –4 15dBm 17dBm 19dBm 21dBm –2 +85°C +25°C –40°C 13608-033 0 Data Sheet HMC787A 50 50 45 +85°C +25°C –40°C 40 INPUT IP3 (dBm) 35 30 25 20 20 10 10 5 5 3 4 5 6 7 8 9 10 11 Figure 36. Input Third-Order Intercept (IP3) vs. RF Frequency for Various Temperatures at IF = 1100 MHz, LO Power = 17 dBm 0 5 6 7 8 10 9 11 0 –2 –10 –12 –14 –6 –8 –10 –12 –14 –16 –16 –18 –18 8 9 10 RF FREQUENCY (GHz) –20 35 INPUT IP3 (dBm) 35 30 25 20 20 15 10 5 5 10 0 13608-038 RF FREQUENCY (GHz) 9 Figure 38. Input Third-Order Intercept (IP3) vs. RF Frequency for Various Temperatures at IF = 3000 MHz, LO Power = 17 dBm 13dBm 15dBm 17dBm 19dBm 21dBm 25 10 8 10 30 15 7 9 45 40 6 8 50 40 5 7 Figure 40. Conversion Gain vs. RF Frequency for Various LO Powers, IF = 3000 MHz, Temperature = 25°C +85°C +25°C –40°C 45 6 RF FREQUENCY (GHz) Figure 37. Conversion Gain vs. RF Frequency for Various Temperatures, IF = 3000 MHz, LO Power = 17 dBm 50 5 5 6 7 8 RF FREQUENCY (GHz) 9 10 13608-041 7 13608-037 6 13608-040 CONVERSION GAIN (dB) –8 5 13dBm 15dBm 17dBm 19dBm 21dBm –4 –6 0 4 Figure 39. Input Third-Order Intercept (IP3) vs. RF Frequency for Various LO Powers at IF = 1100 MHz, Temperature = 25°C +85°C +25°C –40°C –4 –20 3 RF FREQUENCY (GHz) 0 –2 CONVERSION GAIN (dB) 25 15 RF FREQUENCY (GHz) INPUT IP3 (dBm) 30 15 13608-036 INPUT IP3 (dBm) 35 0 13dBm 15dBm 17dBm 19dBm 21dBm 40 13608-039 45 Figure 41. Input Third-Order Intercept (IP3) vs. RF Frequency for Various LO Powers at IF = 3000 MHz, Temperature = 25°C Rev. C | Page 11 of 17 HMC787A Data Sheet ISOLATION AND RETURN LOSS PERFORMANCE Data taken as downconverter, lower sideband (high-side LO), IF = 100 MHz, TA = 25°C, and LO drive level = 17 dBm, unless otherwise noted. Measurements taken with LO amplifier in line with lab bench LO source. 80 80 60 ISOLATION (dB) LO TO RF 50 40 LO TO IF 30 10 3 4 5 6 7 8 9 10 11 Figure 42. LO to RF and LO to IF Isolation vs. RF Frequency for Various Temperatures, LO Power = 17 dBm 0 5 6 7 8 9 10 11 Figure 45. LO to RF and LO to IF Isolation vs. RF Frequency for Various LO Powers, Temperature = 25°C +85°C +25°C –40°C 15dBm 17dBm 19dBm 70 60 50 40 30 50 40 30 20 20 10 10 3 4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 0 3 4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 43. RF to IF Isolation vs. RF Frequency for Various Temperatures, LO Frequency = 7000 MHz, LO Power = 17 dBm 13608-046 ISOLATION (dB) 60 13608-043 Figure 46. RF to IF Isolation vs. RF Frequency for Various LO Powers, Temperature = 25°C, LO Frequency = 7000 MHz 10 5 +85°C +25°C –40°C 5 0 –5 RETURN LOSS (dB) 0 –5 –10 –15 –20 –10 –15 –20 –25 +85°C +25°C –40°C –30 –25 3 4 5 6 7 8 LO FREQUENCY (GHz) 9 10 11 13608-044 –35 Figure 44. LO Return Loss vs. LO Frequency at Various Temperatures, LO Power = 17 dBm Rev. C | Page 12 of 17 –40 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 IF FREQUENCY (GHz) Figure 47. IF Return Loss vs. IF Frequency at Various Temperatures, LO Power = 17 dBm, LO Frequency = 6 GHz 13608-047 ISOLATION (dB) 4 80 70 –30 3 RF FREQUENCY (GHz) 80 0 LO TO IF 30 10 RF FREQUENCY (GHz) LO RETURN LOSS (dB) 40 20 0 LO TO RF 50 20 13608-042 ISOLATION (dB) 60 19dBm 17dBm 15dBm 70 13608-045 +85°C +25°C –40°C 70 Data Sheet HMC787A 5 0 –10 –15 –20 –25 +85°C +25°C –40°C –30 –35 –40 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 RF FREQUENCY (GHz) 13608-050 RF RETURN LOSS (dB) –5 Figure 48. RF Return Loss vs. RF Frequency at Various Temperatures, LO Power = 17 dBm, LO Frequency = 6 GHz Rev. C | Page 13 of 17 HMC787A Data Sheet SPURIOUS AND HARMONICS PERFORMANCE Mixer spurious products are measured in dBc from the IF output power level, unless otherwise noted. Spur values are (M × RF) − (N × LO). LO Harmonics M × N Spurious Outputs, IF = 3000 MHz LO = 17 dBm, and all values in dBc below input LO level measured at RF port. RF = 3.1 GHz, LO = 6.1 GHz, RF power = −5 dBm, and LO power = 17 dBm. Table 5. Harmonics of LO LO Frequency (GHz) 3 6 10 1 55 46 41 NLO Spur at RF Port 2 3 53 58 45 64 57 61 4 59 76 61 M × RF 0 1 2 3 4 0 Not applicable 13.6 90.7 91 90.2 N × LO 1 2 13 28 0 47 99 89 93 94 89 99 3 44 45 89 87 92 4 44 64 86 87 90 M × N Spurious Outputs, IF = 100 MHz RF = 6.1 GHz, LO = 3.1 GHz, RF power = −5 dBm, and LO power = 17 dBm. RF = 3.1 GHz, LO = 3 GHz, RF power = −5 dBm, and LO power = 17 dBm. M × RF 0 1 2 3 4 0 Not applicable 12.3 90.1 91.1 89.1 N × LO 1 2 14 38 0 25 93 98 90 92 88 91 3 32 27 94 98 94 4 54 60 90 94 98 M × RF 0 1 2 3 4 0 Not applicable 16.3 89.1 86.2 83.1 3 42 35 90 95 90 4 42 50 88 87 96 M × RF RF =10.1 GHz, LO = 10 GHz, RF power = −5 dBm, and LO power = 17 dBm. M × RF 0 1 2 3 4 0 Not applicable 19.9 84.3 78.4 72.4 N × LO 1 2 4 39 0 87 84 97 82 87 78 83 3 36 83 87 97 89 N × LO 1 2 13 39 0 24 88 89 86 89 86 85 3 28 18 92 87 87 4 50 90 97 89 89 RF = 10.1 GHz, LO = 7.1 GHz, RF power = −5 dBm, and LO power = 17 dBm. RF = 6.1 GHz, LO = 6 GHz, RF power = −5 dBm, and LO power = 17 dBm. N × LO 1 2 12 26 0 36 91 97 88 88 87 89 M × RF 0 1 2 3 4 0 Not applicable 16 89 86 82 4 43 79 83 87 95 Rev. C | Page 14 of 17 0 1 2 3 4 0 Not applicable 17.7 82.9 75 68 N × LO 1 2 11 28 0 30 86 84 81 86 76 79 3 41 35 94 87 83 4 54 52 86 92 87 Data Sheet HMC787A THEORY OF OPERATION The HMC787A is a general-purpose, double balanced mixer in a 12-terminal, RoHS compliant, ceramic leadless chip carrier (LCC) package that can be used as an upconverter or downconverter from 3 GHz to 10 GHz. This mixer is fabricated in a gallium arsenide (GaAs), metal semiconductor field effect transistor (MESFET) process and requires no external components or matching circuitry. The HMC787A provides excellent local oscillator (LO) to radio frequency (RF) and LO to intermediate frequency (IF) isolation due to optimized balun structures and operates with a LO drive level of 17 dBm. The ceramic LCC package eliminates the need for wire bonding and is compatible with high volume, surface-mount manufacturing techniques. Rev. C | Page 15 of 17 HMC787A Data Sheet APPLICATIONS INFORMATION The circuit board used in the application must use RF circuit design techniques. Signal lines must have 50 Ω impedance, and the package ground leads and exposed pad must be connected directly to the ground plane similarly to that shown in Figure 50. Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown in Figure 50 is available from Analog Devices, Inc., upon request. 8 3 7 RF IF 13608-048 6 9 2 4 1 5 LO 11 Figure 49 shows the typical application circuit for the HMC787A. The LO and RF pins are internally ac-coupled. When IF operation is not required until dc, it is recommended to use an ac-coupled capacitor at the IF port. When IF operation to dc is required, do not exceed the IF source and sink currents specified in the Absolute Maximum Ratings section. 10 EVALUATION PCB INFORMATION 12 TYPICAL APPLICATION CIRCUIT 13608-049 Figure 49. Typical Applications Circuit Figure 50. Evaluation PCB Top Layer Table 6. Bill of Materials for the EV1HMC787ALC3B Evaluation PCB Quantity 1 2 1 1 Reference Designator J1 to J2 J3 U1 Part Number 117611-1 104935 105192 HMC787ALCB Rev. C | Page 16 of 17 Description PCB, evaluation board 2.92 mm connectors, SRI SMA connector, Johnson Device under test (DUT) Data Sheet HMC787A OUTLINE DIMENSIONS 0.36 0.30 0.24 0.08 BSC 0.50 BSC PIN 1 12 10 1 9 3 7 0.90 0.80 0.70 6 0.32 BSC TOP VIEW 1.60 1.50 SQ 1.40 EXPOSED PAD 4 BOTTOM VIEW 1.00 REF 2.10 BSC SIDE VIEW FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. PKG-004837 SEATING PLANE 03-02-2017-A PIN 1 INDICATOR 3.05 2.90 SQ 2.75 Figure 51. 12-Terminal Ceramic Leadless Chip Carrier [LCC] (E-12-4) Dimensions shown in millimeters ORDERING GUIDE Model 1 HMC787ALC3B Temperature Range −40°C to +85°C Package Body Material Alumina Ceramic HMC787ALC3BTR −40°C to +85°C Alumina Ceramic Gold over Nickel MSL3 HMC787ALC3BTR-R5 −40°C to +85°C Alumina Ceramic Gold over Nickel MSL3 Lead Finish Gold over Nickel MSL Rating 2 MSL3 EV1HMC787ALC3B The HMC787ALC3B, the HMC787ALC3BTR, and the HMC787ALC3BTR-R5 are RoHS Compliant Parts. See the Absolute Maximum Ratings section. 3 The HMC787ALC3B, the HMC787ALC3BTR, and the HMC787ALC3BTR-R5 have a four digit lot number. 1 2 ©2016–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13608-0-9/17(C) Rev. C | Page 17 of 17 Package Description 12-Terminal Ceramic Leadless Chip Carrier [LCC] 12-Terminal Ceramic Leadless Chip Carrier [LCC] 12-Terminal Ceramic Leadless Chip Carrier [LCC] Evaluation PCB Assembly Package Option E-12-4 Package Marking 3 787A XXXX E-12-4 787A XXXX E-12-4 787A XXXX
EV1HMC787ALC3B
1. 物料型号:HMC787A 2. 器件简介:HMC787A是一款通用的双平衡混频器,采用12端子、无引线陶瓷芯片载体(LCC)封装,可在3 GHz至10 GHz范围内作为上变频器或下变频器使用。该混频器采用砷化镓(GaAs)金属半导体场效应晶体管(MESFET)工艺制造,无需外部组件或匹配电路。 3. 引脚分配:HMC787A具有12个端子,其中包括6个接地端子(1, 3, 4, 6, 7, 9),本振(LO)端子(2),射频(RF)端子(8),中频(IF)端子(5),以及3个未内部连接(NIC)的端子(10-12)和1个暴露垫(EPAD)。 4. 参数特性:HMC787A的主要特性包括典型值为9 dB的转换损耗、43 dB的本振到射频隔离、26 dB的射频到中频隔离、24 dBm的输入三阶截取点(IP3)、17 dBm的输入1 dB压缩点(P1dB)和67 dBm的输入二阶截取点(IP2)。 5. 功能详解:HMC787A由于优化的平衡结构,提供了出色的本振到射频和本振到中频的隔离性能,并且可以在17 dBm的本振驱动电平下工作。其陶瓷LCC封装消除了对引线键合的需求,并兼容高容量的表面贴装制造技术。 6. 应用信息:HMC787A适用于微波无线电、工业、科学和医疗(ISM)频段以及超宽带(UWB)无线电、测试设备和传感器、军事终端使用等。 7. 封装信息:HMC787A采用12端子的陶瓷无引线芯片载体(LCC)封装,符合RoHS标准。
EV1HMC787ALC3B 价格&库存

很抱歉,暂时无法提供与“EV1HMC787ALC3B”相匹配的价格&库存,您可以联系我们找货

免费人工找货
EV1HMC787ALC3B
    •  国内价格
    • 1+2795.09207

    库存:5