0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EVAL-CN0313-SDPZ

EVAL-CN0313-SDPZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    ADM3485E Circuits from the Lab™ Series Interface, Transceiver, RS-485 Evaluation Board

  • 数据手册
  • 价格&库存
EVAL-CN0313-SDPZ 数据手册
Circuit Note CN-0313 Circuits from the Lab™ reference circuits are engineered and tested for quick and easy system integration to help solve today’s analog, mixed-signal, and RF design challenges. For more information and/or support, visit www.analog.com/CN0313. Devices Connected/Referenced ±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485 Transceiver ADM3485E EMC Compliant RS-485 Transceiver Protection Circuits EVALUATION AND DESIGN SUPPORT using the ADM3485E transceiver. Each solution was tested and characterized to ensure that the dynamic interaction between the transceiver and the protection circuit components functions correctly together to protect against the electrostatic discharge (ESD), electrical fast transients (EFT), and surge immunity specified in IEC 61000-4-2, IEC 61000-4-4, and IEC 61000-4-5, respectively. The circuits offer proven protection for RS-485 interfaces using the ADM3485E to the ESD, EFT, and surge levels often encountered in harsh environments. Circuit Evaluation Boards CN-0313 Circuit Evaluation Board (EVAL-CN0313-SDPZ) Design and Integration Files Schematics, Layout Files, Bill of Materials CIRCUIT FUNCTION AND BENEFITS The circuits shown in Figure 1 demonstrate proven and tested electromagnetic compatibility (EMC) compliant solutions for three protection levels for popular RS-485 communication ports RO VCC VCC ADM3485E ADM3485E B 120Ω RE TBU TBU-CA065-200-WH B RO 120Ω RE A A DI DI DE DE TISP TISP4240M3BJR-S TVS CDS0T23-SM712 TVS CDS0T23-SM712 PROTECTION SCHEME 2. TVS/TBU/TISP PROTECTION SCHEME 1. TVS VCC ADM3485E RO TBU TBU-CA065-200-WH B 120Ω RE A GDT 2038-15-SM-RPLF DI TVS CDS0T23-SM712 PROTECTION SCHEME 3. TVS/TBU/GDT 11250-001 DE Figure 1. Three EMC Compliant ADM3485E Protection Circuits (Simplified Schematic, All Connections Not Shown) Rev. 0 Circuits from the Lab™ circuits from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a lab environment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page) One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2013 Analog Devices, Inc. All rights reserved. CN-0313 Circuit Note CIRCUIT DESCRIPTION The RS-485 bus standard is one of the most widely used physical layer bus designs in industrial and instrumentation applications. RS-485 offers differential data transmission between multiple systems often over very long distances. Applications for RS-485 include process control networks; industrial automation; remote terminals; building automation, such as heating, ventilation, air conditioning (HVAC) and security systems; motor control; and motion control. In these real systems, lightning strikes, power source fluctuations, inductive switching, and electrostatic discharge can cause damage to communications ports by generating large transient voltages. Designers must ensure that equipment does not just work in ideal conditions, but it must also work in real-world conditions. To ensure that these designs can work in electrically harsh environments, EMC regulations must be met. Many EMC problems are not simple or obvious and must be considered at the start of the product development cycle. Proper solutions and protection circuits must be part of the total design effort and not left to the last minute. The protection circuits must incorporate the input and output structure of the specific transceiver manufacturer as part of the design. Table 1. Protection Levels Offered by Each of the Three Protection Circuits in Figure 1 Protection Scheme 1. TVS 2. TVS/TBU/TISP 3. TVS/TBU/GDT ESD 8 kV contact, 15 kV air discharge 8 kV contact, 15 kV air discharge 8 kV contact, 15 kV air discharge EFT (kV) 2 Surge (kV) 1 2 4 2 6 Figure 2 shows a photo of the EVAL-CN0313-SDPZ board. There are three ADM3485E devices on the board, one for each protection scheme. Each protection scheme provides ESD and EFT protection as described and increasing levels of surge protection. A complete design support package for the EVAL-CN0313SDPZ board including schematics, layout files, and bill of materials can be found at www.analog.com/CN0313DesignSupport. The IEC 61000 specifications define the set of EMC immunity requirements. Within this set of specifications, designers must be concerned with the following three types of high voltage transients for data communication lines: • • • IEC 61000-4-2 electrostatic discharge (ESD) IEC 61000-4-4 electrical fast transients (EFT) IEC 61000-4-5 surge immunity ESD and EFT have similar rise times, pulse widths, and energy levels. The surge transient has longer rise times and pulse widths; as a result, the surge transient energy can be three to four orders of magnitude larger than the energy in an ESD or EFT transient. Due to the similarities between ESD and EFT transients, the design of the circuit protection can be similar. However, due to the high energy associated with surge transients, they must be dealt with differently. 11250-002 Each solution protects data ports to ESD voltages of 8 kV contact and 15 kV air discharge, and EFT voltages of 2 kV. The different solutions provide an increased level of surge protection up to 6 kV. Protection levels for the circuits are summarized in Table 1. Figure 2. EVAL-CN0313-SDPZ Board Rev. 0 | Page 2 of 5 Circuit Note CN-0313 The ADM3485E is a 3.3 V, low power data transceiver suitable for half-duplex communication on multipoint transmission lines. It has a data rate up to 12 Mbps with a common-mode range on the bus pins (A and B) of −7 V to +12 V. Data transmits on the DI pin, and it is received on the RO pin. Both the driver and receiver outputs can be enabled or disabled, that is, put into a high impedance state, by changing the logic levels on the DE and RE pins, respectively. Power and ground are connected via a screw-wire connector (VCC and GND). This connector supplies all three ADM3485E devices. Logic inputs DE and RE are set using LK1 to LK6. For each ADM3485E, LK2, LK4, and LK6 relate to DE and LK1, LK3, and LK5 relate to RE. For each link, Position A connects the logic pin to VCC, Position B connects the logic pin to GND, and Position C connects the logic pin to the four terminal, side screw-wire connector. The input DI and output RO pins are connected directly to the four terminal screw connector. The EVAL-CN0313-SDPZ is also compatible with the Analog Devices, Inc., ezLINX™ board (EZLINX-IIIDE-EBZ) and the system development platform (EVAL-SDP-CB1Z). Connector J8 links the UART and GPIO interfaces on the SDP or the ezLINX board to the logic I/O of the ADM3485E devices. The I/O connections and jumper configurations are shown in Table 2. Table 2. ezLINX and SDP I/O Connections and Jumper Configurations ADM3485E TVS TVS/TBU/TISP TVS/TBU/GDT I/O Pin RO RE DE DI RO RE DE DI RO RE DE DI SDP/ezLINX Connector UART_RX GPIO_0 GPIO_3 UART_TX UART_RX GPIO_1 GPIO_4 UART_TX UART_RX GPIO_2 GPIO_5 UART_TX Selection LK7 (A) LK1 (C) LK2 (C) LK8 (A) LK7 (B) LK3 (C) LK4 (C) LK8 (B) LK7 (C) LK5 (C) LK6 (C) LK8 (C) The ADM3485E transmitter and receiver share the same differential bus pins (A and B). The protection circuitry is used to protect these bus pins. In the first protection circuit, shown in Figure 1 as TVS, it uses one component, the Bourns CDSOT23-SM712. This is the transient voltage suppressor (TVS) array shown on the EVAL-CN0313SDPZ. It consists of two bidirectional TVS diodes optimized to protect RS-485 systems with minimal overstress while allowing the full range of the RS-485 signal and common-mode excursions. The TVS has high impedance to ground in normal operating conditions. When an overvoltage occurs, the TVS enters into avalanche breakdown mode and clamps the pin voltage to a safe predetermined level. It then diverts the transient current away from the ADM3485E to ground. This protection scheme offers up to 8 kV contact and15 kV air discharge ESD, 2 kV EFT, and 1 kV surge protection. As described in the CDSOT23-SM712 data sheet, the part is designed specifically for RS-485 devices. The next two protection schemes add to the CDSOT23-SM712 to provide higher levels of circuit protection against surge. In the second scheme, shown in Figure 1 as TVS/TBU/TISP, the CDSOT23-SM712 TVS provides secondary protection, and Bourns TISP4240M3BJR-S provides the primary protection. The TISP4240M3BJR-S is a totally integrated surge protector (TISP). The TISP is a solid-state thyristor. When its predetermined voltage is exceeded, the TISP provides a low impedance path to ground, diverting a majority of the transient energy away from the ADM3485E. Bourns TBU-CA065-200-WH transient blocking unit (TBU) is a nonlinear overcurrent protection device between the primary and secondary protection devices that ensures coordination occurs. The TBU is an overcurrent blocking device that becomes an open circuit at a predefined current. In blocking mode, TBU has very high impedance to block transient energy. This protection scheme offers up to 8 kV contact and15 kV air discharge ESD, 2 kV EFT, and 4 kV surge protection. The third protection scheme, shown in Figure 1 as TVS/TBU/ GDT, operates in a similar fashion to Protection Scheme 2. In this scheme, a gas discharge tube (GDT) is used instead of the TISP. The GDT protects to higher overvoltages and overcurrents than the TISP described in the previous protection scheme. A GDT is a gas discharge plasma device that provides a low impedance path to ground to protect against over voltage transients. The selected GDT is the Bourns 2038-15-SM-RPLF. This third protection scheme offers up to 8 kV contact and 15 kV air discharge ESD, 2 kV EFT, and 6 kV surge protection. The ADM3485E has a 120 Ω termination attached to the bus pins. Rev. 0 | Page 3 of 5 CN-0313 Circuit Note CIRCUIT EVALUATION AND TEST Apply 3.3 V to VCC to power the EVAL-CN0313-SDPZ board. The voltage can be checked on the VCC test points near each ADM3485E. The transmit and receive paths can be tested by connecting one of the ADM3485E circuits as shown in Figure 3. A signal or pattern generator can be connected to DI. The outputs of the driver can be monitored on the A and B test points, and the output of the receiver can be monitored on the RO test point. Jumper configurations are also shown in Figure 3. This test setup can apply to any of the three circuits. For IEC 61000-4-4 EFT testing, a capacitive coupling clamp is used to couple the EFT bursts onto the cable connected to the bus lines. The coupling capacitance of the clamp depends on the cable diameter, material of the cables, and cable shielding. IEC 61000-4-5 surge testing implies the use of a coupling/ decoupling network (CDN) to couple the surge transient into the bus pins. According to the specification, this must be done using two 80 Ω resistors for a two port test. Figure 4 shows the test setup for surge testing. Connect the CDN to the A and B terminals, and the common of the surge generator to the ground connection of the four terminal screw connector. VCC SIGNAL GENERATOR ADM3485E RO 3.3V POWER SUPPLY OSCILLOSCOPE CDN B 80Ω PROTECTION 120Ω COMPONENTS RE A 80Ω DI RO RE DE B Figure 4. IEC 61000-4-5 Surge CDN to ADM3485E Setup A 11250-003 DI A B C A B C 11250-004 DE Figure 3. Transmit and Receive Test Setup According to IEC 61000-4-2, ESD testing implies using two coupling methods, contact discharge and air gap discharge. Contact discharge implies the discharge gun is placed in direct connection with the port being tested. With air discharge, the charged electrode of the discharge gun is moved toward the port under test until a discharge occurs developing an arc across the air gap. Apply discharges to the screw terminal connector of each bus line. All protection circuits described were characterized in the lab with the ADM3485E and verified by an external independent EMC compliance test house. For further information on the ezLINX iCoupler® isolated interface development environment, go to http://wiki.analog.com/resources/eval/ezlinx. Information on other important EMC issues can be found at http://www.analog.com/rs485emc. Rev. 0 | Page 4 of 5 Circuit Note CN-0313 LEARN MORE Data Sheets and Evaluation Boards CN-0313 Design Support Package: http://www.analog.com/CN0313-DesignSupport ADM3485E Data Sheet ezLINX™ iCoupler® Isolated Interface Development Environment, ezLINX Board Quick Start Guide ezLINX™ iCoupler® Isolated Interface Development Environment (EZLINX-IIIDE-EBZ) Certified EMC Compliant RS-485 Interface Design Tool UG-400 User Guide, ezLINX™ iCoupler® Isolated Interface Development Environment, Analog Devices. System Development Platform (EVAL-SDP-CB1Z) Marais, Hein. Application Note AN-960. RS-485/RS-422 Circuit Implementation Guide. Analog Devices, Inc. Electromagnetic Compatibility (EMC) Part 4-2: Testing and Measurement Techniques–Electrostatic Discharge Immunity Test (IEC 61000-4-2) Electromagnetic Compatibility (EMC) Part 4-4: Testing and Measurement Techniques–Electrical Fast Transient/Burst Immunity Test (IEC 61000-4-4) CDSOT23-SM712—Surface Mount TVS Diode Data Sheet, Bourns TISP4xxxM3BJ Overvoltage Protector Series (TISP4240M3BJR-S) Data Sheet, Bourns TBU-CA Series—TBU® High Speed Protectors (TBU-CA065200-WH) Data Sheet, Bourns Electromagnetic Compatibility (EMC) Part 4-5: Testing and Measurement Techniques–Surge Immunity Test (IEC 61000-4-5) 2038 Series Miniature Symmetrical Three Electrode Surface Mount Gas Discharge Tube (2038-15-SM-RPLF) Data Sheet, Bourns REVISION HISTORY 2/13—Revision 0: Initial Version (Continued from first page) Circuits from the Lab circuits are intended only for use with Analog Devices products and are the intellectual property of Analog Devices or its licensors. While you may use the Circuits from the Lab circuits in the design of your product, no other license is granted by implication or otherwise under any patents or other intellectual property by application or use of the Circuits from the Lab circuits. Information furnished by Analog Devices is believed to be accurate and reliable. However, Circuits from the Lab circuits are supplied "as is" and without warranties of any kind, express, implied, or statutory including, but not limited to, any implied warranty of merchantability, noninfringement or fitness for a particular purpose and no responsibility is assumed by Analog Devices for their use, nor for any infringements of patents or other rights of third parties that may result from their use. Analog Devices reserves the right to change any Circuits from the Lab circuits at any time without notice but is under no obligation to do so. ©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. CN11250-0-2/13(0) Rev. 0 | Page 5 of 5
EVAL-CN0313-SDPZ 价格&库存

很抱歉,暂时无法提供与“EVAL-CN0313-SDPZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货