0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HMC520ALC4

HMC520ALC4

  • 厂商:

    AD(亚德诺)

  • 封装:

    CLCC24

  • 描述:

    HMC520ALC4

  • 数据手册
  • 价格&库存
HMC520ALC4 数据手册
6 GHz to 10 GHz, GaAs, MMIC, I/Q Mixer HMC520A Data Sheet 19 NIC 20 NIC 21 NIC 22 NIC 23 NIC 24 NIC FUNCTIONAL BLOCK DIAGRAM HMC520A NIC 1 18 NIC 90° HYBRID NIC 2 GND 3 17 NIC 16 GND GND 12 13 NIC NIC 10 IF2 11 14 GND NIC 6 IF1 9 GND 5 PACKAGE BASE GND 13605-001 15 LO RF 4 NIC 8 RF range: 6 GHz to 10 GHz LO input frequency range: 6 GHz to 10 GHz Conversion loss: 8 dB typical at 6 GHz to 10 GHz Image rejection: 23 dBc typical at 6 GHz to 10 GHz LO to RF isolation: 43 dB typical LO to IF isolation: 25 dB typical Input IP3: 19 dBm typical Input P1dB compression: 10 dBm typical at 7.1 GHz to 8.5 GHz Wide IF frequency range: dc to 3.5 GHz 24-terminal, ceramic leadless chip carrier NIC 7 FEATURES Figure 1. APPLICATIONS Point to point microwave radios Point to multipoint radios Video satellites Digital radios Instrumentation Automatic test equipment GENERAL DESCRIPTION The HMC520A is a compact gallium arsenide (GaAs), monolithic microwave integrated circuit (MMIC), in-phase quadrature (I/Q) mixer in a 24-terminal, RoHS compliant, ceramic leadless chip carrier (LCC) package. The device can be used as either an image reject mixer or a single sideband upconverter. The mixer uses two standard double balanced Rev. A mixer cells and a 90° hybrid fabricated in a GaAs, metal semiconductor field effect transistor (MESFET) process. The HMC520A is a smaller alternative to a hybrid style image reject mixer and a single sideband upconverter assembly. The HMC520A eliminates the need for wire bonding, allowing the use of surface-mount manufacturing techniques. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com HMC520A Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 4 Thermal Resistance ...................................................................... 4 Downconverter Performance: IF = 3500 MHz, Upper Sideband (Low-Side LO) ........................................................... 16 Upconverter Performance: IF Input Frequency (IFIN) = 100 MHz, Lower Sideband (High-Side LO) ........................... 18 Amplitude and Phase Balance Downconverter: IF = 100 MHz, Lower Sideband (High-Side LO) ........................... 19 Amplitude and Phase Balance Downconverter: IF = 1500 MHz, Lower Sideband (High-Side LO) ......................... 20 ESD Caution .................................................................................. 4 Amplitude and Phase Balance Downconverter: IF = 3500 MHz, Lower Sideband (High-Side LO) ......................... 21 Pin Configuration and Function Descriptions ............................. 5 IF Bandwidth, Downconverter Performance ......................... 22 Interface Schematics..................................................................... 5 Isolation and Return Loss ......................................................... 23 Typical Performance Characteristics ............................................. 6 Spurious and Harmonics Performance ................................... 24 Downconverter Performance: IF = 100 MHz, Lower Sideband (High-Side LO) ............................................................................. 6 Theory of Operation ...................................................................... 25 Downconverter Performance: IF = 100 MHz, Upper Sideband (Low-Side LO) ............................................................. 8 Performance to 13 GHz ............................................................. 26 Downconverter Performance: IF = 1500 MHz, Lower Sideband (High-Side LO) .......................................................... 10 Evaluation Board Information ................................................. 31 Downconverter Performance: IF = 1500 MHz, Upper Sideband (Low-Side LO) ........................................................... 12 Applications Information .............................................................. 26 Soldering Information and Recommended Land Pattern .... 30 Outline Dimensions ....................................................................... 32 Ordering Guide .......................................................................... 32 Downconverter Performance: IF = 3500 MHz, Lower Sideband (High-Side LO) .......................................................... 14 REVISION HISTORY 6/2018—Rev. 0 to Rev. A Changes to Table 1 ............................................................................ 3 Changes to Table 2, Thermal Resistance Section, and Table 3 ... 4 Changes to Figure 2 .......................................................................... 5 Deleted Table 6 Title Through Table 9 Title; Renumbered Sequentially ..................................................................................... 24 Changes to Theory of Operation Section .................................... 25 Changes to Applications Information Section and Figure 83... 26 Added Performance Up to 13 GHz Section and Figure 84 Through Figure 86; Renumbered Sequentially........................... 26 Added Figure 87 Through Figure 92 ........................................... 27 Added Figure 93 Through Figure 98 ........................................... 28 Added Figure 99 Through Figure 104 ......................................... 29 Added Soldering Information and Recommended Land Pattern Section and Figure 105 .................................................................. 30 Added Note 1 and Note 2, Table 6................................................ 31 Updated Outline Dimensions ....................................................... 32 Changes to Ordering Guide .......................................................... 32 1/2017—Revision 0: Initial Version Rev. A | Page 2 of 32 Data Sheet HMC520A SPECIFICATIONS Local oscillator (LO) = 15 dBm, intermediate frequency (IF) = 100 MHz, radio frequency (RF) = −10 dBm, and TA = 25°C, unless otherwise noted. All measurements were made as a downconverter with the lower sideband selected (high-side LO) and an external 90° IF hybrid at the IF ports, unless otherwise noted. Table 1. Parameter RF RANGE1 LO INPUT FREQUENCY RANGE IF FREQUENCY RANGE LO AMPLITUDE 6 GHz TO 10 GHz DOWNCONVERTER PERFORMANCE Conversion Loss Noise Figure Input Third-Order Intercept (IP3) Input Power for 1dB Compression (P1dB) Image Rejection LO to RF Isolation LO to IF Isolation Phase Balance Amplitude Balance 7.1 GHz TO 8.5 GHz DOWNCONVERTER PERFORMANCE Conversion Loss Noise Figure Input IP3 Input P1dB Image Rejection LO to RF Isolation LO to IF Isolation Phase Balance Amplitude Balance 6 GHz TO 10 GHz UPCONVERTER PERFORMANCE Conversion Loss Input IP3 Sideband Rejection 1 Test Conditions/Comments Min 6 6 DC Typ Max 10 10 3.5 Unit GHz GHz GHz dBm 8 8.5 19 10.5 23 43 25 5 0.3 10 dB dB dBm dBm dBc dB dB Degrees dB 7.7 8 19 10 25 43 25 4 0.3 9.5 dB dB dBm dBm dBc dB dB Degrees dB 15 Taken without external 90° IF hybrid Taken without external 90° IF hybrid Taken without external 90° IF hybrid Taken without external 90° IF hybrid Taken without external 90° IF hybrid Taken without external 90° IF hybrid Taken without external 90° IF hybrid Taken without external 90° IF hybrid 19 38 21 38 7.5 18 22 For RF performance from 10 GHz to 13 GHz, see the Performance to 13 GHz section. Rev. A | Page 3 of 32 dB dBm dBc HMC520A Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter RF Input Power LO Input Power IF1 and IF2 Input Power IF Source or Sink Current Maximum Peak Reflow Temperature Maximum Junction Temperature (TJ) Lifetime at Maximum TJ Moisture Sensitivity Level (MSL)1 Continuous Power Dissipation, PDISS2 (TA = 85°C, Derate 4.44 mW/°C Above 85°C) Operating Temperature Range Storage Temperature Range Lead Temperature Range (Soldering 60 sec) Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM) Field Induced Charged Device Model (FICDM) 1 2 Rating 20 dBm 27 dBm 20 dBm 12 mA 260°C 175°C >1 × 106 Hours MSL3 400 mW Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. θJA is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance. Table 3. Thermal Resistance Package Type E-24-11 1 −40°C to +85°C −65°C to +150°C −65°C to +150°C θJA 175°C θJC 225 Unit °C/W See JEDEC standard JESD51-2 for additional information on optimizing the thermal impedance (PCB with 3 × 3 vias). ESD CAUTION 750 V (Class 1B) 1250 V (Class C3) Based on IPC/JEDEC J-STD-20 MSL classifications. PDISS is a theoretical number calculated by (TJ − 85°C)/θJC. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. A | Page 4 of 32 Data Sheet HMC520A 20 NIC 19 NIC 21 NIC 22 NIC 23 NIC 24 NIC PIN CONFIGURATION AND FUNCTION DESCRIPTIONS NIC 1 18 NIC NIC 2 HMC520A RF 4 TOP VIEW (Not to Scale) 17 NIC 16 GND 15 LO GND 12 NIC 10 IF2 11 IF1 9 13 NIC NIC 8 14 GND NIC 6 NIC 7 GND 5 NOTES 1. NIC = NOT INTERNALY CONNECTED. 2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO THE GND PIN. 13605-002 GND 3 Figure 2. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1, 2, 6 to 8, 10, 13, 17 to 24 3, 5, 12, 14, 16 4 9, 11 15 Mnemonic NIC Description Not Internally Connected. GND RF IF1, IF2 Ground. See Figure 7 for the GND interface schematic. RF Port. This pin is ac-coupled internally and matched to 50 Ω. See Figure 3 for the RF interface schematic. First and Second Quadrature IF Input Pins. For applications that do not require operation to dc, use an off chip dc blocking capacitor. For applications that require operation to dc, these pins must not source or sink more than 12 mA of current because the device may not function or possible device failure may result. See Figure 5 and Figure 6 for the IF1 and IF2 interface schematics. LO Port. This pin is dc-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic. Exposed Pad. The exposed pad must be connected to the GND pin. LO EPAD IF2 13605-006 RF 13605-003 INTERFACE SCHEMATICS Figure 3. RF Interface Schematic GND 13605-007 13605-004 LO Figure 6. IF2 Interface Schematic Figure 7. GND Interface Schematic Figure 4. LO Interface Schematic 13605-005 IF1 Figure 5. IF1 Interface Schematic Rev. A | Page 5 of 32 HMC520A Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS DOWNCONVERTER PERFORMANCE: IF = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO) 0 0 –5 –5 LO LO LO LO –15 TA = +85°C TA = +25°C TA = –40°C 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 8. Conversion Gain vs. RF Frequency at Various Temperatures 5 50 40 40 20 7 8 9 10 20 LO LO LO LO 10 6 7 8 9 10 11 RF FREQUENCY (GHz) 5 20 INPUT IP3 (dBm) 20 TA = +85°C TA = +25°C TA = –40°C 0 5 6 7 8 9 10 8 9 11 RF FREQUENCY (GHz) 10 11 15 10 LO LO LO LO 5 13605-010 INPUT IP3 (dBm) 25 5 7 Figure 12. Image Rejection vs. RF Frequency at Various LO Powers, TA = 25°C 25 10 6 RF FREQUENCY (GHz) Figure 9. Image Rejection vs. RF Frequency at Various Temperatures 15 = 19dBm = 17dBm = 15dBm = 13dBm 0 13605-009 5 11 30 TA = +85°C TA = +25°C TA = –40°C 0 10 Figure 11. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C 50 30 6 RF FREQUENCY (GHz) IMAGE REJECTION (dBc) IMAGE REJECTION (dBc) –20 13605-008 –20 = 19dBm = 17dBm = 15dBm = 13dBm 13605-012 –15 –10 Figure 10. Input IP3 vs. RF Frequency at Various Temperatures = 19dBm = 17dBm = 15dBm = 13dBm 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 13. Input IP3 vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 6 of 32 13605-013 –10 13605-011 CONVERSION GAIN (dB) CONVERSION GAIN (dB) Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted. HMC520A 20 15 15 10 TA = +85°C TA = +25°C TA = –40°C 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 5 6 7 8 9 16 INPUT P1dB (dBm) 16 12 8 4 12 8 LO = 17dBm LO = 15dBm LO = 13dBm 4 7 8 9 10 11 RF FREQUENCY (GHz) 13605-015 TA = +85°C TA = +25°C TA = –40°C 6 11 Figure 16. Noise Figure vs. RF Frequency at Various LO Powers, TA = 25°C 20 5 10 RF FREQUENCY (GHz) 20 0 = 19dBm = 17dBm = 15dBm = 13dBm 0 Figure 14. Noise Figure vs. RF Frequency at Various Temperatures INPUT P1dB (dBm) LO LO LO LO 5 Figure 15. Input P1dB vs. RF Frequency at Various Temperatures 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 17. Input P1dB vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 7 of 32 13605-017 5 10 13605-016 NOISE FIGURE (dB) 20 13605-014 NOISE FIGURE (dB) Data Sheet HMC520A Data Sheet DOWNCONVERTER PERFORMANCE: IF = 100 MHz, UPPER SIDEBAND (LOW-SIDE LO) 0 –5 –5 –20 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 5 40 IMAGE REJECTION (dBc) 40 TA = +85°C TA = +25°C TA = –40°C 10 6 7 8 9 10 11 RF FREQUENCY (GHz) INPUT IP3 (dBm) INPUT IP3 (dBm) 8 9 10 7 8 9 11 RF FREQUENCY (GHz) 10 11 15 10 LO LO LO LO 5 13605-020 7 6 Figure 22. Image Rejection vs. RF Frequency at Various LO Powers, TA = 25°C TA = +85°C TA = +25°C TA = –40°C 0 = 19dBm = 17dBm = 15dBm = 13dBm RF FREQUENCY (GHz) 20 6 LO LO LO LO 5 20 10 11 20 25 15 10 30 25 5 9 0 Figure 19. Image Rejection vs. RF Frequency at Various Temperatures 5 8 10 0 5 7 Figure 21. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C 50 20 6 RF FREQUENCY (GHz) 50 30 = 19dBm = 17dBm = 15dBm = 13dBm –20 13605-019 IMAGE REJECTION (dBc) Figure 18. Conversion Gain vs. RF Frequency at Various Temperatures LO LO LO LO –15 13605-022 TA = +85°C TA = +25°C TA = –40°C –15 –10 Figure 20. Input IP3 vs. RF Frequency at Various Temperatures = 19dBm = 17dBm = 15dBm = 13dBm 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 23. Input IP3 vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 8 of 32 13605-023 –10 13605-021 CONVERSION GAIN (dB) 0 13605-018 CONVERSION GAIN (dB) Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted. HMC520A 20 15 15 10 TA = +85°C TA = +25°C TA = –40°C 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 5 INPUT P1dB (dBm) 16 12 8 +85°C +25°C –40°C 7 8 9 10 8 9 11 RF FREQUENCY (GHz) 10 11 12 8 LO = 17dBm LO = 15dBm LO = 13dBm 4 13605-025 INPUT P1dB (dBm) 16 6 7 Figure 26. Noise Figure vs. RF Frequency at Various LO Powers, TA = 25°C 20 5 6 RF FREQUENCY (GHz) 20 0 = 19dBm = 17dBm = 15dBm = 13dBm 0 Figure 24. Noise Figure vs. RF Frequency at Various Temperatures 4 LO LO LO LO 5 Figure 25. Input P1dB vs. RF Frequency at Various Temperatures 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 27. Input P1dB vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 9 of 32 13605-027 5 10 13605-026 NOISE FIGURE (dB) 20 13605-024 NOISE FIGURE (dB) Data Sheet HMC520A Data Sheet DOWNCONVERTER PERFORMANCE: IF = 1500 MHz, LOWER SIDEBAND (HIGH-SIDE LO) 0 0 –5 –5 LO LO LO LO –15 TA = +85°C TA = +25°C TA = –40°C 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 28. Conversion Gain vs. RF Frequency at Various Temperatures 5 50 40 40 20 7 8 9 10 20 LO LO LO LO TA = +85°C TA = +25°C TA = –40°C 6 7 8 9 10 11 RF FREQUENCY (GHz) 5 20 20 INPUT IP3 (dBm) 25 10 7 8 9 5 10 LO LO LO LO TA = +85°C TA = +25°C TA = –40°C 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 11 15 5 0 10 Figure 32. Image Rejection vs. RF Frequency at Various LO Powers, TA = 25°C 25 15 6 RF FREQUENCY (GHz) 13605-030 INPUT IP3 (dBm) Figure 29. Image Rejection vs. RF Frequency at Various Temperatures = 19dBm = 17dBm = 15dBm = 13dBm 0 13605-029 5 11 30 10 0 10 Figure 31. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C 50 30 6 RF FREQUENCY (GHz) IMAGE REJECTION (dBc) IMAGE REJECTION (dBc) –20 13605-028 –20 = 19dBm = 17dBm = 15dBm = 13dBm 13605-032 –15 –10 Figure 30. Input IP3 vs. RF Frequency at Various Temperatures = 19dBm = 17dBm = 15dBm = 13dBm 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 33. Input IP3 vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 10 of 32 13605-033 –10 13605-031 CONVERSION GAIN (dB) CONVERSION GAIN (dB) Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted. Data Sheet HMC520A 20 20 16 INPUT P1dB (dBm) 10 5 = 19dBm = 17dBm = 15dBm = 13dBm 6 7 8 9 10 8 4 TA = +85°C TA = +25°C TA = –40°C 0 5 12 11 RF FREQUENCY (GHz) Figure 34. Noise Figure vs. RF Frequency at Various LO Powers, TA = 25°C 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 35. Input P1dB vs. RF Frequency at Various Temperatures Rev. A | Page 11 of 32 13605-035 LO LO LO LO 13605-034 NOISE FIGURE (dB) 15 HMC520A Data Sheet DOWNCONVERTER PERFORMANCE: IF = 1500 MHz, UPPER SIDEBAND (LOW-SIDE LO) 0 –5 –5 –20 5 6 7 8 9 10 11 RF FREQUENCY (GHz) IMAGE REJECTION (dBc) 40 TA = +85°C TA = +25°C TA = –40°C 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 37. Image Rejection vs. RF Frequency at Various Temperatures INPUT IP3 (dBm) TA = +85°C TA = +25°C TA = –40°C 8 9 10 7 8 9 11 RF FREQUENCY (GHz) 10 11 15 10 LO LO LO LO 5 13605-038 7 6 Figure 40. Image Rejection vs. RF Frequency at Various LO Powers 20 0 = 19dBm = 17dBm = 15dBm = 13dBm RF FREQUENCY (GHz) 20 6 LO LO LO LO 5 25 10 11 0 25 15 10 20 30 5 9 30 30 5 8 10 0 5 7 Figure 39. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C 40 20 6 RF FREQUENCY (GHz) 50 10 INPUT IP3 (dBm) 5 50 30 = 19dBm = 17dBm = 15dBm = 13dBm –20 13605-037 IMAGE REJECTION (dBc) Figure 36. Conversion Gain vs. RF Frequency at Various Temperatures LO LO LO LO –15 13605-040 TA = +85°C TA = +25°C TA = –40°C –15 –10 Figure 38. Input IP3 vs. RF Frequency at Various Temperatures = 19dBm = 17dBm = 15dBm = 13dBm 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 41. Input IP3 vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 12 of 32 13605-041 –10 13605-039 CONVERSION GAIN (dB) 0 13605-036 CONVERSION GAIN (dB) Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted. Data Sheet HMC520A 20 20 16 INPUT P1dB (dBm) 10 5 = 19dBm = 17dBm = 15dBm = 13dBm 6 7 8 9 10 8 4 TA = +85°C TA = +25°C TA = –40°C 0 5 12 11 RF FREQUENCY (GHz) Figure 42. Noise Figure vs. RF Frequency at Various LO Powers, TA = 25°C 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 43. Input P1dB vs. RF Frequency at Various Temperatures Rev. A | Page 13 of 32 13605-043 LO LO LO LO 13605-042 NOISE FIGURE (dB) 15 HMC520A Data Sheet DOWNCONVERTER PERFORMANCE: IF = 3500 MHz, LOWER SIDEBAND (HIGH-SIDE LO) Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted. 0 0 –10 –15 –20 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 44. Conversion Gain vs. RF Frequency at Various Temperatures LO LO LO LO –5 = 19dBm = 17dBm = 15dBm = 13dBm –10 –15 –20 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 13605-047 CONVERSION GAIN (dB) –5 13605-044 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C Figure 47. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C 50 50 TA = +85°C TA = +25°C TA = –40°C 40 30 20 10 20 LO LO LO LO 10 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 45. Image Rejection vs. RF Frequency at Various Temperatures = 19dBm = 17dBm = 15dBm = 13dBm 0 13605-045 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 48. Image Rejection vs. RF Frequency at Various LO Powers, TA = 25°C 30 30 TA = +85°C TA = +25°C TA = –40°C 25 INPUT IP3 (dBm) 20 15 10 15 10 LO LO LO LO 5 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 13605-046 5 20 Figure 46. Input IP3 vs. RF Frequency at Various Temperatures = 19dBm = 17dBm = 15dBm = 13dBm 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 49. Input IP3 vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 14 of 32 13605-049 25 INPUT IP3 (dBm) 30 13605-048 IMAGE REJECTION (dBc) IMAGE REJECTION (dBc) 40 Data Sheet HMC520A 20 35 30 INPUT P1dB (dBm) 20 15 5 = 19dBm = 17dBm = 15dBm = 13dBm 6 7 8 9 10 8 4 TA = +85°C TA = +25°C TA = –40°C 0 5 12 11 RF FREQUENCY (GHz) Figure 50. Noise Figure vs. RF Frequency at Various LO Powers, TA = 25°C 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 51. Input P1dB vs. RF Frequency at Various Temperatures Rev. A | Page 15 of 32 13605-051 LO LO LO LO 10 13605-050 NOISE FIGURE (dB) 16 25 HMC520A Data Sheet DOWNCONVERTER PERFORMANCE: IF = 3500 MHz, UPPER SIDEBAND (LOW-SIDE LO) Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted. 0 TA = +85°C TA = +25°C TA = –40°C –20 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 5 90 80 80 IMAGE REJECTION (dBc) 100 60 50 40 30 TA = +85°C TA = +25°C TA = –40°C 10 6 7 8 9 10 11 Figure 53. Image Rejection vs. RF Frequency at Various Temperatures 50 40 30 5 INPUT IP3 (dBm) 20 10 11 RF FREQUENCY (GHz) 13605-054 9 8 9 10 11 15 10 LO LO LO LO 0 –5 8 7 5 TA = +85°C TA = +25°C TA = –40°C 7 6 Figure 56. Image Rejection vs. RF Frequency at Various LO Powers 20 6 = 19dBm = 17dBm = 15dBm = 13dBm RF FREQUENCY (GHz) 25 5 LO LO LO LO 0 25 10 11 60 30 15 10 70 30 0 9 10 RF FREQUENCY (GHz) 5 8 20 0 5 7 Figure 55. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C 90 70 6 RF FREQUENCY (GHz) 100 20 INPUT IP3 (dBm) –15 –20 13605-053 IMAGE REJECTION (dBc) Figure 52. Conversion Gain vs. RF Frequency at Various Temperatures –10 Figure 54. Input IP3 vs. RF Frequency at Various Temperatures = 19dBm = 17dBm = 15dBm = 13dBm –5 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 57. Input IP3 vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 16 of 32 13605-057 –15 –5 = 19dBm = 17dBm = 15dBm = 13dBm 13605-056 –10 LO LO LO LO 13605-055 CONVERSION GAIN (dB) –5 13605-052 CONVERSION GAIN (dB) 0 Data Sheet HMC520A 20 12 8 4 0 TA = +85°C TA = +25°C TA = –40°C –4 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 13605-058 INPUT P1dB (dBm) 16 Figure 58. Input P1dB vs. RF Frequency at Various Temperatures Rev. A | Page 17 of 32 HMC520A Data Sheet UPCONVERTER PERFORMANCE: IF INPUT FREQUENCY (IFIN) = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO) 0 –5 –5 –10 TA = +85°C TA = +25°C TA = –40°C –15 –20 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 5 –10 –10 –40 6 7 8 9 10 11 Figure 62. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C 0 –30 = 19dBm = 17dBm = 15dBm = 13dBm RF FREQUENCY (GHz) 0 –20 LO LO LO LO –15 –20 SIDEBAND REJECTION (dBc) SIDEBAND REJECTION (dBc) Figure 59. Conversion Gain vs. RF Frequency at Various Temperatures –10 13605-062 CONVERSION GAIN (dB) 0 13605-059 CONVERSION GAIN (dB) Data taken as single sideband upconverter with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted. –20 –30 LO LO LO LO –40 = 19dBm = 17dBm = 15dBm = 13dBm 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 60. Sideband Rejection vs. RF Frequency at Various Temperatures 5 20 20 INPUT IP3 (dBm) 25 10 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 9 10 11 10 LO LO LO LO 5 5 8 15 TA = +85°C TA = +25°C TA = –40°C 0 7 Figure 63. Sideband Rejection vs. RF Frequency at Various LO Powers, TA = 25°C 25 15 6 RF FREQUENCY (GHz) 13605-061 INPUT IP3 (dBm) –50 Figure 61. Input IP3 vs. RF Frequency at Various Temperature = 19dBm = 17dBm = 15dBm = 13dBm 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 64. Input IP3 vs. RF Frequency at Various LO Powers, TA = 25°C Rev. A | Page 18 of 32 13605-064 5 13605-060 –50 13605-063 TA = +85°C TA = +25°C TA = –40°C Data Sheet HMC520A AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO) Data taken at LO = 15 dBm, unless otherwise noted. 1.0 1.0 TA = +85°C TA = +25°C TA = –40°C 0.6 AMPLITUDE BALANCE (dB) AMPLITUDE BALANCE (dB) 0.8 0.4 0.2 0 –0.2 –0.4 LO LO LO LO 0.6 = 19dBm = 17dBm = 15dBm = 13dBm 0.2 –0.2 –0.6 –0.6 5 6 7 8 9 10 11 RF FREQUENCY (GHz) –1.0 13605-065 –1.0 Figure 65. Amplitude Balance vs. RF Frequency at Various Temperatures 5 7 8 9 10 11 RF FREQUENCY (GHz) Figure 67. Amplitude Balance vs. RF Frequency at Various LO Powers, TA = 25°C 15 15 TA = +85°C TA = +25°C TA = –40°C 10 5 0 –5 0 –5 LO LO LO LO –10 –15 5 6 7 8 9 RF FREQUENCY (GHz) 10 11 13605-066 –10 5 Figure 66. Phase Balance vs. RF Frequency at Various Temperatures Rev. A | Page 19 of 32 = 19dBm = 17dBm = 15dBm = 13dBm –15 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 68. Phase Balance vs. RF Frequency at Various LO Powers, TA = 25°C 13605-068 PHASE BALANCE (Degrees) 10 PHASE BALANCE (Degrees) 6 13605-067 –0.8 HMC520A Data Sheet AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 1500 MHz, LOWER SIDEBAND (HIGH-SIDE LO) Data taken at LO = 15 dBm, unless otherwise noted. 3 3 TA = +85°C TA = +25°C TA = –40°C 1 0 –1 = 19dBm = 17dBm = 15dBm = 13dBm 1 0 –1 5 6 7 8 9 10 11 RF FREQUENCY (GHz) –3 13605-069 –3 Figure 69. Amplitude Balance vs. RF Frequency at Various Temperatures 5 6 7 8 9 10 11 RF FREQUENCY (GHz) 13605-071 –2 –2 Figure 71. Amplitude Balance vs. RF Frequency at Various LO Powers, TA = 25°C 15 15 TA = +85°C TA = +25°C TA = –40°C LO LO LO LO 10 PHASE BALANCE (Degrees) 10 5 0 –5 5 0 –5 –10 –15 5 6 7 8 9 RF FREQUENCY (GHz) 10 11 13605-070 –10 = 19dBm = 17dBm = 15dBm = 13dBm Figure 70. Phase Balance vs. RF Frequency at Various Temperatures Rev. A | Page 20 of 32 –15 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 72. Phase Balance vs. RF Frequency at Various LO Powers, TA = 25°C 13605-072 PHASE BALANCE (Degrees) LO LO LO LO 2 AMPLITUDE BALANCE (dB) AMPLITUDE BALANCE (dB) 2 Data Sheet HMC520A AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 3500 MHz, LOWER SIDEBAND (HIGH-SIDE LO) Data taken at LO = 15 dBm, unless otherwise noted. 5 5 TA = +85°C TA = +25°C TA = –40°C 4 1 0 –1 –2 2 1 0 –1 –2 –3 –3 –4 –4 –5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 RF FREQUENCY (GHz) Figure 73. Amplitude Balance vs. RF Frequency at Various Temperatures –5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 RF FREQUENCY (GHz) Figure 75. Amplitude Balance vs. RF Frequency at Various LO Powers, TA = 25°C 30 30 TA = +85°C TA = +25°C TA = –40°C 20 10 0 –10 0 –10 LO LO LO LO –20 –30 5 6 7 8 9 RF FREQUENCY (GHz) 10 11 13605-074 –20 10 Figure 74. Phase Balance vs. RF Frequency at Various Temperatures Rev. A | Page 21 of 32 = 19dBm = 17dBm = 15dBm = 13dBm –30 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 76. Phase Balance vs. RF Frequency at Various LO Powers, TA = 25°C 13605-076 PHASE BALANCE (Degrees) 20 PHASE BALANCE (Degrees) = 19dBm = 17dBm = 15dBm = 13dBm 13605-075 2 LO LO LO LO 3 AMPLITUDE BALANCE (dB) 3 13605-073 AMPLITUDE BALANCE (dB) 4 HMC520A Data Sheet IF BANDWIDTH, DOWNCONVERTER PERFORMANCE Data taken as an image reject mixer with an external 90° hybrid, LO = 15 dBm, unless otherwise noted. 0 –10 –15 –20 0.1 0.6 1.1 1.6 2.1 IF FREQUENCY (GHz) 2.6 3.1 3.6 Figure 77. Conversion Gain vs. IF Frequency at Various Temperatures, Lower Sideband, LO = 10.5 GHz TA = +85°C TA = +25°C TA = –40°C –5 –10 –15 –20 0.1 0.6 1.1 1.6 2.1 IF FREQUENCY (GHz) 2.6 3.1 3.6 13605-078 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C –5 13605-077 CONVERSION GAIN (dB) 0 Figure 78. Conversion Gain vs. IF Frequency at Various Temperatures, Upper Sideband, LO = 8.5 GHz Rev. A | Page 22 of 32 Data Sheet HMC520A ISOLATION AND RETURN LOSS 70 0 60 –5 40 30 20 LO TO RF LO TO IF1 LO TO IF2 RF TO IF1 RF TO IF2 0 5 6 7 8 9 10 11 RF FREQUENCY (GHz) Figure 79. Isolation vs. RF Frequency at LO = 15 dBm, TA = 25°C –20 IF2 –30 0.1 0.6 1.1 1.6 TA = +85°C TA = +25°C TA = –40°C 2.1 2.6 3.1 3.6 4.1 IF FREQUENCY (GHz) Figure 81. IF Return Loss vs. IF Frequency at Various Temperatures, LO = 8.5 GHz at 15 dBm 0 0 TA = +85°C TA = +25°C TA = –40°C –5 –10 –15 –20 –10 –15 –20 –25 –25 5 6 7 8 9 LO FREQUENCY (GHz) 10 11 –30 13605-080 –30 Figure 80. LO Return Loss vs. LO Frequency at Various Temperatures at LO = 15 dBm TA = +85°C TA = +25°C TA = –40°C 5 6 7 8 9 RF FREQUENCY (GHz) 10 11 13605-082 RF RETURN LOSS (dB) –5 LO RETURN LOSS (dB) –15 –25 13605-079 10 IF1 –10 13605-081 IF RETURN LOSS (dB) ISOLATION (dB) 50 Figure 82. RF Return Loss vs. RF Frequency at Various Temperatures, LO = 8.5 GHz at 15 dBm Rev. A | Page 23 of 32 HMC520A Data Sheet M × N Spurious Output Performance, Upconverter, Upper Sideband (Low-Side LO), IFIN = 100 MHz at −10 dBm, TA = 25°C SPURIOUS AND HARMONICS PERFORMANCE LO harmonic isolation, LO = 15 dBm, all values are in dBc measured below the input LO level at the RF port and are positive, unless otherwise noted. RFOUT = 7600 MHz, LO = 7500 MHz at 15 dBm, data taken without external hybrid, and all values are in dBc measured below the RFOUT power level (M × IFIN) − (N × LO) and are positive, unless otherwise noted. Table 5. NLO Spur at RF Output (RFOUT) LO Frequency (GHz) 5.5 6.5 7 7.5 8.5 9.5 10.5 1 49 43 43 44 43 42 42 2 33 37 43 55 59 61 72 N × LO 3 52 63 55 52 69 62 56 4 66 52 55 61 62 65 61 M × N Spurious Output Performance, Downconverter, Lower Sideband (High-Side LO), IF = 100 MHz, TA = 25°C RF = 9400 MHz at −10 dBm, LO = 9500 MHz at 15 dBm, data taken without external hybrid, and all values are in dBc measured below the IF power level (M × RF) − (N × LO) and are positive, unless otherwise noted. M × RF 0 1 2 3 4 5 0 0 +31 +71 +69 +62 +58 1 −13 0 +57 +70 +68 +61 N × LO 2 3 +31 +12 +42 +60 +66 +58 +75 +67 +71 +75 +67 +71 4 +39 +62 +70 +74 +85 +77 5 +56 +50 +60 +71 +74 +85 M × IF M × RF 0 0 +31 +73 +68 +68 +62 1 −10 0 +51 +74 +71 +68 4 +46 +68 +75 +78 +87 +77 2 26 24 71 73 71 72 N × LO 3 24 30 67 67 66 68 4 29 56 62 64 64 63 5 42 42 58 60 58 59 RFOUT = 9400 MHz, LO = 9500 MHz at 15 dBm, data taken without external hybrid, and all values are in dBc measured below the RFOUT power level (M × IFIN) − (N × LO) and are positive, unless otherwise noted. M × IF RF = 7600 MHz at −10 dBm, LO = 7500 MHz at 15 dBm, data taken without external hybrid, and all values are in dBc measured below the IF power level (M × RF) − (N × LO) and are positive, unless otherwise noted. 0 1 2 3 4 5 1 6 0 53 65 76 77 M × N Spurious Output Performance, Upconverter, Lower Sideband (High-Side LO), IFIN = 100 MHz at −10 dBm, TA = 25°C M × N Spurious Output Performance, Downconverter, Upper Sideband (Low-Side LO), IF = 100 MHz, TA = 25°C N × LO 2 3 +23 +29 +36 +49 +76 +50 +78 +72 +71 +79 +70 +73 0 1 2 3 4 5 0 0 78 89 88 88 86 5 +35 +53 +65 +73 +77 +86 Rev. A | Page 24 of 32 0 1 2 3 4 5 0 0 79 87 87 86 86 1 8 0 55 60 77 78 2 21 25 47 74 73 74 N × LO 3 17 48 57 72 72 72 4 26 54 56 68 66 67 5 35 37 59 61 61 60 Data Sheet HMC520A THEORY OF OPERATION The HMC520A is a GaAs, MMIC, I/Q mixer in a 24-terminal, RoHS compliant, ceramic LCC package and operates over the −40°C to +85°C temperature range. The EV1HMC520ALC4 evaluation board is also available from Analog Devices, Inc. The HMC520A is a passive, wideband, I/Q MMIC mixer that can be used as either an image reject mixer for receiver operations or as a single sideband upconverter for transmitter operations. The mixer uses two standard double balanced mixer cells and a 90° hybrid fabricated in the GaAs, MESFET process. With an RF and an LO input frequency range of 6 GHz to 10 GHz and an IF frequency range of dc to 3.5 GHz, the HMC520A is ideal for applications requiring a wide frequency range, excellent RF performance, a simple design with fewer components, and a small PCB footprint. One HMC520A can replace multiple narrow-band mixers in a design. The HMC520A eliminates the need for wire bonding, allowing the use of the surface-mount manufacturing techniques. The inherent I/Q architecture of the HMC520A offers excellent image rejection and thereby eliminates the need for expensive filtering for unwanted sidebands. The double balanced architecture of the mixer also provides excellent LO to RF isolation and LO to IF isolation, and this architecture reduces the effect of LO leakage to ensure signal integrity. Because the HMC520A is a passive mixer, the HMC520A does not require any dc power sources. The HMC520A offers a lower noise figure compared to an active mixer, ensuring superior dynamic range for high performance and precision applications. For both upconversion and downconversion, an external 90° hybrid is required. See the Applications Information section for details on interfacing with this external 90° hybrid. Rev. A | Page 25 of 32 HMC520A Data Sheet 17 10 11 12 13 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 6 7 8 9 10 11 12 13 RF FREQUENCY (GHz) Figure 85. Image Rejection vs. RF Frequency, Downconverter, Lower Sideband (High-Side LO), IF = 1.5 GHz IF2 DC BLOCKING CAPACITORS 9 BIAS TEE/ DC FEED FOR IF2 SUPPLY FOR IF1 SUPPLY FOR IF2 50Ω IF NOTES 1. DASHED SECTIONS ARE OPTIONAL AND MEANT FOR LO NULLING. 13605-084 EXTERNAL 90° HYBRID Figure 83. Typical Application Circuit PERFORMANCE TO 13 GHz This section provides test results at a higher frequency to 13 GHz. Board, traces, and connector losses are not de-embedded for all measurements. This performance is typical, though not guaranteed. All measurements were made under the following conditions: LO = 15 dBm, IF = 1.5 GHz, RF = −10 dBm, and TA = 25°C, with an external 90° IF hybrid at the IF ports, unless otherwise noted. Rev. A | Page 26 of 32 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 6 7 8 9 10 11 12 RF FREQUENCY (GHz) Figure 86. Input IP3 vs. RF Frequency, Downconverter, Lower Sideband (High-Side LO), IF = 1.5 GHz 13 13605-186 20 IF1 LO 12 13 11 6 9 14 10 15 5 8 16 4 7 3 8 Figure 84. Conversion Gain vs. RF Frequency, Downconverter, Lower Sideband (High-Side LO), IF = 1.5 GHz IMAGE REJECTION (dBc) 18 7 RF FREQUENCY (GHz) INPUT IP3 (dBm) 2 BIAS TEE/ DC FEED FOR IF1 19 22 90° HYBRID 1 RF 21 24 23 To select the upper sideband (low-side LO) when using as a downconverter, connect the IF1 pin to the 0° port of the hybrid and connect the IF2 pin to the 90° port of the hybrid. To select the lower sideband (high-side LO), connect the IF1 pin to the 90° port of the hybrid and connect the IF2 pin to the 0° port of the hybrid. The output is from the sum port of the hybrid, and the difference port is 50 Ω terminated. 6 13605-184 To select the upper sideband when using as an upconverter, connect the IF1 pin to the 90° port of the hybrid and connect the IF2 pin to the 0° port of the hybrid. To select the lower sideband, connect the IF1 pin to the 0° port of the hybrid and connect the IF2 pin to the 90° port of the hybrid. The input is from the sum port of the hybrid, and the difference port is 50 Ω terminated. 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 –13 –14 –15 –16 –17 –18 –19 –20 13605-185 Figure 83 shows the typical application circuit for the HMC520A. To select the appropriate sideband, an external 90° hybrid is needed. For applications not requiring operation to dc, use an off chip dc blocking capacitor. For applications that require the LO signal at the output to be suppressed, use a bias tee or RF feed as shown in Figure 83. Ensure that the source or sink current used for LO suppression is
HMC520ALC4 价格&库存

很抱歉,暂时无法提供与“HMC520ALC4”相匹配的价格&库存,您可以联系我们找货

免费人工找货