6 GHz to 10 GHz,
GaAs, MMIC, I/Q Mixer
HMC520A
Data Sheet
19 NIC
20 NIC
21 NIC
22 NIC
23 NIC
24 NIC
FUNCTIONAL BLOCK DIAGRAM
HMC520A
NIC 1
18 NIC
90° HYBRID
NIC 2
GND 3
17 NIC
16 GND
GND 12
13 NIC
NIC 10
IF2 11
14 GND
NIC 6
IF1 9
GND 5
PACKAGE
BASE
GND
13605-001
15 LO
RF 4
NIC 8
RF range: 6 GHz to 10 GHz
LO input frequency range: 6 GHz to 10 GHz
Conversion loss: 8 dB typical at 6 GHz to 10 GHz
Image rejection: 23 dBc typical at 6 GHz to 10 GHz
LO to RF isolation: 43 dB typical
LO to IF isolation: 25 dB typical
Input IP3: 19 dBm typical
Input P1dB compression: 10 dBm typical at 7.1 GHz to
8.5 GHz
Wide IF frequency range: dc to 3.5 GHz
24-terminal, ceramic leadless chip carrier
NIC 7
FEATURES
Figure 1.
APPLICATIONS
Point to point microwave radios
Point to multipoint radios
Video satellites
Digital radios
Instrumentation
Automatic test equipment
GENERAL DESCRIPTION
The HMC520A is a compact gallium arsenide (GaAs),
monolithic microwave integrated circuit (MMIC), in-phase
quadrature (I/Q) mixer in a 24-terminal, RoHS compliant,
ceramic leadless chip carrier (LCC) package. The device can
be used as either an image reject mixer or a single sideband
upconverter. The mixer uses two standard double balanced
Rev. A
mixer cells and a 90° hybrid fabricated in a GaAs, metal
semiconductor field effect transistor (MESFET) process. The
HMC520A is a smaller alternative to a hybrid style image reject
mixer and a single sideband upconverter assembly. The
HMC520A eliminates the need for wire bonding, allowing the
use of surface-mount manufacturing techniques.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
HMC520A
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 4
Thermal Resistance ...................................................................... 4
Downconverter Performance: IF = 3500 MHz, Upper
Sideband (Low-Side LO) ........................................................... 16
Upconverter Performance: IF Input Frequency (IFIN) =
100 MHz, Lower Sideband (High-Side LO) ........................... 18
Amplitude and Phase Balance Downconverter: IF =
100 MHz, Lower Sideband (High-Side LO) ........................... 19
Amplitude and Phase Balance Downconverter: IF =
1500 MHz, Lower Sideband (High-Side LO) ......................... 20
ESD Caution .................................................................................. 4
Amplitude and Phase Balance Downconverter: IF =
3500 MHz, Lower Sideband (High-Side LO) ......................... 21
Pin Configuration and Function Descriptions ............................. 5
IF Bandwidth, Downconverter Performance ......................... 22
Interface Schematics..................................................................... 5
Isolation and Return Loss ......................................................... 23
Typical Performance Characteristics ............................................. 6
Spurious and Harmonics Performance ................................... 24
Downconverter Performance: IF = 100 MHz, Lower Sideband
(High-Side LO) ............................................................................. 6
Theory of Operation ...................................................................... 25
Downconverter Performance: IF = 100 MHz, Upper
Sideband (Low-Side LO) ............................................................. 8
Performance to 13 GHz ............................................................. 26
Downconverter Performance: IF = 1500 MHz, Lower
Sideband (High-Side LO) .......................................................... 10
Evaluation Board Information ................................................. 31
Downconverter Performance: IF = 1500 MHz, Upper
Sideband (Low-Side LO) ........................................................... 12
Applications Information .............................................................. 26
Soldering Information and Recommended Land Pattern .... 30
Outline Dimensions ....................................................................... 32
Ordering Guide .......................................................................... 32
Downconverter Performance: IF = 3500 MHz, Lower
Sideband (High-Side LO) .......................................................... 14
REVISION HISTORY
6/2018—Rev. 0 to Rev. A
Changes to Table 1 ............................................................................ 3
Changes to Table 2, Thermal Resistance Section, and Table 3 ... 4
Changes to Figure 2 .......................................................................... 5
Deleted Table 6 Title Through Table 9 Title; Renumbered
Sequentially ..................................................................................... 24
Changes to Theory of Operation Section .................................... 25
Changes to Applications Information Section and Figure 83... 26
Added Performance Up to 13 GHz Section and Figure 84
Through Figure 86; Renumbered Sequentially........................... 26
Added Figure 87 Through Figure 92 ........................................... 27
Added Figure 93 Through Figure 98 ........................................... 28
Added Figure 99 Through Figure 104 ......................................... 29
Added Soldering Information and Recommended Land Pattern
Section and Figure 105 .................................................................. 30
Added Note 1 and Note 2, Table 6................................................ 31
Updated Outline Dimensions ....................................................... 32
Changes to Ordering Guide .......................................................... 32
1/2017—Revision 0: Initial Version
Rev. A | Page 2 of 32
Data Sheet
HMC520A
SPECIFICATIONS
Local oscillator (LO) = 15 dBm, intermediate frequency (IF) = 100 MHz, radio frequency (RF) = −10 dBm, and TA = 25°C, unless
otherwise noted. All measurements were made as a downconverter with the lower sideband selected (high-side LO) and an external 90°
IF hybrid at the IF ports, unless otherwise noted.
Table 1.
Parameter
RF RANGE1
LO INPUT FREQUENCY RANGE
IF FREQUENCY RANGE
LO AMPLITUDE
6 GHz TO 10 GHz DOWNCONVERTER PERFORMANCE
Conversion Loss
Noise Figure
Input Third-Order Intercept (IP3)
Input Power for 1dB Compression (P1dB)
Image Rejection
LO to RF Isolation
LO to IF Isolation
Phase Balance
Amplitude Balance
7.1 GHz TO 8.5 GHz DOWNCONVERTER PERFORMANCE
Conversion Loss
Noise Figure
Input IP3
Input P1dB
Image Rejection
LO to RF Isolation
LO to IF Isolation
Phase Balance
Amplitude Balance
6 GHz TO 10 GHz UPCONVERTER PERFORMANCE
Conversion Loss
Input IP3
Sideband Rejection
1
Test Conditions/Comments
Min
6
6
DC
Typ
Max
10
10
3.5
Unit
GHz
GHz
GHz
dBm
8
8.5
19
10.5
23
43
25
5
0.3
10
dB
dB
dBm
dBm
dBc
dB
dB
Degrees
dB
7.7
8
19
10
25
43
25
4
0.3
9.5
dB
dB
dBm
dBm
dBc
dB
dB
Degrees
dB
15
Taken without external 90° IF hybrid
Taken without external 90° IF hybrid
Taken without external 90° IF hybrid
Taken without external 90° IF hybrid
Taken without external 90° IF hybrid
Taken without external 90° IF hybrid
Taken without external 90° IF hybrid
Taken without external 90° IF hybrid
19
38
21
38
7.5
18
22
For RF performance from 10 GHz to 13 GHz, see the Performance to 13 GHz section.
Rev. A | Page 3 of 32
dB
dBm
dBc
HMC520A
Data Sheet
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 2.
Parameter
RF Input Power
LO Input Power
IF1 and IF2 Input Power
IF Source or Sink Current
Maximum Peak Reflow Temperature
Maximum Junction Temperature (TJ)
Lifetime at Maximum TJ
Moisture Sensitivity Level (MSL)1
Continuous Power Dissipation, PDISS2 (TA = 85°C,
Derate 4.44 mW/°C Above 85°C)
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range (Soldering 60 sec)
Electrostatic Discharge (ESD) Sensitivity
Human Body Model (HBM)
Field Induced Charged Device Model (FICDM)
1
2
Rating
20 dBm
27 dBm
20 dBm
12 mA
260°C
175°C
>1 × 106 Hours
MSL3
400 mW
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required.
θJA is the natural convection, junction to ambient thermal
resistance measured in a one cubic foot sealed enclosure. θJC is
the junction to case thermal resistance.
Table 3. Thermal Resistance
Package Type
E-24-11
1
−40°C to +85°C
−65°C to +150°C
−65°C to +150°C
θJA
175°C
θJC
225
Unit
°C/W
See JEDEC standard JESD51-2 for additional information on optimizing the
thermal impedance (PCB with 3 × 3 vias).
ESD CAUTION
750 V (Class 1B)
1250 V (Class C3)
Based on IPC/JEDEC J-STD-20 MSL classifications.
PDISS is a theoretical number calculated by (TJ − 85°C)/θJC.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Rev. A | Page 4 of 32
Data Sheet
HMC520A
20 NIC
19 NIC
21 NIC
22 NIC
23 NIC
24 NIC
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
NIC 1
18 NIC
NIC 2
HMC520A
RF 4
TOP VIEW
(Not to Scale)
17 NIC
16 GND
15 LO
GND 12
NIC 10
IF2 11
IF1 9
13 NIC
NIC 8
14 GND
NIC 6
NIC 7
GND 5
NOTES
1. NIC = NOT INTERNALY CONNECTED.
2. EXPOSED PAD. THE EXPOSED PAD
MUST BE CONNECTED TO THE GND PIN.
13605-002
GND 3
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1, 2, 6 to 8, 10, 13,
17 to 24
3, 5, 12, 14, 16
4
9, 11
15
Mnemonic
NIC
Description
Not Internally Connected.
GND
RF
IF1, IF2
Ground. See Figure 7 for the GND interface schematic.
RF Port. This pin is ac-coupled internally and matched to 50 Ω. See Figure 3 for the RF interface schematic.
First and Second Quadrature IF Input Pins. For applications that do not require operation to dc, use an
off chip dc blocking capacitor. For applications that require operation to dc, these pins must not
source or sink more than 12 mA of current because the device may not function or possible device
failure may result. See Figure 5 and Figure 6 for the IF1 and IF2 interface schematics.
LO Port. This pin is dc-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic.
Exposed Pad. The exposed pad must be connected to the GND pin.
LO
EPAD
IF2
13605-006
RF
13605-003
INTERFACE SCHEMATICS
Figure 3. RF Interface Schematic
GND
13605-007
13605-004
LO
Figure 6. IF2 Interface Schematic
Figure 7. GND Interface Schematic
Figure 4. LO Interface Schematic
13605-005
IF1
Figure 5. IF1 Interface Schematic
Rev. A | Page 5 of 32
HMC520A
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
DOWNCONVERTER PERFORMANCE: IF = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
0
0
–5
–5
LO
LO
LO
LO
–15
TA = +85°C
TA = +25°C
TA = –40°C
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 8. Conversion Gain vs. RF Frequency at Various Temperatures
5
50
40
40
20
7
8
9
10
20
LO
LO
LO
LO
10
6
7
8
9
10
11
RF FREQUENCY (GHz)
5
20
INPUT IP3 (dBm)
20
TA = +85°C
TA = +25°C
TA = –40°C
0
5
6
7
8
9
10
8
9
11
RF FREQUENCY (GHz)
10
11
15
10
LO
LO
LO
LO
5
13605-010
INPUT IP3 (dBm)
25
5
7
Figure 12. Image Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
25
10
6
RF FREQUENCY (GHz)
Figure 9. Image Rejection vs. RF Frequency at Various Temperatures
15
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
13605-009
5
11
30
TA = +85°C
TA = +25°C
TA = –40°C
0
10
Figure 11. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
30
6
RF FREQUENCY (GHz)
IMAGE REJECTION (dBc)
IMAGE REJECTION (dBc)
–20
13605-008
–20
= 19dBm
= 17dBm
= 15dBm
= 13dBm
13605-012
–15
–10
Figure 10. Input IP3 vs. RF Frequency at Various Temperatures
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 13. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 6 of 32
13605-013
–10
13605-011
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
HMC520A
20
15
15
10
TA = +85°C
TA = +25°C
TA = –40°C
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
5
6
7
8
9
16
INPUT P1dB (dBm)
16
12
8
4
12
8
LO = 17dBm
LO = 15dBm
LO = 13dBm
4
7
8
9
10
11
RF FREQUENCY (GHz)
13605-015
TA = +85°C
TA = +25°C
TA = –40°C
6
11
Figure 16. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
20
5
10
RF FREQUENCY (GHz)
20
0
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
Figure 14. Noise Figure vs. RF Frequency at Various Temperatures
INPUT P1dB (dBm)
LO
LO
LO
LO
5
Figure 15. Input P1dB vs. RF Frequency at Various Temperatures
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 17. Input P1dB vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 7 of 32
13605-017
5
10
13605-016
NOISE FIGURE (dB)
20
13605-014
NOISE FIGURE (dB)
Data Sheet
HMC520A
Data Sheet
DOWNCONVERTER PERFORMANCE: IF = 100 MHz, UPPER SIDEBAND (LOW-SIDE LO)
0
–5
–5
–20
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
5
40
IMAGE REJECTION (dBc)
40
TA = +85°C
TA = +25°C
TA = –40°C
10
6
7
8
9
10
11
RF FREQUENCY (GHz)
INPUT IP3 (dBm)
INPUT IP3 (dBm)
8
9
10
7
8
9
11
RF FREQUENCY (GHz)
10
11
15
10
LO
LO
LO
LO
5
13605-020
7
6
Figure 22. Image Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
TA = +85°C
TA = +25°C
TA = –40°C
0
= 19dBm
= 17dBm
= 15dBm
= 13dBm
RF FREQUENCY (GHz)
20
6
LO
LO
LO
LO
5
20
10
11
20
25
15
10
30
25
5
9
0
Figure 19. Image Rejection vs. RF Frequency at Various Temperatures
5
8
10
0
5
7
Figure 21. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
20
6
RF FREQUENCY (GHz)
50
30
= 19dBm
= 17dBm
= 15dBm
= 13dBm
–20
13605-019
IMAGE REJECTION (dBc)
Figure 18. Conversion Gain vs. RF Frequency at Various Temperatures
LO
LO
LO
LO
–15
13605-022
TA = +85°C
TA = +25°C
TA = –40°C
–15
–10
Figure 20. Input IP3 vs. RF Frequency at Various Temperatures
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 23. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 8 of 32
13605-023
–10
13605-021
CONVERSION GAIN (dB)
0
13605-018
CONVERSION GAIN (dB)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
HMC520A
20
15
15
10
TA = +85°C
TA = +25°C
TA = –40°C
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
5
INPUT P1dB (dBm)
16
12
8
+85°C
+25°C
–40°C
7
8
9
10
8
9
11
RF FREQUENCY (GHz)
10
11
12
8
LO = 17dBm
LO = 15dBm
LO = 13dBm
4
13605-025
INPUT P1dB (dBm)
16
6
7
Figure 26. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
20
5
6
RF FREQUENCY (GHz)
20
0
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
Figure 24. Noise Figure vs. RF Frequency at Various Temperatures
4
LO
LO
LO
LO
5
Figure 25. Input P1dB vs. RF Frequency at Various Temperatures
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 27. Input P1dB vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 9 of 32
13605-027
5
10
13605-026
NOISE FIGURE (dB)
20
13605-024
NOISE FIGURE (dB)
Data Sheet
HMC520A
Data Sheet
DOWNCONVERTER PERFORMANCE: IF = 1500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
0
0
–5
–5
LO
LO
LO
LO
–15
TA = +85°C
TA = +25°C
TA = –40°C
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 28. Conversion Gain vs. RF Frequency at Various Temperatures
5
50
40
40
20
7
8
9
10
20
LO
LO
LO
LO
TA = +85°C
TA = +25°C
TA = –40°C
6
7
8
9
10
11
RF FREQUENCY (GHz)
5
20
20
INPUT IP3 (dBm)
25
10
7
8
9
5
10
LO
LO
LO
LO
TA = +85°C
TA = +25°C
TA = –40°C
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
11
15
5
0
10
Figure 32. Image Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
25
15
6
RF FREQUENCY (GHz)
13605-030
INPUT IP3 (dBm)
Figure 29. Image Rejection vs. RF Frequency at Various Temperatures
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
13605-029
5
11
30
10
0
10
Figure 31. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
30
6
RF FREQUENCY (GHz)
IMAGE REJECTION (dBc)
IMAGE REJECTION (dBc)
–20
13605-028
–20
= 19dBm
= 17dBm
= 15dBm
= 13dBm
13605-032
–15
–10
Figure 30. Input IP3 vs. RF Frequency at Various Temperatures
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 33. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 10 of 32
13605-033
–10
13605-031
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
Data Sheet
HMC520A
20
20
16
INPUT P1dB (dBm)
10
5
= 19dBm
= 17dBm
= 15dBm
= 13dBm
6
7
8
9
10
8
4
TA = +85°C
TA = +25°C
TA = –40°C
0
5
12
11
RF FREQUENCY (GHz)
Figure 34. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 35. Input P1dB vs. RF Frequency at Various Temperatures
Rev. A | Page 11 of 32
13605-035
LO
LO
LO
LO
13605-034
NOISE FIGURE (dB)
15
HMC520A
Data Sheet
DOWNCONVERTER PERFORMANCE: IF = 1500 MHz, UPPER SIDEBAND (LOW-SIDE LO)
0
–5
–5
–20
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
IMAGE REJECTION (dBc)
40
TA = +85°C
TA = +25°C
TA = –40°C
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 37. Image Rejection vs. RF Frequency at Various Temperatures
INPUT IP3 (dBm)
TA = +85°C
TA = +25°C
TA = –40°C
8
9
10
7
8
9
11
RF FREQUENCY (GHz)
10
11
15
10
LO
LO
LO
LO
5
13605-038
7
6
Figure 40. Image Rejection vs. RF Frequency at Various LO Powers
20
0
= 19dBm
= 17dBm
= 15dBm
= 13dBm
RF FREQUENCY (GHz)
20
6
LO
LO
LO
LO
5
25
10
11
0
25
15
10
20
30
5
9
30
30
5
8
10
0
5
7
Figure 39. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
40
20
6
RF FREQUENCY (GHz)
50
10
INPUT IP3 (dBm)
5
50
30
= 19dBm
= 17dBm
= 15dBm
= 13dBm
–20
13605-037
IMAGE REJECTION (dBc)
Figure 36. Conversion Gain vs. RF Frequency at Various Temperatures
LO
LO
LO
LO
–15
13605-040
TA = +85°C
TA = +25°C
TA = –40°C
–15
–10
Figure 38. Input IP3 vs. RF Frequency at Various Temperatures
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 41. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 12 of 32
13605-041
–10
13605-039
CONVERSION GAIN (dB)
0
13605-036
CONVERSION GAIN (dB)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
Data Sheet
HMC520A
20
20
16
INPUT P1dB (dBm)
10
5
= 19dBm
= 17dBm
= 15dBm
= 13dBm
6
7
8
9
10
8
4
TA = +85°C
TA = +25°C
TA = –40°C
0
5
12
11
RF FREQUENCY (GHz)
Figure 42. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 43. Input P1dB vs. RF Frequency at Various Temperatures
Rev. A | Page 13 of 32
13605-043
LO
LO
LO
LO
13605-042
NOISE FIGURE (dB)
15
HMC520A
Data Sheet
DOWNCONVERTER PERFORMANCE: IF = 3500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
0
–10
–15
–20
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 44. Conversion Gain vs. RF Frequency at Various Temperatures
LO
LO
LO
LO
–5
= 19dBm
= 17dBm
= 15dBm
= 13dBm
–10
–15
–20
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
13605-047
CONVERSION GAIN (dB)
–5
13605-044
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
Figure 47. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
50
TA = +85°C
TA = +25°C
TA = –40°C
40
30
20
10
20
LO
LO
LO
LO
10
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 45. Image Rejection vs. RF Frequency at Various Temperatures
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
13605-045
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 48. Image Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
30
30
TA = +85°C
TA = +25°C
TA = –40°C
25
INPUT IP3 (dBm)
20
15
10
15
10
LO
LO
LO
LO
5
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
13605-046
5
20
Figure 46. Input IP3 vs. RF Frequency at Various Temperatures
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 49. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 14 of 32
13605-049
25
INPUT IP3 (dBm)
30
13605-048
IMAGE REJECTION (dBc)
IMAGE REJECTION (dBc)
40
Data Sheet
HMC520A
20
35
30
INPUT P1dB (dBm)
20
15
5
= 19dBm
= 17dBm
= 15dBm
= 13dBm
6
7
8
9
10
8
4
TA = +85°C
TA = +25°C
TA = –40°C
0
5
12
11
RF FREQUENCY (GHz)
Figure 50. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 51. Input P1dB vs. RF Frequency at Various Temperatures
Rev. A | Page 15 of 32
13605-051
LO
LO
LO
LO
10
13605-050
NOISE FIGURE (dB)
16
25
HMC520A
Data Sheet
DOWNCONVERTER PERFORMANCE: IF = 3500 MHz, UPPER SIDEBAND (LOW-SIDE LO)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
TA = +85°C
TA = +25°C
TA = –40°C
–20
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
5
90
80
80
IMAGE REJECTION (dBc)
100
60
50
40
30
TA = +85°C
TA = +25°C
TA = –40°C
10
6
7
8
9
10
11
Figure 53. Image Rejection vs. RF Frequency at Various Temperatures
50
40
30
5
INPUT IP3 (dBm)
20
10
11
RF FREQUENCY (GHz)
13605-054
9
8
9
10
11
15
10
LO
LO
LO
LO
0
–5
8
7
5
TA = +85°C
TA = +25°C
TA = –40°C
7
6
Figure 56. Image Rejection vs. RF Frequency at Various LO Powers
20
6
= 19dBm
= 17dBm
= 15dBm
= 13dBm
RF FREQUENCY (GHz)
25
5
LO
LO
LO
LO
0
25
10
11
60
30
15
10
70
30
0
9
10
RF FREQUENCY (GHz)
5
8
20
0
5
7
Figure 55. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
90
70
6
RF FREQUENCY (GHz)
100
20
INPUT IP3 (dBm)
–15
–20
13605-053
IMAGE REJECTION (dBc)
Figure 52. Conversion Gain vs. RF Frequency at Various Temperatures
–10
Figure 54. Input IP3 vs. RF Frequency at Various Temperatures
= 19dBm
= 17dBm
= 15dBm
= 13dBm
–5
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 57. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 16 of 32
13605-057
–15
–5
= 19dBm
= 17dBm
= 15dBm
= 13dBm
13605-056
–10
LO
LO
LO
LO
13605-055
CONVERSION GAIN (dB)
–5
13605-052
CONVERSION GAIN (dB)
0
Data Sheet
HMC520A
20
12
8
4
0
TA = +85°C
TA = +25°C
TA = –40°C
–4
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
13605-058
INPUT P1dB (dBm)
16
Figure 58. Input P1dB vs. RF Frequency at Various Temperatures
Rev. A | Page 17 of 32
HMC520A
Data Sheet
UPCONVERTER PERFORMANCE: IF INPUT FREQUENCY (IFIN) = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
0
–5
–5
–10
TA = +85°C
TA = +25°C
TA = –40°C
–15
–20
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
5
–10
–10
–40
6
7
8
9
10
11
Figure 62. Conversion Gain vs. RF Frequency at Various LO Powers,
TA = 25°C
0
–30
= 19dBm
= 17dBm
= 15dBm
= 13dBm
RF FREQUENCY (GHz)
0
–20
LO
LO
LO
LO
–15
–20
SIDEBAND REJECTION (dBc)
SIDEBAND REJECTION (dBc)
Figure 59. Conversion Gain vs. RF Frequency at Various Temperatures
–10
13605-062
CONVERSION GAIN (dB)
0
13605-059
CONVERSION GAIN (dB)
Data taken as single sideband upconverter with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
–20
–30
LO
LO
LO
LO
–40
= 19dBm
= 17dBm
= 15dBm
= 13dBm
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 60. Sideband Rejection vs. RF Frequency at Various Temperatures
5
20
20
INPUT IP3 (dBm)
25
10
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
9
10
11
10
LO
LO
LO
LO
5
5
8
15
TA = +85°C
TA = +25°C
TA = –40°C
0
7
Figure 63. Sideband Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
25
15
6
RF FREQUENCY (GHz)
13605-061
INPUT IP3 (dBm)
–50
Figure 61. Input IP3 vs. RF Frequency at Various Temperature
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 64. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Rev. A | Page 18 of 32
13605-064
5
13605-060
–50
13605-063
TA = +85°C
TA = +25°C
TA = –40°C
Data Sheet
HMC520A
AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken at LO = 15 dBm, unless otherwise noted.
1.0
1.0
TA = +85°C
TA = +25°C
TA = –40°C
0.6
AMPLITUDE BALANCE (dB)
AMPLITUDE BALANCE (dB)
0.8
0.4
0.2
0
–0.2
–0.4
LO
LO
LO
LO
0.6
= 19dBm
= 17dBm
= 15dBm
= 13dBm
0.2
–0.2
–0.6
–0.6
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
–1.0
13605-065
–1.0
Figure 65. Amplitude Balance vs. RF Frequency at Various Temperatures
5
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 67. Amplitude Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
15
15
TA = +85°C
TA = +25°C
TA = –40°C
10
5
0
–5
0
–5
LO
LO
LO
LO
–10
–15
5
6
7
8
9
RF FREQUENCY (GHz)
10
11
13605-066
–10
5
Figure 66. Phase Balance vs. RF Frequency at Various Temperatures
Rev. A | Page 19 of 32
= 19dBm
= 17dBm
= 15dBm
= 13dBm
–15
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 68. Phase Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
13605-068
PHASE BALANCE (Degrees)
10
PHASE BALANCE (Degrees)
6
13605-067
–0.8
HMC520A
Data Sheet
AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 1500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken at LO = 15 dBm, unless otherwise noted.
3
3
TA = +85°C
TA = +25°C
TA = –40°C
1
0
–1
= 19dBm
= 17dBm
= 15dBm
= 13dBm
1
0
–1
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
–3
13605-069
–3
Figure 69. Amplitude Balance vs. RF Frequency at Various Temperatures
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
13605-071
–2
–2
Figure 71. Amplitude Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
15
15
TA = +85°C
TA = +25°C
TA = –40°C
LO
LO
LO
LO
10
PHASE BALANCE (Degrees)
10
5
0
–5
5
0
–5
–10
–15
5
6
7
8
9
RF FREQUENCY (GHz)
10
11
13605-070
–10
= 19dBm
= 17dBm
= 15dBm
= 13dBm
Figure 70. Phase Balance vs. RF Frequency at Various Temperatures
Rev. A | Page 20 of 32
–15
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 72. Phase Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
13605-072
PHASE BALANCE (Degrees)
LO
LO
LO
LO
2
AMPLITUDE BALANCE (dB)
AMPLITUDE BALANCE (dB)
2
Data Sheet
HMC520A
AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 3500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken at LO = 15 dBm, unless otherwise noted.
5
5
TA = +85°C
TA = +25°C
TA = –40°C
4
1
0
–1
–2
2
1
0
–1
–2
–3
–3
–4
–4
–5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
RF FREQUENCY (GHz)
Figure 73. Amplitude Balance vs. RF Frequency at Various Temperatures
–5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
RF FREQUENCY (GHz)
Figure 75. Amplitude Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
30
30
TA = +85°C
TA = +25°C
TA = –40°C
20
10
0
–10
0
–10
LO
LO
LO
LO
–20
–30
5
6
7
8
9
RF FREQUENCY (GHz)
10
11
13605-074
–20
10
Figure 74. Phase Balance vs. RF Frequency at Various Temperatures
Rev. A | Page 21 of 32
= 19dBm
= 17dBm
= 15dBm
= 13dBm
–30
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 76. Phase Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
13605-076
PHASE BALANCE (Degrees)
20
PHASE BALANCE (Degrees)
= 19dBm
= 17dBm
= 15dBm
= 13dBm
13605-075
2
LO
LO
LO
LO
3
AMPLITUDE BALANCE (dB)
3
13605-073
AMPLITUDE BALANCE (dB)
4
HMC520A
Data Sheet
IF BANDWIDTH, DOWNCONVERTER PERFORMANCE
Data taken as an image reject mixer with an external 90° hybrid, LO = 15 dBm, unless otherwise noted.
0
–10
–15
–20
0.1
0.6
1.1
1.6
2.1
IF FREQUENCY (GHz)
2.6
3.1
3.6
Figure 77. Conversion Gain vs. IF Frequency at Various Temperatures,
Lower Sideband, LO = 10.5 GHz
TA = +85°C
TA = +25°C
TA = –40°C
–5
–10
–15
–20
0.1
0.6
1.1
1.6
2.1
IF FREQUENCY (GHz)
2.6
3.1
3.6
13605-078
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
–5
13605-077
CONVERSION GAIN (dB)
0
Figure 78. Conversion Gain vs. IF Frequency at Various Temperatures,
Upper Sideband, LO = 8.5 GHz
Rev. A | Page 22 of 32
Data Sheet
HMC520A
ISOLATION AND RETURN LOSS
70
0
60
–5
40
30
20
LO TO RF
LO TO IF1
LO TO IF2
RF TO IF1
RF TO IF2
0
5
6
7
8
9
10
11
RF FREQUENCY (GHz)
Figure 79. Isolation vs. RF Frequency at LO = 15 dBm, TA = 25°C
–20
IF2
–30
0.1
0.6
1.1
1.6
TA = +85°C
TA = +25°C
TA = –40°C
2.1
2.6
3.1
3.6
4.1
IF FREQUENCY (GHz)
Figure 81. IF Return Loss vs. IF Frequency at Various Temperatures,
LO = 8.5 GHz at 15 dBm
0
0
TA = +85°C
TA = +25°C
TA = –40°C
–5
–10
–15
–20
–10
–15
–20
–25
–25
5
6
7
8
9
LO FREQUENCY (GHz)
10
11
–30
13605-080
–30
Figure 80. LO Return Loss vs. LO Frequency at Various Temperatures at
LO = 15 dBm
TA = +85°C
TA = +25°C
TA = –40°C
5
6
7
8
9
RF FREQUENCY (GHz)
10
11
13605-082
RF RETURN LOSS (dB)
–5
LO RETURN LOSS (dB)
–15
–25
13605-079
10
IF1
–10
13605-081
IF RETURN LOSS (dB)
ISOLATION (dB)
50
Figure 82. RF Return Loss vs. RF Frequency at Various Temperatures,
LO = 8.5 GHz at 15 dBm
Rev. A | Page 23 of 32
HMC520A
Data Sheet
M × N Spurious Output Performance, Upconverter, Upper
Sideband (Low-Side LO), IFIN = 100 MHz at −10 dBm,
TA = 25°C
SPURIOUS AND HARMONICS PERFORMANCE
LO harmonic isolation, LO = 15 dBm, all values are in dBc
measured below the input LO level at the RF port and are
positive, unless otherwise noted.
RFOUT = 7600 MHz, LO = 7500 MHz at 15 dBm, data taken
without external hybrid, and all values are in dBc measured
below the RFOUT power level (M × IFIN) − (N × LO) and are
positive, unless otherwise noted.
Table 5. NLO Spur at RF Output (RFOUT)
LO Frequency (GHz)
5.5
6.5
7
7.5
8.5
9.5
10.5
1
49
43
43
44
43
42
42
2
33
37
43
55
59
61
72
N × LO
3
52
63
55
52
69
62
56
4
66
52
55
61
62
65
61
M × N Spurious Output Performance, Downconverter,
Lower Sideband (High-Side LO), IF = 100 MHz, TA = 25°C
RF = 9400 MHz at −10 dBm, LO = 9500 MHz at 15 dBm, data
taken without external hybrid, and all values are in dBc measured
below the IF power level (M × RF) − (N × LO) and are positive,
unless otherwise noted.
M × RF
0
1
2
3
4
5
0
0
+31
+71
+69
+62
+58
1
−13
0
+57
+70
+68
+61
N × LO
2
3
+31
+12
+42
+60
+66
+58
+75
+67
+71
+75
+67
+71
4
+39
+62
+70
+74
+85
+77
5
+56
+50
+60
+71
+74
+85
M × IF
M × RF
0
0
+31
+73
+68
+68
+62
1
−10
0
+51
+74
+71
+68
4
+46
+68
+75
+78
+87
+77
2
26
24
71
73
71
72
N × LO
3
24
30
67
67
66
68
4
29
56
62
64
64
63
5
42
42
58
60
58
59
RFOUT = 9400 MHz, LO = 9500 MHz at 15 dBm, data taken
without external hybrid, and all values are in dBc measured
below the RFOUT power level (M × IFIN) − (N × LO) and are
positive, unless otherwise noted.
M × IF
RF = 7600 MHz at −10 dBm, LO = 7500 MHz at 15 dBm, data
taken without external hybrid, and all values are in dBc measured
below the IF power level (M × RF) − (N × LO) and are positive,
unless otherwise noted.
0
1
2
3
4
5
1
6
0
53
65
76
77
M × N Spurious Output Performance, Upconverter, Lower
Sideband (High-Side LO), IFIN = 100 MHz at −10 dBm,
TA = 25°C
M × N Spurious Output Performance, Downconverter,
Upper Sideband (Low-Side LO), IF = 100 MHz, TA = 25°C
N × LO
2
3
+23
+29
+36
+49
+76
+50
+78
+72
+71
+79
+70
+73
0
1
2
3
4
5
0
0
78
89
88
88
86
5
+35
+53
+65
+73
+77
+86
Rev. A | Page 24 of 32
0
1
2
3
4
5
0
0
79
87
87
86
86
1
8
0
55
60
77
78
2
21
25
47
74
73
74
N × LO
3
17
48
57
72
72
72
4
26
54
56
68
66
67
5
35
37
59
61
61
60
Data Sheet
HMC520A
THEORY OF OPERATION
The HMC520A is a GaAs, MMIC, I/Q mixer in a 24-terminal,
RoHS compliant, ceramic LCC package and operates over the
−40°C to +85°C temperature range. The EV1HMC520ALC4
evaluation board is also available from Analog Devices, Inc. The
HMC520A is a passive, wideband, I/Q MMIC mixer that can be
used as either an image reject mixer for receiver operations or as a
single sideband upconverter for transmitter operations. The mixer
uses two standard double balanced mixer cells and a 90° hybrid
fabricated in the GaAs, MESFET process.
With an RF and an LO input frequency range of 6 GHz to 10 GHz
and an IF frequency range of dc to 3.5 GHz, the HMC520A is ideal
for applications requiring a wide frequency range, excellent RF
performance, a simple design with fewer components, and a
small PCB footprint. One HMC520A can replace multiple
narrow-band mixers in a design. The HMC520A eliminates the
need for wire bonding, allowing the use of the surface-mount
manufacturing techniques.
The inherent I/Q architecture of the HMC520A offers excellent
image rejection and thereby eliminates the need for expensive
filtering for unwanted sidebands. The double balanced architecture
of the mixer also provides excellent LO to RF isolation and LO to IF
isolation, and this architecture reduces the effect of LO leakage
to ensure signal integrity. Because the HMC520A is a passive
mixer, the HMC520A does not require any dc power sources.
The HMC520A offers a lower noise figure compared to an
active mixer, ensuring superior dynamic range for high
performance and precision applications.
For both upconversion and downconversion, an external 90°
hybrid is required. See the Applications Information section for
details on interfacing with this external 90° hybrid.
Rev. A | Page 25 of 32
HMC520A
Data Sheet
17
10
11
12
13
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
6
7
8
9
10
11
12
13
RF FREQUENCY (GHz)
Figure 85. Image Rejection vs. RF Frequency, Downconverter,
Lower Sideband (High-Side LO), IF = 1.5 GHz
IF2
DC BLOCKING
CAPACITORS
9
BIAS TEE/
DC FEED FOR IF2
SUPPLY
FOR IF1
SUPPLY
FOR IF2
50Ω
IF
NOTES
1. DASHED SECTIONS ARE OPTIONAL AND MEANT FOR LO NULLING.
13605-084
EXTERNAL
90° HYBRID
Figure 83. Typical Application Circuit
PERFORMANCE TO 13 GHz
This section provides test results at a higher frequency to
13 GHz. Board, traces, and connector losses are not de-embedded
for all measurements. This performance is typical, though not
guaranteed. All measurements were made under the following
conditions: LO = 15 dBm, IF = 1.5 GHz, RF = −10 dBm, and
TA = 25°C, with an external 90° IF hybrid at the IF ports, unless
otherwise noted.
Rev. A | Page 26 of 32
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
6
7
8
9
10
11
12
RF FREQUENCY (GHz)
Figure 86. Input IP3 vs. RF Frequency, Downconverter,
Lower Sideband (High-Side LO), IF = 1.5 GHz
13
13605-186
20
IF1
LO
12
13
11
6
9
14
10
15
5
8
16
4
7
3
8
Figure 84. Conversion Gain vs. RF Frequency, Downconverter,
Lower Sideband (High-Side LO), IF = 1.5 GHz
IMAGE REJECTION (dBc)
18
7
RF FREQUENCY (GHz)
INPUT IP3 (dBm)
2
BIAS TEE/
DC FEED FOR IF1
19
22
90°
HYBRID
1
RF
21
24
23
To select the upper sideband (low-side LO) when using as a
downconverter, connect the IF1 pin to the 0° port of the hybrid
and connect the IF2 pin to the 90° port of the hybrid. To select
the lower sideband (high-side LO), connect the IF1 pin to the
90° port of the hybrid and connect the IF2 pin to the 0° port of
the hybrid. The output is from the sum port of the hybrid, and
the difference port is 50 Ω terminated.
6
13605-184
To select the upper sideband when using as an upconverter,
connect the IF1 pin to the 90° port of the hybrid and connect
the IF2 pin to the 0° port of the hybrid. To select the lower
sideband, connect the IF1 pin to the 0° port of the hybrid and
connect the IF2 pin to the 90° port of the hybrid. The input is
from the sum port of the hybrid, and the difference port is 50 Ω
terminated.
0
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
–11
–12
–13
–14
–15
–16
–17
–18
–19
–20
13605-185
Figure 83 shows the typical application circuit for the HMC520A.
To select the appropriate sideband, an external 90° hybrid is
needed. For applications not requiring operation to dc, use an
off chip dc blocking capacitor. For applications that require the
LO signal at the output to be suppressed, use a bias tee or RF
feed as shown in Figure 83. Ensure that the source or sink
current used for LO suppression is