0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HMC7144LC4TR-R5

HMC7144LC4TR-R5

  • 厂商:

    AD(亚德诺)

  • 封装:

    TFCQFN24_EP

  • 描述:

    IC MMIC I/Q UPCONVERTER 24SMD

  • 数据手册
  • 价格&库存
HMC7144LC4TR-R5 数据手册
VDD 1 VDETBIAS 21 20 19 PEAK DETECTOR 16 IN 4 100 Gbps Ethernet LR4 (10 km) and ER4 (40 km) applications C-form factor pluggable (CFP/CFP2) or similar form factor modules Optical transceivers and pluggable modules Broadband gain stages and preamplifiers Broadband test and measurement equipment 7 9 VGG APPLICATIONS OUT 15331-001 Operation up to 32 Gbps Low dc power dissipation 0.15 W for 1.5 V p-p swing at 3.5 V supply 0.4 W for 2 V p-p swing at 5 V supply Adjustable output amplitude from 1.2 V p-p to 2.2 V p-p Integrated peak detector 24-lead, ceramic, 4 mm × 4 mm LCC package: 16 mm2 VDET FUNCTIONAL BLOCK DIAGRAM VDETREF FEATURES VCTL Data Sheet 28 Gbps EML Driver with Peak Detector HMC7144 Figure 1. GENERAL DESCRIPTION The HMC7144 is a broadband driver amplifier for electroabsorption modulated lasers (EML). The device supports data rates up to 28 Gbps to meet 100 Gbps Ethernet system requirements. The device provides module designers with a scalable power dissipation for varying drive voltage characteristics of different modulators; the power consumption of the module can be set as low as 0.12 W to 0.5 W at 1.5 V p-p and 2.2 V p-p output amplitudes, respectively. Rev. C The HMC7144 supports a wide range of supply voltages from 3.5 V to 7 V and delivers excellent time domain performance. The driver incorporates the unique peak detector with reference feature that enables continuous output amplitude monitoring without the need for external high frequency circuitry. The output amplitude and crosspoint are adjustable via control pins. The input and output are 50 Ω and require ac coupling. The HMC7144 is housed in a robust, leadless, 4 mm × 4 mm ceramic LCC package. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com HMC7144* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017 COMPARABLE PARTS DISCUSSIONS View a parametric search of comparable parts. View all HMC7144 EngineerZone Discussions. EVALUATION KITS SAMPLE AND BUY • HMC7144LC4 Evaluation Board Visit the product page to see pricing options. DESIGN RESOURCES TECHNICAL SUPPORT • HMC7144 Material Declaration Submit a technical question or find your regional support number. • PCN-PDN Information • Quality And Reliability • Symbols and Footprints DOCUMENT FEEDBACK Submit feedback for this data sheet. This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified. HMC7144 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Interface Schematics .....................................................................7  Applications ....................................................................................... 1  Typical Performance Characteristics ..............................................8  Functional Block Diagram .............................................................. 1  Applications Information .............................................................. 11  General Description ......................................................................... 1  Device Operation ....................................................................... 11  Revision History ............................................................................... 2  Device Power-Up........................................................................ 11  Specifications..................................................................................... 3  Device Power-Down .................................................................. 11  3.5 V Electrical Specifications..................................................... 3  Application Circuit ..................................................................... 11  5.0 V Electrical Specifications..................................................... 4  Evaluation Printed Circuit Board (PCB) ................................ 12  Typical Bias Voltages .................................................................... 4  Outline Dimensions ....................................................................... 13  Absolute Maximum Ratings............................................................ 5  Ordering Guide .......................................................................... 13  ESD Caution .................................................................................. 5  Pin Configuration and Function Descriptions ............................. 6  REVISION HISTORY This Hittite Microwave Products data sheet has been reformatted to meet the styles and standards of Analog Devices, Inc. 12/2016—v02.0314 to Rev. C Changes to Features, Applications, and General Description Section ................................................................................................ 1 Changes to Table 3 ............................................................................ 4 Changes to Table 4 ............................................................................ 5 Changes to Table 5 ............................................................................ 6 Changes to Device Power-Up Section ......................................... 11 Rev. C | Page 2 of 13 Data Sheet HMC7144 SPECIFICATIONS 3.5 V ELECTRICAL SPECIFICATIONS VDD = 3.5 V, TA = 25°C, unless otherwise noted. Table 1. Parameter MAXIMUM DATA RATE GAIN RETURN LOSS Input Output GROUP DELAY VARIATION ADJUSTABLE OUTPUT SWING RANGE TIMING Rise Fall JITTER Additive RMS Jitter1 Deterministic SIGNAL-TO-NOISE RATIO (SNR) SUPPLY CURRENT (IDD) BIAS CURRENT ADJUST/CROSSPOINT ADJUST Bias Voltage (VGG) Bias Current (IGG) OUTPUT AMPLITUDE ADJUST Voltage (VCTL) Current (ICTL) CROSSPOINT RANGE2 PEAK DETECT SENSITIVITY 1 2 Test Conditions/Comments Min DC to 10 GHz 10 GHz to 20 GHz 20 GHz to 30 GHz 10 11.8 5.8 DC to 10 GHz 10 GHz to 20 GHz 20 GHz to 30 GHz DC to 10 GHz 10 GHz to 20 GHz 20 GHz to 30 GHz DC to 10 GHz 10 GHz to 20 GHz 20 GHz to 30 GHz Data input = 28 Gbps nonreturn to zero (NRZ) pseudorandom binary sequence (PRBS) 231 − 1 pattern, 0.5 V p-p Data input = 28 Gbps NRZ PRBS 231 − 1 pattern, 0.5 V p-p 20% to 80% 20% to 80% Data input = 28 Gbps NRZ PRBS 231 − 1 pattern, 0.5 V p-p Additive rms jitter is calculated by JRMS DUT = √((JTESTED)2 − (JSOURCE)2) with 28 Gbps 10101 … pattern, 0.5 V p-p. Adjust VGG between −1 V and 0 V to achieve the desired crosspoint percentage. Rev. C | Page 3 of 13 Max 32 13.8 13.5 13 Unit Gbps dB dB dB −13 −16 −18 −23 −21 −18 ±5 ±10 ±22 −10 −9 −4 −15 −13 −11 dB dB dB dB dB dB ps ps ps V p-p 0.9 1.5 14.5 16.2 240 270 40 23 45 −1.5 ps ps 55 fS ps dB mA −0.9 −0.5 1 V mA −1 −0.2 45 75 50 85 +0.5 1 55 95 V mA % mV/V Data input = 28 Gbps NRZ PRBS 231 − 1 pattern, 0.5 V p-p RLOAD = 10 MΩ at VDET and VDETREF Typ 28 13 12.8 8.8 320 2 HMC7144 Data Sheet 5.0 V ELECTRICAL SPECIFICATIONS VDD = 5.0 V, TA = 25°C, unless otherwise specified. Table 2. Parameter MAXIMUM DATA RATE GAIN RETURN LOSS Input Output GROUP DELAY VARIATION ADJUSTABLE OUTPUT SWING RANGE TIMING Rise Fall JITTER Additive RMS Jitter1 Deterministic SIGNAL-TO-NOISE RATIO (SNR) SUPPLY CURRENT (IDD) BIAS CURRENT ADJUST/CROSSPOINT ADJUST Gate Bias Voltage (VGG) Gate Bias Current (IGG) OUTPUT AMPLITUDE ADJUST Control Bias Voltage (VCTL) Control Bias Current (ICTL) CROSSPOINT RANGE2 PEAK DETECT SENSITIVITY 1 2 Test Conditions/Comments Min DC to 10 GHz 10 GHz to 20 GHz 20 GHz to 30 GHz 11 10 7 DC to 10 GHz 10 GHz to 20 GHz 20 GHz to 30 GHz DC to 10 GHz 10 GHz to 20 GHz 20 GHz to 30 GHz DC to 10 GHz 10 GHz to 20 GHz 20 GHz to 30 GHz Data input = 28 Gbps NRZ PRBS 231 − 1 pattern, 0.5 V p-p Data input = 28 Gbps NRZ PRBS 231 − 1 pattern, 0.5 V p-p 20% to 80% 20% to 80% Data input = 28 Gbps NRZ PRBS 231 − 1 pattern, 0.5 V p-p Max 32 16 15 13 Unit Gbps dB dB dB −13 −14 −16 −23 −21 −15 ±6 ±10 ±20 −10 −10 −7 −10 −10 −7 dB dB dB dB dB dB ps ps ps V p-p 1.2 2.2 15 16 240 250 50 22 70 −1.5 ps ps 80 fS ps dB mA −0.85 −0.5 1 V mA −1 0 45 75 50 85 +0.5 1 55 95 V mA % mV/V Data input = 28 Gbps NRZ PRBS 231 − 1 pattern, 0.5 V p-p RLOAD = 10 MΩ at VDET and VDETREF Typ 28 15 14 12 310 2 Additive rms jitter is calculated by JRMS DUT = √((JTESTED)2 – (JSOURCE)2) with 28 Gbps 10101 … pattern, 0.5 V p-p. Adjust VGG between −1 V and 0 V to achieve the desired crosspoint percentage. TYPICAL BIAS VOLTAGES Input data amplitude = 500 mV p-p. Table 3. Parameter VDD 3.5 V 4. 0 V 5.0 V 6.0 V 7.0 V 1 VCTL VGG IDD −0.4 V −0.4 V 0V −0.2 V −0.2 V −0.2 V −0.9 V −0.85 V −0.85 V −0.8 V −0.8 V Set to get IDD 45 mA 53 mA 70 mA 76 mA 92 mA 120 mA1 This value denotes the worst case operating conditions with a maximum case temperature of 87°C. Rev. C | Page 4 of 13 Data Sheet HMC7144 ABSOLUTE MAXIMUM RATINGS Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Table 4. Parameter Drain Bias Voltage (VDD) Range Gate Bias Voltage (VGG) Minimum Maximum Control Bias Voltage (VCTL) Minimum Maximum Maximum Detector Bias Voltage (VDETBIAS) Input Voltage Swing (VIN) Storage Temperature Range Operating Temperature Range Maximum Peak Reflow Temperature Channel Temperature Thermal Resistance (Channel to Ground Pad) ESD Sensitivity (Human Body Model) Rating 12 V −1.5 V 0V −1.5 V 2.0 V 2.5 V 2 V p-p −65°C to +150°C −40°C to +87°C 260°C 137°C 56.58°C/W Class 1A ESD CAUTION Rev. C | Page 5 of 13 HMC7144 Data Sheet 20 VDET 19 VDETBIAS 22 NC 21 VDETREF 24 ACG1 23 ACG2 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 18 GND VDD 1 GND 2 GND 3 HMC7144 IN 4 TOP VIEW (Not to Scale) GND 5 17 GND 16 OUT 15 GND 14 GND 13 GND NOTES 1. NC = NO CONNECT. NO CONNECTION IS REQUIRED FOR THESE PINS. 2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO RF/DC GROUND. 15331-002 9 VGG ACG4 11 ACG3 12 8 NC NC 10 7 VCTL GND 6 Figure 2. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 2, 3, 5, 6, 13 to 15, 17, 18 Mnemonic VDD GND 4 7 IN VCTL 8, 10, 22 9 11 12 16 NC VGG ACG4 ACG4 OUT 19 20 21 23 24 VDETBIAS VDET VDETREF ACG2 ACG1 EPAD Description Supply Voltage. Ground. These pins and the die bottom must be connected to RF/dc ground. See Figure 3 for the GND interface schematic. Input. Pin 4 is dc-coupled and matched to 50 Ω (see Figure 6). Gate Control Voltage. This pin controls the output voltage swing of the amplifier. The typical value for VCTL is −0.2 V. See Figure 5. No Connect. No connection is required for these pins. Gate Control Voltage, Current. Low Frequency Termination. Attach bypass capacitors per the application circuit shown in Figure 5. Low Frequency Termination. Attach bypass capacitors per the application circuit shown in Figure 5. Output. Pin 16 is decoupled and matched to 50 Ω (see Figure 7). The data polarity of the OUT pin is the inverse of the data polarity on the IN pin. Detector Bias Voltage. Set Pin 19 to 1.2 V (see Figure 7). Detector Output Voltage. Detector Reference Voltage (see Figure 7). Low Frequency Termination. Attach bypass capacitors per the application circuit shown in Figure 4. Low Frequency Termination. Attach bypass capacitors per the application circuit shown in Figure 4. Exposed Pad. The exposed pad must be connected to RF/dc ground. Rev. C | Page 6 of 13 Data Sheet HMC7144 IN Figure 3. GND Interface Schematic 15331-006 GND 15331-003 INTERFACE SCHEMATICS Figure 6. IN Interface Schematic VDETBIAS ACG1 ACG2 VCTL 15331-004 VDETREF VDETREF OUT VGG Figure 7. VDETBIAS, VDETREF, and OUT Interface Schematic 15331-005 ACG3 ACG4 15331-007 Figure 4. ACG1, ACG2, and VCTL Interface Schematic Figure 5. ACG3, ACG4, and VGG Interface Schematic Rev. C | Page 7 of 13 HMC7144 Data Sheet 15331-011 15331-008 TYPICAL PERFORMANCE CHARACTERISTICS Figure 8. 28 Gbps NRZ PRBS 231 − 1 Pattern Input Data, Input Eye Diagram, VIN = 510 mV p-p 15331-012 15331-009 Figure 11. 28 Gbps Output Eye Diagram at VDD = 4.0 V, VCTL = −0.2 V, VGG = −0.89 V, IDD = 50 mA, VOUT = 1.77 V p-p, PDISS = 0.20 W Figure 9. 28 Gbps Output Eye Diagram at VDD = 3.5 V, VCTL = −0.3 V, VGG = −0.9 V, IDD = 44 mA, VOUT = 1.59 V p-p, PDISS = 0.15 W Figure 12. 28 Gbps Output Eye Diagram at VDD = 6.0 V, VCTL = −0.03 V, VGG = −0.81 V, IDD = 79 mA, VOUT = 2.37 V p-p, PDISS = 0.47 W 20 3.5V 4.0V 5.0V 6.0V 18 16 GAIN (dB) 14 12 10 8 6 2 0 DATA INPUT = 28Gbps NRZ PRBS 231 – 1 PATTERN 0.5V p-p 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 FREQUENCY (GHz) Figure 10. 28 Gbps Output Eye Diagram at VDD = 5.0 V, VCTL = −0.05 V, VGG = −0.85 V, IDD = 64 mA, VOUT = 2.09 V p-p, PDISS = 0.32 W Figure 13. Gain over Supply, VGG = −0.90 V Rev. C | Page 8 of 13 15331-013 15331-010 4 Data Sheet INPUT RETURN LOSS (dB) –5 0 400 –5 390 –10 –10 –15 –15 –20 –20 –25 –25 –30 –30 –35 –35 –40°C +25°C +87°C 380 GROUP DELAY (ps) –40°C +25°C +87°C OUTPUT RETURN LOSS (dB) 0 HMC7144 370 360 350 340 2 4 6 –40 10 12 14 16 18 20 22 24 26 28 30 8 FREQUENCY (GHz) 320 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 FREQUENCY (GHz) Figure 17. Group Delay vs. Frequency over Temperature, VGG = −0.90 V, VDD = 5 V (See Table 3 for Typical Bias Voltages) Figure 14. Input and Output Return Loss over Temperature, VDD = 5 V (See Table 3 for Typical Bias Voltages) 2.5 2.5 –40°C +25°C +87°C 3.5V 4.0V 5.0V 6.0V 2.0 OUTPUT SWING (V p-p) 1.5 1.0 1.5 1.0 0.5 0.5 VCTL (V) DATA INPUT = 28Gbps NRZ PRBS 231 – 1 PATTERN 0.5V p-p 0 –0.8 –0.6 –0.4 –0.2 0 15331-015 DATA INPUT = 28Gbps NRZ PRBS 231 – 1 PATTERN 0.5V p-p 0 –0.8 –0.6 –0.4 –0.2 0 VCTL (V) Figure 18. Output Swing vs. VCTL over Supply, VGG = −0.90 V, Data Input = 28 Gbps NRZ PRBS 231 – 1 Pattern, 0.5 V p-p Figure 15. Output Swing vs. VCTL over Temperature, VGG = −0.90 V, Data Input = 28 Gbps NRZ PRBS 231 − 1 Pattern, 0.5 V p-p, VDD = 5 V (See Table 3 for Typical Bias Voltages) 20 0.40 –40°C +25°C +87°C 18 0.35 POWER DISSIPATION (W) 16 14 12 10 8 6 15331-018 OUTPUT SWING (V p-p) 2.0 GAIN (dB) 15331-017 0 15331-014 330 –40 –40°C +25°C +87°C 0.30 0.25 0.20 0.15 0.10 4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 FREQUENCY (GHz) DATA INPUT = 28Gbps NRZ PRBS 231 – 1 PATTERN 0.5V p-p 0 0.5 1.0 1.5 2.0 2.5 15331-016 0 Figure 16. Gain over Temperature, VDD = 5 V (See Table 3 for Typical Bias Voltages) OUTPUT SWING (V p-p) 15331-019 0.05 2 Figure 19. Power Dissipation vs. Output Swing over Temperature, VDD = 5 V (See Table 3 for Typical Bias Voltages), Data Input = 28 Gbps NRZ PRBS 231 − 1 Pattern, 0.5 V p-p Rev. C | Page 9 of 13 HMC7144 0.40 0.35 0.30 0.30 RMS JITTER (ps) 0.35 0.20 0.15 0.10 0.9 TOTAL PEAK-TO-PEAK SOURCE JITTER IS J p-p (SOURCE) = 5ps, DATA INPUT = 0.5V p-p, 28Gbps 1010... PATTERN FOR RMS JITTER, DATA INPUT = 0.5V p-p, 28Gbps NRZ PRBS 231 − 1 PATTERN FOR PEAK-TO-PEAK JITTER, ADDITIVE RMS JITTER IS J RMS = √((JTESTED)2 – (JSOURCE)2) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 Figure 20. RMS Jitter vs. Output Swing over Temperature, VDD = 5 V (See Table 3 for Typical Bias Voltages), Total Peak-to-Peak Source Jitter is Jp-p(SOURCE) = 5 ps, Data Input = 0.5 V p-p, 28 Gbps 1010 … Pattern for RMS Jitter, Data Input = 0.5 V p-p, 28 Gbps NRZ PRBS 231 − 1 Pattern for Peak-ToPeak Jitter, Additive RMS Jitter is JRMS = √((JTESTED)2 – (JSOURCE)2) PEAK DETECT VOLTAGE (mV) DATA INPUT = 28Gbps NRZ PRBS 231 – 1 PATTERN 0.5V p-p 20 0.5 1.0 1.5 2.0 2.5 OUTPUT SWING (V p-p) Figure 21. Signal-to-Noise Ratio vs. Output Swing over Supply, VGG = −0.90 V, Data Input = 28 Gbps NRZ PRBS 231 − 1 Pattern, 0.5 V p-p POWER DISSIPATION (W) 3.5V 4.0V 5.0V 6.0V 150 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 10MΩ 5MΩ 1MΩ 100kΩ 10kΩ 50 0 0.5 1.0 1.5 2.0 OUTPUT SWING (V p-p) 2.5 3.0 Figure 24. Peak-Detect Voltage vs. Output Swing over RLOAD, VDD = 5 V (See Table 3 for Typical Bias Voltages), VDETBIAS = 1.2 V, Peak Detect Voltage = VDET − VDETREF, RLOAD is Equivalent Resistance to GND at VDET and VDETREF Pins 0.3 0.2 15331-022 0.1 OUTPUT SWING (V p-p) 1.1 100 0.4 DATA INPUT = 28Gbps NRZ PRBS 231 – 1 PATTERN 0.5V p-p 0 0.5 1.0 1.5 2.0 2.5 1.0 Figure 23. RMS Jitter vs. Output Swing over Supply, VGG = −0.90 V, Total Peakto-Peak Source Jitter is Jp-p(SOURCE) = 5 ps, Data Input = 0.5 V p-p, 28 Gbps 1010 … Pattern for RMS Jitter, Data Input = 0.5 V p-p, 28 Gbps NRZ PRBS 231 − 1 Pattern for Peak-To-Peak Jitter, Additive RMS Jitter is JRMS = √((JTESTED)2 – (JSOURCE)2) 15331-021 SIGNAL TO NOISE RATIO (dB) 21 TOTAL PEAK-TO-PEAK SOURCE JITTER IS Jp-p (SOURCE) = 5ps, DATA INPUT = 0.5V p-p, 28Gbps 1010... PATTERN FOR RMS JITTER, DATA INPUT = 0.5V p-p, 28Gbps NRZ PRBS 231 − 1 PATTERN FOR PEAK-TO-PEAK JITTER, ADDITIVE RMS JITTER IS J RMS = √((JTESTED)2 – (JSOURCE)2) OUTPUT SWING (V p-p) 200 22 0.5 0.10 0.9 3.5V 4.0V 5.0V 6.0V 23 0.6 0.20 0.15 OUTPUT SWING (V p-p) 24 0.25 15331-024 0.25 3.5V 4.0V 5.0V 6.0V 15331-023 –40°C +25°C +87°C 15331-020 RMS JITTER (ps) 0.40 Data Sheet Figure 22. Power Dissipation vs. Output Swing over Supply, VGG = −0.90 V, Data Input = 28 Gbps NRZ PRBS 231 − 1 Pattern, 0.5 V p-p Rev. C | Page 10 of 13 Data Sheet HMC7144 APPLICATIONS INFORMATION 6. DEVICE OPERATION Make necessary adjustments, as follows: a. VGG can be adjusted to obtained the desired eye crossing point percentage. b. VCTL can be adjusted to set the desired output voltage swing. c. VDD can be further adjusted to optimize the power consumption and the output voltage swing. The HMC7144 is susceptible to damage from electrostatic discharge. Observe proper precautions during handling, assembly, and test. DEVICE POWER-UP To power-up the device properly, take the following steps: 1. 2. 3. 4. 5. Ground the device. Set VGG to −1.3 V to ensure the device is turned off when supply is applied in Step 4 (no drain current). Set VCTL to its typical value (see Table 3, no drain current). Set VDD to its typical value (see Table 3, no drain current). Increase VGG until the supply current (IDD) reaches its desired value. Note that Step 2 and Step 3 can be performed at the same time, or Step 3 can be performed before Step 2. DEVICE POWER-DOWN Reverse Step 1 through Step 4 listed in the Device Power-Up section. APPLICATION CIRCUIT PEAK DETECT CIRCUIT 6 C7 1nF GND TP5 5 4 3 2 1 C6 1nF C8 1nF 20 19 17 4 15 5 14 6 13 9 16 8 3 C22 100nF C10 10nF C2 1nF GND C4 1nF VCTL TP2 C11 10nF L1 530nH R1 475Ω C18 470nF C3 1nF VBIAS TP4 C23 10µF EML BIAS CIRCUIT 15331-100 C16 4.7µF J2 OUT L2 100µH PACKAGE BASE VCTL TP2 C15 4.7µF C19 470nF 18 PEAK DETECTOR 7 C21 100nF 21 1 2 J1 IN C5 1nF 12 C1 1nF 11 C9 10nF 10 C14 4.7µF 22 VDD TP1 23 24 NC C29 470nF J3 Figure 25. Evaluation Board Schematic Rev. C | Page 11 of 13 HMC7144 Data Sheet 15331-025 EVALUATION PRINTED CIRCUIT BOARD (PCB) Figure 26. EVAL01-HMC7144LC4 Evaluation PCB Table 6. Bill of Materials for the EVAL01-HMC7144LC4 Evaluation Board1 Item J1, J2 J3 TP1 to TP5 C1 to C8 C9 to C11 C14 to C16 C18 to C19, C29 C21, C22 C23 L1 L2 U1 PCB 1 Description K connector 2 mm, 6-pin SMT header DC test point 1000 pF capacitor, 0402 package 10 nF capacitor, 0603 package 4.7 μF capacitor, 0603 package 0.47 μF capacitor, 0603 package 47,000 pF capacitor, 0402 package 10 μF capacitor, 1206 package 0.53 μH inductor, conical package 100 μH inductor, 1210 package HMC7144, 28 Gbps, EML driver with peak detector 600-00709-00-1 evaluation board, circuit board material is Rogers 4350 or Arlon 25 FR The board in this application uses radio frequency (RF) circuit board design techniques. Provide 50 Ω impedance for the signal lines and connect the package ground leads and exposed pad directly to the ground plane, similar to that shown in Figure 26. Use a sufficient number of via holes to connect the top and bottom ground planes. Reference this number to order the full evaluation PCB. Rev. C | Page 12 of 13 Data Sheet HMC7144 OUTLINE DIMENSIONS 4.13 4.00 SQ 3.87 PIN 1 INDICATOR 0.36 0.30 0.24 PIN 1 (0.32 × 0.32) 19 24 1 18 0.50 BSC EXPOSED PAD 2.50 SQ 13 6 7 12 TOP VIEW BOTTOM VIEW SIDE VIEW 3.10 BSC FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. PKG-004840 SEATING PLANE 04-03-2015-A 2.50 REF 1.02 MAX Figure 27. 24-Terminal Ceramic Leadless Chip Carrier [LCC] (E-24-1) Dimensions shown in millimeters ORDERING GUIDE Package Option E-24-1 Model HMC7144LC4 Temperature Range −40°C to +87°C MSL Rating1 MSL3 Package Description2 24-Terminal Ceramic Leadless Chip Carrier Package [LCC], 50 Pieces Reel HMC7144LC4TR −40°C to +87°C MSL3 24-Terminal Ceramic Leadless Chip Carrier Package [LCC], 100 Pieces Reel E-24-1 HMC7144LC4TR-R5 −40°C to +87°C MSL3 24-Terminal Ceramic Leadless Chip Carrier Package [LCC], 500 Pieces Reel E-24-1 EVAL01-HMC7144LC4 Evaluation Board 1 See the Absolute Maximum Ratings section. Package body material is alumina, white. Lead finish is gold over nickel. 3 XXXX is the 4-digit lot number. 2 ©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D15331-0-12/16(C) Rev. C | Page 13 of 13 Branding3 H7144 XXXX H7144 XXXX H7144 XXXX
HMC7144LC4TR-R5 价格&库存

很抱歉,暂时无法提供与“HMC7144LC4TR-R5”相匹配的价格&库存,您可以联系我们找货

免费人工找货