0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HMC798ALC4

HMC798ALC4

  • 厂商:

    AD(亚德诺)

  • 封装:

    LCC24

  • 描述:

    HMC798ALC4

  • 数据手册
  • 价格&库存
HMC798ALC4 数据手册
24 GHz to 34 GHz, GaAs, MMIC, Subharmonic SMT Mixer HMC798ALC4 Data Sheet 1 NIC 2 NIC GND NIC NIC NIC NIC GND 23 22 21 20 19 18 GND 17 NIC 3 16 GND GND 4 15 LO IF 5 14 GND GND 6 13 GND GND 12 VCC 11 NIC 10 9 GND 8 RF 7 HMC798ALC4 PACKAGE BASE GND 16785-001 GND 24 FUNCTIONAL BLOCK DIAGRAM Single positive supply: 5 V at 97 mA Conversion loss: 10 dB typical at 24 GHz to 30 GHz, 10.5 dB typical at 30 GHz to 34 GHz (upconverter) Input IP3: 17.5 dBm typical at 24 GHz to 30 GHz, 20 dBm typical at 30 GHz to 34 GHz (upconverter) 2 × LO to RF isolation: 36 dB typical at 30 GHz to 34 GHz Wide IF bandwidth: dc to 4 GHz LO drive level: 4 dBm input Subharmonically pumped 2 × LO RoHS compliant, 24-terminal, 3.90 mm × 3.90 mm, ceramic LCC package GND FEATURES Figure 1. APPLICATIONS Microwave and very small aperture terminal (VSAT) radios Test equipment Point to point radios Satellite communications (SATCOM) Military electronic warfare (EW), electronic countermeasure (ECM), and command, control, communications and intelligence (C3I) GENERAL DESCRIPTION The HMC798ALC4 is a 24 GHz to 34 GHz subharmonically pumped (×2) MMIC mixer with an integrated LO amplifier housed in a leadless, RoHS compliant LCC package. The HMC798ALC4 can be used as an upconverter or downconverter between 24 GHz and 34 GHz. to 34 GHz frequency range, eliminating the need for additional filtering. The LO amplifier is single bias at a 5 V dc with a typical 4 dBm LO drive level requirement The HMC798ALC4 eliminates the need for wire bonding, allowing use of surfacemount technology (SMT) manufacturing techniques. The 2 × LO to radio frequency (RF) isolation is typically 30 dB in a 24 GHz to 30 GHz frequency range and 36 dB in a 30 GHz Rev. 0 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com HMC798ALC4 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Downconverter Performance ................................................... 10 Applications ....................................................................................... 1 Isolation and Return Loss ......................................................... 18 Functional Block Diagram .............................................................. 1 IF Bandwidth—Downconverter, Upper Sideband................. 20 General Description ......................................................................... 1 IF Bandwidth—Downconverter, Lower Sideband ................. 21 Revision History ............................................................................... 2 Spurious and Harmonics Performance ................................... 22 Specifications..................................................................................... 3 Theory of Operation ...................................................................... 23 Absolute Maximum Ratings............................................................ 4 Applications Information .............................................................. 24 Thermal Resistance ...................................................................... 4 Typical Application Circuit ....................................................... 24 ESD Caution .................................................................................. 4 Evaluation PCB Information .................................................... 24 Pin Configuration and Function Descriptions ............................. 5 Soldering Information and Recommended Land Pattern .... 24 Interface Schematics..................................................................... 5 Outline Dimensions ....................................................................... 26 Typical Performance Characteristics ............................................. 6 Ordering Guide .......................................................................... 26 Upconverter Performance ........................................................... 6 REVISION HISTORY 6/2018—Revision 0: Initial Version Rev. 0 | Page 2 of 26 Data Sheet HMC798ALC4 SPECIFICATIONS VCC = 5 V, TA = 25°C, upconverter (IFIN) = 1 GHz at −10 dBm, LO = 4 dBm, upper side band. All measurements performed as an upconverter, unless otherwise noted, on the evaluation printed circuit board (PCB). Table 1. Parameter FREQUENCY RANGE RF LO Input IF SUPPLY CURRENT SUPPLY VOLTAGE LO DRIVE LEVELS 24 GHz to 30 GHz PERFORMANCE Upconverter Conversion Loss Input Third-Order Intercept Input 1 dB Compression Point Downconverter Conversion Loss Input Third-Order Intercept Input Second-Order Intercept Input 1 dB Compression Point Isolation RF to IF 2 × LO to RF 2 × LO to IF 30 GHz to 34 GHz PERFORMANCE Upconverter Conversion Loss Input Third-Order Intercept Input 1 dB Compression Point Downconverter Conversion Loss Input Third-Order Intercept Input Second-Order Intercept Input 1 dB Compression Point Isolation RF to IF 2 × LO to RF 2 × LO to IF Symbol Test Conditions/Comments Min Typ Max Unit 97 5 4 34 18 4 125 5.25 6 GHz GHz GHz mA V dBm 12.5 dB dBm dBm 24 12 DC ICC VCC 4.75 0 IFIN IP3 P1dB IF 12.5 10 17.5 6 11 23 50 14 dB dBm dBm dBm 22 30 31 26.5 dB dB dB 15 10.5 20 9 IP3 IP2 P1dB IFIN IP3 P1dB IF IP3 IP2 P1dB 25 Rev. 0 | Page 3 of 26 13.5 dB dBm dBm 10.5 25 43 15 dB dBm dBm dBm 32 36 27 dB dB dB HMC798ALC4 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 2. Parameter RF Input Power LO Input Power IF Input Power IF Source or Sink Current VCC Supply Voltage Peak Reflow Temperature Maximum Junction Temperature (TJ) Lifetime at Maximum (TJ) Moisture Sensitivity Level (MSL)1 Continuous Power Dissipation, PDISS (TA = 85°C, Derate 8.33 mW/°C Above 85°C) Operating Temperature Range Storage Temperature Range Lead Temperature Range Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM) Field Induced Charged Device Model (FICDM) 1 THERMAL RESISTANCE Rating 13 dBm 10 dBm 13 dBm 3 mA 5.5 V 260°C 175°C 1 × 106 hrs MSL3 750 mW Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. θJA is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance. Table 3. Thermal Resistance Package Type E-24-11 −40°C to +85°C −65°C to +150°C −65°C to +150°C 1 θJA 120 θJC 119 Unit °C/W See JEDEC Standard JESD51-2 for additional information on optimizing the thermal impedance (PCB with 3 × 3 vias). ESD CAUTION 250 V 250 V Based on IPC/JEDEC J-STD-20 MSL classifications. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. 0 | Page 4 of 26 Data Sheet HMC798ALC4 20 NIC 19 GND 21 NIC 22 NIC 23 NIC 24 GND PIN CONFIGURATION AND FUNCTION DESCRIPTIONS GND 1 18 GND NIC 3 HMC798ALC4 GND 4 TOP VIEW (Not to Scale) IF 5 17 NIC 16 GND 15 LO 14 GND 13 GND 9 GND GND 12 8 RF NIC 10 VCC 11 7 GND GND 6 NOTES 1. NOT INTERNALLY CONNECTED. THESE PINS CAN BE CONNECTED TO RF AND DC GROUND. PERFORMANCE IS NOT AFFECTED. 2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO RF AND DC GROUND. 16785-002 NIC 2 Figure 2. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1, 4, 6, 7, 9, 12, 13, 14, 16, 18, 19, 24 2, 3, 10, 17, 20, 21, 22, 23 5 Mnemonic GND Description Ground. These pins and package bottom must be connected to RF and dc ground. NIC Not Internally Connected. These pins can be connected to RF and dc ground. Performance is not affected. IF Intermediate Frequency Port. This pin is dc-coupled. For applications not requiring operation to dc, dc block this port externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For operation to dc, this pin must not source or sink more than 3 mA of current or die malfunction and possible die failure may result. Radio Frequency Port. This pin is dc-coupled and matched to 50 Ω. Power Supply for the LO Amplifier. Local Oscillator Port. This pin is ac-coupled and matched to 50 Ω. Exposed Pad. The exposed pad must be connected to RF and dc ground. 8 11 15 25 RF VCC LO EPAD INTERFACE SCHEMATICS Figure 3. GND Interface Schematic 16785-005 IF 16785-003 GND Figure 5. IF Interface Schematic RF 16785-006 16785-004 LO Figure 4. LO Interface Schematic Figure 6. RF Interface Schematic Rev. 0 | Page 5 of 26 HMC798ALC4 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS UPCONVERTER PERFORMANCE IFIN = 1 GHz, Upper Sideband 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) –15 –20 23 30 25 25 20 20 15 TA = +85°C TA = +25°C TA = –40°C 5 25 26 27 28 29 30 31 32 33 34 35 28 29 30 31 32 33 34 35 15 LO = 6dBm LO = 4dBm LO = 2dBm 10 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 8. Input IP3 vs. RF Frequency at Various Temperatures, LO = 4 dBm Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C 20 20 TA = +85°C TA = +25°C TA = –40°C LO = 6dBm LO = 4dBm LO = 2dBm 15 INPUT P1dB (dBm) 15 10 5 10 5 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 16785-009 INPUT P1dB (dBm) 27 16785-011 24 RF FREQUENCY (GHz) 0 23 26 5 16785-008 0 23 25 Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25°C 30 10 24 RF FREQUENCY (GHz) INPUT IP3 (dBm) INPUT IP3 (dBm) Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 4 dBm –10 Figure 9. Input P1dB vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 12. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 6 of 26 16785-012 –20 23 –5 16785-010 CONVERSION GAIN (dB) –5 16785-007 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C Data Sheet HMC798ALC4 IFIN = 1 GHz, Lower Sideband 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 4 dBm 24 27 28 29 30 31 32 33 34 35 Figure 16. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25°C LO = 6dBm LO = 4dBm LO = 2dBm 25 INPUT IP3 (dBm) 15 10 20 15 10 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 0 23 16785-014 24 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 14. Input IP3 vs. RF Frequency at Various Temperatures, LO = 4 dBm 16785-017 5 5 Figure 17. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C 20 20 TA = +85°C TA = +25°C TA = –40°C LO = 6dBm LO = 4dBm LO = 2dBm 15 INPUT P1dB (dBm) 15 10 5 10 5 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 16785-015 INPUT P1dB (dBm) 26 RF FREQUENCY (GHz) TA = +85°C TA = +25°C TA = –40°C 20 0 23 25 30 25 INPUT IP3 (dBm) –15 –20 23 30 0 23 –10 Figure 15. Input P1dB vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 18. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 7 of 26 16785-018 –20 23 –5 16785-016 CONVERSION GAIN (dB) –5 16785-013 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C HMC798ALC4 Data Sheet IFIN = 3.75 GHz, Upper Sideband 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 19. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 4 dBm 24 27 28 29 30 31 32 33 34 35 Figure 22. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25°C LO = 6dBm LO = 4dBm LO = 2dBm 25 INPUT IP3 (dBm) 15 10 5 20 15 10 25 26 27 28 29 30 31 32 33 34 35 0 23 16785-020 24 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 20. Input IP3 vs. RF Frequency at Various Temperatures, LO = 4 dBm 16785-023 5 RF FREQUENCY (GHz) Figure 23. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C 20 20 TA = +85°C TA = +25°C TA = –40°C LO = 6dBm LO = 4dBm LO = 2dBm 15 INPUT P1dB (dBm) 15 10 5 10 5 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 16785-021 INPUT P1dB (dBm) 26 RF FREQUENCY (GHz) TA = +85°C TA = +25°C TA = –40°C 20 0 23 25 30 25 INPUT IP3 (dBm) –15 –20 23 30 0 23 –10 Figure 21. Input P1dB vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 24. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 8 of 26 16785-024 –20 23 –5 16785-022 CONVERSION GAIN (dB) –5 16785-019 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C Data Sheet HMC798ALC4 IFIN = 3.75 GHz, Lower Sideband 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 25. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 4 dBm 24 27 28 29 30 31 32 33 34 35 Figure 28. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25°C LO = 6dBm LO = 4dBm LO = 2dBm 25 INPUT IP3 (dBm) 15 10 5 20 15 10 25 26 27 28 29 30 31 32 33 34 35 0 23 16785-026 24 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 26. Input IP3 vs. RF Frequency at Various Temperatures, LO = 4 dBm 16785-029 5 RF FREQUENCY (GHz) Figure 29. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C 20 20 TA = +85°C TA = +25°C TA = –40°C LO = 6dBm LO = 4dBm LO = 2dBm 15 INPUT P1dB (dBm) 15 10 5 10 5 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 16785-027 INPUT P1dB (dBm) 26 RF FREQUENCY (GHz) TA = +85°C TA = +25°C TA = –40°C 20 0 23 25 30 25 INPUT IP3 (dBm) –15 –20 23 30 0 23 –10 Figure 27. Input P1dB vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 30. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 9 of 26 16785-030 –20 23 –5 16785-028 CONVERSION GAIN (dB) –5 16785-025 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C HMC798ALC4 Data Sheet DOWNCONVERTER PERFORMANCE IF = 1 GHz, Upper Sideband (Low-Side LO) 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) –15 –20 23 25 25 20 20 INPUT IP3 (dBm) 30 TA = +85°C TA = +25°C TA = –40°C 10 26 27 28 29 30 31 32 33 34 35 15 LO = 6dBm LO = 4dBm LO = 2dBm 10 5 5 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 0 23 16785-032 0 23 25 Figure 33. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25°C 30 15 24 RF FREQUENCY (GHz) Figure 31. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 4 dBm INPUT IP3 (dBm) –10 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 34. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C Figure 32. Input IP3 vs. RF Frequency at Various Temperatures, LO = 4 dBm Rev. 0 | Page 10 of 26 16785-035 –20 23 –5 16785-034 CONVERSION GAIN (dB) –5 16785-031 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C Data Sheet HMC798ALC4 80 80 70 70 60 60 INPUT IP2 (dBm) 50 40 30 30 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 0 23 16785-135 24 15 15 INPUT P1dB (dBm) 20 10 TA = +85°C TA = +25°C TA = –40°C 25 26 27 28 29 30 31 32 33 34 26 27 28 29 30 31 35 RF FREQUENCY (GHz) 32 33 34 35 10 LO = 6dBm LO = 4dBm LO = 2dBm 5 16785-033 24 25 Figure 37. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25°C 20 5 24 RF FREQUENCY (GHz) Figure 35. Input IP2 vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 LO = 6dBm LO = 4dBm LO = 2dBm 10 16785-137 TA = +85°C TA = +25°C TA = –40°C 10 INPUT P1dB (dBm) 40 20 20 0 23 50 Figure 36. Input P1dB vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 38. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 11 of 26 16785-036 INPUT IP2 (dBm) Downconverter IP2 and P1dB, Upper Sideband (Low-Side LO) HMC798ALC4 Data Sheet IF = 1 GHz, Lower Sideband (High-Side LO) 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) –15 –20 23 25 25 20 20 INPUT IP3 (dBm) 30 TA = +85°C TA = +25°C TA = –40°C 10 5 26 27 28 29 30 31 32 33 34 35 15 LO = 6dBm LO = 4dBm LO = 2dBm 10 5 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 0 23 16785-038 0 23 25 Figure 41. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25°C 30 15 24 RF FREQUENCY (GHz) Figure 39. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 4 dBm INPUT IP3 (dBm) –10 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 40. Input IP3 vs. RF Frequency at Various Temperatures, LO = 4 dBm Figure 42. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 12 of 26 16785-041 –20 23 –5 16785-040 CONVERSION GAIN (dB) –5 16785-037 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C Data Sheet HMC798ALC4 Downconverter IP2 and P1dB, Lower Sideband (High-Side LO) 80 70 50 40 30 40 30 20 20 10 10 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 0 23 15 15 INPUT P1dB (dBm) 20 10 TA = +85°C TA = +25°C TA = –40°C 24 25 26 27 28 29 30 31 32 33 34 26 27 28 29 30 31 35 RF FREQUENCY (GHz) 32 33 34 35 10 LO = 6dBm LO = 4dBm LO = 2dBm 5 16785-039 0 23 25 Figure 45. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25°C 20 5 24 RF FREQUENCY (GHz) Figure 43. Input IP2 vs. RF Frequency at Various Temperatures, LO = 4 dBm INPUT P1dB (dBm) 50 16785-145 INPUT IP2 (dBm) 60 16785-143 INPUT IP2 (dBm) 60 LO = 6dBm LO = 4dBm LO = 2dBm Figure 44. Input P1dB vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 46. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 13 of 26 16785-042 70 80 TA = +85°C TA = +25°C TA = –40°C HMC798ALC4 Data Sheet IF = 3.75 GHz, Upper Sideband (Low-Side LO) 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) –15 –20 23 25 25 20 20 INPUT IP3 (dBm) 30 TA = +85°C TA = +25°C TA = –40°C 10 5 0 23 25 26 27 28 29 30 31 32 33 34 35 Figure 49. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25°C 30 15 24 RF FREQUENCY (GHz) 15 LO = 6dBm LO = 4dBm LO = 2dBm 10 5 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 16785-044 INPUT IP3 (dBm) Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 4 dBm –10 Figure 48. Input IP3 vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 50. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 14 of 26 16785-047 –20 23 –5 16785-046 CONVERSION GAIN (dB) –5 16785-043 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C Data Sheet HMC798ALC4 80 80 70 70 60 60 INPUT IP2 (dBm) 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 30 24 25 26 10 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 0 23 15 15 INPUT P1dB (dBm) 20 10 TA = +85°C TA = +25°C TA = –40°C 24 25 26 27 28 29 30 31 32 33 34 26 27 28 29 30 31 35 RF FREQUENCY (GHz) 32 33 34 35 10 LO = 6dBm LO = 4dBm LO = 2dBm 5 16785-045 0 23 25 Figure 53. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25°C 20 5 24 RF FREQUENCY (GHz) Figure 51. Input IP2 vs. RF Frequency at Various Temperatures, LO = 4 dBm INPUT P1dB (dBm) 40 16785-153 0 23 50 20 16785-151 10 LO = 6dBm LO = 4dBm LO = 2dBm Figure 52. Input P1dB vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 54. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 15 of 26 16785-048 INPUT IP2 (dBm) Downconverter IP2 and P1dB, Upper Sideband (Low-Side LO) HMC798ALC4 Data Sheet IF = 3.75 GHz, Lower Sideband (High-Side LO) 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) –15 –20 23 25 25 20 20 INPUT IP3 (dBm) 30 TA = +85°C TA = +25°C TA = –40°C 10 5 26 27 28 29 30 31 32 33 34 35 15 LO = 6dBm LO = 4dBm LO = 2dBm 10 5 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 0 23 16785-050 0 23 25 Figure 57. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25°C 30 15 24 RF FREQUENCY (GHz) Figure 55. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 4 dBm INPUT IP3 (dBm) –10 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 56. Input IP3 vs. RF Frequency at Various Temperatures, LO = 4 dBm Figure 58. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 16 of 26 16785-053 –20 23 –5 16785-052 CONVERSION GAIN (dB) –5 16785-049 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C Data Sheet HMC798ALC4 80 80 70 70 60 60 INPUT IP2 (dBm) 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 30 24 25 26 10 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 0 23 15 15 INPUT P1dB (dBm) 20 10 TA = +85°C TA = +25°C TA = –40°C 24 25 26 27 28 29 30 31 32 33 34 26 27 28 29 30 31 35 RF FREQUENCY (GHz) 32 33 34 35 10 LO = 6dBm LO = 4dBm LO = 2dBm 5 16785-051 0 23 25 Figure 61. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25°C 20 5 24 RF FREQUENCY (GHz) Figure 59. Input IP2 vs. RF Frequency at Various Temperatures, LO = 4 dBm INPUT P1dB (dBm) 40 16785-161 0 23 50 20 16785-159 10 LO = 6dBm LO = 4dBm LO = 2dBm Figure 60. Input P1dB vs. RF Frequency at Various Temperatures, LO = 4 dBm 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 62. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 17 of 26 16785-054 INPUT IP2 (dBm) Downconverter IP2 and P1dB, Lower Sideband (High-Side LO) HMC798ALC4 Data Sheet ISOLATION AND RETURN LOSS 50 40 40 20 TA = +85°C TA = +25°C TA = –40°C 10 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 40 2 × LO TO IF ISOLATION (dB) 40 TA = +85°C TA = +25°C TA = –40°C 10 0 23 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) 30 31 32 33 34 35 24 25 26 27 28 29 30 31 32 33 34 35 RF FREQUENCY (GHz) Figure 67. 2 × LO to IF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25°C 40 10 30 20 LO = 6dBm LO = 4dBm LO = 2dBm 10 24 25 26 27 28 29 30 31 RF FREQUENCY (GHz) 32 33 34 35 0 23 16785-057 0 23 29 10 40 TA = +85°C TA = +25°C TA = –40°C 28 LO = 6dBm LO = 4dBm LO = 2dBm 50 20 27 20 50 30 26 30 0 23 RF TO IF ISOLATION (dB) RF TO IF ISOLATION (dB) Figure 64. 2 × LO to IF Isolation vs. RF Frequency at Various Temperatures, LO = 4 dBm 25 Figure 66. 2 × LO to RF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25°C 50 20 24 RF FREQUENCY (GHz) 50 30 LO = 6dBm LO = 4dBm LO = 2dBm 10 0 23 16785-056 2 × LO TO IF ISOLATION (dB) Figure 63. 2 × LO to RF Isolation vs. RF Frequency at Various Temperatures, LO = 4 dBm 20 Figure 65. RF to IF Isolation vs. RF Frequency at Various Temperatures, LO = 4 dBm 24 25 26 27 28 29 30 31 RF FREQUENCY (GHz) 32 33 34 35 16785-060 0 23 30 16785-059 30 16785-058 2 × LO TO RF ISOLATION (dB) 50 16785-055 2 × LO TO RF ISOLATION (dB) Upconverter performance at IFIN = 1 GHz, upper sideband. Figure 68. RF to IF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 18 of 26 Data Sheet HMC798ALC4 0 IF RETURN LOSS (dB) –10 –20 –10 –20 TA = +85°C TA = +25°C TA = –40°C 11 12 13 14 15 16 17 18 19 20 LO FREQUENCY (GHz) 16785-061 –30 10 TA = +85°C TA = +25°C TA = –40°C Figure 69. LO Return Loss vs. LO Frequency at Various Temperatures, LO = 4 dBm RF RETURN LOSS (dB) 0 –10 –20 –30 20 11 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 RF FREQUENCY (GHz) 16785-062 TA = +85°C TA = +25°C TA = –40°C Figure 70. RF Return Loss vs. RF Frequency at Various Temperatures, LO = 14 GHz at 4 dBm Rev. 0 | Page 19 of 26 –30 0 1 2 3 4 5 6 7 8 9 10 IF FREQUENCY (GHz) Figure 71. IF Return Loss vs. IF Frequency at Various Temperatures, LO = 14 GHz at 4 dBm 16785-063 LO RETURN LOSS (dB) 0 HMC798ALC4 Data Sheet IF BANDWIDTH—DOWNCONVERTER, UPPER SIDEBAND LO frequency = 8 GHz. 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 1.1 2.1 3.1 4.1 5.1 6.1 IF FREQUENCY (GHz) Figure 72. Conversion Gain vs. IF Frequency at Various Temperatures, LO = 4 dBm 1.1 2.1 3.1 4.1 5.1 6.1 IF FREQUENCY (GHz) Figure 74. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 25°C 30 TA = +85°C TA = +25°C TA = –40°C 25 LO = 6dBm LO = 4dBm LO = 2dBm 25 INPUT IP3 (dBm) 20 15 10 5 20 15 10 5 1.1 2.1 3.1 4.1 5.1 6.1 IF FREQUENCY (GHz) 16785-065 INPUT IP3 (dBm) –15 –20 0.1 30 0 0.1 –10 Figure 73. Input IP3 vs. IF Frequency at Various Temperatures, LO = 4 dBm 0 0.1 1.1 2.1 3.1 4.1 5.1 6.1 IF FREQUENCY (GHz) Figure 75. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 20 of 26 16785-067 –20 0.1 –5 16785-066 CONVERSION GAIN (dB) –5 16785-064 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C Data Sheet HMC798ALC4 IF BANDWIDTH—DOWNCONVERTER, LOWER SIDEBAND LO frequency = 13 GHz. 0 0 LO = 6dBm LO = 4dBm LO = 2dBm –10 –15 1.1 2.1 3.1 4.1 5.1 6.1 IF FREQUENCY (GHz) Figure 76. Conversion Gain vs. IF Frequency at Various Temperatures, LO = 4 dBm –15 –20 0.1 3.1 4.1 5.1 6.1 30 20 20 INPUT IP3 (dBm) 25 15 TA = +85°C TA = +25°C TA = –40°C 5 LO = 6dBm LO = 4dBm LO = 2dBm 15 10 5 1.1 2.1 3.1 4.1 5.1 6.1 IF FREQUENCY (GHz) 16785-069 0 0.1 2.1 Figure 78. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 25°C 25 10 1.1 IF FREQUENCY (GHz) 30 INPUT IP3 (dBm) –10 Figure 77. Input IP3 vs. IF Frequency at Various Temperatures, LO = 4 dBm 0 0.1 1.1 2.1 3.1 4.1 5.1 6.1 IF FREQUENCY (GHz) Figure 79. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 25°C Rev. 0 | Page 21 of 26 16785-071 –20 0.1 –5 16785-070 CONVERSION GAIN (dB) –5 16785-068 CONVERSION GAIN (dB) TA = +85°C TA = +25°C TA = –40°C HMC798ALC4 Data Sheet SPURIOUS AND HARMONICS PERFORMANCE Upconversion, Upper Sideband M × N Spurious Outputs Downconversion, Upper Sideband Spur values are (M × RF) − (N × LO). RF = 10.1 GHz, LO = 10 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer spurious products are measured in dBc from the IF output power level. N/A means not applicable. M × RF 0 1 2 3 4 0 0 18 N/A N/A N/A 1 25 28 N/A N/A N/A N × LO 2 3 0 63 N/A N/A 3 N/A 25 75 N/A N/A 4 N/A 47 71 72 N/A Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO = 10 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer spurious products are measured in dBc from the RF output power level. N/A means not applicable. M × IFIN Downconversion, Lower Sideband Spur values are (M × RF) − (N × LO). RF = 14 GHz, LO = 14.1 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer spurious products are measured in dBc from the IF output power level. N/A means not applicable. M × RF 0 1 2 3 4 0 0 22 N/A N/A N/A 1 18 33 N/A N/A N/A N × LO 2 0 0 58 N/A N/A 3 N/A 30 75 N/A N/A 4 N/A 48 62 70 N/A −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 0 75 80 83 85 49 0 50 83 81 77 78 N × LO 2 74 73 63 44 3 14 0 44 68 73 72 1 77 79 77 78 39 12 36 73 77 78 77 3 70 70 71 74 53 0 53 73 71 70 69 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Upconversion, Lower Sideband Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO = 14.1 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer spurious products are measured in dBc from the RF output power level. N/A means not applicable. M × IFIN Rev. 0 | Page 22 of 26 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 0 76 76 80 82 53 0 53 82 79 79 75 1 76 77 77 75 45 24 41 73 74 73 73 N × LO 2 68 72 69 40 0 8 0 44 63 65 68 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Data Sheet HMC798ALC4 THEORY OF OPERATION The HMC798ALC4 is a subharmonically pumped (×2) MMIC mixer with an integrated LO amplifier that can be used as an upconverter or a downconverter from 24 GHz to 34 GHz. The LO amplifier is single bias at a 5 V dc with a typical 4 dBm LO drive level. When used as a downconverter, the HMC798ALC4 downconverts radio frequencies between 24 GHz and 34 GHz to intermediate frequencies between dc and 4 GHz. When used as an upconverter, the mixer up converts IF between dc and 4 GHz to RF between 24 GHz and 34 GHz. Rev. 0 | Page 23 of 26 HMC798ALC4 Data Sheet APPLICATIONS INFORMATION TYPICAL APPLICATION CIRCUIT Figure 80 shows the typical application circuit for the HMC798ALC4. The integrated LO amplifier is single bias at 5 V with a typical 4 dBm input. Place capacitors as close as possible to the pin to decouple the power supply. The LO and RF pins are internally ac-coupled. The IF pin is internally dc-coupled. When IF operation to dc is not required, use of an external series capacitor is recommended, of a value chosen to pass the necessary IF frequency range. When IF operation to dc is required, do not exceed the IF source or sink current rating specified in the Absolute Maximum Ratings section. GND 19 NIC NIC NIC 20 21 22 15 5 14 6 GND NIC LO 12 K_SRI-NS C1 100pF + C3 C2 TERMINAL_SWAGE 10nF 4.7µF K_SRI-NS Figure 80. Typical Application Circuit EVALUATION PCB INFORMATION Use RF circuit design techniques for the circuit board used in the application. Ensure that signal lines have 50 Ω impedance, and connect the package ground leads and the exposed pad 16785-072 VCC RF Item J1 J2, J3 U1 PCB1 C1 C2 C3 Description Johnson Surface-Mount Type A (SMA) connector SRI 2.92 mm connector HMC798ALC4 126598-1 evaluation board C0G, 0402, 100 pF capacitor X7R, 0603, 10000 pF capacitor SMD, 3216, 4.7 µF capacitor 126598-1 is the raw bare PCB identifier. Reference EV1HMC798ALC4 when ordering the complete evaluation PCB. SOLDERING INFORMATION AND RECOMMENDED LAND PATTERN LO GND GND Table 5. List of Materials for Evaluation PCB EV1HMC798ALC4 1 GND GND 11 VCC 9 13 GND SMA_JC_062PCB 4 10 GND 16 NIC IF 17 3 GND GND IF 18 HMC798ALC4 2 8 NIC 1 7 NIC RF GND 23 24 NIC GND TERMINAL_SWAGE directly to the ground plane (see Figure 81). Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown in Figure 81 is available from Analog Devices, Inc., upon request. Figure 81 shows the recommended land pattern for the HMC798ALC4. The HMC798ALC4 is contained in a 3.90 mm × 3.90 mm, 24-terminal, ceramic LCC package with an exposed ground pad (EPAD). This exposed pad is internally connected to the ground of the chip. To minimize thermal impedance and ensure electrical performance, solder the exposed pad to the low impedance ground plane on the PCB. It is recommended that the ground planes on all layers under the exposed pad be stitched together with vias to further reduce thermal impedance. The land pattern on the HMC798ALC4 evaluation board provides a simulated thermal resistance (θJC) of 119°C/W. Rev. 0 | Page 24 of 26 Data Sheet HMC798ALC4 .178" SQUARE .004" MASK/METAL OVERLAP .010" MIN MASK WIDTH SOLDERMASK GROUND PAD PAD SIZE .026" × .010" PIN 1 .0197" [0.50] .116" MASK OPENING .034" TYPICAL VIA SPACING .010" REF .030" MASK OPENING .098" SQUARE MASK OPENING .020 × 45" CHAMFER FOR PIN 1 .106" SQUARE GROUND PAD Figure 81. Evaluation Board Land Pattern for the HMC798ALC4 Package GND 126598-1 IF LO 24 23 22 21 20 19 1 2 3 4 5 6 J1 798A XXXX 18 17 16 15 14 13 J3 7 8 9 10 11 12 C1 C2 VCC RF + C3 16785-073 J2 Figure 82. Evaluation PCB Top Layer Rev. 0 | Page 25 of 26 16785-111 ᶲ .010" TYPICAL VIA HMC798ALC4 Data Sheet OUTLINE DIMENSIONS 4.05 3.90 SQ 3.75 PIN 1 INDICATOR 0.36 0.30 0.24 0.08 BSC 1 0.50 BSC 2.60 2.50 SQ 2.40 EXPOSED PAD 13 6 12 0.32 BSC TOP VIEW 1.00 0.90 0.80 PIN 1 24 19 18 7 BOTTOM VIEW 2.50 REF 3.10 BSC FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. PKG-004840 SEATING PLANE 02-27-2017-B SIDE VIEW Figure 83. 24-Terminal Ceramic Leadless Chip Carrier [LCC] (E-24-1) Dimensions shown in millimeters ORDERING GUIDE Model1 HMC798ALC4 HMC798ALC4TR HMC798ALC4TR-R5 EV1HMC798ALC4 1 2 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C MSL Rating2 MSL3 MSL3 MSL3 Package Description 24-Terminal Ceramic Leadless Chip Carrier [LCC] 24-Terminal Ceramic Leadless Chip Carrier [LCC] 24-Terminal Ceramic Leadless Chip Carrier [LCC] Evaluation PCB Assembly All models are RoHS compliant parts. The peak reflow temperature is 260°C. See the Absolute Maximum Ratings section, Table 2. ©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D16785-0-6/18(0) Rev. 0 | Page 26 of 26 Package Option E-24-1 E-24-1 E-24-1
HMC798ALC4 价格&库存

很抱歉,暂时无法提供与“HMC798ALC4”相匹配的价格&库存,您可以联系我们找货

免费人工找货