24 GHz to 34 GHz, GaAs, MMIC,
Subharmonic SMT Mixer
HMC798ALC4
Data Sheet
1
NIC
2
NIC
GND
NIC
NIC
NIC
NIC
GND
23
22
21
20
19
18
GND
17
NIC
3
16
GND
GND
4
15
LO
IF
5
14
GND
GND
6
13
GND
GND 12
VCC 11
NIC 10
9
GND
8
RF
7
HMC798ALC4
PACKAGE
BASE
GND
16785-001
GND
24
FUNCTIONAL BLOCK DIAGRAM
Single positive supply: 5 V at 97 mA
Conversion loss: 10 dB typical at 24 GHz to 30 GHz,
10.5 dB typical at 30 GHz to 34 GHz (upconverter)
Input IP3: 17.5 dBm typical at 24 GHz to 30 GHz,
20 dBm typical at 30 GHz to 34 GHz (upconverter)
2 × LO to RF isolation: 36 dB typical at 30 GHz to 34 GHz
Wide IF bandwidth: dc to 4 GHz
LO drive level: 4 dBm input
Subharmonically pumped 2 × LO
RoHS compliant, 24-terminal, 3.90 mm × 3.90 mm, ceramic
LCC package
GND
FEATURES
Figure 1.
APPLICATIONS
Microwave and very small aperture terminal (VSAT) radios
Test equipment
Point to point radios
Satellite communications (SATCOM)
Military electronic warfare (EW), electronic countermeasure
(ECM), and command, control, communications and
intelligence (C3I)
GENERAL DESCRIPTION
The HMC798ALC4 is a 24 GHz to 34 GHz subharmonically
pumped (×2) MMIC mixer with an integrated LO amplifier housed
in a leadless, RoHS compliant LCC package. The HMC798ALC4
can be used as an upconverter or downconverter between 24 GHz
and 34 GHz.
to 34 GHz frequency range, eliminating the need for additional
filtering. The LO amplifier is single bias at a 5 V dc with a
typical 4 dBm LO drive level requirement The HMC798ALC4
eliminates the need for wire bonding, allowing use of surfacemount technology (SMT) manufacturing techniques.
The 2 × LO to radio frequency (RF) isolation is typically 30 dB
in a 24 GHz to 30 GHz frequency range and 36 dB in a 30 GHz
Rev. 0
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2018 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
HMC798ALC4
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Downconverter Performance ................................................... 10
Applications ....................................................................................... 1
Isolation and Return Loss ......................................................... 18
Functional Block Diagram .............................................................. 1
IF Bandwidth—Downconverter, Upper Sideband................. 20
General Description ......................................................................... 1
IF Bandwidth—Downconverter, Lower Sideband ................. 21
Revision History ............................................................................... 2
Spurious and Harmonics Performance ................................... 22
Specifications..................................................................................... 3
Theory of Operation ...................................................................... 23
Absolute Maximum Ratings............................................................ 4
Applications Information .............................................................. 24
Thermal Resistance ...................................................................... 4
Typical Application Circuit ....................................................... 24
ESD Caution .................................................................................. 4
Evaluation PCB Information .................................................... 24
Pin Configuration and Function Descriptions ............................. 5
Soldering Information and Recommended Land Pattern .... 24
Interface Schematics..................................................................... 5
Outline Dimensions ....................................................................... 26
Typical Performance Characteristics ............................................. 6
Ordering Guide .......................................................................... 26
Upconverter Performance ........................................................... 6
REVISION HISTORY
6/2018—Revision 0: Initial Version
Rev. 0 | Page 2 of 26
Data Sheet
HMC798ALC4
SPECIFICATIONS
VCC = 5 V, TA = 25°C, upconverter (IFIN) = 1 GHz at −10 dBm, LO = 4 dBm, upper side band. All measurements performed as an
upconverter, unless otherwise noted, on the evaluation printed circuit board (PCB).
Table 1.
Parameter
FREQUENCY RANGE
RF
LO Input
IF
SUPPLY CURRENT
SUPPLY VOLTAGE
LO DRIVE LEVELS
24 GHz to 30 GHz PERFORMANCE
Upconverter
Conversion Loss
Input Third-Order Intercept
Input 1 dB Compression Point
Downconverter
Conversion Loss
Input Third-Order Intercept
Input Second-Order Intercept
Input 1 dB Compression Point
Isolation
RF to IF
2 × LO to RF
2 × LO to IF
30 GHz to 34 GHz PERFORMANCE
Upconverter
Conversion Loss
Input Third-Order Intercept
Input 1 dB Compression Point
Downconverter
Conversion Loss
Input Third-Order Intercept
Input Second-Order Intercept
Input 1 dB Compression Point
Isolation
RF to IF
2 × LO to RF
2 × LO to IF
Symbol
Test Conditions/Comments
Min
Typ
Max
Unit
97
5
4
34
18
4
125
5.25
6
GHz
GHz
GHz
mA
V
dBm
12.5
dB
dBm
dBm
24
12
DC
ICC
VCC
4.75
0
IFIN
IP3
P1dB
IF
12.5
10
17.5
6
11
23
50
14
dB
dBm
dBm
dBm
22
30
31
26.5
dB
dB
dB
15
10.5
20
9
IP3
IP2
P1dB
IFIN
IP3
P1dB
IF
IP3
IP2
P1dB
25
Rev. 0 | Page 3 of 26
13.5
dB
dBm
dBm
10.5
25
43
15
dB
dBm
dBm
dBm
32
36
27
dB
dB
dB
HMC798ALC4
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
RF Input Power
LO Input Power
IF Input Power
IF Source or Sink Current
VCC Supply Voltage
Peak Reflow Temperature
Maximum Junction Temperature (TJ)
Lifetime at Maximum (TJ)
Moisture Sensitivity Level (MSL)1
Continuous Power Dissipation, PDISS (TA =
85°C, Derate 8.33 mW/°C Above 85°C)
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range
Electrostatic Discharge (ESD) Sensitivity
Human Body Model (HBM)
Field Induced Charged Device Model
(FICDM)
1
THERMAL RESISTANCE
Rating
13 dBm
10 dBm
13 dBm
3 mA
5.5 V
260°C
175°C
1 × 106 hrs
MSL3
750 mW
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required.
θJA is the natural convection junction to ambient thermal
resistance measured in a one cubic foot sealed enclosure. θJC is
the junction to case thermal resistance.
Table 3. Thermal Resistance
Package Type
E-24-11
−40°C to +85°C
−65°C to +150°C
−65°C to +150°C
1
θJA
120
θJC
119
Unit
°C/W
See JEDEC Standard JESD51-2 for additional information on optimizing the
thermal impedance (PCB with 3 × 3 vias).
ESD CAUTION
250 V
250 V
Based on IPC/JEDEC J-STD-20 MSL classifications.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Rev. 0 | Page 4 of 26
Data Sheet
HMC798ALC4
20 NIC
19 GND
21 NIC
22 NIC
23 NIC
24 GND
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
GND 1
18 GND
NIC 3
HMC798ALC4
GND 4
TOP VIEW
(Not to Scale)
IF 5
17 NIC
16 GND
15 LO
14 GND
13 GND
9
GND
GND 12
8
RF
NIC 10
VCC 11
7
GND
GND 6
NOTES
1. NOT INTERNALLY CONNECTED. THESE PINS
CAN BE CONNECTED TO RF AND DC GROUND.
PERFORMANCE IS NOT AFFECTED.
2. EXPOSED PAD. THE EXPOSED PAD MUST BE
CONNECTED TO RF AND DC GROUND.
16785-002
NIC 2
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1, 4, 6, 7, 9, 12,
13, 14, 16,
18, 19, 24
2, 3, 10, 17, 20,
21, 22, 23
5
Mnemonic
GND
Description
Ground. These pins and package bottom must be connected to RF and dc ground.
NIC
Not Internally Connected. These pins can be connected to RF and dc ground. Performance is not affected.
IF
Intermediate Frequency Port. This pin is dc-coupled. For applications not requiring operation to dc, dc block
this port externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For
operation to dc, this pin must not source or sink more than 3 mA of current or die malfunction and possible
die failure may result.
Radio Frequency Port. This pin is dc-coupled and matched to 50 Ω.
Power Supply for the LO Amplifier.
Local Oscillator Port. This pin is ac-coupled and matched to 50 Ω.
Exposed Pad. The exposed pad must be connected to RF and dc ground.
8
11
15
25
RF
VCC
LO
EPAD
INTERFACE SCHEMATICS
Figure 3. GND Interface Schematic
16785-005
IF
16785-003
GND
Figure 5. IF Interface Schematic
RF
16785-006
16785-004
LO
Figure 4. LO Interface Schematic
Figure 6. RF Interface Schematic
Rev. 0 | Page 5 of 26
HMC798ALC4
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
UPCONVERTER PERFORMANCE
IFIN = 1 GHz, Upper Sideband
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
–15
–20
23
30
25
25
20
20
15
TA = +85°C
TA = +25°C
TA = –40°C
5
25
26
27
28
29
30
31
32
33
34
35
28
29
30
31
32
33
34
35
15
LO = 6dBm
LO = 4dBm
LO = 2dBm
10
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
20
TA = +85°C
TA = +25°C
TA = –40°C
LO = 6dBm
LO = 4dBm
LO = 2dBm
15
INPUT P1dB (dBm)
15
10
5
10
5
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
16785-009
INPUT P1dB (dBm)
27
16785-011
24
RF FREQUENCY (GHz)
0
23
26
5
16785-008
0
23
25
Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
10
24
RF FREQUENCY (GHz)
INPUT IP3 (dBm)
INPUT IP3 (dBm)
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 4 dBm
–10
Figure 9. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 12. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 6 of 26
16785-012
–20
23
–5
16785-010
CONVERSION GAIN (dB)
–5
16785-007
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
Data Sheet
HMC798ALC4
IFIN = 1 GHz, Lower Sideband
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 4 dBm
24
27
28
29
30
31
32
33
34
35
Figure 16. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
LO = 6dBm
LO = 4dBm
LO = 2dBm
25
INPUT IP3 (dBm)
15
10
20
15
10
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
0
23
16785-014
24
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 14. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
16785-017
5
5
Figure 17. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
20
TA = +85°C
TA = +25°C
TA = –40°C
LO = 6dBm
LO = 4dBm
LO = 2dBm
15
INPUT P1dB (dBm)
15
10
5
10
5
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
16785-015
INPUT P1dB (dBm)
26
RF FREQUENCY (GHz)
TA = +85°C
TA = +25°C
TA = –40°C
20
0
23
25
30
25
INPUT IP3 (dBm)
–15
–20
23
30
0
23
–10
Figure 15. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 18. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 7 of 26
16785-018
–20
23
–5
16785-016
CONVERSION GAIN (dB)
–5
16785-013
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
HMC798ALC4
Data Sheet
IFIN = 3.75 GHz, Upper Sideband
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 19. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 4 dBm
24
27
28
29
30
31
32
33
34
35
Figure 22. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
LO = 6dBm
LO = 4dBm
LO = 2dBm
25
INPUT IP3 (dBm)
15
10
5
20
15
10
25
26
27
28
29
30
31
32
33
34
35
0
23
16785-020
24
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 20. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
16785-023
5
RF FREQUENCY (GHz)
Figure 23. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
20
TA = +85°C
TA = +25°C
TA = –40°C
LO = 6dBm
LO = 4dBm
LO = 2dBm
15
INPUT P1dB (dBm)
15
10
5
10
5
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
16785-021
INPUT P1dB (dBm)
26
RF FREQUENCY (GHz)
TA = +85°C
TA = +25°C
TA = –40°C
20
0
23
25
30
25
INPUT IP3 (dBm)
–15
–20
23
30
0
23
–10
Figure 21. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 24. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 8 of 26
16785-024
–20
23
–5
16785-022
CONVERSION GAIN (dB)
–5
16785-019
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
Data Sheet
HMC798ALC4
IFIN = 3.75 GHz, Lower Sideband
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 25. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 4 dBm
24
27
28
29
30
31
32
33
34
35
Figure 28. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
LO = 6dBm
LO = 4dBm
LO = 2dBm
25
INPUT IP3 (dBm)
15
10
5
20
15
10
25
26
27
28
29
30
31
32
33
34
35
0
23
16785-026
24
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 26. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
16785-029
5
RF FREQUENCY (GHz)
Figure 29. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
20
TA = +85°C
TA = +25°C
TA = –40°C
LO = 6dBm
LO = 4dBm
LO = 2dBm
15
INPUT P1dB (dBm)
15
10
5
10
5
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
16785-027
INPUT P1dB (dBm)
26
RF FREQUENCY (GHz)
TA = +85°C
TA = +25°C
TA = –40°C
20
0
23
25
30
25
INPUT IP3 (dBm)
–15
–20
23
30
0
23
–10
Figure 27. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 30. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 9 of 26
16785-030
–20
23
–5
16785-028
CONVERSION GAIN (dB)
–5
16785-025
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
HMC798ALC4
Data Sheet
DOWNCONVERTER PERFORMANCE
IF = 1 GHz, Upper Sideband (Low-Side LO)
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
–15
–20
23
25
25
20
20
INPUT IP3 (dBm)
30
TA = +85°C
TA = +25°C
TA = –40°C
10
26
27
28
29
30
31
32
33
34
35
15
LO = 6dBm
LO = 4dBm
LO = 2dBm
10
5
5
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
0
23
16785-032
0
23
25
Figure 33. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
15
24
RF FREQUENCY (GHz)
Figure 31. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 4 dBm
INPUT IP3 (dBm)
–10
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 34. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Figure 32. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
Rev. 0 | Page 10 of 26
16785-035
–20
23
–5
16785-034
CONVERSION GAIN (dB)
–5
16785-031
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
Data Sheet
HMC798ALC4
80
80
70
70
60
60
INPUT IP2 (dBm)
50
40
30
30
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
0
23
16785-135
24
15
15
INPUT P1dB (dBm)
20
10
TA = +85°C
TA = +25°C
TA = –40°C
25
26
27
28
29
30
31
32
33
34
26
27
28
29
30
31
35
RF FREQUENCY (GHz)
32
33
34
35
10
LO = 6dBm
LO = 4dBm
LO = 2dBm
5
16785-033
24
25
Figure 37. Input IP2 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
5
24
RF FREQUENCY (GHz)
Figure 35. Input IP2 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
LO = 6dBm
LO = 4dBm
LO = 2dBm
10
16785-137
TA = +85°C
TA = +25°C
TA = –40°C
10
INPUT P1dB (dBm)
40
20
20
0
23
50
Figure 36. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 38. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 11 of 26
16785-036
INPUT IP2 (dBm)
Downconverter IP2 and P1dB, Upper Sideband (Low-Side LO)
HMC798ALC4
Data Sheet
IF = 1 GHz, Lower Sideband (High-Side LO)
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
–15
–20
23
25
25
20
20
INPUT IP3 (dBm)
30
TA = +85°C
TA = +25°C
TA = –40°C
10
5
26
27
28
29
30
31
32
33
34
35
15
LO = 6dBm
LO = 4dBm
LO = 2dBm
10
5
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
0
23
16785-038
0
23
25
Figure 41. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
15
24
RF FREQUENCY (GHz)
Figure 39. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 4 dBm
INPUT IP3 (dBm)
–10
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 40. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
Figure 42. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 12 of 26
16785-041
–20
23
–5
16785-040
CONVERSION GAIN (dB)
–5
16785-037
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
Data Sheet
HMC798ALC4
Downconverter IP2 and P1dB, Lower Sideband (High-Side LO)
80
70
50
40
30
40
30
20
20
10
10
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
0
23
15
15
INPUT P1dB (dBm)
20
10
TA = +85°C
TA = +25°C
TA = –40°C
24
25
26
27
28
29
30
31
32
33
34
26
27
28
29
30
31
35
RF FREQUENCY (GHz)
32
33
34
35
10
LO = 6dBm
LO = 4dBm
LO = 2dBm
5
16785-039
0
23
25
Figure 45. Input IP2 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
5
24
RF FREQUENCY (GHz)
Figure 43. Input IP2 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
INPUT P1dB (dBm)
50
16785-145
INPUT IP2 (dBm)
60
16785-143
INPUT IP2 (dBm)
60
LO = 6dBm
LO = 4dBm
LO = 2dBm
Figure 44. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 46. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 13 of 26
16785-042
70
80
TA = +85°C
TA = +25°C
TA = –40°C
HMC798ALC4
Data Sheet
IF = 3.75 GHz, Upper Sideband (Low-Side LO)
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
–15
–20
23
25
25
20
20
INPUT IP3 (dBm)
30
TA = +85°C
TA = +25°C
TA = –40°C
10
5
0
23
25
26
27
28
29
30
31
32
33
34
35
Figure 49. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
15
24
RF FREQUENCY (GHz)
15
LO = 6dBm
LO = 4dBm
LO = 2dBm
10
5
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
16785-044
INPUT IP3 (dBm)
Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 4 dBm
–10
Figure 48. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 50. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 14 of 26
16785-047
–20
23
–5
16785-046
CONVERSION GAIN (dB)
–5
16785-043
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
Data Sheet
HMC798ALC4
80
80
70
70
60
60
INPUT IP2 (dBm)
50
40
30
20
TA = +85°C
TA = +25°C
TA = –40°C
30
24
25
26
10
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
0
23
15
15
INPUT P1dB (dBm)
20
10
TA = +85°C
TA = +25°C
TA = –40°C
24
25
26
27
28
29
30
31
32
33
34
26
27
28
29
30
31
35
RF FREQUENCY (GHz)
32
33
34
35
10
LO = 6dBm
LO = 4dBm
LO = 2dBm
5
16785-045
0
23
25
Figure 53. Input IP2 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
5
24
RF FREQUENCY (GHz)
Figure 51. Input IP2 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
INPUT P1dB (dBm)
40
16785-153
0
23
50
20
16785-151
10
LO = 6dBm
LO = 4dBm
LO = 2dBm
Figure 52. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 54. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 15 of 26
16785-048
INPUT IP2 (dBm)
Downconverter IP2 and P1dB, Upper Sideband (Low-Side LO)
HMC798ALC4
Data Sheet
IF = 3.75 GHz, Lower Sideband (High-Side LO)
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
–15
–20
23
25
25
20
20
INPUT IP3 (dBm)
30
TA = +85°C
TA = +25°C
TA = –40°C
10
5
26
27
28
29
30
31
32
33
34
35
15
LO = 6dBm
LO = 4dBm
LO = 2dBm
10
5
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
0
23
16785-050
0
23
25
Figure 57. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
15
24
RF FREQUENCY (GHz)
Figure 55. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 4 dBm
INPUT IP3 (dBm)
–10
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 56. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
Figure 58. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 16 of 26
16785-053
–20
23
–5
16785-052
CONVERSION GAIN (dB)
–5
16785-049
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
Data Sheet
HMC798ALC4
80
80
70
70
60
60
INPUT IP2 (dBm)
50
40
30
20
TA = +85°C
TA = +25°C
TA = –40°C
30
24
25
26
10
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
0
23
15
15
INPUT P1dB (dBm)
20
10
TA = +85°C
TA = +25°C
TA = –40°C
24
25
26
27
28
29
30
31
32
33
34
26
27
28
29
30
31
35
RF FREQUENCY (GHz)
32
33
34
35
10
LO = 6dBm
LO = 4dBm
LO = 2dBm
5
16785-051
0
23
25
Figure 61. Input IP2 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
5
24
RF FREQUENCY (GHz)
Figure 59. Input IP2 vs. RF Frequency at Various Temperatures,
LO = 4 dBm
INPUT P1dB (dBm)
40
16785-161
0
23
50
20
16785-159
10
LO = 6dBm
LO = 4dBm
LO = 2dBm
Figure 60. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 4 dBm
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 62. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 17 of 26
16785-054
INPUT IP2 (dBm)
Downconverter IP2 and P1dB, Lower Sideband (High-Side LO)
HMC798ALC4
Data Sheet
ISOLATION AND RETURN LOSS
50
40
40
20
TA = +85°C
TA = +25°C
TA = –40°C
10
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
40
2 × LO TO IF ISOLATION (dB)
40
TA = +85°C
TA = +25°C
TA = –40°C
10
0
23
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
30
31
32
33
34
35
24
25
26
27
28
29
30
31
32
33
34
35
RF FREQUENCY (GHz)
Figure 67. 2 × LO to IF Isolation vs. RF Frequency at Various LO Power Levels,
TA = 25°C
40
10
30
20
LO = 6dBm
LO = 4dBm
LO = 2dBm
10
24
25
26
27
28
29
30
31
RF FREQUENCY (GHz)
32
33
34
35
0
23
16785-057
0
23
29
10
40
TA = +85°C
TA = +25°C
TA = –40°C
28
LO = 6dBm
LO = 4dBm
LO = 2dBm
50
20
27
20
50
30
26
30
0
23
RF TO IF ISOLATION (dB)
RF TO IF ISOLATION (dB)
Figure 64. 2 × LO to IF Isolation vs. RF Frequency at Various Temperatures,
LO = 4 dBm
25
Figure 66. 2 × LO to RF Isolation vs. RF Frequency at Various LO Power Levels,
TA = 25°C
50
20
24
RF FREQUENCY (GHz)
50
30
LO = 6dBm
LO = 4dBm
LO = 2dBm
10
0
23
16785-056
2 × LO TO IF ISOLATION (dB)
Figure 63. 2 × LO to RF Isolation vs. RF Frequency at Various Temperatures,
LO = 4 dBm
20
Figure 65. RF to IF Isolation vs. RF Frequency at Various Temperatures,
LO = 4 dBm
24
25
26
27
28
29
30
31
RF FREQUENCY (GHz)
32
33
34
35
16785-060
0
23
30
16785-059
30
16785-058
2 × LO TO RF ISOLATION (dB)
50
16785-055
2 × LO TO RF ISOLATION (dB)
Upconverter performance at IFIN = 1 GHz, upper sideband.
Figure 68. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 18 of 26
Data Sheet
HMC798ALC4
0
IF RETURN LOSS (dB)
–10
–20
–10
–20
TA = +85°C
TA = +25°C
TA = –40°C
11
12
13
14
15
16
17
18
19
20
LO FREQUENCY (GHz)
16785-061
–30
10
TA = +85°C
TA = +25°C
TA = –40°C
Figure 69. LO Return Loss vs. LO Frequency at Various Temperatures,
LO = 4 dBm
RF RETURN LOSS (dB)
0
–10
–20
–30
20 11 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RF FREQUENCY (GHz)
16785-062
TA = +85°C
TA = +25°C
TA = –40°C
Figure 70. RF Return Loss vs. RF Frequency at Various Temperatures,
LO = 14 GHz at 4 dBm
Rev. 0 | Page 19 of 26
–30
0
1
2
3
4
5
6
7
8
9
10
IF FREQUENCY (GHz)
Figure 71. IF Return Loss vs. IF Frequency at Various Temperatures,
LO = 14 GHz at 4 dBm
16785-063
LO RETURN LOSS (dB)
0
HMC798ALC4
Data Sheet
IF BANDWIDTH—DOWNCONVERTER, UPPER SIDEBAND
LO frequency = 8 GHz.
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
1.1
2.1
3.1
4.1
5.1
6.1
IF FREQUENCY (GHz)
Figure 72. Conversion Gain vs. IF Frequency at Various Temperatures,
LO = 4 dBm
1.1
2.1
3.1
4.1
5.1
6.1
IF FREQUENCY (GHz)
Figure 74. Conversion Gain vs. IF Frequency at Various LO Power Levels,
TA = 25°C
30
TA = +85°C
TA = +25°C
TA = –40°C
25
LO = 6dBm
LO = 4dBm
LO = 2dBm
25
INPUT IP3 (dBm)
20
15
10
5
20
15
10
5
1.1
2.1
3.1
4.1
5.1
6.1
IF FREQUENCY (GHz)
16785-065
INPUT IP3 (dBm)
–15
–20
0.1
30
0
0.1
–10
Figure 73. Input IP3 vs. IF Frequency at Various Temperatures,
LO = 4 dBm
0
0.1
1.1
2.1
3.1
4.1
5.1
6.1
IF FREQUENCY (GHz)
Figure 75. Input IP3 vs. IF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 20 of 26
16785-067
–20
0.1
–5
16785-066
CONVERSION GAIN (dB)
–5
16785-064
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
Data Sheet
HMC798ALC4
IF BANDWIDTH—DOWNCONVERTER, LOWER SIDEBAND
LO frequency = 13 GHz.
0
0
LO = 6dBm
LO = 4dBm
LO = 2dBm
–10
–15
1.1
2.1
3.1
4.1
5.1
6.1
IF FREQUENCY (GHz)
Figure 76. Conversion Gain vs. IF Frequency at Various Temperatures,
LO = 4 dBm
–15
–20
0.1
3.1
4.1
5.1
6.1
30
20
20
INPUT IP3 (dBm)
25
15
TA = +85°C
TA = +25°C
TA = –40°C
5
LO = 6dBm
LO = 4dBm
LO = 2dBm
15
10
5
1.1
2.1
3.1
4.1
5.1
6.1
IF FREQUENCY (GHz)
16785-069
0
0.1
2.1
Figure 78. Conversion Gain vs. IF Frequency at Various LO Power Levels,
TA = 25°C
25
10
1.1
IF FREQUENCY (GHz)
30
INPUT IP3 (dBm)
–10
Figure 77. Input IP3 vs. IF Frequency at Various Temperatures,
LO = 4 dBm
0
0.1
1.1
2.1
3.1
4.1
5.1
6.1
IF FREQUENCY (GHz)
Figure 79. Input IP3 vs. IF Frequency at Various LO Power Levels,
TA = 25°C
Rev. 0 | Page 21 of 26
16785-071
–20
0.1
–5
16785-070
CONVERSION GAIN (dB)
–5
16785-068
CONVERSION GAIN (dB)
TA = +85°C
TA = +25°C
TA = –40°C
HMC798ALC4
Data Sheet
SPURIOUS AND HARMONICS PERFORMANCE
Upconversion, Upper Sideband
M × N Spurious Outputs
Downconversion, Upper Sideband
Spur values are (M × RF) − (N × LO). RF = 10.1 GHz, LO =
10 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer
spurious products are measured in dBc from the IF output power
level. N/A means not applicable.
M × RF
0
1
2
3
4
0
0
18
N/A
N/A
N/A
1
25
28
N/A
N/A
N/A
N × LO
2
3
0
63
N/A
N/A
3
N/A
25
75
N/A
N/A
4
N/A
47
71
72
N/A
Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO =
10 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer
spurious products are measured in dBc from the RF output power
level. N/A means not applicable.
M × IFIN
Downconversion, Lower Sideband
Spur values are (M × RF) − (N × LO). RF = 14 GHz, LO =
14.1 GHz, RF power = −10 dBm, and LO power = 13 dBm.
Mixer spurious products are measured in dBc from the IF output
power level. N/A means not applicable.
M × RF
0
1
2
3
4
0
0
22
N/A
N/A
N/A
1
18
33
N/A
N/A
N/A
N × LO
2
0
0
58
N/A
N/A
3
N/A
30
75
N/A
N/A
4
N/A
48
62
70
N/A
−5
−4
−3
−2
−1
0
+1
+2
+3
+4
+5
0
75
80
83
85
49
0
50
83
81
77
78
N × LO
2
74
73
63
44
3
14
0
44
68
73
72
1
77
79
77
78
39
12
36
73
77
78
77
3
70
70
71
74
53
0
53
73
71
70
69
4
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Upconversion, Lower Sideband
Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO =
14.1 GHz, RF power = −10 dBm, and LO power = 13 dBm.
Mixer spurious products are measured in dBc from the RF output
power level. N/A means not applicable.
M × IFIN
Rev. 0 | Page 22 of 26
−5
−4
−3
−2
−1
0
+1
+2
+3
+4
+5
0
76
76
80
82
53
0
53
82
79
79
75
1
76
77
77
75
45
24
41
73
74
73
73
N × LO
2
68
72
69
40
0
8
0
44
63
65
68
3
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
4
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Data Sheet
HMC798ALC4
THEORY OF OPERATION
The HMC798ALC4 is a subharmonically pumped (×2) MMIC
mixer with an integrated LO amplifier that can be used as an
upconverter or a downconverter from 24 GHz to 34 GHz. The
LO amplifier is single bias at a 5 V dc with a typical 4 dBm LO
drive level.
When used as a downconverter, the HMC798ALC4 downconverts
radio frequencies between 24 GHz and 34 GHz to intermediate
frequencies between dc and 4 GHz.
When used as an upconverter, the mixer up converts IF
between dc and 4 GHz to RF between 24 GHz and 34 GHz.
Rev. 0 | Page 23 of 26
HMC798ALC4
Data Sheet
APPLICATIONS INFORMATION
TYPICAL APPLICATION CIRCUIT
Figure 80 shows the typical application circuit for the
HMC798ALC4. The integrated LO amplifier is single bias at 5 V
with a typical 4 dBm input. Place capacitors as close as possible
to the pin to decouple the power supply. The LO and RF pins
are internally ac-coupled. The IF pin is internally dc-coupled.
When IF operation to dc is not required, use of an external
series capacitor is recommended, of a value chosen to pass the
necessary IF frequency range. When IF operation to dc is
required, do not exceed the IF source or sink current rating
specified in the Absolute Maximum Ratings section.
GND
19
NIC
NIC
NIC
20
21
22
15
5
14
6
GND
NIC
LO
12
K_SRI-NS
C1
100pF
+ C3
C2
TERMINAL_SWAGE
10nF
4.7µF
K_SRI-NS
Figure 80. Typical Application Circuit
EVALUATION PCB INFORMATION
Use RF circuit design techniques for the circuit board used in
the application. Ensure that signal lines have 50 Ω impedance,
and connect the package ground leads and the exposed pad
16785-072
VCC
RF
Item
J1
J2, J3
U1
PCB1
C1
C2
C3
Description
Johnson Surface-Mount Type A (SMA) connector
SRI 2.92 mm connector
HMC798ALC4
126598-1 evaluation board
C0G, 0402, 100 pF capacitor
X7R, 0603, 10000 pF capacitor
SMD, 3216, 4.7 µF capacitor
126598-1 is the raw bare PCB identifier. Reference EV1HMC798ALC4 when
ordering the complete evaluation PCB.
SOLDERING INFORMATION AND RECOMMENDED
LAND PATTERN
LO
GND
GND
Table 5. List of Materials for Evaluation PCB
EV1HMC798ALC4
1
GND
GND
11
VCC
9
13
GND
SMA_JC_062PCB
4
10
GND
16
NIC
IF
17
3
GND
GND
IF
18
HMC798ALC4
2
8
NIC
1
7
NIC
RF
GND
23
24
NIC
GND
TERMINAL_SWAGE
directly to the ground plane (see Figure 81). Use a sufficient
number of via holes to connect the top and bottom ground
planes. The evaluation circuit board shown in Figure 81 is
available from Analog Devices, Inc., upon request.
Figure 81 shows the recommended land pattern for the
HMC798ALC4. The HMC798ALC4 is contained in a 3.90 mm
× 3.90 mm, 24-terminal, ceramic LCC package with an exposed
ground pad (EPAD). This exposed pad is internally connected
to the ground of the chip. To minimize thermal impedance and
ensure electrical performance, solder the exposed pad to the
low impedance ground plane on the PCB. It is recommended
that the ground planes on all layers under the exposed pad be
stitched together with vias to further reduce thermal
impedance. The land pattern on the HMC798ALC4 evaluation
board provides a simulated thermal resistance (θJC) of 119°C/W.
Rev. 0 | Page 24 of 26
Data Sheet
HMC798ALC4
.178" SQUARE
.004" MASK/METAL OVERLAP
.010" MIN MASK WIDTH
SOLDERMASK
GROUND PAD
PAD SIZE
.026" × .010"
PIN 1
.0197"
[0.50]
.116"
MASK
OPENING
.034"
TYPICAL
VIA
SPACING
.010" REF
.030"
MASK OPENING
.098" SQUARE MASK OPENING
.020 × 45" CHAMFER FOR PIN 1
.106" SQUARE
GROUND PAD
Figure 81. Evaluation Board Land Pattern for the HMC798ALC4 Package
GND
126598-1
IF
LO
24 23 22 21 20 19
1
2
3
4
5
6
J1
798A
XXXX
18
17
16
15
14
13
J3
7 8 9 10 11 12
C1
C2
VCC
RF
+
C3
16785-073
J2
Figure 82. Evaluation PCB Top Layer
Rev. 0 | Page 25 of 26
16785-111
ᶲ .010"
TYPICAL VIA
HMC798ALC4
Data Sheet
OUTLINE DIMENSIONS
4.05
3.90 SQ
3.75
PIN 1
INDICATOR
0.36
0.30
0.24
0.08
BSC
1
0.50
BSC
2.60
2.50 SQ
2.40
EXPOSED
PAD
13
6
12
0.32
BSC
TOP VIEW
1.00
0.90
0.80
PIN 1
24
19
18
7
BOTTOM VIEW
2.50 REF
3.10 BSC
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
PKG-004840
SEATING
PLANE
02-27-2017-B
SIDE VIEW
Figure 83. 24-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-24-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
HMC798ALC4
HMC798ALC4TR
HMC798ALC4TR-R5
EV1HMC798ALC4
1
2
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
MSL Rating2
MSL3
MSL3
MSL3
Package Description
24-Terminal Ceramic Leadless Chip Carrier [LCC]
24-Terminal Ceramic Leadless Chip Carrier [LCC]
24-Terminal Ceramic Leadless Chip Carrier [LCC]
Evaluation PCB Assembly
All models are RoHS compliant parts.
The peak reflow temperature is 260°C. See the Absolute Maximum Ratings section, Table 2.
©2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D16785-0-6/18(0)
Rev. 0 | Page 26 of 26
Package Option
E-24-1
E-24-1
E-24-1