0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HMC862ALP3E

HMC862ALP3E

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    HMC862ALP3E

  • 数据手册
  • 价格&库存
HMC862ALP3E 数据手册
0.1 GHz to 24 GHz, Low Noise, Programmable Divider HMC862A Data Sheet FUNCTIONAL BLOCK DIAGRAM 13 VCC 14 GND 15 GND 16 VCC 12 GND 11 OUT IN 2 IN 3 10 OUT GND 4 9 GND PACKAGE BASE GND 13599-001 ÷1,2,4,8 GND 8 Satellite communication systems Point to point and point to multipoint radios Military applications Test equipment GND 1 S2 7 APPLICATIONS HMC862A S1 6 Low noise floor: −153 dBc/Hz at 100 kHz offset Programmable frequency divider (N) N = 1, 2, 4, or 8 Wide bandwidth: 0.1 GHz to 24 GHz Low current consumption: 81 mA in the N = 8 divide state HBM ESD sensitivity, Class 2 classification FICDM ESD sensitivity, Class C3 classification 16-lead, 3 mm × 3 mm LFCSP package: 9 mm2 S0 5 FEATURES Figure 1. GENERAL DESCRIPTION The HMC862A is a low noise, programmable frequency divider in a 3 mm × 3 mm, leadless, surface-mount package. The frequency divider, N, can be programmed to divide from 1, 2, 4, or 8 in the 0.1 GHz to 24 GHz input frequency range. Rev. A The low phase noise, wide frequency range, and flexible division ratio make this device ideal for high performance and wideband communication systems. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2017–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com HMC862A Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Divide by 2 .....................................................................................8  Applications ....................................................................................... 1  Divide by 4 .....................................................................................9  Functional Block Diagram .............................................................. 1  Divide by 8 .................................................................................. 10  General Description ......................................................................... 1  Current Consumption (ICC) ...................................................... 11  Revision History ............................................................................... 2  Theory of Operation ...................................................................... 12  Specifications..................................................................................... 3  Input Interface ............................................................................ 12  RF Specifications .......................................................................... 3  Output Interface ......................................................................... 12  DC Specifications ......................................................................... 4  Applications Information .............................................................. 13  Absolute Maximum Ratings............................................................ 5  Evaluation Printed Circuit Board (PCB) ................................ 13  Thermal Resistance ...................................................................... 5  Evaluation Board Overview ...................................................... 14  ESD Caution .................................................................................. 5  Outline Dimensions ....................................................................... 15  Pin Configuration and Function Descriptions ............................. 6  Ordering Guide .......................................................................... 15  Typical Performance Characteristics ............................................. 7  Divide by 1..................................................................................... 7  REVISION HISTORY 4/2019—Rev. 0 to Rev. A Added Thermal Resistance Section and Table 4 .......................... 5 Changes to Theory of Operation Section .................................... 12 Changes to Ordering Guide .......................................................... 15 10/2017—Revision 0: Initial Version Rev. A | Page 2 of 15 Data Sheet HMC862A SPECIFICATIONS RF SPECIFICATIONS VCC = 5 V, TA = −40°C to +85°C, unless otherwise noted. Table 1. Parameter RF INPUT CHARACTERISTICS RF Input Frequency Maximum N=1 N = 2, 4, 8 Minimum RF Input Power Range N = 1, 2 N=2 N = 4, 8 Reverse Leakage N=1 N=2 N = 4, 8 RF OUTPUT CHARACTERISTICS, N = 1 Output Power, Single-Ended Single-Sideband (SSB) Residual Phase Noise at 100 kHz Offset Second Harmonic Third Harmonic RF OUTPUT CHARACTERISTICS, N = 2 Output Power, Single-Ended SSB Residual Phase Noise at 100 kHz Offset Second Harmonic (Feedthrough) Third Harmonic RF OUTPUT CHARACTERISTICS, N = 4 Output Power, Single-Ended SSB Residual Phase Noise at 100 kHz Offset Second Harmonic Third Harmonic RF OUTPUT CHARACTERISTICS, N = 8 Output Power, Single-Ended SSB Residual Phase Noise at 100 kHz Offset Second Harmonic Third Harmonic 1 Test Conditions/Comments Min Typ Max Unit 0.1 GHz GHz GHz +10 +10 +10 +10 dBm dBm dBm dBm Sine wave or square wave input 18 24 Square wave input1 0.1 GHz< fIN < 18 GHz, sine or square wave input1 18 GHz < fIN < 24 GHz, sine or square wave input 0.1 GHz < fIN < 20 GHz, sine or square wave input1 20 GHz < fIN < 24 GHz, sine or square wave input −15 −5 −15 −5 fIN = 6 GHz, input power (PIN) = 0 dBm fIN = 6 GHz, PIN = 0 dBm fIN = 6 GHz, PIN = 0 dBm 0.1 GHz < fIN < 10 GHz 10 GHz < fIN < 15 GHz 15 GHz < fIN < 18 GHz fIN = 12 GHz, PIN = 5 dBm −10 −55 −70 −1 −5 −11 fIN = 6 GHz, PIN = 0 dBm fIN = 6 GHz, PIN = 0 dBm +3 −2 −6 −155 dBm dBm dBm +5 +3 0 −27 −6 dBm dBm dBm dBc/Hz dBm dBm 0.1 GHz < fIN < 18 GHz 18 GHz < fIN < 24 GHz fIN = 12 GHz, PIN = 5 dBm fIN = 6 GHz, PIN = 0 dBm fIN = 6 GHz, PIN = 0 dBm 0 −3 3 0 −153 −28 −7 5 +3 dBm dBm dBc/Hz dBm dBm 0.1 GHz < fIN < 18 GHz 18 GHz < fIN < 24 GHz fIN = 12 GHz, PIN = 5 dBm fIN = 6 GHz, PIN = 0 dBm fIN = 6 GHz, PIN = 0 dBm 0 −1 2 +3 −154 −35 −6 4 +6 dBm dBm dBc/Hz dBm dBm 0.1 GHz < fIN < 24 GHz fIN = 12 GHz, PIN = 5 dBm fIN = 6 GHz, PIN = 0 dBm fIN = 6 GHz, PIN = 0 dBm 0 2 −155 −45 −7 4 dBm dBc/Hz dBm dBm A square wave input is recommended to be below 650 MHz for best phase noise performance. If a sine wave input below 650 MHz is used, it is recommended that the drive level be >5 dBm for best operation, including phase noise. Refer to the Typical Performance Characteristics section. Rev. A | Page 3 of 15 HMC862A Data Sheet DC SPECIFICATIONS VCC = 5 V, TA = −40°C to +85°C, unless otherwise noted. Table 2. Parameter POWER SUPPLIES VCC CURRENT CONSUMPTION, ICC N=1 N=2 N=4 N=8 DIGITAL INPUT S (S0, S1, S2) Logic Voltage Low High Test Conditions/Comments Min Typ Max Unit Analog supply 4.75 5 5.25 V 55 64 68 71 61 73 78 81 71 84 90 94 mA mA mA mA 0.4 5 V V 0 3 Rev. A | Page 4 of 15 Data Sheet HMC862A ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter RF Input Power (IN, IN) Supply Voltage (VCC) Logic Inputs (S0, S1, S2) Storage Temperature Range Reflow Temperature Operating Temperature Range (TA) Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM), JS-001-2012 Field Induced Charged Device Model (FICDM), JS-002 Rating 13 dBm 5.5 V −0.5 V to (0.5 V + VCC) −65°C to +125°C 260°C −40°C to +85°C Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. Thermal impedance simulated values are based on the use of the EV1HMC862ALP3 evaluation board with the exposed pad soldered to GND. VCC = 5 V and Divider Ratio (N) = 8. Table 4. Package Type HCP-16-1 Class 2 Class C3 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. ESD CAUTION Rev. A | Page 5 of 15 Thermal Impedance (θJB) 34 Unit °C/W HMC862A Data Sheet 13 VCC 14 GND 16 VCC 15 GND PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 12 GND IN 2 HMC862A 11 OUT IN 3 TOP VIEW (Not to Scale) 10 OUT 9 S2 7 GND 8 S1 6 S0 5 GND 4 GND PACKAGE BASE GND NOTES 1. EXPOSED PAD. EXPOSED PAD MUST BE CONNECTED TO RF/DC GROUND. 13599-002 GND 1 Figure 2. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1, 4, 8, 9, 12, 14, 15 2 3 5, 6, 7 10 11 13, 16 Mnemonic GND Description Ground. The backside of the package has an exposed metal ground slug that must be connected to RF/dc ground. IN IN RF Input. This pin must be dc blocked. RF Input, 180° Out of Phase with Pin 2 for Differential Operation. This pin must be ac grounded for single-ended operation. DC block this pin for differential operation. CMOS Compatible Division Ratio Control Bits. See Table 6. Divider Output, 180° Out of Phase with Pin 11. This RF output must be dc blocked. See Figure 31 for proper termination. Divided Output. This RF output must be dc blocked. See Figure 31 for proper termination. Supply Voltage Pins, 5 V. Connect both VCC pins to a 5 V supply. These pins are internally connected. Exposed Pad. Exposed pad must be connected to RF/dc ground. S0, S1, S2 OUT OUT VCC EPAD Rev. A | Page 6 of 15 Data Sheet HMC862A TYPICAL PERFORMANCE CHARACTERISTICS 6 6 4 4 2 2 OUTPUT POWER (dBm) 0 –2 –4 –6 2 4 6 8 10 12 14 16 18 20 –12 13599-009 0 Figure 3. Output Power vs. Sine Wave Input Frequency for Various Temperatures, PIN = 0 dBm 0 2 4 6 8 10 12 14 16 18 20 Figure 6. Output Power vs. Sine Wave Input Frequency for Various VCC Voltages, PIN = 0 dBm 0 MAX PIN 10 –10 HARMONIC POWER (dBm) 5 0 +85°C +25°C –40°C –5 –10 –15 MIN PIN –20 –20 –30 –40 –50 2 4 6 8 10 12 14 16 18 20 22 –60 13599-011 0 2 4 6 8 10 12 14 16 18 OUTPUT FREQUENCY (GHz) Figure 4. Allowable Range of Input Power vs. Sine Wave Input Frequency for Various Temperatures Figure 7. Output Harmonics, PIN = 0 dBm, TA = 25°C –115 –115 SQUARE 100MHz SINE 100MHz (5dBm) SINE 12GHz SINE 6GHz –125 PIN = +10dBm PIN = +5dBm PIN = 0dBm PIN = –5dBm PIN = –10dBm –120 SSB PHASE NOISE (dBc/Hz) –120 –130 –135 –140 –145 –150 –155 –160 –125 –130 –135 –140 –145 –150 –155 –160 1k 10k 100k OFFSET FREQUENCY (Hz) 1M –165 100 13599-013 –165 100 0 13599-012 SECOND HARMONIC THIRD HARMONIC SINE WAVE INPUT FREQUENCY (GHz) SSB PHASE NOISE (dBc/Hz) VCC = 5.25V VCC = 5.0V VCC = 4.75V SINE WAVE INPUT FREQUENCY (GHz) 15 INPUT POWER (dBm) –6 –10 SINE WAVE INPUT FREQUENCY (GHz) –25 –4 –18 +85°C +25°C –40°C –10 –12 –2 13599-010 –18 0 Figure 5. SSB Phase Noise vs. Offset Frequency for Various Input Frequencies, PIN = 0 dBm, TA = 25°C 1k 10k 100k OFFSET FREQUENCY (Hz) 1M 13599-014 OUTPUT POWER (dBm) DIVIDE BY 1 Figure 8. SSB Phase Noise vs. Offset Frequency for Various Input Power (PIN) Levels, fIN = 12 GHz Sine Wave, TA = 25°C Rev. A | Page 7 of 15 HMC862A Data Sheet 6 4 4 2 0 –2 –4 2 4 6 8 10 12 14 16 18 20 22 24 SINE WAVE INPUT FREQUENCY (GHz) Figure 9. Output Power vs. Sine Wave Input Frequency for Various Temperatures, PIN = 0 dBm –6 2 4 6 8 10 12 14 16 18 20 22 24 Figure 12. Output Power vs. Sine Wave Input Frequency for Various VCC Voltages, PIN = 0 dBm 0 –10 HARMONIC POWER (dBm) 5 +85°C +25°C –40°C 0 –5 –10 –15 MIN PIN –20 –20 –30 –40 –50 FEEDTHROUGH THIRD HARMONIC 2 4 6 8 10 12 14 16 18 20 22 24 SINE WAVE INPUT FREQUENCY (GHz) 13599-023 0 –60 2 4 6 8 10 12 OUTPUT FREQUENCY (GHz) Figure 13. Output Harmonics, PIN = 0 dBm, TA = 25°C Figure 10. Allowable Range of Input Power vs. Sine Wave Input Frequency for Various Temperatures –115 –115 SQUARE 100MHz SINE 100MHz (5dBm) SINE 18GHz SINE 12GHz SINE 6GHz –125 PIN = +10dBm PIN = +5dBm PIN = 0dBm PIN = –5dBm PIN = –10dBm –120 SSB PHASE NOISE (dBc/Hz) –120 –130 –135 –140 –145 –150 –155 –125 –130 –135 –140 –145 –150 –155 –160 –160 1k 10k 100k 1M OFFSET FREQUENCY (Hz) Figure 11. SSB Phase Noise vs. Offset Frequency for Various Input Frequencies, PIN = 0 dBm, TA = 25°C –165 100 13599-025 –165 100 0 13599-024 INPUT POWER (dBm) 0 MAX PIN 10 SSB PHASE NOISE (dBc/Hz) VCC = 5.25V VCC = 5.00V VCC = 4.75V SINE WAVE INPUT FREQUENCY (GHz) 15 –25 –2 –4 +85°C +25°C –40°C 0 0 1k 10k 100k OFFSET FREQUENCY (Hz) 1M 13599-026 –6 2 13599-022 OUTPUT POWER (dBm) 6 13599-021 OUTPUT POWER (dBm) DIVIDE BY 2 Figure 14. SSB Phase Noise vs. Offset Frequency for Various Input Power (PIN) Levels, fIN = 12 GHz Sine Wave, TA = 25°C Rev. A | Page 8 of 15 Data Sheet HMC862A 6 5 5 4 4 3 2 1 0 +85°C +25°C –40°C –1 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 Figure 15. Output Power vs. Sine Wave Input Frequency for Various Temperatures, PIN = 0 dBm 1 0 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 Figure 18. Output Power vs. Sine Wave Input Frequency for Various VCC Voltages, PIN = 0 dBm 0 MAX PIN 10 –10 +85°C +25°C –40°C 0 –5 –10 –15 MIN PIN 2 4 6 8 10 12 14 –40 16 18 20 22 24 SINE WAVE INPUT FREQUENCY (GHz) –60 0 1 2 3 4 5 6 OUTPUT FREQUENCY (GHz) Figure 19. Output Harmonics, PIN = 0 dBm, TA = 25°C Figure 16. Allowable Range of Input Power vs. Sine Wave Input Frequency for Various Temperatures –115 –115 SQUARE 100MHz SINE 100MHz (5dBm) SINE 18GHz SINE 12GHz SINE 6GHz –125 –130 –135 –140 –145 –150 –125 –130 –135 –140 –145 –150 –155 –155 –160 –160 10k 100k 1M OFFSET FREQUENCY (Hz) Figure 17. SSB Phase Noise vs. Offset Frequency for Various Input Frequencies, PIN = 0 dBm, TA = 25°C –165 100 13599-037 1k PIN = +10dBm PIN = +5dBm PIN = 0dBm PIN = –5dBm PIN = –10dBm –120 SSB PHASE NOISE (dBc/Hz) –120 –165 100 FEEDTHROUGH SECOND HARMONIC THIRD HARMONIC 1k 10k 100k OFFSET FREQUENCY (Hz) 1M 13599-038 0 –30 –50 13599-027 –20 –20 13599-036 HARMONIC POWER (dBm) 5 SSB PHASE NOISE (dBc/Hz) VCC = 5.25V VCC = 5.00V VCC = 4.75V SINE WAVE INPUT FREQUENCY (GHz) 15 INPUT POWER (dBm) 2 –1 SINE WAVE INPUT FREQUENCY (GHz) –25 3 13599-034 OUTPUT POWER (dBm) 6 13599-033 OUTPUT POWER (dBm) DIVIDE BY 4 Figure 20. SSB Phase Noise vs. Offset Frequency for Various Input Power (PIN) Levels, fIN = 12 GHz Sine Wave, TA = 25°C Rev. A | Page 9 of 15 HMC862A Data Sheet 6 5 5 4 4 3 2 1 0 +85°C +25°C –40°C –1 0 2 4 6 8 10 12 14 16 18 20 22 24 0 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 SINE WAVE INPUT FREQUENCY (GHz) 0 15 MAX PIN –10 5 +85°C +25°C –40°C 0 –5 –10 –15 MIN PIN 0 2 4 6 8 10 12 –30 –40 –50 14 16 18 20 22 24 SINE WAVE INPUT FREQUENCY (GHz) –70 0 0.5 1.0 1.5 2.0 2.5 3.0 OUTPUT FREQUENCY (GHz) Figure 25. Output Harmonics, PIN = 0 dBm, TA = 25°C Figure 22. Allowable Range of Input Power vs. Sine Wave Input Frequency for Various Temperatures –115 –115 SQUARE 100MHz SINE 100MHz (5dBm) SINE 18GHz SINE 12GHz SINE 6GHz –125 PIN = +10dBm PIN = +5dBm PIN = 0dBm PIN = –5dBm PIN = –10dBm –120 SSB PHASE NOISE (dBc/Hz) –120 –130 –135 –140 –145 –150 –155 –160 –125 –130 –135 –140 –145 –150 –155 –160 1k 10k 100k 1M OFFSET FREQUENCY (Hz) Figure 23. SSB Phase Noise vs. Offset Frequency for Various Input Frequencies, PIN = 0 dBm, TA = 25°C –165 100 13599-049 –165 100 FEEDTHROUGH SECOND HARMONIC THIRD HARMONIC –60 13599-035 –20 –20 13599-048 HARMONIC POWER (dBm) 10 SSB PHASE NOISE (dBc/Hz) VCC = 5.25V VCC = 5.00V VCC = 4.75V Figure 24. Output Power vs. Sine Wave Input Frequency for Various Vcc Voltages, PIN = 0 dBm Figure 21. Output Power vs. Sine Wave Input Frequency for Various Temperatures, PIN = 0 dBm INPUT POWER (dBm) 1 –1 SINE WAVE INPUT FREQUENCY (GHz) –25 2 1k 10k 100k OFFSET FREQUENCY (Hz) 1M 13599-050 –2 3 13599-046 OUTPUT POWER (dBm) 6 13599-045 OUTPUT POWER (dBm) DIVIDE BY 8 Figure 26. SSB Phase Noise vs. Offset Frequency for Various Input Power (PIN) Levels, fIN = 12 GHz Sine Wave, TA = 25°C Rev. A | Page 10 of 15 Data Sheet HMC862A CURRENT CONSUMPTION (ICC) 100 90 70 60 50 40 30 20 N=8 N=4 N=2 N=1 10 0 0 2 4 6 8 10 12 14 16 18 20 22 SINE WAVE INPUT FREQUENCY (GHz) 24 13599-052 INPUT POWER (dBm) 80 Figure 27. Input Power vs. Sine Wave Input Frequency Rev. A | Page 11 of 15 HMC862A Data Sheet THEORY OF OPERATION The divide ratio, N, can be programmed to N = 1, 2, 4, or 8 by setting the digital input pins—S0, S1, and S2—to the logic high (1) or logic low (0) states indicated in Table 6. For differential input signals, ac couple the IN and IN pins as shown in Figure 29. Off-chip termination is not required because the IN and IN pins have internal 50 Ω termination resistors. For single-ended input signals, ac couple the IN input. AC ground the IN pin as close to the IN pin as possible. Table 6. Programming Truth Table for Frequency Division Ratios1 1 S1 0 0 1 1 S2 0 0 0 1 Divide Ratio (N) 1 2 4 8 IN IN IN Figure 29. Recommended Input Configuration for Single-Ended Operation (Left) and Differential Operation (Right) OUTPUT INTERFACE 0 means logic low and 1 means logic high. The HMC862A does not support any other combination of the S0, S1, and S2 programming states other than those listed in Table 6. Using other programming states causes the HMC862A to generate an unstable output. Figure 30 shows the output interface schematic for the OUT and OUT pins. 50Ω 50Ω OUT OUT 13599-055 S0 0 1 1 1 IN 13599-054 The HMC862A is a wideband, configurable RF divider with minimal additive phase noise. Enable the HMC862A by applying a voltage (VCC) to the supply pins, VCC. These pins are internally connected. Figure 30. Output Interface Schematic Note that the VCC voltage must be applied before the logic level signals (S0, S1, and S2) can be driven to a logic high to prevent the ESD diodes from turning on. To provide a differential output or two single-ended outputs, ac couple the OUT and OUT pins. Off-chip termination is not required because the OUT and OUT pins have internal 50 Ω termination resistors. The HMC862A toggles on the rising edge of the IN input for all divide ratios where N = 1, 2, 4, or 8. INPUT INTERFACE If only one output pin is used, connect the unused output pin to ground through a capacitor and a 50 Ω termination 50Ω IN 50Ω IN OUT OUT OUT Figure 31. Recommended Output Configuration for Single-Ended Operation (Left) and Differential Operation (Right) 13599-053 Figure 28 shows the input interface schematic for the IN and IN pins. OUT 13599-056 The HMC862A can be driven by differential or single-ended input signals, and can provide differential or single-ended output signals. Figure 28. Input Interface Schematic Rev. A | Page 12 of 15 Data Sheet HMC862A APPLICATIONS INFORMATION EVALUATION PRINTED CIRCUIT BOARD (PCB) 600-01663-00-1 C7 + GND VCC J6 J7 C6 FIN C1 J1 FOUT C3 J3 C 5 U1 GND J5 C2 J2 R3 R2 R1 NFIN J4 C4 NFOUT 13599-100 S0 S1 S2 Figure 32. Evaluation PCB J6 + C7 2.2µF J7 J2 13 VCC 12 GND IN 2 11 OUT ÷1,2,4,8 10 OUT 9 GND GND 4 C5 100nF C3 100nF J3 C4 100nF K_SRI-NS J4 GND 8 S2 7 S1 6 K_SRI-NS S0 5 R2 10kΩ J5 2 1 4 3 6 R1 10kΩ R3 10kΩ 5 13599-101 K_SRI-NS U1 HMC862ALP3E GND 1 IN 3 C2 100nF 14 GND 15 GND 16 VCC C1 100nF J1 K_SRI-NS C6 1nF NC 87759-0614 Figure 33. Evaluation PCB Schematic Rev. A | Page 13 of 15 HMC862A Data Sheet EVALUATION BOARD OVERVIEW Use the EV1HMC862ALP3 evaluation board to evaluate the HMC862A. The HMC862A is enabled by applying 5 V between J6 (VCC) and J7 (GND). Note that J6 only provides power to Pin 13 on the HMC862A; however, because Pin 13 and Pin 16 are internally connected, both VCC pins receive power. It is recommended that the circuit board used in the application use RF circuit design techniques with a 50 Ω impedance on the signal lines and with the package ground leads and backside ground pad connected directly to the ground plane. Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices, Inc., upon request. The divide ratio, N, is selected by inserting pin jumpers on Component J5, as shown in Table 7. When installed, a jumper pulls the digital input pin to ground and sets a logic low. When removed, the R1, R2, and R3 pull-up resistors pull the digital input to VCC and set a logic high. Table 8. List of Materials for EV1HMC862ALP3 Table 7. Jumper Configuration for EV1HMC862ALP3 C6 C7 R1 to R3 J6, J7 Divide Ratio (N) 1 2 4 8 S0 Jumper Installed Open Open Open S1 Jumper Installed Installed Open Open S2 Jumper Installed Installed Installed Open By default, the evaluation board is set up to accept a singleended input and provide a differential output. A differential input can be used by removing Component C5; a single-ended output can be generated by terminating J4 with a 50 Ω termination. Item J1 to J4 J5 C1 to C5 U1 Heatsink PCB Rev. A | Page 14 of 15 Description PCB-mount K connector DC connector header, Molex 2 mm ATC550L104KTT, 100 nF, 16 V, broadband capacitor, 0402 package 1000 pF capacitor, 0603 package 2.2 μF capacitor, tantalum, 3216 package 10 kΩ resistor, 0402 package Mill-Max 0.040 inch diameter PC pin, 3101-2-00-21-0000-08-0 HMC862A, programmable divider Custom heatsink, alumimum 600-01663-00-1 evaluation board Data Sheet HMC862A OUTLINE DIMENSIONS DETAIL A (JEDEC 95) 0.30 0.25 0.20 0.50 BSC PIN 1 INDIC ATOR AREA OPTIONS (SEE DETAIL A) 16 13 1 12 1.95 1.70 SQ 1.50 EXPOSED PAD 4 9 TOP VIEW 8 5 0.20 MIN BOTTOM VIEW FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND 0.05 MAX FUNCTION DESCRIPTIONS 0.02 NOM SECTION OF THIS DATA SHEET. COPLANARITY 0.08 0.20 REF 0.90 0.85 0.80 SEATING PLANE PKG-004863 0.45 0.40 0.35 COMPLIANT WITH JEDEC STANDARDS MO-220-VEED-4. 03-15-2017-B PIN 1 INDICATOR 3.10 3.00 SQ 2.90 Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.85 mm Package Height (HCP-16-1) Dimensions shown in millimeters ORDERING GUIDE Model1 HMC862ALP3E HMC862ALP3ETR EV1HMC862ALP3 1 2 Temperature Range −40°C to +85°C −40°C to +85°C Package Description 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] Evaluation Board Lead Finish 100% Matte Sn 100% Matte Sn The HMC862ALP3E and HMC862ALP3ETR are RoHS compliant. The maximum peak reflow temperature is 260°C. See the Absolute Maximum Ratings section for more information. ©2017–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13599-0-4/19(A) Rev. A | Page 15 of 15 MSL Rating2 MSL3 MSL3 Package Option HCP-16-1 HCP-16-1
HMC862ALP3E 价格&库存

很抱歉,暂时无法提供与“HMC862ALP3E”相匹配的价格&库存,您可以联系我们找货

免费人工找货