0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT6018HS8E#TRPBF

LT6018HS8E#TRPBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    SO8_150MIL_EP

  • 描述:

    IC OPAMP GP 1 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
LT6018HS8E#TRPBF 数据手册
LT6018 33V, Ultralow Noise, Precision Op Amp Features Description Ultralow Voltage Noise nn 30nV P-P Noise: 0.1Hz to 10Hz nn 1.2nV/√Hz Typical at 1kHz nn Maximum Offset Voltage: 50μV nn Maximum Offset Voltage Drift: 0.5μV/°C nn CMRR: 124dB (Minimum) nn A VOL: 132dB (Minimum) nn Slew Rate: 30V/μs nn Gain-Bandwidth Product: 15MHz nn Wide Supply Range: 8V to 33V nn Ultralow THD: –115dB at 1kHz nn Unity Gain Stable nn Low Power Shutdown: 6.2µA nn SO-8E and 4mm × 3mm 12-Lead DFN Packages nn 4.5kV HBM and 2kV CDM Tolerant The LT®6018 is a 33V precision operational amplifier with excellent noise performance. With 0.1Hz to 10Hz noise of only 30nVP-P, the LT6018 is an outstanding choice for applications where 1/f noise impacts system performance. The LT6018 has excellent DC performance with a maximum offset voltage of 50µV and a maximum offset voltage drift of 0.5µV/°C. The input offset voltage remains low over the entire common mode input range, providing a minimum CMRR of 124dB. Open loop gain is typically 142dB enabling the part to achieve linearity better than 1ppm. The proprietary circuit topology of the LT6018 provides excellent slew rate and settling time without compromising noise or DC precision. nn Applications ADC Driver Applications Low Noise Precision Signal Processing nn Multiplexed Applications nn DAC Buffer nn Precision Data Acquisition nn Active Filters nn Professional Audio nn nn An enable pin allows the LT6018 to be put in a low power shutdown mode, reducing the typical supply current to only 6.2µA. A reference pin for the enable pin is also provided, which simplifies the interface between external circuitry and the LT6018. The LT6018 is available in 8-lead SO and 12-lead 4mm × 3mm DFN packages, both of which include an exposed pad to reduce thermal resistance. The LT6018 is specified over the –40°C to 85°C and –40°C to 125°C temperature ranges. L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Typical Application Precision Low Noise Buffer V+ 0.1Hz to 10Hz Voltage Noise 10µF 0.1µF 10nV/DIV – VIN EN = V+ DGND = V– + LT6018 30nVP-P VOUT 0.1µF 1s/DIV 10µF V– 6018 TA01b 6018 TA01a 6018fa For more information www.linear.com/LT6018 1 LT6018 Absolute Maximum Ratings (Note 1) Total Supply Voltage (V+ to V–)..................................36V Input Voltage (+IN, –IN, DGND, EN).......... (V– – 0.3V) to (V+ + 0.3V) Input Current (+IN, –IN, DGND, EN)...................... ±10mA Differential Input Current (+IN, –IN)......................±25mA Output Current (Note 2)................................... 50mARMS Output Short-Circuit Duration..............Thermally Limited Operating and Specified Temperature Range I-Grade.................................................–40°C to 85°C H-Grade.............................................. –40°C to 125°C Maximum Junction Temperature........................... 150°C Storage Temperature Range................... –65°C to 150°C S8E Lead Temperature (Soldering, 10 sec)............ 300°C Pin Configuration TOP VIEW TOP VIEW DGND 1 –IN 2 +IN 3 8 9 V– 4 V+ 6 OUT NC S8E PACKAGE 8-LEAD PLASTIC SO θJA = 36°C/W, θJC = 9°C/W EXPOSED PAD (PIN 9) MUST BE CONNECTED TO V– OR FLOATED SEE "PIN FUNCTIONS” FOR DETAILS NC IS NOT INTERNALLY CONNECTED Order Information 1 12 DGND V+ 3 9 +IN OUT 5 8 NC NC 6 7 V– 11 NC EN 7 5 EN 13 10 –IN DE12(10) PACKAGE 12(10)-LEAD (4mm × 3mm) PLASTIC DFN θJA = 43°C/W, θJC = 12°C/W EXPOSED PAD (PIN 13) MUST BE CONNECTED TO V– OR FLOATED SEE "PIN FUNCTIONS” FOR DETAILS NC IS NOT INTERNALLY CONNECTED PINS 2 AND 4 ARE REMOVED http://www.linear.com/product/LT6018#orderinfo LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE LT6018IS8E#PBF LT6018IS8E#TRPBF 6018 8-Lead Plastic S8E Exposed Pad –40°C to 85°C LT6018IDE#PBF LT6018IDE#TRPBF 6018 12-Lead (4mm × 3mm) Plastic DFN –40°C to 85°C LT6018HS8E#PBF LT6018HS8E#TRPBF 6018 8-Lead Plastic S8E Exposed Pad –40°C to 125°C LT6018HDE#PBF LT6018HDE#TRPBF 6018 12-Lead (4mm × 3mm) Plastic DFN –40°C to 125°C Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix. 6018fa 2 For more information www.linear.com/LT6018 LT6018 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications and all typical values are at TA = 25°C. V+ = 15V, V– = –15V, VCM = VOUT = 0V, VEN = 1.7V, VDGND = 0V unless otherwise noted. VS is defined as (V+ – V–). SYMBOL VOS PARAMETER Input Offset Voltage CONDITIONS S8E Package MIN TYP ±7 l ±8 DFN Package l Long Term Input Offset Voltage Stability (Note 3) ∆VOS/∆Temp Input Offset Voltage Drift (Note 4) S8E Package DFN Package Input Offset Current IOS l l l en Input Bias Current Input Noise Voltage Input Noise Voltage Density CIN Input Noise Current Density Input Capacitance RIN Input Resistance VICM Common-Mode Input Range (Note 5) Common-Mode Rejection Ratio in CMRR TA = –40°C to 85°C TA = –40°C to 125°C 0.1Hz to 10Hz f = 10Hz f = 1kHz f = 10kHz, Unbalanced Source f = 10kHz, Balanced Source Common Mode Differential Mode Common Mode Differential Mode Guaranteed by CMRR l l Power Supply Rejection Ratio l VICM = –12V to 12V VS = 8V to 33V l AVOL Large-Signal Voltage Gain RL = 500Ω, VOUT = –10V to 10V l VOL Output Swing Low (VOUT – V–) –50 –60 –150 –400 –900 ±0.2 ±0.2 ±6 –60 V– + 3 124 120 130 128 132 128 No Load ISINK = 1mA 133 140 142 80 100 750 ISINK = 20mA l Output Swing High (V+ – VOUT) No Load ISOURCE = 1mA 425 730 l 1150 ISOURCE = 20mA l ISC SR Short-Circuit Current Slew Rate VOUT = 0V, Sourcing VOUT = 0V, Sinking AV = 1, 10V Step l l l GBW VS Gain-Bandwidth Product Supply Voltage Range AV = 1, 5V Step f = 50kHz TA = –40°C to 85°C TA = –40°C to 125°C Guaranteed by PSRR µV/°C µV/°C nA nA nA nA nA nVP-P nV/√Hz nV/√Hz pA/√Hz pA/√Hz pF pF MΩ kΩ V V+ – 3 l VOH ±0.5 ±0.5 50 60 150 400 900 30 1.2 1.2 3 0.75 7 32 50 30 l PSRR UNITS µV µV µV µV µV/Mo 0.45 ∆VOS/∆Time IB MAX ±50 ±75 ±70 ±95 l l l 40 65 20 15 12 11 9 8 200 700 1400 1800 800 900 1400 1600 90 100 30 20 15 33 dB dB dB dB dB dB mV mV mV mV mV mV mV mV mV mV mA mA V/µs V/µs V/µs MHz MHz MHz V 6018fa For more information www.linear.com/LT6018 3 LT6018 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications and all typical values are at TA = 25°C. V+ = 15V, V– = –15V, VCM = VOUT = 0V, VEN = 1.7V, VDGND = 0V unless otherwise noted. VS is defined as (V+ – V–). SYMBOL IS PARAMETER Supply Current CONDITIONS In Active Mode TA = –40°C to 85°C TA = –40°C to 125°C In Shutdown Mode, VEN = 0.8V MIN TYP 7.2 l l 6.2 l THD Total Harmonic Distortion tS Settling Time tON VDGND IDGND IEN VENL VENH Enable Time DGND Pin Voltage Range DGND Pin Current EN Pin Current EN Pin Input Low Voltage EN Pin Input High Voltage RL = 600Ω, f = 1kHz, VOUT = 3VRMS, AV = 1 RL = 600Ω, f = 10kHz, VOUT = 3VRMS, AV = 1 RL = 600Ω, f = 1kHz, VOUT = 20VP-P, AV = 1 RL = 600Ω, f = 10kHz, VOUT = 20VP-P , AV = 1 5V Step 0.0015% (16-Bit), AV = 1, RL = 2k, CL = 100pF 10V Step 0.0015% (16-Bit) , AV = 1, RL = 2k, CL = 100pF AV = 1, Settled to 1% –115 –104 –106 –92 1.2 1.2 25 l V– –700 –700 l l Relative to DGND Relative to DGND MAX 7.65 9 10 20 50 l l V+ – 3 –1400 –1400 0.8 1.7 UNITS mA mA mA µA µA dB dB dB dB µs µs μs V nA nA V V Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications and all typical values are at TA = 25°C. V+ = 5V, V– = –5V, VCM = VOUT = 0V, VEN = 1.7V, VDGND = 0V unless otherwise noted. VS is defined as (V+ – V–). SYMBOL VOS PARAMETER Input Offset Voltage CONDITIONS S8E Package MIN TYP ±7 l ±8 DFN Package l ∆VOS/∆Temp Input Offset Voltage Drift (Note 4) IOS S8E Package DFN Package l l Input Offset Current l IB en Input Bias Current Input Noise Voltage Input Noise Voltage Density CIN Input Noise Current Density Input Capacitance RIN Input Resistance VICM CMRR Common-Mode Input Range (Note 5) Common-Mode Rejection Ratio in TA = –40°C to 85°C TA = –40°C to 125°C 0.1Hz to 10Hz f = 10Hz f = 1kHz f = 10kHz, Unbalanced Source f = 10kHz, Balanced Source Common Mode Differential Mode Common Mode Differential Mode Guaranteed by CMRR VICM = –2V to 2V l l –50 –60 –150 –400 –900 ±0.2 ±0.2 ±6 –40 MAX ±50 ±75 ±70 ±95 ±0.5 ±0.5 50 60 150 400 900 30 1.2 1.2 3 0.75 8.3 39 50 30 l l V– + 3 122 118 V+ – 3 130 UNITS µV µV µV µV µV/°C µV/°C nA nA nA nA nA nVP-P nV/√Hz nV/√Hz pA/√Hz pA/√Hz pF pF MΩ kΩ V dB dB 6018fa 4 For more information www.linear.com/LT6018 LT6018 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications and all typical values are at TA = 25°C. V+ = 5V, V– = –5V, VCM = VOUT = 0V, VEN = 1.7V, VDGND = 0V unless otherwise noted. VS is defined as (V+ – V–). PSRR Power Supply Rejection Ratio VS = 8V to 33V l AVOL Large-Signal Voltage Gain RL = 500Ω, VOUT = –2V to 2V l VOL Output Swing Low (VOUT – V–) 130 128 130 126 No Load ISINK = 1mA 140 142 80 100 l 900 ISINK = 20mA l VOH Output Swing High (V+ – VOUT) No Load ISOURCE = 1mA 425 700 l 1160 ISOURCE = 20mA l ISC Short-Circuit Current SR Slew Rate GBW Gain-Bandwidth Product VS IS Supply Voltage Range Supply Current VOUT = 0V, Sourcing VOUT = 0V, Sinking AV = 1, 4V Step AV = 1, 2V Step f = 50kHz TA = –40°C to 85°C TA = –40°C to 125°C Guaranteed by PSRR In Active Mode TA = –40°C to 85°C TA = –40°C to 125°C In Shutdown Mode, VEN = 0.8V l l l l l 40 40 11.5 10.5 8.5 8 Total Harmonic Distortion 6.6 l l 6 tON VDGND IDGND IEN VENL VENH Enable Time DGND Pin Voltage Range DGND Pin Current EN Pin Current EN Pin Input Low Voltage EN Pin Input High Voltage RL = 100Ω, f = 1kHz, VOUT = 1.41VRMS, AV = 1 RL = 100Ω, f = 10kHz, VOUT = 1.41VRMS, AV = 1 AV = 1, Settled to 1% V– –700 –700 l l Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LT6018 is capable of producing peak output currents in excess of 50mA. Current density limitations within the IC require the continuous RMS current supplied by the output (sourcing or sinking) over the operating lifetime of the part be limited to under 50mA (Absolute Maximum). Proper heat sinking may be required to keep the junction temperature below the absolute maximum rating. Refer to Figure 9, and the Safe Operating Area section of the data sheet for more information. 33 7 8.5 9.5 20 50 –107 –86 35 l Relative to DGND Relative to DGND 800 900 1400 1600 85 60 13 10 14.5 l THD 200 700 1400 1800 l l 1.7 V+ – 3 –1400 –1400 0.8 dB dB dB dB mV mV mV mV mV mV mV mV mV mV mA mA V/µs V/µs MHz MHz MHz V mA mA mA µA µA dB dB μs V nA nA V V Note 3: Long term input offset voltage stability refers to the average trend line of offset voltage vs time over extended periods after the first 30 days of operation. Note 4: Guaranteed by design. Note 5: The LT6018 input stage is limited to operating between V– + 3V and V+ – 3V. Exceeding this input common mode range will cause a significant increase in input bias current, reduction of open loop gain and degraded stability. 6018fa For more information www.linear.com/LT6018 5 LT6018 Typical Performance Characteristics TA = 25°C, V+ = 15V, V– = –15V, VEN = 1.7V, VDGND = 0V, RL = 500Ω unless otherwise noted. Typical Distribution of Input Offset Voltage 50 45 40 35 30 25 20 15 10 30 5526 PARTS DFN PACKAGE 35 30 25 20 15 10 5 5 0 –40 –32 –24 –16 –8 0 8 16 24 32 40 INPUT OFFSET VOLTAGE (µV) 0 –40 –32 –24 –16 –8 0 8 16 24 32 40 INPUT OFFSET VOLTAGE (µV) 6018 G01 15 10 5 0 –0.5 –0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 INPUT OFFSET VOLTAGE DRIFT (µV/°C) 123 PARTS DFN PACKAGE 20 15 10 5 0 –0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 INPUT OFFSET VOLTAGE DRIFT (µV/°C) Input Offset Voltage vs Supply Voltage 20 SOIC–8E PACKAGE 5 TYPICAL PARTS 5 TYPICAL PARTS 15 6018 G05 10s/DIV 10 5 0 –5 –10 –15 –20 0.4 0 4 8 12 16 20 24 28 TOTAL SUPPLY VOLTAGE (V) 6018 G04 36 Input Bias Current vs Temperature 5 50 4 0 3 –50 INPUT BIAS CURRENT (nA) INPUT OFFSET VOLTAGE (µV) 32 6018 G06 Input Offset Voltage vs Input Common Mode Voltage 2 1 0 –1 –2 –3 –4 –5 –15 0.3 6018 G03 Input Offset Voltage Warm-Up Drift CHANGE IN OFFSET VOLTAGE (2µV/DIV) PERCENTAGE OF UNITS (%) 25 20 6018 G02 Typical Distribution of Input Offset Voltage Drift 30 128 PARTS SOIC–8E PACKAGE 25 40 PERCENTAGE OF UNITS (%) 6033 PARTS SOIC–8E PACKAGE PERCENTAGE OF UNITS (%) PERCENTAGE OF UNTIS (%) 45 Typical Distribution of Input Offset Voltage Drift INPUT OFFSET VOLTAGE (µV) 50 Typical Distribution of Input Offset Voltage 5 TYPICAL PARTS –100 –150 –200 –250 –300 –350 –400 –450 –10 –5 0 5 10 INPUT COMMON MODE VOLTAGE (V) 15 –500 –50 –25 6018 G09 0 25 50 75 TEMPERATURE (°C) 100 125 6018 G10 6018fa 6 For more information www.linear.com/LT6018 LT6018 Typical Performance Characteristics TA = 25°C, V+ = 15V, V– = –15V, VEN = 1.7V, VDGND = 0V, RL = 500Ω unless otherwise noted. Open-Loop Gain and Phase vs Frequency Open-Loop Gain vs Load 150 0 160 OPEN LOOP GAIN (dB) 100 –90 80 60 –135 40 20 OPEN LOOP PHASE (DEGREES) –45 120 OPEN LOOP GAIN (dB) 140 VOUT = ±10V 145 140 135 –180 0 –20 0.1 1 10 100 1k 10k 100k 1M 10M100M FREQUENCY (Hz) 130 0.1 1 10 LOAD CURRENT (mA) 100 6018 G08 6018 G07 Voltage Noise Density vs Frequency 0.1Hz to 10Hz Voltage Noise Integrated Voltage Noise (0.1Hz to Frequency Indicated) 6018 G11 1s/DIV 10 RMS VOLTAGE NOISE (µV) 10nV/DIV VOLTAGE NOISE DENSITY (nV/√Hz) 100 10 1 0.1 0.1 1 10 100 1k 10k 100k 1M 10M100M FREQUENCY (Hz) 1 0.1 0.01 0.001 1 10 100 1k 10k 100k FREQUENCY (Hz) Current Noise Density vs Frequency CURRENT NOISE DENSITY (pA/√Hz) 1k 100 10 UNBALANCED BALANCED 1 0.1 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M MAXIMUM UNDISTORTED OUTPUT VOLTAGE (VP-P) 6018 G12 1M 10M 6018 G13 Maximum Undistorted Output Amplitude vs Frequency 30 25 AV = 1 THD < –40dB 20 15 10 5 0 0.01 0.1 6018 G14 1 10 FREQUENCY (kHz) 100 1000 6018 G15 6018fa For more information www.linear.com/LT6018 7 LT6018 Typical Performance Characteristics TA = 25°C, V+ = 15V, V– = –15V, VEN = 1.7V, VDGND = 0V, RL = 500Ω unless otherwise noted. Large-Signal Transient Response (5V Step) Large-Signal Transient Response (10V Step) AV = 1 Small-Signal Transient Response 560pF AV = 1 AV = 1 100pF 0pF 1V/DIV 2V/DIV 6018 G16 1µs/DIV Overshoot vs Capacitive Load Vs = ±15V 30 20 100 AV = 1 90 35 30 25 10 –50 0 100 200 300 400 500 600 700 800 900 1000 CAPACITIVE LOAD (pF) –25 0 25 50 75 TEMPERATURE (°C) 100 FALLING EDGE 80 RISING EDGE 40 0 5 50 40 30 RISING EDGE 125 0 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125 6018 G21 CMRR vs Frequency 120 0 60 160 COMMON MODE REJECTION RATIO (dB) SLEW RATE (V/µs) 160 FALLING EDGE 70 6018 G20 Slew Rate vs Input Step AV = 1 VS = ±18V AV = 1 10 6018 G19 200 Slew Rate vs Temperature (10V Step) 20 RISING EDGE 15 6018 G18 80 FALLING EDGE 20 10 0 Slew Rate vs Temperature (5V Step) 40 50 40 100ns/DIV 45 Vs = ±5V SLEW RATE (V/µs) OVERSHOOT (%) 50 AV = 1 60 6018 G17 1µs/DIV SLEW RATE (V/µs) 70 5mV/DIV 10 15 20 25 INPUT STEP SIZE (VP–P) 30 140 120 100 80 60 40 20 0 1k 6018 G22 10k 100k 1M FREQUENCY (Hz) 10M 100M 6018 G23 6018fa 8 For more information www.linear.com/LT6018 LT6018 Typical Performance Characteristics TA = 25°C, V+ = 15V, V– = –15V, VEN = 1.7V, VDGND = 0V, RL = 500Ω unless otherwise noted. 160 POWER SUPPLY REJECTION RATIO (dB) CL = 100pF AV = 1 GAIN(dB) 0 –3 CL = 0pF AV = 1 –6 CL = 100pF AV = –1 RF = 300Ω –9 –12 0.01 0.1 1 10 FREQUENCY (MHz) PSRR vs Frequency 140 120 –PSRR 100 80 +PSRR 60 40 20 0 0.1 100 1 10 100 1k 10k 100k 1M 10M100M FREQUENCY (Hz) VOUT = 3VRMS RF = 1k RL = 600Ω RL = 2kΩ –100 –105 RL = 2kΩ –110 –115 –120 1 10 FREQUENCY (kHz) Supply Current vs Supply Voltage 45 40 35 30 25 20 125°C 15 10 5 1 10 FREQUENCY (kHz) –12–10 –8 –6 –4 –2 0 2 4 6 INPUT VOLTAGE(V) 100 8 10 12 Shutdown Supply Current vs Temperature 85°C 0 5 25°C 10 15 20 SUPPLY VOLTAGE (V) –40°C 25 30 6018 G31 Enable/Disable Response AV = 1 11 VEN 0V 5V/DIV VOUT 0V 5V/DIV VS = 30V 10 9 8 7 VIN = 10Vp–p AT 70kHz I(V+) 0A 5mA/DIV VS = 10V 6 100µs/DIV 5 4 –50 0 6018 G28 6018 G27 12 100 6018 G26 50 –110 –115 RL = 600Ω –105 SUPPLY CURRENT (mA) –95 VOUT = 3VRMS –100 RLOAD = 600Ω AV = 1 –90 THD + Noise vs Frequency, AV = 1 –95 DC Linearity OUTPUT ERROR (1ppm/DIV) –85 –90 6018 G27 THD + Noise vs Frequency, AV = –1 SHUTDOWN SUPPLY CURRENT (µA) TOTAL HARMONIC DISTORTION + NOISE (dB) 6018 G26 –80 TOTAL HARMONIC DISTORTION + NOISE (dB) Closed Loop Gain vs Frequency 3 –25 0 25 50 75 TEMPERATURE (°C) 100 6018 G33 125 6018 G32 6018fa For more information www.linear.com/LT6018 9 LT6018 Typical Performance Characteristics TA = 25°C, V+ = 15V, V– = –15V, VEN = 1.7V, VDGND = 0V, RL = 500Ω unless otherwise noted. 2.0 OUTPUT HIGH SATURATION VOLTAGE (V) OUTPUT LOW SATURATION VOLTAGE (V) 1.0 Output Saturation Voltage vs Sink Current (Output Low) 0.9 0.8 85°C 0.7 0.6 125°C 0.5 25°C 0.4 –40°C 0.3 0.2 0.1 0 0 2 4 6 8 10 12 14 16 18 20 SINKING LOAD CURRENT (mA) Output Saturation Voltage vs Source Current (Output High) 1.8 1.6 –40°C 1.4 25°C 1.2 1.0 0.8 0.6 0.4 85°C 0.2 0 125°C 0 2 4 6 8 10 12 14 16 18 20 SOURCING LOAD CURRENT (mA) 6018 G34 6018 G35 Positive Output Overdrive Recovery Negative Output Overdrive Recovery AV = –100 AV = –100 OUTPUT 5V/DIV INPUT 200mV/DIV 0V 0V OUTPUT 5V/DIV INPUT 200mV/DIV 4µs/DIV 6018 G36 4µs/DIV 6018 G37 6018fa 10 For more information www.linear.com/LT6018 LT6018 Pin Functions (SOIC-8E/DFN) DGND (Pin 1/Pins 12): Reference for EN Pin. It is normally tied to ground. DGND must be in the range from V– to V+ – 3V. If grounded, V+ must be ≥3V. The EN pin threshold is specified with respect to the DGND pin. DGND cannot be floated. V+ (Pin 7/Pin 3): Positive Power Supply. Bypass capacitors should be placed as close as possible between the LT6018 supply pins and ground to ensure proper bypassing. Additional bypass capacitance may be used between the power supply pins. –IN (Pin 2/Pin 10): Inverting Input of the Amplifier. EN (Pin 8/Pin 1): Enable Input. This pin must be connected high, normally to V+, for the amplifier to be functional. EN is active high with the threshold approximately two diodes above DGND. EN cannot be floated. The shutdown threshold voltage is specified with respect to the voltage on the DGND pin. +IN (Pin 3/Pin 9): Noninverting Input of the Amplifier. V– (Pin 4/Pin 7): Negative Power Supply. Bypass capacitors should be placed as close as possible between the LT6018 supply pins and ground to ensure proper bypassing. Additional bypass capacitance may be used between the power supply pins. OUT (Pin 6/Pin 5): Amplifier Output. In shutdown mode, the amplifier’s output is not high impedance (see Applications section). NC (Pin 5/Pins 6, 8, 11): Not internally connected. Exposed Pad (Pin 9/Pin 13): The exposed pad is electrically connected to V–, but should not be used to provide power to the part. Use the V– pin to provide power. The exposed pad can be connected to V– or floated. Connecting the exposed pad to the V– plane will improve thermal performance (see Safe Operating Area section). Simplified Schematic V+ LOAD +IN –IN 2.8Ω 2.8Ω OUTPUT DRIVE CIRCUITRY OUT EN 50k 50k DGND V– 6018 SS 6018fa For more information www.linear.com/LT6018 11 LT6018 Applications Information Overview Noise The proprietary circuitry used in the LT6018 provides a unique combination of precision specifications including ultralow 1/f noise, low broadband noise, low offset and enhanced slew rate without degrading CMRR. The combination of DC specifications and fast settling time allows the LT6018 to solve demanding signal chain requirements. Attention to board layout, supply bypassing and heat sinking must be observed to ensure that the full performance of the LT6018 is realized. The amplifier voltage noise (en), positive input current noise (inp), negative input current noise (inn), source resistance (RS), and feedback resistors (R1) and (R2) are individual voltage noise contributors. The total noise (enot) appearing at the output of the LT6018 will be the root sum square of all the individual voltage noise contributors (Figure 1). 2 2 2 2 2 2 enot = eno +erso +einpo +er1o +er2o +einno  R2  Gv = 1+   R1  eno = en •GV The supply current of the LT6018 increases with large differential input voltages. Normally, this does not impact the LT6018 because the amplifier is forcing the two inputs to be at the same potential. Conditions which cause continuous differential input voltage to appear should be avoided in order to avoid excessive die heating of the LT6018. This includes but is not limited to: operation as a comparator, excessive loading on the output and overdriving the input. Preserving Input Precision Preserving the input accuracy of the LT6018 requires that the application circuit and PC board layout do not introduce errors comparable to or greater than the 7µV typical offset of the amplifier. Temperature differentials across the input connections can generate thermocouple voltages of tens of microvolts so the connections of the input leads should be short, close together and away from heat dissipating components. Air currents across the board can also generate temperature differentials. In precision applications it is also important to consider amplifier loading when selecting feedback resistor values as well as the loads on the device as these will appear in parallel and affect input offset. See the Feedback Components section for more details. erso = enrs •GV = 4kTRS •GV einpo =inp •RS •GV R2 R2 = 4kTR1• R1 R1 er2o = enr2 = 4kTR2 er1o = enr1 • einno =inn •R2 The total input referred voltage noise (enit) is calculated by dividing the total output referred voltage noise (enot) by the amplifier gain. enit = enot GV R1 enr1 R2 enr2 inn – inp LT6018 + RS enrs 6018 F01 enot en Figure 1. LT6018 Noise Contributors 6018fa 12 For more information www.linear.com/LT6018 LT6018 Applications Information 150 Op amps often have protection diodes clamping the two inputs within a diode voltage of each other as seen in Figure 2. During large voltage transitions on the input, these diodes can conduct, since the output cannot respond instantaneously. This can cause circuitry in front of the amplifier as well as the amplifier’s own output stage to get overloaded. Often there may be series input resistors (either integrated or discrete) to limit this current, but on extremely low noise parts such as the LT6018, that is not desirable. 120 The unique input circuitry of the LT6018 does not have this typical diode configuration, but rather a series Zener diode configuration as shown in Figure 3. For 5V input steps, the LT6018 has much higher impedance during transients and allows the user to reduce or eliminate the current limiting resistors, preserving low noise. Figure 4 shows how input bias current increases with differential input voltage for the traditional protection scheme and the LT6018 protection scheme. CURRENT LIMITING RESISTOR NEEDED RF – OUTPUT 6018 F02 5V INPUT STEP + Figure 2. Typical Op Amp Diode Input Protection CURRENT LIMITING RESISTOR NOT NEEDED – LT6018 OUTPUT 6018 F03 5V INPUT STEP INPUT BIAS CURRENT (µA) High Dynamic Input Impedance 90 60 LT6018 IB– LT6018 IB+ 30 0 –30 –60 –90 –120 –150 TYPICAL OP AMP IB+ TYPICAL OP AMP IB– –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 DIFFERENTIAL INPUT VOLTAGE (V) 6 6018 F04 Figure 4. Typical Op Amp vs LT6018 Input Protection Shutdown Operation The LT6018 shutdown function has been designed to be easily controlled from single supply logic or microcontrollers. To enable the LT6018 when VDGND = 0V the enable pin must be driven above 1.7V. Conversely, to enter the low power shutdown mode the enable pin must be driven below 0.8V. In a ±15V dual supply application where VDGND = –15V, the enable pin must be driven above –13.3V to enable the LT6018. If the enable pin is driven below –14.2V the LT6018 enters the low power shutdown mode. Note that to enable the LT6018 the enable pin voltage can range from –13.3V to 15V whereas to disable the LT6018 the enable pin can range from –15V to –14.2V. Figure 5 shows examples of enable pin control. While in shutdown, the output of the LT6018 is not high impedance. The LT6018 is typically capable of coming out of shutdown within 25μs. This is useful in power sensitive applications where duty cycled operation is employed. In these applications the system is in low power mode the majority of the time, but then needs to wake up quickly and settle for an acquisition before being powered back down to save power. + Figure 3. LT6018 Series Zener Diode Input Protection 6018fa For more information www.linear.com/LT6018 13 LT6018 Applications Information –13.3V TO 15V 1.7V TO 15V ON –15V TO –14.2V 15V 15V – + OR EN TO V EN LOGIC + LT6018 30V LT6018 DGND –15V HIGH VOLTAGE SPLIT SUPPLIES – – OFF 8V – LT6018 – DGND –15V HIGH VOLTAGE SPLIT SUPPLIES + OR EN TO V EN LOGIC + LT6018 DGND OFF 4V + OR EN TO V EN LOGIC + LT6018 DGND –4V TO –3.2V 0V TO 0.8V OFF + OR EN TO V EN LOGIC + ON ON 0V TO 0.8V OFF –2.3V TO 4V 1.7V TO 8V ON OV TO 0.8V OFF + OR EN TO V EN LOGIC + 1.7V TO 30V ON DGND –4V HIGH VOLTAGE SINGLE SUPPLY LOW VOLTAGE SPLIT SUPPLIES LOW VOLTAGE SINGLE SUPPLY 6018 F05 Figure 5. LT6018 Enable Pin Control Examples Output Leakage in Shutdown Mode ILEAKAGE – +15V 6018 F06 + VOUT –15V Figure 6. Output Leakage in Shutdown Mode 10 8 6 4 ILEAKAGE (µA) In shutdown mode, the LT6018’s output is not high impedance and may conduct a small amount of current due to on-chip leakages. This current can interact with the input protection diodes or any other circuitry connected to the output. Consider the case of a unity gain buffer shown in Figure 6. When the LT6018 is placed in shutdown mode, leakage current flows from the VOUT pin through the input protection diodes causing VOUT to be around 6V. If the output pin is loaded to ground in the same example, the output would be ILEAKAGE • RLOAD above ground. Figure 7 shows the resulting current as the VOUT is swept. In addition, transient voltage applied to the LT6018 output while in shutdown mode may cause the output devices to momentarily conduct. –40°C 2 25°C 0 –2 90°C –4 Feedback Components To optimize the stability and noise performance of the LT6018, care must be taken when selecting feedback components. For higher resistance values, the pole formed by the inverting parasitic input capacitance and feedback resistors will tend to degrade stability; a lead compensation capacitor across the feedback resistor may be used to eliminate ringing or oscillation. Larger value feedback –6 125°C –8 –10 –8 –6 –4 –2 0 2 4 APPLIED VOUT(V) 6 8 6018 F07 Figure 7. Output Impedance in Shutdown Mode Configured as a Buffer 6018fa 14 For more information www.linear.com/LT6018 LT6018 Applications Information CF GAIN RG RF CF RTI NOISE, f = 1kHz (nV/√Hz) 2.48 3.46 5.20 2.08 1.73 1.27 1.23 1.51 2 500Ω 500Ω 2 5pF 1k 1k 2 5pF 2k 2k 5 200Ω 800Ω 10 100Ω 900Ω 101 10Ω 1k 201 5Ω 1k 201 50Ω 10k RF – RG CPAR LT6018 VOUT + 6018 F08 Figure 8. Suggested Feedback Components for Low Noise Stable Operation resistors will also contribute more thermal noise and further degrade performance (see Applications Information, Noise section). Lower value resistances will tend to improve on these conditions, however, excessive amplifier loading may occur as the feedback network will appear in parallel with the load resistance the LT6018 is required to drive. Figure 8 shows suggested feedback components for maintaining good loop stability and noise performance. Capacitive Loads The LT6018 can easily drive capacitive loads up to 100pF in unity gain. The capacitive load driving capability increases as the amplifier is used in higher gain configurations. A small series resistance between the output and the load further increases the amount of capacitance that the amplifier can drive. 60 The safe operating area, or SOA shown in Figure 9, illustrates the voltage, current and temperature conditions where the LT6018 can be reliably operated. The SOA takes into account the ambient temperature and the power dissipated by the device. This includes the product of the load current and the difference between the supply and output voltage, and the quiescent current and supply voltage. The LT6018 is safe when operated within the boundaries shown in Figure 9. Thermal resistance junction to case, θJC, is rated at a constant 9°C/W. Thermal resistance junction to ambient θJA, is dependent on board layout and any additional heat sinking. Connecting the exposed pad to V– will reduce θJA and improve thermal performance. The curves in Figure 9 show the direct effect of θJA on SOA. CURRENT DENSITY LIMITED 55 50 LOAD CURRENT (mA) Safe Operating Area TA = 125°C θJA = 36°C/W 45 40 θJA = 43°C/W 35 30 θJA = 50°C/W 25 20 15 10 5 JUNCTION TEMPERATURE LIMITED 0 0 5 10 15 20 25 SUPPLY VOLTAGE – LOAD VOLTAGE (V) 30 6018 F09 Figure 9. Safe Operating Area 6018fa For more information www.linear.com/LT6018 15 LT6018 Typical Applications Low Noise, Low Distortion 5kHz Wien Bridge Oscillator with 3% Frequency Trim and Injection Lock 20k 68nF FILM 3.24k 464Ω 15V FREQ TRIM #327 BULB 28V 1W 511Ω 15V EN + 68nF FILM 15V + OUT LT6018 – DGND –15V 20Ω 49.9Ω LT1206 – 200pF –15V 10nF 649Ω 324Ω OUT S/D HD2 = –131dBc HD3 = –108dBc 432Ω* * ADJUST FOR AMPLITUDE 100k INJECTION LOCK INPUT FREQUENCY TRIM RANGE: ±3% INJECTION LOCK: ±0.5% AT 5VPK DRIVE INJECTION ATTENUATION: 41dB 2nd, 44dB 3rd 6018 TA02 Low Noise Extended Output Swing 1M TIA Photodiode Amplifier +24V 6.19k IPD PHOTO DIODE SFH213 0.1µF 1M D JFET NXP BF862 S – 1.5k –5V –5V EN = V + 0.5pF LT6018 + VOUT ~0.4V + IPD • 1M VS = +24V/–5V BW = 500kHz DGND = V – 6018 TA03 6018fa 16 For more information www.linear.com/LT6018 LT6018 Typical Applications Low Noise Precision Current Monitor R1 1k + V RSENSE 0.01Ω R11 10Ω 15V + – – + VSENSE 15V EN LT6018 + – R2* 1k 15V – DGND –15V 15V LT1678 R3* 5k VOUT LT1678 + R4* 1k R5* 5k –15V VREF *LT5400-6 –15V THE LT6018 IN THIS CIRCUIT PROVIDES LOW NOISE, LOW DISTORTION AMPLIFICATION OF A SMALL SENSE VOLTAGE DERIVED FROM A LOW IMPEDANCE SOURCE ACROSS A WIDE INPUT COMMON MODE RANGE. THE SECOND STAGE DIFFERENTIAL AMPLIFIER WITH VARIABLE REFERENCE REJECTS THE INPUT COMMON MODE VOLTAGE. AN OPTIONAL LT1678 BUFFER AMPLIFIER FURTHER ISOLATES THE SOURCE FROM LOADING BY R4 AND R5. THE GAIN IS 500V/V, WITH BANDWIDTH APPROXIMATELY 100kHz AND INPUT REFERRED NOISE 1.45nV/√Hz. 6018 TA04 6018fa For more information www.linear.com/LT6018 17 LT6018 Typical Applications Low Noise, High CMRR Instrumentation Amplifier +15V 15V 15V EN V–IN –REFA –REFB –REFC 19k 38k 23.75k LT6018 V+ 190k DGND 49.9k –15V –IN 190k OUT 49.9Ω 190k VOUT +IN 15V 15V EN 190k 49.9k REF VREF LT6018 DGND V+IN –15V 19k 38k 23.75k +REFA +REFB +REFC GAIN = 2000V/V INPUT REFERRED NOISE = 2.1nV/√Hz CMRR = 150dB –3dB BANDWIDTH = 7.5kHz SHDN V– LT6375 –15V 6018 TA05 6018fa 18 For more information www.linear.com/LT6018 LT6018 Package Description Please refer to http://www.linear.com/product/LT6018#packaging for the most recent package drawings. S8E Package 8-Lead Plastic SOIC (Narrow .150 Inch) Exposed Pad (Reference LTC DWG # 05-08-1857 Rev C) .050 (1.27) BSC .189 – .197 (4.801 – 5.004) NOTE 3 .045 ±.005 (1.143 ±0.127) 8 .089 .160 ±.005 (2.26) (4.06 ±0.127) REF .245 (6.22) MIN .150 – .157 .080 – .099 (2.032 – 2.530) (3.810 – 3.988) NOTE 3 .228 – .244 (5.791 – 6.197) 1 .030 ±.005 (0.76 ±0.127) TYP .005 (0.13) MAX 7 5 6 .118 (2.99) REF 3 2 .118 – .139 (2.997 – 3.550) 4 RECOMMENDED SOLDER PAD LAYOUT .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) .053 – .069 (1.346 – 1.752) 0°– 8° TYP .016 – .050 (0.406 – 1.270) .014 – .019 (0.355 – 0.483) TYP NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010" (0.254mm) 4. STANDARD LEAD STANDOFF IS 4mils TO 10mils (DATE CODE BEFORE 542) 5. LOWER LEAD STANDOFF IS 0mils TO 5mils (DATE CODE AFTER 542) 4 5 .004 – .010 0.0 – 0.005 (0.101 – 0.254) (0.0 – 0.130) .050 (1.270) BSC S8E 1015 REV C 6018fa For more information www.linear.com/LT6018 19 LT6018 Package Description Please refer to http://www.linear.com/product/LT6018#packaging for the most recent package drawings. DE12(10) Package 12-Lead Plastic DFN (4mm × 3mm) Variation DE12(10) with 2 Pins Removed. Flip Chip (Reference LTC DWG # 05-08-1971 Rev Ø) 0.70 ±0.05 0.25 ±0.05 3.55 ±0.05 3.60 ±0.05 2.10 ±0.05 2.20 ±0.05 PACKAGE OUTLINE 0.25 ±0.05 0.50 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED 0.40 ±0.10 4.00 ±0.10 (2 SIDES) PIN 1 TOP MARK (NOTE 5) 0.200 REF 7 3.00 ±0.10 (2 SIDES) 12 0.2 ±0.05 1.00 REF 3.55 ±0.10 0.50 ±0.05 0.75 ±0.05 6 1 0.25 ±0.05 (UE12(10) DFN 0314 REV O 0.50 BSC BOTTOM VIEW—EXPOSED PAD 0.00 – 0.05 NOTE: 1. DRAWING NOT TO SCALE 2. ALL DIMENSIONS ARE IN MILLIMETERS 3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 4. EXPOSED PAD SHALL BE SOLDER PLATED 5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 6018fa 20 Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. For more information www.linear.com/LT6018 LT6018 Revision History REV DATE DESCRIPTION A 01/17 Product description changed from 36V to 33V PAGE NUMBER 1 Package name description changed from SOIC to SO 1 Long Term Input Offset Voltage Stability added 3 Note 3 added for Long Term Input Offset Voltage Stability. Note 3 and Note 4 renamed Note 4 and Note 5, respectively 5 6018fa For more information www.linear.com/LT6018 21 LT6018 Typical Applications Driving LTC2378-20 with ±10V Input Signal (fIN = 100Hz, –1dBFS, 800ksps) 10V/AV 10V –10V/AV VIN –10V 15V 15V EN + LT6018 – DGND –15V R A V = 1+ F RG LT5400-4 1k R1 C1 10k RF 20k RG VREF = 5V 499Ω + 1k IN+ IN– LT1637 5V 1k 5V 2.5V VREF VDD LTC2378-20 SAR ADC 20-BIT GND 6018 TA06 499Ω 10µF AV (V/V) 0V 1k +15V – 20k 5V –15V COMPONENT VALUES 0V SNR (dB) THD (dB) SFDR (dB) 1 RF = 0Ω, RG = OPEN, R1 = 0Ω, C1 = OPEN 102.5 –121.6 123.0 10 RF = 900Ω, RG = 100Ω, R1 = 10Ω, C1 = 0.01µF 100.6 –99.8 100.0 Related Parts PART NUMBER DESCRIPTION COMMENTS LT1028 Ultralow Noise, Precision High Speed Op Amp, AV ≥ 2 Stable 0.1Hz to 10Hz Noise = 35nVP-P, en = 0.85nV/√Hz, VOS = 40µV, SR = 15V/µs, GBW = 75MHz, IS = 7.4mA LT1128 Ultralow Noise, Precision High Speed Op Amp , AV = +1 Stable 0.1Hz to 10Hz Noise = 35nVP-P, en = 0.85nV/√Hz, VOS = 40µV, SR = 6V/µs, GBW = 20MHz, IS = 7.4mA LT1115 Ultralow Noise, Low Distortion, Audio Op Amp DC to 20kHz Noise = 0.5µVP-P, en = 0.9nV/√Hz, VOS = 200µV, SR = 15V/µs, GBW = 70MHz, IS = 8.5mA LT1037 Low Noise, High Speed Precision Op Amp , AV ≥ 5 Stable 0.1Hz to 10Hz Noise = 60nVP-P, en = 2.5nV/√Hz, VOS = 25µV, SR = 15V/µs, GBW = 60MHz, IS = 2.7mA LT1007 Low Noise, High Speed Precision Op Amp, AV = +1 Stable 0.1Hz to 10Hz Noise = 60nVP-P, en = 2.5nV/√Hz, VOS = 25µV, SR = 2.5V/µs, GBW = 8MHz, IS = 2.7mA LT1468 Low Noise, 16-Bit Op Amp 0.1Hz to 10Hz Noise = 0.3µVP-P, en = 5nV/√Hz, VOS = 75µV, SR = 22V/µs, GBW = 90MHz, IS = 3.9mA LT6020 Low Power, Enhanced Slew Op Amp 0.1Hz to 10Hz Noise = 1.1µVP-P, en = 46nV/√Hz, VOS = 30µV, SR = 5V/µs, GBW = 400kHz, IS = 100µA LT6023 Micropower, Enhanced Slew Op Amp 0.1Hz to 10Hz Noise = 3.0µVP-P, en = 132nV/√Hz, VOS = 30µV, SR = 1.4V/µs, GBW = 40kHz, IS = 20µA LTC2057 High Voltage, Low Noise, Zero Drift Amplifier DC to 10Hz Noise = 200nVP-P, en = 11nV/√Hz, VOS = 4µV, SR = 0.45V/µs, GBW = 1.5MHz, IS = 0.8mA LTC6240 Low Noise, CMOS Amplifier 0.1Hz to 10Hz Noise = 550nVP-P, en = 7nV/√Hz, VOS = 125µV, SR = 10V/µs, GBW = 18MHz, IS = 1.8mA LT6230 Low Noise, Rail-to-Rail Output Amplifier 0.1Hz to 10Hz Noise = 180nVP-P, en = 1.1nV/√Hz, VOS = 500µV, SR = 60V/µs, GBW = 215MHz, IS = 3.15mA 6018fa 22 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 For more information www.linear.com/LT6018 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LT6018 LT 0117 REV A • PRINTED IN USA  LINEAR TECHNOLOGY CORPORATION 2016
LT6018HS8E#TRPBF 价格&库存

很抱歉,暂时无法提供与“LT6018HS8E#TRPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货