0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC1343IGW#TRPBF

LTC1343IGW#TRPBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    SSOP44

  • 描述:

    IC TRANSCEIVER FULL 4/4 44SSOP

  • 数据手册
  • 价格&库存
LTC1343IGW#TRPBF 数据手册
TLK3132 2-Channel Multi-Rate Transceiver Data Manual PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Literature Number: SLLS956A December 2008 – Revised December 2009 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Contents 1 2 3 4 2 ........................................................................................................................ 9 1.1 Features ...................................................................................................................... 9 1.2 PIN OUT ..................................................................................................................... 9 1.3 Description ................................................................................................................. 10 Detailed Description .......................................................................................................... 11 2.1 Clocking Modes ............................................................................................................ 11 2.2 Operating Frequency Range ............................................................................................. 12 2.3 CPRI Latency Support .................................................................................................... 12 2.4 Power-Down Mode ........................................................................................................ 12 2.5 Application Examples ..................................................................................................... 12 2.6 Device Operation Modes ................................................................................................. 17 2.7 Parallel Interface Modes - Detailed Description ....................................................................... 18 2.7.1 RGMII Mode (Reduced Gigabit Media Independent Interface) ........................................... 18 2.7.2 RTBI Mode (Reduced Ten Bit Interface) .................................................................... 19 2.7.3 TBI Mode (Ten Bit Interface) .................................................................................. 20 2.7.4 GMII Mode (Gigabit Media Independent Interface) ........................................................ 21 2.7.5 EBI Mode (Eight Bit Interface) ................................................................................ 22 2.7.6 REBI Mode (Reduced Eight Bit Interface) ................................................................... 23 2.7.7 NBI Mode (Nine Bit Interface Mode) ......................................................................... 24 2.7.8 RNBI Mode (Reduced Nine Bit Interface) ................................................................... 25 2.7.9 TBID Mode (Ten Bit Interface DDR) ......................................................................... 26 2.7.10 NBID Mode (Nine Bit Interface DDR) ........................................................................ 27 2.7.11 Parallel Interface Clocking Modes ............................................................................ 28 2.7.12 Parallel to Serial ................................................................................................ 29 2.7.13 Serial to Parallel ................................................................................................ 29 2.7.14 High Speed CML Output ....................................................................................... 29 2.7.15 High Speed Receiver .......................................................................................... 30 2.7.16 Loopback ........................................................................................................ 31 2.7.17 Link Test Functions ............................................................................................. 31 2.7.18 MDIO Management Interface ................................................................................. 31 2.7.19 MDIO Protocol Timing ......................................................................................... 31 2.7.20 Clause 22 Indirect Addressing ................................................................................ 32 2.8 PROGRAMMERS REFERENCE ........................................................................................ 34 2.9 Top Level Programmers Reference ..................................................................................... 39 Device Reset Requirements/Procedure ................................................................................ 57 3.1 Gigabit Ethernet Mode (RGMII) ......................................................................................... 57 3.2 JITTER TEST PATTERN GENERATION AND VERIFICATION PROCEDURES ................................ 59 3.3 PRBS Test Generation and Verification Procedures ................................................................. 61 3.4 Signal Pin Description .................................................................................................... 64 Electrical Specifications ..................................................................................................... 70 4.1 ABSOLUTE MAXIMUM RATINGS ...................................................................................... 70 4.2 RECOMMENDED OPERATING CONDITIONS ....................................................................... 70 4.3 REFERENCE CLOCK TIMING REQUIREMENTS (REFCLKP/N) .................................................. 71 4.4 REFERENCE CLOCK ELECTRICAL CHARACTERISTICS (REFCLKP/N) ....................................... 71 Introduction Contents Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 ...................... 71 ........................................................................... 71 4.7 LVCMOS ELECTRICAL CHARACTERISTICS ........................................................................ 71 4.8 MDIO ELECTRICAL CHARACTERISTICS ............................................................................ 72 4.9 HSTL SIGNALS (VDDQ = 1.5/1.8 V) ................................................................................... 72 4.10 SERIAL TRANSMITTER/RECEIVER CHARACTERISTICS ......................................................... 73 4.11 PARAMETER MEASUREMENT ........................................................................................ 74 4.12 HSTL Output Switching Characteristics (DDR Timing Mode Only) ................................................. 78 4.13 HSTL Output Switching Characteristics (SDR Timing Mode Only) ................................................. 79 4.14 HSTL (DDR Timing Mode Only) Input Timing Requirements ....................................................... 80 4.15 HSTL (SDR Timing Mode Only) Input Timing Requirements ........................................................ 81 4.16 MDIO Timing Requirements Over Recommended Operating Conditions ......................................... 82 4.17 JTAG Timing Requirements Over Recommended Operating Conditions .......................................... 83 4.18 Package Dissipation Rating .............................................................................................. 85 A APPENDIX A – Frequency Ranges Supported ....................................................................... 87 A.1 Recovered Byte Clock Jitter Cleaner Mode: ........................................................................... 97 B APPENDIX B – Jitter Cleaner PLL External Loop Filter ........................................................... 99 C APPENDIX C – Device Test Mode ....................................................................................... 100 Revision History ....................................................................................................................... 100 4.5 SINGLE ENDED REFERENCE CLOCK ELECTRICAL CHARACTERISTICS (REFCLK) 4.6 JITTER CLEANER TIMING PARAMETERS Copyright © 2008–2009, Texas Instruments Incorporated Contents 3 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com List of Figures 1-1 System Block Diagram – PCS .................................................................................................. 11 1-2 Block Diagram – TLK3132 Clocking Architecture ............................................................................ 11 2-1 Dual 10-Bit SERDES Application 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 3-1 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 .............................................................................................. 1000Base-X – Remote (Serial) Loopback Application ...................................................................... 1000Base-X – Local (Parallel ) Loopback Application ...................................................................... Custom Independent Configuration Application .............................................................................. TLK3132 Block Diagram ........................................................................................................ Detailed 1000Base-X Core Block Diagram ................................................................................... Block Diagram of SERDES Core............................................................................................... RGMII – Individual Channel Byte Ordering – Channel 0 Example ........................................................ RTBI – Individual Channel Byte Ordering – Channel 0 Example .......................................................... TBI – Individual Channel Byte Ordering – Channel 0 Example ............................................................ GMII – Individual Channel Byte Ordering – Channel 0 Example .......................................................... EBI – Individual Channel Byte Ordering – Channel 0 Example ............................................................ REBI – Individual Channel Byte Ordering – Channel 0 Example .......................................................... NBI – Individual Channel Byte Ordering – Channel 0 Example ............................................................ RNBI – Individual Channel Byte Ordering – Channel 0 Example .......................................................... TBID – Individual Channel Byte Ordering – Channel 0 Example .......................................................... NBID – Individual Channel Byte Ordering – Channel 0 Example .......................................................... Receive Interface Timing – Source Centered/Aligned....................................................................... Transmit Interface Timing ....................................................................................................... Example High-Speed I/O AC Coupled Mode ................................................................................. Output Differential Voltage with 1-Tap FIR De-Emphasis .................................................................. CL22 – Management Interface Read Timing ................................................................................ CL22 - Management Interface Write Timing .................................................................................. CL22 – Indirect Address Method – Address Write ........................................................................... CL22 – Indirect Address Method – Data Write ............................................................................... CL22 – Indirect Address Method – Address Write ........................................................................... CL22 – Indirect Address Method – Data Read .............................................................................. Device Pinout Diagram – (Top View) .......................................................................................... Transmit Output Waveform Parameter Definitions .......................................................................... Transmit Template ............................................................................................................... Receive Template ................................................................................................................ Input Jitter ......................................................................................................................... HSTL (DDR Timing Mode Only) Source Centered Output Timing Requirements ....................................... HSTL (DDR Timing Mode Only) Source Aligned Output Timing Requirements ......................................... HSTL (SDR Timing Mode Only) Rising Edge Aligned Output Timing Requirements ................................... HSTL (SDR Timing Mode Only) Falling Edge Aligned Output Timing Requirements ................................... HSTL (DDR Timing Mode Only) Source Centered Data Input Timing Requirements................................... HSTL (DDR Timing Mode Only) Source Aligned Data Input Timing Requirements ..................................... 13 13 13 14 15 17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 32 32 32 33 33 33 69 74 75 75 75 78 78 79 79 80 80 4-11 HSTL (SDR Timing Mode Only) Falling Edge Aligned (Rising Edge Sampled) Data Input Timing Requirements ..................................................................................................................... 81 4-12 HSTL (SDR Timing Mode Only) Rising Edge Aligned (Falling Edge Sampled) Data Input Timing Requirements ..................................................................................................................... 81 4-13 MDIO Read/Write Timing........................................................................................................ 82 4-14 JTAG Timing ...................................................................................................................... 83 4-15 HSTL I/O Schematic ............................................................................................................. 84 4 List of Figures Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 4-16 PACKAGE Information (Package Designator = ZEN) ....................................................................... 85 A-1 Standard Based Jitter Cleaner/SERDES Provisioning ...................................................................... 93 A-2 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (2x) Provisioning .................................................... 94 A-3 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (1x) Provisioning .................................................... 95 A-4 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (0.5x) Provisioning .................................................. 96 A-5 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (0.25x) Provisioning ................................................ 96 A-6 8 BIT SERDES Mode – Jitter Cleaner/SERDES (2x) Provisioning A-8 8 BIT SERDES Mode – Jitter Cleaner/SERDES (0.5x) Provisioning...................................................... 97 A-9 Recovered Byte Clock Jitter Cleaner Mode................................................................................... 98 B-1 Jitter Cleaner External Loop Filter ....................................................... ............................................................................................. Copyright © 2008–2009, Texas Instruments Incorporated List of Figures 97 99 5 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com List of Tables 2-1 Supported Protocol Rates and REFCLK Values ............................................................................. 12 2-2 Device Operation Modes ........................................................................................................ 17 2-3 RGMII – Lane To Functional Pin Mapping .................................................................................... 18 2-4 RTBI – Lane To Functional Pin Mapping 19 2-5 TBI – Lane To Functional Pin Mapping 20 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28 2-29 2-30 2-31 2-32 2-33 2-34 2-35 2-36 2-37 2-38 2-39 2-40 2-41 2-42 2-43 2-44 2-45 2-46 6 ..................................................................................... ....................................................................................... GMII – Lane To Functional Pin Mapping ...................................................................................... EBI – Lane To Functional Pin Mapping ....................................................................................... REBI – Lane To Functional Pin Mapping ..................................................................................... NBI – Lane To Functional Pin Mapping ....................................................................................... RNBI – Lane To Functional Pin Mapping ..................................................................................... TBID – Lane To Functional Pin Mapping ..................................................................................... NBID – Lane To Functional Pin Mapping ..................................................................................... PHY_CONTROL_1............................................................................................................... PHY_STATUS_1 ................................................................................................................. PHY_IDENTIFIER_1 ............................................................................................................. PHY_IDENTIFIER_2 ............................................................................................................. PHY_EXT_STATUS ............................................................................................................. PHY_CH_CONTROL_1 ......................................................................................................... PHY_CH_CONTROL_2 ......................................................................................................... PHY_RX_CTC_FIFO_STATUS ................................................................................................ PHY_TX_CTC_FIFO_STATUS ................................................................................................ PHY_TX_WIDE_FIFO _STATUS .............................................................................................. PHY_TEST_PATTERN_SYNC_STATUS ..................................................................................... PHY_TEST_PATTERN_COUNTER ........................................................................................... PHY_CRPAT_PATTERN_COUNTER_1 ..................................................................................... PHY_CRPAT_PATTERN_COUNTER_2 ..................................................................................... PHY_TEST_MODE_CONTROL................................................................................................ PHY_CHANNEL_STATUS ...................................................................................................... PHY_PRBS_HIGH_SPEED_TEST_COUNTER ............................................................................. PHY_EXT_ADDRESS_CONTROL ........................................................................................... PHY_EXT_ADDRESS_DATA ................................................................................................. SERDES_PLL_CONFIG ........................................................................................................ PLL Multiplier Control ............................................................................................................ SERDES_RATE_CONFIG_TX_RX ............................................................................................ SERDES_RX0_CONFIG ....................................................................................................... SERDES_RX1_CONFIG ....................................................................................................... SERDES_TX0_CONFIG ....................................................................................................... SERDES_TX1_CONFIG ....................................................................................................... Transmit De-Emphasis Control ................................................................................................. Output Swing Control ............................................................................................................ SERDES_TEST_CONFIG_TX ................................................................................................. SERDES_TEST_CONFIG_RX ................................................................................................ SERDES_RX0_STATUS ....................................................................................................... SERDES_RX1_STATUS ....................................................................................................... SERDES_TX0_STATUS ....................................................................................................... SERDES_TX1_STATUS ....................................................................................................... List of Tables 21 22 23 24 25 26 27 34 34 35 35 35 35 36 37 37 37 38 38 38 38 38 38 39 39 39 39 40 40 40 41 41 43 43 43 44 44 45 45 45 45 Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2-47 SERDES_PLL_STATUS ........................................................................................................ 45 2-48 JC_CLOCK_MUX_CONTROL.................................................................................................. 46 2-49 ................................................................................................ JC_DELAY_STOPWATCH_CLK_DIV_CONTROL .......................................................................... JC_DELAY_STOPWATCH_COUNTER....................................................................................... JC_REFCLK_FB_DIV_CONTROL ............................................................................................. JC_RXB_OUTPUT_CLK_DIV_CONTROL ................................................................................... JC_CHARGE_PUMP_CONTROL ............................................................................................. Charge Pump Control Setting (CP_CTRL) ................................................................................... JC_PLL_CONTROL.............................................................................................................. JC_TEST_CONTROL_1 ........................................................................................................ JC_TEST_CONTROL_2 ........................................................................................................ JC_TI_TEST_CONTROL_1..................................................................................................... JC_TI_TEST_CONTROL_2..................................................................................................... JC_TRIM_STATUS .............................................................................................................. DIE_ID_7 .......................................................................................................................... DIE_ID_6 .......................................................................................................................... DIE_ID_5 .......................................................................................................................... DIE_ID_4 .......................................................................................................................... DIE_ID_3 .......................................................................................................................... DIE_ID_2 .......................................................................................................................... DIE_ID_1 .......................................................................................................................... DIE_ID_0 .......................................................................................................................... EFUSE_STATUS ................................................................................................................. EFUSE_CONTROL .............................................................................................................. HSTL_INPUT_TERMINATION_CONTROL................................................................................... HSTL_OUTPUT_SLEWRATE_CONTROL ................................................................................... HSTL_INPUT_VTP_CONTROL ................................................................................................ HSTL_OUTPUT_VTP_CONTROL ............................................................................................. HSTL_GLOBAL_CONTROL .................................................................................................... TX0_DLL_CONTROL ............................................................................................................ TX1_DLL_CONTROL ............................................................................................................ RX0_DLL_CONTROL ........................................................................................................... RX1_DLL_CONTROL ........................................................................................................... DLL Offset Control ............................................................................................................... TX0_DLL_STATUS .............................................................................................................. TX1_DLL_STATUS .............................................................................................................. RX0_DLL_STATUS .............................................................................................................. RX1_DLL_STATUS .............................................................................................................. CH0_TESTFAIL_ERR_COUNTER ............................................................................................ CH1_TESTFAIL_ERR_COUNTER ............................................................................................ STCI_CONTROL_STATUS ..................................................................................................... TESTCLK_CONTROL ........................................................................................................... BIDI_CMOS_CONTROL ........................................................................................................ DEBUG_CONTROL.............................................................................................................. DUTY_CYCLE_CONTROL ..................................................................................................... Global Signals .................................................................................................................... JTAG Signals ..................................................................................................................... 2-50 2-51 2-52 2-53 2-54 2-55 2-56 2-57 2-58 2-59 2-60 2-61 2-62 2-63 2-64 2-65 2-66 2-67 2-68 2-69 2-70 2-71 2-72 2-73 2-74 2-75 2-76 2-77 2-78 2-79 2-80 2-81 2-82 2-83 2-84 2-85 2-86 2-87 2-88 2-89 2-90 2-91 2-92 3-1 3-2 JC_VTP_CLK_DIV_CONTROL Copyright © 2008–2009, Texas Instruments Incorporated List of Tables 46 47 47 47 47 48 48 48 49 49 49 49 49 49 50 50 50 50 50 50 50 50 51 52 52 52 53 53 54 54 54 54 55 55 55 55 55 55 55 56 56 56 56 56 64 65 7 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 3-3 MDIO Related Signals ........................................................................................................... 65 3-4 Parallel Data Pins ................................................................................................................ 66 3-5 Serial Side Data/Clock Pins ..................................................................................................... 67 3-6 Miscellaneous Pins ............................................................................................................... 67 3-7 Voltage Supply and Reference Pins ........................................................................................... 68 3-8 Jitter Cleaner Related Pins...................................................................................................... 69 4-1 Driver Template Parameters .................................................................................................... 74 4-2 Parallel Interface – Valid Signal Operational Mode Definitions 4-3 4-4 A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10 C-1 C-2 8 ............................................................ TLK3132 Application Mode –vs– Interface Timing Mode Support ........................................................ Worst Case Device Power Dissipation ........................................................................................ Reference Clock Selection – Gigabit Ethernet Mode ........................................................................ Reference Clock Selection – 1X/2X Fibre Channel Mode .................................................................. Reference Clock Selection – OBSAI Mode ................................................................................... Reference Clock Selection – CPRI Mode ..................................................................................... Reference Clock Selection – 9/10 Bit SERDES Mode – Full Rate (SPEED[1:0] = 00) ................................. Reference Clock Selection – 9/10 Bit SERDES Mode – Half Rate (SPEED[1:0] = 01) ................................ Reference Clock Selection – 9/10 Bit SERDES Mode – Quarter Rate (SPEED[1:0] = 10) ............................ Reference Clock Selection – 8 Bit SERDES Mode – Full Rate (SPEED[1:0] = 00) ..................................... Reference Clock Selection – 8 Bit SERDES Mode – Half Rate (SPEED[1:0] = 01) .................................... Reference Clock Selection – 8 Bit SERDES Mode – Quarter Rate (SPEED[1:0] = 10) ................................ Device Mode Configuration .................................................................................................... Device Test Mode Pin Configuration ......................................................................................... List of Tables 76 84 86 87 88 88 89 89 90 90 91 91 91 100 100 Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2-Channel Multi-Rate Transceiver Check for Samples: TLK3132 1 Introduction 1.1 Features 1 • Two Channel 600Mbps to 3.75Gbps Multi-Rate Transceiver • Supports 1X/2X Fibre Channel (FC), CPRI (x1/x2/x4), OBSAI (x1/x2/x4), and 1GbE (1000Base-X) Data Rates • IEEE Compliant 1000Base-X PCS Support • Supports Independent Channel SERDES Operation Modes in 8/10 Bit Data Modes (TBI and 8 Bit + Control) • Serial Side Transmit De-Emphasis and Receive Adaptive Equalization to Allow Extended Backplane Reach • Low Jitter LC Oscillator Jitter-Cleaner Allows use of Poor Quality REFCLK • Full Datapath Loopback Capability (Serial/Parallel Side) • Supports PRBS 27-1 and 223 – 1 Gen/Verify. Supports Standard Defined CRPAT, High and Low Frequency, and Mixed Frequency Testing. • GMII/RGMII: HSTL Class 1 I/O With On-Chip Termination: Programmable Input and 50Ω 1.2 Output (1.5 and 1.8V Power Supply) • GMII/RGMII: Source and Data Centered I/O Timing Modes • Supports Jumbo Packet (9600 Byte Maximum) Operation • MDIO: IEEE 802.3 Clause 22 Compliant Management Data Input / Output Interface Modes (Either 1.2V or 2.5V MDIO I/O) • 1.2V Core, 1.5V/1.8V HSTL I/O Supply, and 2.5V LVCMOS I/O Supply • JTAG: IEEE 1149.1/1149.6 Test Interface • ±200 ppm Clock Tolerance in 1000Base-X Receive Datapaths • 90 nm Advanced CMOS Technology • Package: PBGA, 15×15mm, 196 Ball, 1mm Pitch • 1.1W Maximum Power Dissipation at 2CH 3.75 Gbps (1.5V HSTL Mode, Input HSTL Termination Disabled) • Asymmetric RX/TX Rates Supported • Industrial Ambient Operating Temperature (–40°C to 85°C) at Full Rate PIN OUT TLK3132 (R)GMII TXD(15..0) TXC(5,4,1,0) TDP/N[1:0] RXCLK(1:0) RDP/N[1:0] RXD(15..0) 2 2 Serial I/F TXCLK(1:0) RXC(5,4,1,0) 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 1.3 www.ti.com Description The TLK3132 is a flexible two channel independently configurable serial transceiver. It can be configured to be compliant with the 1000Base-X 1Gbps Ethernet Specification (Auto-Negotiation not supported). The TLK3132 provides high-speed bi-directional point-to-point data transmissions with up to 15 Gbps of raw data transmission capacity. The primary application of this device is in backplanes and front panel connections requiring 3.75Gbps connections over controlled impedance media of approximately 50Ω. The transmission media can be printed circuit board (PCB) traces, copper cables or fiber-optical media. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling into the lines. The TLK3132 performs the parallel-to-serial, serial-to-parallel conversion, and clock extraction functions for a physical layer interface. The TLK3132 also provides 1000Base-X (PCS) layer functionality described in Clause 36 of 802.3-2002. The serial transmitter is implemented using differential Current Mode Logic (CML) with integrated termination resistors. Figure 1-1 shows an example system block diagram for TLK3132 used to provide the Physical Coding Sublayer to Coarse Wave-length Division Multiplexed optical transceiver or parallel optics. Many common applications may be enabled by way of externally available control pins. Detailed control of the TLK3132 on a per channel basis is available by way of accessing a register space of control bits available through a two-wire access port called the Management Data Input/Output (MDIO) interface. The PCS (Physical Coding Sublayer) functions such as the CTC FIFO are designed to be compliant for a 1000Base-X PCS link. However, each of the PCS functions may be disabled or bypassed until the TLK3132 is operating at its most basic state, that of a simple two channel 10-bit SERDES suitable for a wide range of applications such as CPRI or OBSAI wireless infrastructure links. The differential output swing for the TLK3132 is suitable for compliance with IEEE 802.3 Gigabit Ethernet links, which is also suitable for CPRI LV serial links. The TLK3132 provides for setting larger output signal swing suitable for CPRI HV links by setting an appropriate register bit available though MDIO. TLK3132 Parallel I/F 2 TXCLK[1:0] TXD(15:0) 2 2 TXC(5:4,1:0) Serial I/F Backplane 2 Serial I/F Parallel I/F Line Card MAC/ Packet Processor CWDM or Parallel Optics TLK3132 RXC(5:4,1:0) RXCLK[1:0] RXD(15:0) Figure 1-1. System Block Diagram – PCS 10 Introduction Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 REF_SEL[1:0] REFCLK_P 00 REFCLK_N 01 1X REFCLK REFCLK Divider REF_DIV[6:0] Jitter Cleaner PLL Core PLL Feedback Divider FB_DIV[6:0] RXBCLK[0] TX_SEL[1:0] First PLL Output Divider RXTX_DIV[6:0] SERDES TX 00 01 REFCLK_TX PLL 10 P2S TX1P/N 11 P2S TX0P/N SERDES RX 00 01 00 RXBYTE_CLK 01 10 11 Second PLL Output Divider RXB_DIV[6:0] RXB_SEL[1:0] 00 DELAY_CLK 01 10 11 Third PLL Output Divider DEL_DIV[6:0] REFCLK_RX PLL 10 S2P RX1P/N 11 S2P RX0P/N RX_SEL[1:0] (2.875 Ghz Min., 3 Ghz Typ., 3.125 Ghz Max.) DEL_SEL[1:0] HSTL_2X_CLK HSTL Output Divider HSTL_DIV2[6:0] 10 Fourth PLL Output Divider 11 HSTL_DIV1[6:0] 00 01 Note: Default Mux Selects are Underlined. HSTL_SEL[1:0] Figure 1-2. Block Diagram – TLK3132 Clocking Architecture 2 Detailed Description 2.1 Clocking Modes The TLK3132 contains an internal low-bandwidth, low-jitter high quality LC oscillator that may be configured as a jitter cleaner. The jitter cleaner oscillator has a high frequency narrow band of operation that may be used to generate all common reference clock frequencies by way of programmable pre-scaler and post-scaler registers. In this manner a poor quality input reference clock can be input to the jitter cleaner which will lock to the reference clock and provide a clean reference to the internal SERDES PLLs. Appendix A defines in detail the clocking possibilities, and device settings. Alternatively, the jitter cleaner may be used to lock to a recovered byte clock from RX channel 0 and remove jitter that may have transferred through the clock/data recovery circuit from the serial data stream to the recovered byte clock (including parallel output data timing). In this way the recovered byte clock may be extracted from the serial data stream yet be suitable for use in applications that require a clean clock source derived from the serial data stream. The TLK3132 jitter cleaner may only be used on the recovered byte clock from Channel 0. If the jitter cleaner is used to clean the recovered byte clock, it may not also be used to clean the input reference clock, and the PLL at the center of the deserializer core must have a clean low-jitter reference clock from an external clock source, preferably a low-jitter crystal based oscillator. Also note that the Transmit SERDES macro can run from the cleaned recovered RX channel 0 byte clock which allows for the outgoing TX serial data rate for all channels to exactly match the incoming data rate of RX Channel 0. The TLK3132 clocking architecture allows for bypass of the JC PLL in cases where power or application board area is critical. See Figure 1-2 Block Diagram – TLK3132 Clocking Architecture for a representation of the use of the jitter cleaner in the TLK3132. Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 11 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2.2 www.ti.com Operating Frequency Range The TLK3132 is optimized for operation at a serial data rate of 600 Mbit/s through 3.75 Gbit/s. The external differential (optionally single ended) reference clock has a large operating frequency range allowing support for many different applications. The reference clock frequency must be within ±200 PPM of the incoming serial data rate, and have less than 40ps of jitter. Table 2-1 shows a summary of frequency ranges supported. For more details, see Appendix A. The transmit parallel input clock must be frequency locked (0 ppm) to the supplied REFCLK frequency. Table 2-1. Supported Protocol Rates and REFCLK Values 2.3 PROTOCOL Refclk (MHz) 1G Ethernet 62.5/125/250 LINE RATE (Gbps) 1.25 1X/2X Fibre Channel 53.125/106.25/212.5 2.125 1.0625 OBSAI 76.8/153.6/307.2 3.072 1.536 0.768 CPRI 61.44/122.88/245.76 2.4576 1.2288 0.6144 Generic TBI 50 → 375 MHz 0.600 → 3.75 Generic RTBI 50 → 375 MHz 0.600 → 1.6 Generic NBID/TBID 50 → 375 MHz 0.600 → 3.2 CPRI Latency Support The TLK3132 has a round trip latency measurement capability to support its use in CPRI applications. When enabled, the TLK3132 will measure the elapsed time from the transmission of a K28.5 code in a CPRI frame until the reception of a K28.5 code in the receive path. This measurement result may be read through an MDIO readable register. The measurement has an accuracy of ±4 ns with the Jitter Cleaner PLL enabled, and an accuracy of ± two parallel byte clock periods if the Jitter Cleaner PLL is disabled. 2.4 Power-Down Mode The TLK3132 (through the ENABLE pin and through register control) is capable of going into a low power quiescent state. In this state, all analog and digital circuitry is disabled. 2.5 Application Examples The TLK3132 supports many different application modes. Detailed register settings per application mode are shown in Table 2-2. The following application diagrams do not show all possible applications, and are intended only to illustrate the flexibility of the device. Figure 2-1 shows the TLK3132 in a dual independent channel SERDES Application. The 1000Base-X PCS layer can be enabled or disabled. Note that in independent channel mode, the 8B/10B encoder/decoder functions can either be turned on or turned off. When turned off, either 5 or 10 bits (DDR/SDR) of data is accepted from and presented to the parallel side. When the 8B/10B encoder/decoder functions are enabled, 1 bit of control and 8 bits of data are accepted from and presented to the parallel side using the standardized (R)GMII control characters 12 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 TLK3132 10 10 10 10 1 1 P A R A L L E L S E R I A L 1 1 Figure 2-1. Dual 10-Bit SERDES Application Figure 2-2 shows the TLK3132 in a 1000Base-X Remote Loopback Application. It is possible to configure serial side loopback in SERDES mode for both channels on an individual basis. 5/10 TLK3132 P A R A L L E L 1 S E R I A L PCS CORE 1 Figure 2-2. 1000Base-X – Remote (Serial) Loopback Application Figure 2-3 shows the TLK3132 in a Local Loopback Application. It is possible to configure Parallel side loopback in SERDES mode for both channels on an individual basis. 5/10 P A R A L L E L TLK3132 PCS CORE S E R I A L 1 Figure 2-3. 1000Base-X – Local (Parallel ) Loopback Application Figure 2-4 shows the TLK3132 in a custom application example with mixed modes per Channel. • Channel 1 in Parallel independent loopback mode • Channel 0 in independent channel transceiver mode Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 13 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com TLK3132 P A R A L L E L LANE0 LANE1 PCS CORE S E R I A L Figure 2-4. Custom Independent Configuration Application The TLK3132 supports the IEEE 802.3 defined Management Data Input/Output (MDIO) Interface to allow ease in configuration and status monitoring of the link. The bi-directional data pin (MDIO) must be externally pulled up to 1.2V or 2.5V (VDDM) per the standard for MDIO. The TLK3132 supports the IEEE 1149.1/1149.6 defined JTAG test port for ease in board manufacturing test. It also supports a comprehensive series of built-in tests for self-test purposes including PRBS generation and verification, CRPAT, Mixed/High/Low Frequency testing. The TLK3132 operates with a 1.2V core voltage supply, a 1.5/1.8V HSTL I/O voltage supply and a 2.5V LVCMOS/bias supply. The TLK3132 is packaged in a 15×15mm, 196-ball, 1mm ball pitch Plastic Ball Grid Array (PBGA) package and is characterized for operation from –40°C to 85°C Ambient, 105°C Junction, and 5% power supply variation at the balls of the device unless noted otherwise. 14 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 The following block diagram provides a high level description of the TLK3132. GMII/ RGMII/ TBI/ RTBI TX TXCLK(1:0) TXD(15:0) Serial I/F Core TXC(5:4,1:0) 2 TDP[1:0] TDN[1:0] 1000Base-X PCS RXCLK(1:0) RXD(15:0) 2 GMII/ RGMII/ TBI/ RTBI RX RDP[1:0] RDN[1:0] RXC(5:4,1:0) TCK TDI JTAG Jitter Cleaner PLL TMS TRSTN TDO PRTAD[4:0] MDIO MDIO MDC Figure 2-5. TLK3132 Block Diagram Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 15 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Following is a more detailed block diagram description of the core. Test mode Test mode Channel 1 Channel 0 Self Test TXCLK 8 Bit TX FIFO TXD[7:0] 8b/ 10b enc 10bits TDP0 TDN0 RCLK RXCLK 8-bits RXD(7:0) 8b/10b Decoding & Self Test Verification/ Reporting RX FIFO / CTC 10bits SERDES Core RDP0 RDN0 RXCLK REFCLKP REFCLKN Figure 2-6. Detailed 1000Base-X Core Block Diagram 16 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Multiplying Clock Synthesizer REFCLKP /N TDP Parallel to Serial Parallel Data In D Q TDN Baud Clock Interpolator & Clock Recovery Recovered Clock RCLK Serial to Parallel & Comma Detect Parallel Data Out RDP RDN Figure 2-7. Block Diagram of SERDES Core 2.6 Device Operation Modes Table 2-2. Device Operation Modes DEVICE MODE RGMII (DDR) GMII (SDR) RTBI (DDR) TBI (SDR) REBI (DDR) NIBBLE_ORDER 17.4 RNBI (DDR) NBI (SDR) 0 TBID (DDR) NBID (DDR) Clause 22 (1) MDIO Access Method DDR_SDR 17.5 EBI (SDR) 1 0 1 0 1 0 1 0/1 X 0/1 X 0/1 X 0/1 TX_EDGE_MODE 17.1 0/1 RX_EDGE_MODE 17.0 FC_ENC_MODE 17.6 0 COMMA_DET_EN 17.7 PCS_EN 17.3 Logical OR w/CODE pin 0/1 FULL_DDR 17.9 0 1 0/1 0 0/1 1 0/1 1 0 1 0 ENC_DEC_EN 17.2 BUSWIDTH 36864.7 X X 0 0 1 1 0 0 1 Legend : (X = Don’t Care) — (0 = Must Be Zero) — (1 = Must Be One) — (0/1 = Can Be Either Zero-or-One) (1) All Clause 22 Registers are per device channel. Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 17 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2.7 www.ti.com Parallel Interface Modes - Detailed Description The TLK3132 has several parallel interface modes. The major parallel interface modes of operation are presented below: 2.7.1 RGMII Mode (Reduced Gigabit Media Independent Interface) Table 2-3. RGMII – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TX_EN/TX_ER CONTROL BIT (INPUT) TRANSMIT DATA NIBBLE (INPUT) RX_DV/RX_ER CONTROL BIT (OUTPUT) RECEIVE CONTROL NIBBLE (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[4] TXD_[3:0] RXD_[4] RXD_[3:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[12] TXD_[11:8] RXD_[12] RXD_[11:8] TXCLK_[1] RXCLK_[1] DDR Source Centered Timing Nibble Order = 1 (Default) TXCLK_[0] TXD_[4:0] {TX_EN,Data0[3:0]} {TX_EN^TX_ER, Data0[7:4]} {TX_EN,Data1[3:0]} {TX_EN^TX_ER, Data1[7:4]} RXCLK_[0] RXD_[4:0] {RX_DV,Data0[3:0]} {RX_DV^RX_ER, Data0[7:4]} {RX_DV,Data1[3:0]} {RX_DV^RX_ER, Data1[7:4]} Note: If Nibble Order = 0, the picture is the same except that {TX_EN,DataN[3:0]} and {TX_EN^TX_ER,DataN[7:4]} swap locations. Note: If Nibble Order = 0, the picture is the same except that {RX_DV,DataN[3:0]} and {RX_DV^RX_ER,DataN[7:4]} swap locations. DDR Source Aligned Timing Nibble Order = 1 (Default) TXCLK_[0] TXD_[4:0] {TX_EN,Data0[3:0]} {TX_EN^TX_ER, Data0[7:4]} {TX_EN,Data1[3:0]} {TX_EN^TX_ER, Data1[7:4]} RXCLK_[0] RXD_[4:0] {RX_DV,Data0[3:0]} {RX_DV^RX_ER, Data0[7:4]} {RX_DV,Data1[3:0]} {RX_DV^RX_ER, Data1[7:4]} Note: If Nibble Order = 0, the picture is the same except that {TX_EN,DataN[3:0]} and {TX_EN^TX_ER,DataN[7:4]} swap locations. Note: If Nibble Order = 0, the picture is the same except that {RX_DV,DataN[3:0]} and {RX_DV^RX_ER,DataN[7:4]} swap locations. Figure 2-8. RGMII – Individual Channel Byte Ordering – Channel 0 Example 18 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com 2.7.2 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 RTBI Mode (Reduced Ten Bit Interface) Table 2-4. RTBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 5 BITS (INPUT) RECEIVE DATA 5 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[4:0] RXD_[4:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[12:8] RXD_[12:8] TXCLK_[1] RXCLK_[1] DDR Source Centered Timing (Nibble Order = 0) DDR Source Centered Timing (Nibble Order = 1 Default) TXCLK_[0] TXCLK_[0] TXD_[4:0] Data0[4:0] Data0[9:5] RXCLK_[0] RXD_[4:0] TXD_[4:0] Data0[4:0] Data0[9:5] TXCLK_[0] RXD_[4:0] Data0[9:5] Data0[4:0] DDR Source Aligned Timing (Nibble Order = 0) TXCLK_[0] Data0[4:0] Data0[9:5] RXCLK_[0] RXD_[4:0] Data0[4:0] RXCLK_[0] DDR Source Aligned Timing (Nibble Order = 1 Default) TXD_[4:0] Data0[9:5] TXD_[4:0] Data0[9:5] Data0[4:0] Data0[9:5] Data0[4:0] RXCLK_[0] Data0[4:0] Data0[9:5] RXD_[4:0] Figure 2-9. RTBI – Individual Channel Byte Ordering – Channel 0 Example Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 19 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2.7.3 www.ti.com TBI Mode (Ten Bit Interface) Table 2-5. TBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 10 BITS (INPUT) RECEIVE DATA 10 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 {TXC_[4], TXC_[0],TXD_[7:0]} {RXC_[4], RXC_[0],RXD_[7:0]} TXCLK_[0] RXCLK_ [0] Channel 1 {TXC_[5], TXC_[1],TXD_[15:8]} {RXC_[5], RXC_[1],RXD_[15:8]} TXCLK_[1] RXCLK_ [1] SDR Rising Edge Aligned Timing TXCLK_[0] TXC_[4],TXC_[0],TXD_[7:0] Data0[9:0] Data1[9:0] Data0[9:0] Data1[9:0] RXCLK_[0] RXC_[4],RXC_[0],RXD_[7:0] SDR Falling Edge Aligned Timing TXCLK_[0] TXC_[4],TXC_[0],TXD_[7:0] Data0[9:0] Data1[9:0] Data0[9:0] Data1[9:0] RXCLK_[0] RXC_[4],RXC_[0],RXD_[7:0] Figure 2-10. TBI – Individual Channel Byte Ordering – Channel 0 Example 20 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com 2.7.4 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 GMII Mode (Gigabit Media Independent Interface) Table 2-6. GMII – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TX_EN CONTROL BIT (INPUT) TX_ER CONTROL BIT (INPUT) TRANSMIT DATA BYTE (INPUT) RX_DV CONTROL BIT (OUTPUT) RX_ER CONTROL BIT (OUTPUT) RECEIVE DATA BYTE (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXC_[0] TXC_[4] TXD_[7:0] RXC_[0] RXC_[4] RXD_[7:0] TXCLK_[0] RXCLK_[0] Channel 1 TXC_[1] TXC_[5] TXD_[15:8] RXC_[1] RXC_[5] RXD_[15:8] TXCLK_[1] RXCLK_[1] SDR Rising Edge Aligned Timing TXCLK_[0] TXC_[0],TXC_[4],TXD_[7:0] {TX_EN,TX_ER,Data0[7:0]} {TX_EN,TX_ER,Data1[7:0]} {RX_DV,RX_ER,Data0[7:0]} {RX_DV,RX_ER,Data1[7:0]} RXCLK_[0] RXC_[0],RXC_[4],RXD_[7:0] SDR Falling Edge Aligned Timing TXCLK_[0] TXC_[0],TXC_[4],TXD_[7:0] {TX_EN,TX_ER,Data0[7:0]} {TX_EN,TX_ER,Data1[7:0]} {RX_DV,RX_ER,Data0[7:0]} {RX_DV,RX_ER,Data1[7:0]} RXCLK_[0] RXC_[0],RXC_[4],RXD_[7:0] Figure 2-11. GMII – Individual Channel Byte Ordering – Channel 0 Example Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 21 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2.7.5 www.ti.com EBI Mode (Eight Bit Interface) Table 2-7. EBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 8 BITS (INPUT) RECEIVE DATA 8 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[7:0] RXD_[7:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[15:8] RXD_[15:8] TXCLK_[1] RXCLK_[1] SDR Rising Edge Aligned Timing TXCLK_[0] TXD_[7:0] Data0[7:0] Data1[7:0] Data0[7:0] Data1[7:0] RXCLK_[0] RXD_[7:0] SDR Falling Edge Aligned Timing TXCLK_[0] TXD_[7:0] Data0[7:0] Data1[7:0] Data0[7:0] Data1[7:0] RXCLK_[0] RXD_[7:0] Figure 2-12. EBI – Individual Channel Byte Ordering – Channel 0 Example 22 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com 2.7.6 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 REBI Mode (Reduced Eight Bit Interface) Table 2-8. REBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 4 BITS (INPUT) RECEIVE DATA 4 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[3:0] RXD_[3:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[11:8] RXD_[11:8] TXCLK_[1] RXCLK_[1] DDR Source Centered Timing (Nibble Order = 0) DDR Source Centered Timing (Nibble Order = 1 Default) TXCLK_[0] TXD_[3:0] TXCLK_[0] Data0[3:0] Data0[7:4] TXD_[3:0] RXCLK_[0] RXD_[3:0] Data0[3:0] Data0[7:4] TXCLK_[0] RXD_[3:0] Data0[7:4] Data0[3:0] DDR Source Aligned Timing (Nibble Order = 0) TXCLK_[0] Data0[3:0] Data0[7:4] RXCLK_[0] RXD_[3:0] Data0[3:0] RXCLK_[0] DDR Source Aligned Timing (Nibble Order = 1 Default) TXD_[3:0] Data0[7:4] TXD_[3:0] Data0[7:4] Data0[3:0] Data0[7:4] Data0[3:0] RXCLK_[0] Data0[3:0] Data0[7:4] RXD_[3:0] Figure 2-13. REBI – Individual Channel Byte Ordering – Channel 0 Example Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 23 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2.7.7 www.ti.com NBI Mode (Nine Bit Interface Mode) Table 2-9. NBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 9 BITS (INPUT) RECEIVE DATA 9 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 {TXC_[0],TXD_[7:0]} {RXC_[0],RXD_[7:0]} TXCLK_[0] RXCLK_[0] Channel 1 {TXC_[1],TXD_[15:8]} {RXC_[1],RXD_[15:8]} TXCLK_[1] RXCLK_[1] SDR Rising Edge Aligned Timing TXCLK_[0] TXC_[0],TXD_[7:0] Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} RXCLK_[0] RXC_[0],RXD_[7:0] SDR Falling Edge Aligned Timing TXCLK_[0] TXC_[0],TXD_[7:0] Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} RXCLK_[0] RXC_[0],RXD_[7:0] Figure 2-14. NBI – Individual Channel Byte Ordering – Channel 0 Example 24 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com 2.7.8 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 RNBI Mode (Reduced Nine Bit Interface) Table 2-10. RNBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 5 BITS (INPUT) RECEIVE DATA 5 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[4:0] RXD_[4:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[12:8] RXD_[12:8] TXCLK_[1] RXCLK_[1] DDR Source Centered Timing (Nibble Order = 0) DDR Source Centered Timing (Nibble Order = 1 Default) TXCLK_[0] TXD_[4:0] TXCLK_[0] Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} RXCLK_[0] RXD_[4:0] TXD_[4:0] Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} RXD_[4:0] Data0[8:5] = {Control Bit, Data Byte[7:5]} Data0[4:0] = {Data Byte[4:0]} DDR Source Aligned Timing (Nibble Order = 0) TXCLK_[0] TXCLK_[0] Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} RXCLK_[0] RXD_[4:0] Data0[4:0] = {Data Byte[4:0]} RXCLK_[0] DDR Source Aligned Timing (Nibble Order = 1 Default) TXD_[4:0] Data0[8:5] = {Control Bit, Data Byte[7:5]} TXD_[4:0] Data0[8:5] = {Control Bit, Data Byte[7:5]} Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} Data0[4:0] = {Data Byte[4:0]} RXCLK_[0] Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} RXD_[4:0] Figure 2-15. RNBI – Individual Channel Byte Ordering – Channel 0 Example Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 25 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2.7.9 www.ti.com TBID Mode (Ten Bit Interface DDR) Table 2-11. TBID – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 10 BITS (INPUT) RECEIVE DATA 10 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 {TXC_[4], TXC_[0],TXD_[7:0]} {RXC_[4], RXC_[0],RXD_[7:0]} TXCLK_[0] RXCLK_ [0] Channel 1 {TXC_[5], TXC_[1],TXD_[15:8]} {RXC_[5], RXC_[1],RXD_[15:8]} TXCLK_[1] RXCLK_ [1] DDR Source Centered Timing TXCLK_[0] TXC_[4], TXC_[0], TXD_[7:0] Data0[9:0] Data1[9:0] Data0[9:0] Data1[9:0] RXCLK_[0] RXC_[4], RXC_[0], RXD_[7:0] DDR Source Aligned Timing TXCLK_[0] TXC_[4], TXC_[0], TXD_[7:0] Data0[9:0] Data1[9:0] Data0[9:0] Data1[9:0] RXCLK_[0] RXC_[4], RXC_[0], RXD_[7:0] Figure 2-16. TBID – Individual Channel Byte Ordering – Channel 0 Example 26 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2.7.10 NBID Mode (Nine Bit Interface DDR) Table 2-12. NBID – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 9 BITS (INPUT) RECEIVE DATA 9 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 {TXC_[0],TXD_[7:0]} {RXC_[0],RXD_[7:0]} TXCLK_[0] RXCLK_ [0] Channel 1 {TXC_[1],TXD_[15:8]} {RXC_[1],RXD_[15:8]} TXCLK_[1] RXCLK_ [1] DDR Source Centered Timing TXCLK_[0] TXC_[0], TXD_[7:0] Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} RXCLK_[0] RXC_[0], RXD_[7:0] DDR Source Aligned Timing TXCLK_[0] TXC_[0], TXD_[7:0] Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} RXCLK_[0] RXC_[0], RXD_[7:0] Figure 2-17. NBID – Individual Channel Byte Ordering – Channel 0 Example Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 27 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 2.7.11 Parallel Interface Clocking Modes The TLK3132 supports source centered timing and source aligned DDR timing on the parallel receive output bus. The TLK3132 also supports rising edge aligned and falling edge aligned SDR timing on the parallel receive output bus. See Figure 2-18 for more details. RXCLK tSETUP Source Centered (DDR) RXD RXC tHOLD tHOLD tSETUP Data Data Source Aligned (DDR) RXD RXC Data Data Data Falling Edge Aligned (SDR) RXD RXC Data Data Rising Edge Aligned (SDR) Data RXD RXC Data Figure 2-18. Receive Interface Timing – Source Centered/Aligned 28 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 The transmit input timing modes are shown in Figure 2-19. Transmit SDR/DDR input timing modes supported are similar to RX supported modes. TXCLK tSETUP Source Centered (DDR) TXD TXC tSETUP tHOLD tHOLD Data Data Source Aligned (DDR) TXD TXC Data Data Data Falling Edge Aligned (Rising Edge Sampled) (SDR) TXD TXC Data Data Rising Edge Aligned (Falling Edge Sampled) (SDR) Data TXD TXC Data Figure 2-19. Transmit Interface Timing 2.7.12 Parallel to Serial The parallel-to-serial shift register on each channel takes in data and converts it to a serial stream. The shift register is clocked by the internally generated bit clock, which is 10 times the reference clock (REFCLKP/REFCLKN) frequency. The least significant bit (LSB) for each channel is transmitted first. 2.7.13 Serial to Parallel For each channel, serial data is received on the RDPx/RDNx pins. The interpolator and clock recovery circuit will lock to the data stream if the clock to be recovered is within ±200 PPM of the internally generated bit rate clock. The recovered clock is used to retime the input data stream. The serial data is then clocked into the serial-to-parallel shift registers. If enabled, the 10-bit wide parallel data is then fed into 8b/10b decoders. 2.7.14 High Speed CML Output The high speed data output driver is implemented using Current Mode Logic (CML) with integrated pull up resistors, requiring no external components. The line can be directly coupled or AC coupled. Under many circumstances, AC coupling is desirable. Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 29 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com TDP RDP 50 W transmission line VDDT 0.8*VDDT DIR COUP 50 GND AC COUP 50 50 W transmission line TDN TRANSMITTER RDN RECEIVER MEDIA Figure 2-20. Example High-Speed I/O AC Coupled Mode Current Mode Logic (CML) drivers often require external components. The disadvantage of the external component is a limited edge rate due to package and line parasitic. The CML driver on the TLK3132 has on-chip 50Ω termination resistors terminated to VDDT, providing optimum performance for increased speed requirements. The transmitter output driver is highly configurable allowing output amplitude and de-emphasis to be tuned to a channel's individual requirements. Software programmability allows for very flexible output amplitude control. AC Coupled and Direct Coupled modes are supported. When AC coupling is selected, the receiver input is internally biased 0.8×VDDT which is the optimum voltage for input sensitivity. As the input and output references are derived from VDDT, the tolerance of this supply will dominate the accuracy of the internal reference. When transmitting data across long lengths of PCB trace or cable, the high frequency content of the signal is attenuated due to the skin effect of the media. This causes a “smearing” of the data eye when viewed on an oscilloscope. The net result is reduced timing margins for the receiver and clock recovery circuits. In order to provide equalization for the high frequency loss, 1-tap finite impulse response (FIR) transmit de-emphasis is implemented. A highly configurable output driver maximizes flexibility in the end system by allowing de-emphasis and output amplitude to be tuned to a channel’s individual requirements. A total of 15 de-emphasis settings and 8 output amplitude settings can be independently selected. VOD (p) VOD(d) VCMT VOD (pd) VOD(pp) VOD (d) bit time bit time VOD (p) Figure 2-21. Output Differential Voltage with 1-Tap FIR De-Emphasis The level of de-emphasis is programmable via MDIO register bits. Users can control the strength of the de-emphasis to optimize for a specific system requirement. 2.7.15 High Speed Receiver The high speed receiver conforms to the physical layer requirements of IEEE 802.3ae Clause 47(XAUI), 30 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Gigabit Ethernet, and FibreChannel 1 and 2. Register control gives selection between AC and DC coupling at the receiver. When the receiver is AC coupled, the termination impedances of the receivers are configured as 100 Ω with the center tap weakly tied to 0.8×VDDT with a capacitor to create an AC ground. When the receiver is DC coupled, the common mode will be determined by both receiver and transmitter characteristics. All receive channels incorporate an adaptive equalizer. This circuit compensates for channel insertion loss by amplifying the high frequency components of the signal, reducing inter-symbol interference. Equalization can be enabled or disabled per register settings. Both the gain and bandwidth of the equalizer are controlled by the receiver equalization logic. There are ten available equalization settings. 2.7.16 Loopback In independent channel mode, channels can independently be configured for parallel or serial side loopback. An external loopback (requiring external connection) is also supported, which can be used with the PRBS patterns, as well as the CRPAT, Mixed/High/Low Frequency tests. 2.7.17 Link Test Functions The TLK3132 has an extensive suite of built in test functions to support system diagnostic requirements. Each channel has built-in link test generator and verification logic. Several patterns can be selected via the MDIO that offer extensive test coverage. The patterns are: 27-1 or 223-1 PRBS (Pseudo Random Bit Stream), CRPAT, high and low and mixed frequency patterns. 2.7.18 MDIO Management Interface The TLK3132 supports the Management Data Input/Output (MDIO) Interface as defined in Clause 22 of the IEEE 802.3 Ethernet specification. The MDIO allows register-based management and control of the serial links. Normal operation of the TLK3132 is possible without use of this interface. However, some additional features are accessible only through the MDIO. The MDIO Management Interface consists of a bi-directional data path (MDIO) and a clock reference (MDC). The device id and port address are determined by control pins (see Table 3-3). In Clause 22, the top 4 control pins PRTAD[4:1] determine the device port address. In this mode the 2 individual channels in the TLK3132 are classified as 2 different ports. So for any PRTAD[4:1] value there will be 2 ports per TLK3132. The TLK3132 will respond if the 4 MSBs of the PHY address field on the MDIO protocol (PA[4:1]) matches PRTAD[4:1]. The LSB of the PHY address field (PA[0]) will determine which channel/port within TLK3132 to respond to: If PA[0] = 1b0, TLK3132 Channel 0 will respond. If PA[0] = 1b1, TLK3132 Channel 1 will respond. Write transactions which address an invalid register or device or a read only register will be ignored. Read transactions which address an invalid register will return a 0. 2.7.19 MDIO Protocol Timing The Clause 22 timing required to read from the internal registers is shown in Figure 2-22. The Clause 22 timing required to write to the internal registers is shown in Figure 2-23. Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 31 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com MDC Pu1 MDIO 1 0 1 0 PA4 PA0 RA4 0 RA0 D15 1 D0 32 "1's" (1) Turn Around Read PHY REG Start Preamble Code Addr Addr Note that the 1 in the Turn Around section is externally pulled up, and driven to Z by the TLK3132 Idle Data Figure 2-22. CL22 – Management Interface Read Timing MDC MDIO 0 1 0 1 PA [4:0] RA 4 RA 0 1 0 D15 D0 1 32 "1's" Write Code Start Preamble PHY Addr Turn Around REG Addr Data Idle Figure 2-23. CL22 - Management Interface Write Timing The IEEE 802.3 Clause 22 specification defines many of the registers, and additional registers have been implemented for expanded functionality. 2.7.20 Clause 22 Indirect Addressing The TLK3132 Register space is divided into two register groups. One register group can be addressed directly through Clause 22, and one register group can be addressed indirectly through Clause 22. The register group which can be addressed through Clause 22 indirectly is implemented in vendor specific register space (16’h9000 onwards). Due to Clause 22 register space limitations, an indirect addressing method is implemented so that this extended register space can be accessed through Clause 22. To access this register space (16’h9000 onwards), an address control register (Reg 30, 5’h1E) should be written with the register address followed by a read/write transaction to address data register (Reg 31, 5’h1F) to access the contents of the address specified in address control register. The following timing diagrams illustrate an example write transaction to Register 16’h9000 using indirect addressing in Clause 22. MDC MDIO 0 1 0 1 PA [4:0] 5'h1E PHY Addr REG Addr 1 0 16 'h9000 1 32 "1's" Write Code Start Preamble Turn Around Data Idle Figure 2-24. CL22 – Indirect Address Method – Address Write MDC MDIO 0 1 0 1 PA [4:0] 5'h1F PHY Addr REG Addr 1 0 DATA Turn Around Data 1 32 "1's" Preamble Start Write Code Idle Figure 2-25. CL22 – Indirect Address Method – Data Write 32 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 The following timing diagrams illustrate an example read transaction to read the contents of Register 16’h9000 using indirect addressing in Clause 22. MDC MDIO 0 1 0 1 PA [4:0] 5'h1E PHY Addr REG Addr 1 0 1 16 'h9000 32 "1's" Write Code Start Preamble Turn Around Idle Data Figure 2-26. CL22 – Indirect Address Method – Address Write MDC Pu1 MDIO 1 0 1 0 PA4 PA0 5’h1F 0 D15 D0 1 32 "1's" Turn Around Read PHY REG Code Addr Addr Note that the 1 in the Turn Around section is externally pulled up, and driven to Z by the TLK3132. Preamble (1) Start Data Idle Figure 2-27. CL22 – Indirect Address Method – Data Read The IEEE 802.3 Clause 22/45 specification defines many of the registers, and additional registers have been implemented for expanded functionality. Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 33 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 2.8 www.ti.com PROGRAMMERS REFERENCE The following registers can be addressed directly only through Clause 22. These bits are based on a per channel basis. Channel identification is based on the PHY (Port) address field. Channel 0 can be accessed by setting the LSB of the PHY address to 0. Channel 1 can be accessed by setting the LSB of the PHY address to 1. Registers 30 (5’h1E) and 31 (5’h1F) are global. The contents of these registers are the same when accessed through any of the 2 channels mentioned above. Table 2-13. PHY_CONTROL_1 ADDRESS: 0x00 BIT(s) DEFAULT: 0x0140 DESCRIPTION ACCESS 0.15 Reset 1 = PHY reset (including all registers and Tx/Rx datapath) 0 = Normal operation (Default 1’b0) This is a global bit (not per channel). Asserting this bit is equivalent to asserting the device primary input RST_N. 0.14 Loopback Logically ORed with PLOOP 1 = Enable loop back mode. In this mode, serial output of the channel is looped back onto serial input. 0 = Disable loop back mode (Default 1’b0) RW 0.13 Speed Selection(LSB) This is the least significant bit of the speed selection bits (MSB is 0.6). {0.6,0.13} = 2’b10 1000Base-X Rate This bit always reads 0. RO 0.12 Auto-Negotiation Enable Always reads 0. (Auto-Negotiation not supported) RO Power Down Setting this bit high powers down the respective channel, with the exception that the MDIO interface stays active. Serdes PLL’s can be shut down by de-asserting bits 36864.12 and 36864.4. Jitter cleaner PLL can be shut down by de-asserting 37127.15 1 = Power Down mode is enabled. 0 = Normal operation (Default 1’b0) RW 0.10 Isolate Setting this bit high isolates the channel from the parallel interface. Inputs are ignored; Outputs are set to high impedance. 1 = Isolate is enabled 0 = Normal operation (Default 1’b0) RW 0.9 Restart Auto-Negotiation Always reads 0. (Auto-Negotiation not supported) RO 0.8 Duplex Mode Always reads 1. (Only Full duplex supported) RO 0.7 Collision Test Not Applicable. Read will return a 0. RO Speed Selection (MSB) This is the most significant bit of the speed selection bits (LSB is 0.13). {0.6,0.13} = 2’b10 1000Base-X Rate. This bit always reads 1 RO 0.11 0.6 (1) NAME RW SC (1) After the reset bit is set to one, it automatically sets itself back to zero on the next MDC clock cycle. Table 2-14. PHY_STATUS_1 ADDRESS: 0x01 BIT(s) DEFAULT: 0x0101 DESCRIPTION ACCESS 1.15 1000Base-T4 Always reads 0 RO 1.14 100Base-X FD Always reads 0 RO 1.13 100Base-X HD Always reads 0 RO 1.12 10Mb/s FD Always reads 0 RO 1.11 10Mb/s HD Always reads 0 RO 1.10 100Base-T2 FD Always reads 0 RO 1.9 100Base-T2 HD Always reads 0 RO 1.8 Extended Status Read will return 1 indicating extended status information is held in register 0x0F. RO MF Prea Supp Read will return 0 indicating MDIO doesn’t accept command without preceding preamble (minimum 32 1’s). Writes will be ignored RO 1.6 34 NAME Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-14. PHY_STATUS_1 (continued) ADDRESS: 0x01 BIT(s) DEFAULT: 0x0101 NAME DESCRIPTION ACCESS 1.5 AN Complete Always reads 0 (AN not supported) RO 1.4 Remote Fault Always reads 0 RO 1.3 AN Ability Read will return 0, indicating that Auto negotiation is not supported RO 1.2 Link Status Read will return the Link Status and is valid only when device is in GMII/RGMII mode or when bit 17.7 is set in Non-GMII/RGMII modes. Note: Link status will always indicate high when in loopback. In remote loopback mode, the bit represents the normal bit function. 1 = Link UP 0 = Link DOWN 1.1 Jabber Detect Always reads 0 RO 1.0 Extended Capability Read will return 1 indicating extended register capability RO RO/LL Table 2-15. PHY_IDENTIFIER_1 ADDRESS: 0x02 BIT(s) 2.15.0 DEFAULT: 0x4000 NAME OUI c:r DESCRIPTION ACCESS Organizationally unique identifier. RO Table 2-16. PHY_IDENTIFIER_2 ADDRESS: 0x03 BIT(s) 3.15:0 DEFAULT: 0x50E0 NAME OUI c:r DESCRIPTION ACCESS Device identifier. Manufacturer model and revision number RO Table 2-17. PHY_EXT_STATUS ADDRESS: 0x0F BIT(s) DEFAULT: 0x8000 NAME DESCRIPTION ACCESS 15.15 1000Base-X FD Always reads 1, indicating device supports Full Duplex mode. RO 15.14 1000Base-X HD Read will return 0, writes will be ignored. RO 15.13 1000Base-T FD Read will return 0, writes will be ignored. RO 15.12 1000Base-T HD Read will return 0, writes will be ignored. RO Table 2-18. PHY_CH_CONTROL_1 ADDRESS: 0x10 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 16.15 Global write When written as 1 the settings in 16.11:0 will affect all channels of one device simultaneously. When written as 0 the settings in 16.11:0 are only valid for the addressed channel. This value always reads zero. 16.11 Datapath reset control 1 = Resets channel logic excluding MDIO registers (Resets both Tx and Rx datapaths) Receive Parallel Output clock select 00 = Selects respective channel SERDES TX clock (Default 2’b00) 01 = Selects Jitter cleaned clock(Selecting the jitter cleaned clock while the jitter cleaner PLL is disabled is not recommended) 10 = Selects respective channel SERDES RX clock 11 = Reserved 16.10:9 RW/SC RW/SC RW Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 35 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-18. PHY_CH_CONTROL_1 (continued) ADDRESS: 0x10 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS RW 16.8 Farend Loopback Logically ORed with SLOOP When asserted high the data presented at the serial receive interface is looped back to the serial transmit interface of the same channel via the deserializer, the serializer and if enabled the PCS function. If 1GX PCS is not enabled, the incoming data rate must be frequency locked (ppm 0) with REFCLK. Also referred to as remote loopback. 0 = Farend Loopback is disabled. (Default 1’b0) 1 = Farend loopback is enabled. 16.7 PRBS Verifier Enable A logic 1 enables the PRBS (2^7) verifier in the receive datapath. Logically ORed with the PRBSEN pin. (Default 1’b0) RW 16.6 PRBS Generator Enable A logic 1 enables the PRBS (2^7) generator in the transmit datapath. Logically ORed with the PRBSEN pin. (Default 1’b0) RW 16.5 Channel sync freeze control When set, freezes last acquired word alignment. (Default 1’b0) RW 16.4 Test Pattern Generator Enable When high activates the generator selected by bits 16.2:0. (Default 1’b0) RW 16.3 Test Pattern Verifier Enable When high activates the verifier selected by bits 16.2:0. (Default 1’b0) RW Pattern Select Test Pattern Selection 000 = High Frequency Test Pattern (Default 3’b000) 001 = Low Frequency Test Pattern 010 = Mixed Frequency Test Pattern 011 = CRPAT Long 100 = CRPAT Short Others = Reserved RW 16.2:0 Table 2-19. PHY_CH_CONTROL_2 ADDRESS: 0x11 BIT(s) 36 NAME DEFAULT: 0x3590 DESCRIPTION ACCESS RW/SC 17.15 Global write When written as 1 the settings in 17.14:0 will affect all channels of one device simultaneously. When written as 0 the settings in 17.14:0 are only valid for the addressed channel. This value always reads zero. 17.14 Sync Status Override 1 = Causes an override of the sync state of 1000Base-X synchronization state machine to reflect a “1” in the sync_status (1.2) bit. 0 = Original (normal operation) sync_status value is represented in bit 1.2. (Default 1’b0) RW 17.13 TX PMA Bit Order When asserted, allows the ten bits of data given to the parallel side of the SERDES TX macro to be flipped. This is normally set since the SERDES transmits MSB first, and the 1000Base-X standard requires LSB to be transmitted first. For standard based operation, the customer may leave this bit alone. (Default 1’b1) RW 17.12 RX PMA Bit Order When asserted, allows the ten bits of data received from the parallel side of the SERDES RX macro to be flipped. This is normally set since the SERDES receives MSB first, and the 1000Base-X standard requires LSB to be received first. For standard based operation, the customer may leave this bit alone. (Default 1’b1) RW 17.11 LOS Override 1 = Overrides Loss of signal (LOS) status coming from SERDES. Synchronization turned on irrespective of LOS status 0 = Synchronization depends on LOS status. (Default 1’b0) RW 17.10 CTC enable 1 = Clock Tolerance Compensation on receive datapath is enabled (Default 1’b1) 0 = Clock Tolerance Compensation on receive datapath is disabled RW 17.9 Full DDR mode 1 = Sets the device in full DDR mode (NBID/TBID modes) 0 = Disables full DDR mode (Default) RW 17.8 RCLK out enable 1 = Enables RX_CLK out (Default 1’b1) 0 = Disables RX_CLK out. RX_CLK will be low when this bit is de-asserted RW 17.7 Comma enable 1 = Enables comma detection (Default 1’b1) 0 = Disables comma detection RW 17.6 FC enable 1 = Enables FC_PH overlay detection. This is needed in 1x/2x Fiber channel mode to allow proper detection of EOF 8B/10B disparity 0 = Disables FC_PH overlay detection (Default 1’b0) RW Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-19. PHY_CH_CONTROL_2 (continued) ADDRESS: 0x11 BIT(s) DEFAULT: 0x3590 NAME DESCRIPTION ACCESS 17.5 Data mode Valid only when 17.9 (Full DDR mode) is LOW. 1 = Enables DDR data mode on parallel Transmit and Receive directions (data clocked on both rising and falling edge) 0 = Enables SDR data mode on parallel Transmit and Receive directions (data is clocked only on rising edge or only on falling edge) (Default 1’b0) 17.4 Nibble order Applicable only in non FULL DDR modes 1 = LSB on rising edge followed by MSB on falling edge (Default 1’b1) 0 = MSB on rising edge followed by LSB on falling edge RW 17.3 PCS TX_RX Enable 1 = Enables 1000Base-X PCS Tx and PCS Rx functions 0 = Disables 1000Base-X PCS Tx and PCS Rx functions (Default 1’b0) RW 17.2 Encode Decode Enable 0 = 8B/10B encode decode functions are disabled (Default 1’b0) 1 = 8B/10B encode decode functions are enabled RW TX Edge Mode When channel is in DDR mode 1 = Source aligned timing on transmit parallel interface. 0 = Source centered timing on transmit parallel interface. Data is latched on both rising and falling clock edges. RW 17.1 RW When channel is in SDR mode 1 = Rising edge align mode. Incoming parallel data is aligned to rising edge of parallel input clock. Internally data is latched at the falling edge of the clock. 0 = Falling edge align mode. Incoming data is aligned to falling edge of parallel input clock. Internally data is latched at the rising edge of the clock 17.0 RX Edge Mode When channel is in DDR mode 1 = Source aligned timing on receive parallel interface. Data changes at clock edge. 0 = Source centered timing on receive parallel interface. RW When channel is in SDR mode 1 = Rising edge align mode. Outgoing parallel data is aligned to the rising edge of the parallel output clock 0 = Falling edge align mode. Outgoing parallel data is aligned to the falling edge of the parallel output clock Table 2-20. PHY_RX_CTC_FIFO_STATUS ADDRESS: 0x12 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 18.15 RX_CTC_Reset When high indicates overflow or underflow has occurred in CTC FIFO and FIFO has been reset. 18.14 RX_CTC_Insert When high indicates RX CTC has inserted at least one ordered set. 18.13 RX_CTC_Delete When high indicates RX CTC has deleted at least one ordered set. RO/LH Table 2-21. PHY_TX_CTC_FIFO_STATUS ADDRESS: 0x13 BIT(s) 19.15 DEFAULT: 0x0000 NAME TX_FIFO_Reset_1Gx DESCRIPTION ACCESS When high indicates collision has occurred in TX FIFO and the FIFO is reset in 1gx mode. Valid in Non-NBID, Non-TBID modes. RO/LH Table 2-22. PHY_TX_WIDE_FIFO _STATUS ADDRESS: 0x14 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 20.15 TX_WIDE_FIFO_Overflow When high indicates Overflow condition has occurred in TX WIDE FIFO. Valid only when device is in NBID/TBID modes. 20.14 TX_WIDE_FIFO_Underflow When high indicates Underflow condition has occurred in TX WIDE FIFO. Valid only when device is in NBID/TBID modes. RO/LH Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 37 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-23. PHY_TEST_PATTERN_SYNC_STATUS ADDRESS: 0x15 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 21.1 Test Pattern Sync When high indicates alignment has been determined and a correct pattern has been received for fixed test patterns. 21.0 CRPAT Sync When high indicates alignment has been determined and a correct pattern has been received for continuous test patterns. RO Table 2-24. PHY_TEST_PATTERN_COUNTER ADDRESS: 0x16 BIT(s) 22.15:0 NAME Fixed Test Pattern Error Counter DEFAULT: 0xFFFD DESCRIPTION ACCESS This counter reflects error count for high, Mixed, and Low Frequency test patterns. Counter increments for each received character that has an error. Counter clears upon read. COR Table 2-25. PHY_CRPAT_PATTERN_COUNTER_1 (1) ADDRESS: 0x17 BIT(s) NAME 23.15:0 CRPAT Error counter[31:16] (1) DEFAULT: 0xFFFF DESCRIPTION ACCESS This counter reflects MSW part of error count for CRPAT Frequency test pattern. Counter increments for each received character that has an error. Counter clears upon read. COR User has to make sure that register 23 is read first and then register 24. If user reads register 24 before reading register 23, then the count value read through register 24 may not be correct. Table 2-26. PHY_CRPAT_PATTERN_COUNTER_2 (1) ADDRESS: 0x18 (1) BIT(s) NAME 24.15:0 CRPAT Error counter[15:0] DEFAULT: 0xFFFD DESCRIPTION ACCESS This counter reflects LSW part of error count for CRPAT Frequency test pattern. Counter increments for each received character that has an error. Counter clears upon read. COR User has to make sure that register 23 is read first and then register 24. If user reads register 24 before reading register 23, then the count value read through register 24 may not be correct. Table 2-27. PHY_TEST_MODE_CONTROL ADDRESS: 0x1B BIT(s) 27.15 27.14:12 NAME DEFAULT: 0x7000 DESCRIPTION ACCESS Global write When written as 1 the settings in 27.14:12 will affect all channels of one device simultaneously. When written as 0 the settings in 27.14:12 are only valid for the addressed channel. This value always reads zero. Test Mux Select Mux control to select debug signals onto test mux data pins. For TI test purposes only RW/SC RW Table 2-28. PHY_CHANNEL_STATUS ADDRESS: 0x1C BIT(s) 38 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 28.15 Signal Detect When high, indicates that the SERDES detected valid signal. 28.13 Encoder Invalid Code Word When high, indicates that the 1000Base-X encoder received an invalid control word. 28:12 Decoder Invalid Code Word When high, indicates that the 1000Base-X decoder received an invalid code word. RO/LL RO/LH Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-29. PHY_PRBS_HIGH_SPEED_TEST_COUNTER ADDRESS: 0x1D BIT(s) 29.15:0 DEFAULT: 0xFFFD NAME PRBS High Speed Test Counter DESCRIPTION ACCESS This counter reflects errors for PRBS (2^7) test pattern verification . Counter increments by one for each received character that has error. This counter saturates at 16’hffff. When read, it resets to zero and continues to count. COR Table 2-30. PHY_EXT_ADDRESS_CONTROL (1) ADDRESS: 0x1E BIT(s) 30.15:0 (1) DEFAULT: 0x0000 NAME Ext address control DESCRIPTION ACCESS This register should be written with the extended register address to be written/read. Contents of address written in this register can be accessed from Reg 31 (0x1F). RW This register is not per channel basis. This register can be accessed through any of the 2 channels. Table 2-31. PHY_EXT_ADDRESS_DATA (1) ADDRESS: 0x1F BIT(s) 31.15:0 (1) DEFAULT: 0x0000 NAME Ext address data register DESCRIPTION ACCESS This register contains the data associated with the register address written in Register 30 (0x1E) RW This register is not per channel basis. This register can be accessed through any of the 2 channels. 2.9 Top Level Programmers Reference The following registers can be addressed indirectly through Clause 22. Table 2-32. SERDES_PLL_CONFIG (1) ADDRESS: 0x9000 BIT(s) 36864.14:13 36864.12 36864.11:8 36864.7 36864.6:5 36864.4 36864.3:0 (1) DEFAULT: 0x1515 NAME DESCRIPTION ACCESS Loop Bandwidth RX(LB_RX) SERDES RX PLL Bandwidth settings 00 = Applicable when JC_PLL is not engaged 01 = Reserved 10 = Reserved 11 = Applicable when JC_PLL is engaged RW ENPLL_RX 0 = Disables PLL in SERDES RX 1 = Enable PLL in SERDES RX RW PLL Multiplier factor RX (MPY_RX) SERDES RX PLL multiplier setting See Table 2-33: PLL Multiplier Control RW BUSWIDTH 1 = 8 bit mode. Applicable for only EBI and REBI modes 0 = 10 Bit mode. Applicable for all other modes RW Loop Bandwidth TX (LB_TX) SERDES TX PLL Bandwidth settings 00 = Applicable when JC_PLL is not engaged 01 = Reserved 10 = Reserved 11 = Applicable when JC_PLL is engaged RW ENPLL_TX 0 = Disables PLL in SERDES TX 1 = Enable PLL in SERDES TX RW PLL Multiplier factor TX (MPY_TX) SERDES TX PLL multiplier setting See Table 2-33: PLL Multiplier Control RW These are global PLL control bits and will be applicable to both channels. Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 39 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-33. PLL Multiplier Control 36864[11:8]/ 36864[3:0] 36864[11:8]/ 36864[3:0] VALUE PLL MULTIPLIER FACTOR VALUE PLL MULTIPLIER FACTOR 0000 4x 1000 15x 0001 5x 1001 20x 0010 6x 1010 25x 0011 Reserved 1011 Reserved 0100 8x 1100 Reserved 0101 10x 1101 50x 0110 12x 1110 60x 0111 12.5x 1111 Reserved Table 2-34. SERDES_RATE_CONFIG_TX_RX ADDRESS: 0x9001 BIT(s) 36865.15:14 36865.13:12 36865.7:6 36865.5:4 DEFAULT: 0x0000 NAME DESCRIPTION ACCESS RATE_0_TX TX Ch 0 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE_1_TX TX Ch 1 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE_0_RX RX Ch 0 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE_1_RX RX Ch 1 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW Table 2-35. SERDES_RX0_CONFIG (1) ADDRESS: 0x9002 BIT(s) ACCESS 36866.15:12 EQUALIZER 36866.11:9 CDR Clock data recovery algorithm selection RW INVPAIR 1 = Inverts polarity of RXP and RXN RW LOS 00 01 10 11 RW ALIGN Receiver symbol alignment selection 00 = Alignment disabled. 01 = Comma alignment enabled 10 = Symbol alignment will be performed by one bit position when this mode is selected (i.e ALIGN changes from 00 to 10) 11= Reserved 36866.7:6 36866.5:4 40 DESCRIPTION Adaptive equalization control 0000 = Adaptive equalization disabled. Equalizer provides flat response at maximum gain. 0001 = Full adaptive equalization 0010 to 1111 = Reserved 36866.8 (1) DEFAULT: 0x0001 NAME = Loss of signal detection disabled = Reserved = Loss of signal detection enabled with threshold in the range of 85-175 mVdfpp. = Reserved. RW RW These are SERDES receiver control bits for channel 0. Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-35. SERDES_RX0_CONFIG (1) (continued) ADDRESS: 0x9002 BIT(s) DEFAULT: 0x0001 NAME DESCRIPTION ACCESS TERM Receive Termination selection 00 = Common point connected to VDDT (For DC Coupled Systems) 01 = Common point set to 0.8 VDDT (For AC Coupled Systems) 10 = Reserved 11 = Reserved RW 36866.1 ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9012) RW 36866.0 ENRX 1 = Enables receiver 0 = Disables receiver RW 36866.3:2 Table 2-36. SERDES_RX1_CONFIG (1) ADDRESS: 0x9004 BIT(s) DESCRIPTION 36868.15:12 EQUALIZER 36868.11:9 CDR 36868.8 INVPAIR 36868.7:6 LOS ACCESS Adaptive equalization control 0000 = Adaptive equalization disabled. Equalizer provides flat response at maximum gain. 0001 = Full adaptive equalization 0010 to 1111 = Reserved RW Clock data recovery algorithm selection RW 1 = Inverts polarity of RXP and RXN RW 00 01 10 11 RW = Loss of signal detection disabled = Reserved = Loss of signal detection enabled with threshold in the range of 85-175 mVdfpp. = Reserved. ALIGN Receiver symbol alignment selection 00 = Alignment disabled. 01 = Comma alignment enabled 10 = Symbol alignment will be performed by one bit position when this mode is selected (i.e ALIGN changes from 00 to 10) 11= Reserved RW 36868.3:2 TERM Receive Termination selection 00 = Common point connected to VDDT (For DC Coupled Systems) 01 = Common point set to 0.8 VDDT (For AC Coupled Systems) 10 = Reserved 11 = Reserved RW 36868.1 ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9012) RW 1 = Enables receiver 0 = Disables receiver RW 36868.5:4 36868.0 (1) DEFAULT: 0x0001 NAME ENRX These are SERDES receiver control bits for channel 1. Table 2-37. SERDES_TX0_CONFIG (1) ADDRESS: 0x900A BIT(s) 36874.11:9 36874.8 36874.7:4 36874.3 (1) DEFAULT: 0x0001 NAME DESCRIPTION ACCESS SWING Transmitter Output swing control for SERDES transmitter. Refer to Table 2-40: Output Swing Control If swing is set to 750mV or more, CM bit (36874.8) needs to be set to 1. If swing is set to 625 mV or less, CM bit (36874.8) needs to be set to 0. RW CM 1 = Applicable for SWING settings 750 mV or more. 0 = Applicable for SWING settings 625 mV or less. RW DE-EMPHASIS Transmitter Differential output De-emphasis control Refer to Table 2-39: Transmit De-emphasis Control RW INVPAIR Transmitter Polarity 1 = Inverted polarity. TXP considered negative data and TXN considered positive data 0 = Normal polarity. TXP considered positive data and TXN considered negative data RW These are SERDES transmitter control bits for channel 0. Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 41 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-37. SERDES_TX0_CONFIG (1) (continued) ADDRESS: 0x900A BIT(s) 36874.1 36874.0 42 DEFAULT: 0x0001 NAME DESCRIPTION ACCESS ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9011) RW ENTX 1 = Enables transmitter 0 = Disables transmitter RW Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-38. SERDES_TX1_CONFIG (1) ADDRESS: 0x900C BIT(s) DESCRIPTION ACCESS SWING Transmitter Output swing control for SERDES transmitter. Refer to Table 2-40: Output Swing Control If swing is set to 750mV or more, CM bit (36876.8) needs to be set to 1. If swing is set to 625 mV or less, CM bit (36876.8) needs to be set to 0. RW CM 1 = Applicable for SWING settings 750 mV or more. 0 = Applicable for SWING settings 625 mV or less. RW DE-EMPHASIS Transmitter Differential output De-emphasis control Refer to Table 2-39: Transmit De-emphasis Control RW 36876.3 INVPAIR Transmitter Polarity 1 = Inverted polarity. TXP considered negative data and TXN considered positive data 0 = Normal polarity. TXP considered positive data and TXN considered negative data RW 36876.1 ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9011) RW ENTX 1 = Enables transmitter 0 = Disables transmitter RW 36876.11:9 36876.8 36876.7:4 36876.0 (1) DEFAULT: 0x0001 NAME These are SERDES transmitter control bits for channel 1. Table 2-39. Transmit De-Emphasis Control 36874/36876[7:4] VALUE AMPLITUDE REDUCTION % dB 0000 0 0 0001 4.76 0010 9.52 0011 VALUE AMPLITUDE REDUCTION % dB 1000 38.08 –4.16 –0.42 1001 42.85 –4.86 –0.87 1010 47.61 –5.61 14.28 –1.34 1011 52.38 –6.44 0100 19.04 –1.83 1100 57.14 –7.35 0101 23.8 –2.36 1101 61.9 –8.38 0110 28.56 –2.92 1110 66.66 –9.54 0111 33.32 –3.52 1111 71.42 –10.87 Table 2-40. Output Swing Control 36874/36876[11:9] VALUE AMPLITUDE (mVdfpp) VALUE 000 125 100 AMPLITUDE (mVdfpp) 750 001 250 101 1000 010 500 110 1250 011 625 111 1375 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 43 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-41. SERDES_TEST_CONFIG_TX (1) ADDRESS: 0x9011 BIT(s) 36881.10:8 DESCRIPTION ACCESS Reserved Reserved for TI test. RW LOOPBACK_TX 00 01 10 11 RW CLKBYPASS_TX PLL Bypass control in test mode 00 = No bypass 01 = Reserved 10 = Functional bypass. Macros run using TESCLKT 11 = Refclk observe (Reserved. For TI purposes only) RW 36881.3 ENRXPATT_TX 0 – Disables test pattern verification in SERDES TX macro. 1 – Enables test pattern verification in SERDES TX macro. RW 36881.2 ENTXPATT_TX 0 – Disables test pattern generation in SERDES TX macro. 1 – Enables test pattern generation in SERDES TX macro. RW TESTPATT_TX Valid when ENTXPATT_TX, ENRXPATT_TX, ENTEST_TX are set 00 = Reserved (Default) 01 = Clock pattern (Half baud clock pattern with period of 2UI) 10 = 27 – 1 PRBS pattern 11 = 223 – 1 PRBS pattern RW 36881.7:6 36881.5:4 36881.1:0 (1) DEFAULT: 0x0000 NAME = Disabled = Pad loopback. For TI purposes only = Inner loopback (CML driver disabled) = Inner loopback (CML driver enabled) Above control bits are only for vendor testing only. Customer should leave them at their default values. Table 2-42. SERDES_TEST_CONFIG_RX (1) ADDRESS: 0x9012 BIT(s) 36882.10:8 DESCRIPTION ACCESS Reserved for TI test. RW LOOPBACK_RX 00 01 10 11 RW CLKBYPASS_RX PLL Bypass control in test mode 00 = No bypass 01 = Reserved 10 = Functional bypass. Macros run using TESCLKR 11 = Refclk observe (Reserved. For TI purposes only) RW 36882.3 ENRXPATT_RX 0 – Disables test pattern verification in SERDES RX macro. 1 – Enables test pattern verification in SERDES RX macro. RW 36882.2 ENTXPATT_RX 0 – Disables test pattern generation in SERDES RX macro. 1 – Enables test pattern generation in SERDES RX macro. RW TESTPATT_RX Valid when ENTXPATT_RX, ENRXPATT_RX, ENTEST_RX are set 00 = Reserved (Default) 01 = Clock pattern (Half baud clock pattern with period of 2UI) 10 = 27 – 1 PRBS pattern 11 = 223 – 1 PRBS pattern RW 36882.5:4 36882.1:0 44 NAME Reserved 36882.7:6 (1) DEFAULT: 0x0000 = Disabled = Pad loopback. For TI purposes only = Inner loopback (CML driver disabled) = Inner loopback (CML driver enabled) Above control bits are only for vendor testing only. Customer should leave them at their default values Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-43. SERDES_RX0_STATUS (1) ADDRESS: 0x9013 BIT(s) (1) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 36883.3 LOSDTCT When HIGH indicates Loss of Signal condition is detected for RX CH 0 RO 36883.2 ODDCG LOW when SYNC is HIGH. After that toggles every cycle. RO 36883.1 SYNC When comma detection is enabled, this bit is HIGH when an aligned comma is received. RO 36883.0 RX CH 0 TESTFAIL When HIGH, indicates an error occurred during test pattern verification for SERDES RX CH 0. This bit status is valid only when SERDES RX test pattern verification bits are set. RO Above status bits are only for Receive CH 0. Table 2-44. SERDES_RX1_STATUS (1) ADDRESS: 0x9014 BIT(s) (1) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 36884.3 LOSDTCT When HIGH indicates Loss of Signal condition is detected for RX CH 1 RO 36884.2 ODDCG LOW when SYNC is HIGH. After that toggles every cycle. RO 36884.1 SYNC When comma detection is enabled, this bit is HIGH when an aligned comma is received. RO 36884.0 RX CH 1 TESTFAIL When HIGH, indicates an error occurred during test pattern verification for SERDES RX CH 1. This bit status is valid only when SERDES RX test pattern verification bits are set. RO Above status bits are only for Receive CH 1 Table 2-45. SERDES_TX0_STATUS (1) ADDRESS: 0x9017 BIT(s) 36887.0 (1) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS TX CH 0 TESTFAIL When HIGH, indicates an error occurred during test pattern verification for SERDES TX CH 0. RO Above status bits are only for Transmit CH 0. Table 2-46. SERDES_TX1_STATUS (1) ADDRESS: 0x9018 BIT(s) 36888.0 (1) DEFAULT: 0x0000 NAME TX CH 1 TESTFAIL DESCRIPTION ACCESS When HIGH, indicates an error occurred during test pattern verification for SERDES TX CH 1. RO Above status bits are only for Transmit CH 1. Table 2-47. SERDES_PLL_STATUS ADDRESS: 0x901B BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 36891.4 PLL_LOCK_RX 1 = Indicates PLL is locked within 10ppm of REFCLKP/N in SERDES RX macro 36891.0 PLL_LOCK_TX 1 = Indicates PLL is locked within 10ppm of REFCLKP/N in SERDES TX macro RO/LL Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 45 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-48. JC_CLOCK_MUX_CONTROL ADDRESS: 0x9100 BIT(s) 37120.15:14 37120.13:12 37120.11:10 37120.9:8 37120.7:6 37120.5:4 NAME DEFAULT: 0x3FF0 DESCRIPTION ACCESS REF_SEL[1:0] Jitter Cleaner Reference clock select control 00 = Selects differential REFCLKP/N as jitter cleaner clock input 01 = Selects CMOS REFCLK as jitter cleaner clock input 10 = Selects recovered clock as jitter cleaner clock input 11 = Reserved RW RXB_SEL[1:0] Jitter Cleaner RXBYTECLK select control 00 = Selects RXB_DIV divider output clock as RXBYTECLK 01 = Selects recovered clock as RXBYTECLK 10 = Selects CMOS REFCLK as RXBYTECLK 11 = Selects differential REFCLKP/N as RXBYTECLK RW TX_SEL[1:0] Jitter Cleaner SERDES TX Reference clock input select control 00 = Selects jitter cleaner output clock as TX SERDES reference clock input 01 = Selects recovered clock as TX SERDES reference clock input 10 = Selects CMOS REFCLK as TX SERDES reference clock input 11 = Selects differential REFCLKP/N as TX SERDES reference clock input RW RX_SEL[1:0] Jitter Cleaner SERDES RX Reference clock input select control 00 = Selects jitter cleaner output clock as RX SERDES reference clock input 01 = Selects recovered clock as RX SERDES reference clock input (Not Recommended) 10 = Selects CMOS REFCLK as RX SERDES reference clock input 11 = Selects differential REFCLKP/N as RX SERDES reference clock input RW DEL_SEL[1:0] Delay stopwatch clock input select control 00 = Selects delay clock divider output clock as delay stopwatch clock input 01 = Selects recovered clock as delay stopwatch clock input 10 = Selects CMOS REFCLK as delay stopwatch clock input 11 = Selects differential REFCLKP/N as delay stopwatch clock input RW HSTL_SEL[1:0] HSTL VTP 2x clock divider input select control 00 = Selects HSTL DIV clock output as HSTL VTP 2x clock divider input 01 = Selects recovered clock as HSTL VTP 2x clock divider input 10 = Selects CMOS REFCLK as HSTL VTP 2x clock divider input 11 = Selects differential REFCLKP/N as HSTL VTP 2x clock divider input RW Table 2-49. JC_VTP_CLK_DIV_CONTROL ADDRESS: 0x9101 BIT(s) 37121.14:8 37121.6:0 NAME HSTL_DIV[6:0] HSTL_DIV2[6:0] DEFAULT: 0x0E06 DESCRIPTION ACCESS HSTL Output Divider 1 Value. See Figure 1-2. This value is the divider value for the clock which runs the HSTL impedance compensation controller. The target output frequency for the impedance controller clock is 40 MHz. If the jitter cleaner is not enabled, this value is not used. Legal programmed values are greater than or equal to 6. HSTL Output Divider 2 Value. See Figure 1-2. This value is the divider value for the HSTL impedance compensation controller. The target output frequency for this clock is 40 MHz. When the jitter cleaner (HSTL_DIV1) is used, this value should be provisioned to 6 decimal. When the jitter cleaner (HSTL_DIV1) is not used, this divider value should be provisioned according to the following equation: RW RW Value = (Parallel Output Byte Clock Frequency / 40 MHz) Legal programmed values are 1, and greater than or equal to 4 46 Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-50. JC_DELAY_STOPWATCH_CLK_DIV_CONTROL ADDRESS: 0x9102 BIT(s) DESCRIPTION 37122.14:8 DEL_DIV[6:0] 37122.2:1 37122.0 DEFAULT: 0x0600 NAME Delay stop watch lane select[1:0] ACCESS Delay Measurement Clock Output Divider Value. See Figure 1-2. Controls the clock divider for the delay stop watch function. This value should be provisioned to decimal 6.This value is only used when the delay calculator circuit is enabled. Legal programmed values are greater than or equal to 6. RW Lane select to enable comma monitor. Valid only when 37122:0 is 1 00 = Comma monitor enabled on Lane 0 01 = Comma monitor enabled on Lane 1 10 = Reserved 11 = Reserved RW Delay stop watch clock When set, enables Delay stop watch clock enable RW Table 2-51. JC_DELAY_STOPWATCH_COUNTER ADDRESS: 0x9103 BIT(s) 37123.15:0 DEFAULT: 0x0000 NAME Delay stop watch counter[15:0] DESCRIPTION ACCESS Delay Counter. This value represents the latency in number of clock cycles. This counter resets on read and will return 16’h0000 if its read before rx comma is received. If latency is more than 16’hFFFF clock cycles then this counter returns 16’hFFFF. RO Table 2-52. JC_REFCLK_FB_DIV_CONTROL ADDRESS: 0x9104 BIT(s) 37124.15 37124.14:8 37124.7 37124.6:0 DEFAULT: 0x018E NAME DESCRIPTION ACCESS REFDIV_EN 1 = Enables Reference clock divider 0 = Disables Reference clock divider RW REF_DIV[0:6] Controls the clock divider value for the reference clock. See Figure 1-2, and Appendix A for provisioning details Note: REF_DIV[6:0] = 37124.8:14. (Example: To program REF_DIV to decimal value 4, 14:8 needs to be set to 7’b0010000) RW FBDIV_EN 1 = Enables feedback divider 0 = Disables feedback divider RW FB_DIV[6:0] Controls the feedback divider value See Figure 1-2, and Appendix A for provisioning details. Note: JC_CHARGE_PUMP_ CONTROL (37126) needs to be set accordingly based on FB_DIV range. Refer to Table 2-55: Charge Pump Control Setting (CP_CTRL) RW Table 2-53. JC_RXB_OUTPUT_CLK_DIV_CONTROL ADDRESS: 0x9105 BIT(s) NAME DEFAULT: 0x0E8E DESCRIPTION ACCESS 37125.14:8 RXB_DIV[6:0] Receive Byte Clock Output Divider Value. This divider value is always provisioned with the same value as RXTX_DIV[6:0]. See Figure 1-2, and Appendix A for provisioning details. This value is only used when the jitter cleaner is used to source the receive parallel interface output clock. Legal programmed values are greater than or equal to 6. 37125.7 OUTDIV_EN 1 = Enables output divider (RXTX_DIV) 0 = Disables output divider RW RXTX_DIV[6:0] RX/TX SERDES Output Divider Value See Figure 1-2, and Appendix A for provisioning details. Legal programmed values are greater than or equal to 6. RW 37125.6:0 RW Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 47 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-54. JC_CHARGE_PUMP_CONTROL (1) ADDRESS: 0x9106 BIT(s) 37126.15:14 37126.13:0 (1) DEFAULT: 0x00C0 NAME DESCRIPTION ACCESS CP_BUF_CTRL[1:0] Charge pump buffer control RW CP_CTRL[13:0] Charge pump control. When JC PLL is used, CP_CTRL[13:0] values need to be set according to FB_DIV[6:0] range. Refer to Table 2-55: Charge Pump Control Setting (CP_CTRL) RW When JC PLL is used, this register value should be set according to the values specified in Charge Pump Control Setting Table. Table 2-55. Charge Pump Control Setting (CP_CTRL) FB DIV VALUE RANGE (37124[6:0]) (in decimal) JC_CHARGE_PUMP_ CONTROL SETTING (37126 [15:0]) 1 - 15 0x00FF 16 - 18 0x00C1 19 - 30 0x0081 31 - 33 0x017F 34 - 45 0x017D 46 - 53 0x011F 54 - 59 0x0151 60 - 68 0x0121 69 - 77 0x01C3 78 - 85 0x0101 86 - 88 0x02FB 89 - 91 0x0183 92 - 99 0x0237 100 - 107 0x0181 108 - 113 0x0261 114 - 127 0x0215 Table 2-56. JC_PLL_CONTROL ADDRESS: 0x9107 BIT(s) DESCRIPTION ACCESS JC_EN_PLL 0 = Disables Jitter Cleaner 1 = Enables Jitter Cleaner RW 37127.14:12 VCO_BIAS_CTRL[2:0] Control bits for VCO tail current RW 37127.11:8 37127.15 VCO_CAPBANK_CTRL[3:0] Control bits for VCO band select RW 37127.7 DIFFTX_EN Enable signal for TX differential path RW 37127.6 DIFFRX_EN Enable signal for RX differential path RW PFD_CTRL[1:0] Control bits for phase frequency detector RW 37127.3 AD_SEL_TST Control bit to select either digital or analog TST_OUT RW 37127.2 REFCLK_CML_EN Enable signal for CML buffer inside output divider RW 37127.5:4 48 DEFAULT: 0x30C4 NAME Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-57. JC_TEST_CONTROL_1 (1) ADDRESS: 0x9108 BIT(s) (1) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 37128.15:12 REFCK_DIV_TST[3:0] Test bits for Reference divider RW 37128.11:8 FB_DIV_TST[3:0] Test bits for Feedback divider RW 37128.7:4 TXRX_DIV_TST[3:0] Test bits for TXRX output divider. Should be set to 4’b1010 when JC PLL is used RW 37128.3:2 RXBCLK_DIV_TST[1:0] Test bits for RXBYTECLK divider RW This register value should be written 0x00A0 when JC PLL is used. Table 2-58. JC_TEST_CONTROL_2 ADDRESS: 0x9109 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 37129.15:14 DEL_DIV_TST[1:0] Test bits for Delay clock divider RW 37129.13:12 HSTL_DIV_TST[1:0] Test bits for HSTL VTP divider RW 37129.11:10 HSTL_DIV2_TST[1:0] Test bits for HSTL VTP 2X divider RW 37129.9:8 PFD_TST[1:0] Test bits for Phase frequency detector RW 37129.7:4 CP_TST[3:0] Test bits for Charge pump RW 37129.3:0 CP_BUF_TST[3:0] Test bits for Charge pump Buffer RW Table 2-59. JC_TI_TEST_CONTROL_1 ADDRESS: 0x9150 BIT(s) DEFAULT:0x0000 NAME DESCRIPTION ACCESS 37200.15:8 CML_BIAS_TST[7:0] Test bits for Bias generator for CML divider. For TI purposes only. RW 37200.7:4 CML_BIAS_CTRL[3:0] Control bits for Bias generator for CML divider. For TI purposes only. RW 37200.3 DIFFTX_ENTST Enable for TX clock out from SERDES REFCLK MUX. For TI purposes only. RW 37200.2 DIFFRX_ENTST Enable for RX clock out from SERDES REFCLK MUX. For TI purposes only. RW Table 2-60. JC_TI_TEST_CONTROL_2 ADDRESS: 0x9151 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 37201.15:13 VCO_FILCAP_CTRL[2:0] Control bits for VCO tail current noise filter. For TI purposes only. RW 37201.12:10 ANA_MUX_CTRL[2:0] Control bits to select the tested signals. For TI purposes only. RW Table 2-61. JC_TRIM_STATUS ADDRESS: 0x9152 BIT(s) 37202.9:0 DEFAULT: 0x0000 NAME JC_TRIM[9:0] DESCRIPTION ACCESS Jitter Cleaner Resistor Trim value RO Table 2-62. DIE_ID_7 ADDRESS: 0x9200 BIT(s) 37376.15:0 DEFAULT: 0x0000 NAME Die ID [127:112] DESCRIPTION Bits [127:112] of the Die ID. Unique TI DIE identifier. ACCESS RO Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 49 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-63. DIE_ID_6 ADDRESS: 0x9201 BIT(s) 37377.15:0 NAME Die ID [111:96] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [111:96] of the Die ID. Unique TI DIE identifier. RO Table 2-64. DIE_ID_5 ADDRESS: 0x9202 BIT(s) 37378.15:0 NAME Die ID [95:80] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [95:80] of the Die ID. Unique TI DIE identifier. RO Table 2-65. DIE_ID_4 ADDRESS: 0x9203 BIT(s) 37379.15:0 NAME Die ID [79:64] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [79:64] of the Die ID. Unique TI DIE identifier. RO Table 2-66. DIE_ID_3 ADDRESS: 0x9204 BIT(s) 37380.15:0 NAME Die ID [63:48] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [63:48] of the Die ID. Unique TI DIE identifier. RO Table 2-67. DIE_ID_2 ADDRESS: 0x9205 BIT(s) 37381.15:0 NAME Die ID [47:32] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [47:32] of the Die ID. Unique TI DIE identifier. RO Table 2-68. DIE_ID_1 ADDRESS: 0x9206 BIT(s) 37382.15:0 NAME Die ID [31:16] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [31:16] of the Die ID. Unique TI DIE identifier. RO Table 2-69. DIE_ID_0 ADDRESS: 0x9207 BIT(s) 37383.15:0 NAME Die ID [15:0] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [15:0] of the Die ID. Unique TI DIE identifier. RO Table 2-70. EFUSE_STATUS ADDRESS: 0x9208 BIT(s) 37384.8 37384.4:0 50 NAME DEFAULT: 0x0000 DESCRIPTION EFC ready When high, indicates that EFUSE autoload operation has completed. EFC error[4:0] Efuse error bus. Updated when EFC_ready goes high or when instruction is complete. Non-zero value indicates error condition. Detailed Description ACCESS RO Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-71. EFUSE_CONTROL ADDRESS: 0x9209 BIT(s) 37385.15 DEFAULT: 0x0000 NAME EFUSE Auto Load Enable DESCRIPTION ACCESS When high, re-enables EFUSE Auto load function. Needs to set back to low to complete Auto load function. RW Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 51 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-72. HSTL_INPUT_TERMINATION_CONTROL ADDRESS: 0x9300 BIT(s) 37632.7:6 37632.3:2 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS HSTL_TERM_1[1:0] Termination setting for input HSTL cells (for CH 1) 00 = Termination disable (High Impedance) 01 = Half termination strength (300 Ω to VHSTL and GND) 10 = 3/4 termination strength (200 Ω to VHSTL&GND) 11 = Full termination strength (150 Ω to VHSTL&GND) RW HSTL_TERM_0[1:0] Termination setting for input HSTL cells (for CH 0) 00 = Termination disable (High Impedance) 01 = Half termination strength (300 Ω to VHSTL&GND) 10 = 3/4 termination strength (200 Ω to VHSTL&GND) 11 = Full termination strength (150 Ω to VHSTL&GND) RW Table 2-73. HSTL_OUTPUT_SLEWRATE_CONTROL ADDRESS: 0x9301 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 37633.7:6 HSTL_SLEW_RATE_1 [1:0] Slew Rate setting for output HSTL cells (for CH 1) 00 = No slew control (fastest edge) 01 = 33% slew control 10 = 66% slew control termination strength 11 = Full slew control (slowest edge) RW 37633.3:2 HSTL_SLEW_RATE_0 [1:0] Slew Rate setting for output HSTL cells (for CH 0) 00 = No slew control (fastest edge) 01 = 33% slew control 10 = 66% slew control termination strength 11 = Full slew control (slowest edge) RW Table 2-74. HSTL_INPUT_VTP_CONTROL ADDRESS: 0x9302 BIT(s) DEFAULT: 0x0640 DESCRIPTION ACCESS 37634.15 I_FORCE_UP_N When set, increases NFET strength in all HSTL input cells. For TI purposes Only 37634.14 I_FORCE_UP_P When set, increases PFET strength in all HSTL input cells. For TI purposes Only 37634.13 I_FORCE_DOWN_N When set, decreases NFET strength in all HSTL input cells. For TI purposes Only 37634.12 I_FORCE_DOWN_P When set, decreases PFET strength in all HSTL input cells. For TI purposes Only I_VTP_DRIVE[2:0] Drive strength control for HSTL input cells 3’b000 = 30% drive strength increase 3’b001 = 20% drive strength increase 3’b010 = 10% drive strength increase 3’b011 = Normal drive strength (default) 3’b100 = 10% drive strength decrease 3’b101 = 20% drive strength decrease 3’b110 = 30% drive strength decrease 3’b111 = 40% drive strength decrease RW I_FILTER_CONTROL[2:0] Filter Control 3’b000 = Impedance change filtering off 3’b001 = Update on 2 consecutive update requests 3’b010 = Update on 3 consecutive update requests(default) 3’b011 = Update on 4 consecutive update requests 3’b100 = Update on 5 consecutive update requests 3’b101 = Update on 6 consecutive update requests 3’b110 = Update on 7 consecutive update requests 3’b111 = Update on 8 consecutive update requests RW I_LOCK Impedance Lock Control When set, disables dynamic impedance control updates for HSTL input cells RW 37634.11:9 37634.7:5 37634.3 52 NAME Detailed Description RW Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-75. HSTL_OUTPUT_VTP_CONTROL ADDRESS: 0x9303 BIT(s) DEFAULT: 0x0640 NAME DESCRIPTION ACCESS 37635.15 O_FORCE_UP_N When set, increases NFET strength in all HSTL output cells . For TI purposes Only 37635.14 O_FORCE_UP_P When set, increases PFET strength in all HSTL output cells . For TI purposes Only 37635.13 O_FORCE_DOWN_N When set, decreases NFET strength in all HSTL output cells . For TI purposes Only 37635.12 O_FORCE_DOWN_P When set, decreases PFET strength in all HSTL output cells . For TI purposes Only O_VTP_DRIVE[2:0] Drive strength control for HSTL output cells 3’b000 = 30% drive strength increase 3’b001 = 20% drive strength increase 3’b010 = 10% drive strength increase 3’b011 = Normal drive strength(default) 3’b100 = 10% drive strength decrease 3’b101 = 20% drive strength decrease 3’b110 = 30% drive strength decrease 3’b111 = 40% drive strength decrease RW O_FILTER_CONTROL[2:0] Filter Control 3’b000 = Impedance change filtering off 3’b001 = Update on 2 consecutive update requests 3’b010 = Update on 3 consecutive update requests(default) 3’b011 = Update on 4 consecutive update requests 3’b100 = Update on 5 consecutive update requests 3’b101 = Update on 6 consecutive update requests 3’b110 = Update on 7 consecutive update requests 3’b111 = Update on 8 consecutive update requests RW O_LOCK Impedance Lock Control When set, disables dynamic impedance control updates for HSTL output cells RW 37635.11:9 37635.7:5 37635.3 RW Table 2-76. HSTL_GLOBAL_CONTROL ADDRESS: 0x9304 BIT(s) DEFAULT: 0x0088 NAME DESCRIPTION ACCESS 37636.15 HSTL power down control When set, triggers HSTL power down sequence and places all HSTL cells in power down state. RW 37636.14 HSTL Retrain When set, triggers retraining of all HSTL inputs and outputs to match the impedance. Retraining is triggered only when this bit value goes from 0 to 1. HSTL retraining should occur at the end of device provisioning. RW 37636.11 HSTL_CLK_EN HSTL impedance control clock (CLK2X) selection 1 = Uses MDC (MDIO clock) as CLK2X 0 = Uses clock generated from Jitter cleaner as CLK2X RW 37636.7 Voltage reference selection 1 = Internal voltage reference used for HSTL input signals 0 = External voltage reference used for HSTL input signals RW 37636.3 VTP POWERSAVE When set, enables power save mode on HSTL VTP controllers RW 37636.2 GP 3-state Control When set, 3-states GP outputs RW Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 53 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-77. TX0_DLL_CONTROL ADDRESS: 0x9400 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION ACCESS 37888.15 Lock_en For TI use only 37888.14 Write_en For TI use only 37888.13:8 Delay_sel[5:0] DLL delay control. For TI use only 37888.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15ns. Refer to Table 2-81: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 37888.3 RW Table 2-78. TX1_DLL_CONTROL ADDRESS: 0x9401 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION ACCESS 37889.15 Lock_en For TI use only 37889.14 Write_en For TI use only 37889.13:8 Delay_sel[5:0] DLL delay control. For TI use only 37889.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15ns. Refer to Table 2-81: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 37889.3 RW Table 2-79. RX0_DLL_CONTROL ADDRESS: 0x9404 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION ACCESS 37892.15 Lock_en For TI use only 37892.14 Write_en For TI use only 37892.13:8 Delay_sel[5:0] DLL delay control. For TI use only 37892.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15 ns. Refer to Table 2-81: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 37892.3 RW Table 2-80. RX1_DLL_CONTROL ADDRESS: 0x9405 BIT(s) NAME DESCRIPTION 37893.15 Lock_en For TI use only 37893.14 Write_en For TI use only 37893.13:8 Delay_sel[5:0] DLL delay control. For TI use only 37893.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15 ns. Refer to Table 2-81: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 37893.3 54 DEFAULT: 0x0008 Detailed Description ACCESS RW Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 2-81. DLL Offset Control OFFSET[2:0] VALUE RESULT 000 No delay elements are added 001 1 extra delay element is added 010 2 extra delay elements are added 011 3 extra delay elements are added 100 No delay elements are removed 101 1 extra delay element is removed 110 2 extra delay elements are removed 111 3 extra delay elements are removed Table 2-82. TX0_DLL_STATUS ADDRESS: 0x9408 BIT(s) 37896.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-83. TX1_DLL_STATUS ADDRESS: 0x9409 BIT(s) 37897.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-84. RX0_DLL_STATUS ADDRESS: 0x940C BIT(s) 37900.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-85. RX1_DLL_STATUS ADDRESS: 0x940D BIT(s) 37901.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-86. CH0_TESTFAIL_ERR_COUNTER ADDRESS: 0x9500 BIT(s) 38144.7:0 NAME Ch0_Testfail error counter[7:0] DEFAULT: 0x00FD DESCRIPTION ACCESS This counter reflects error count during PRBS test. Counter increments for each received character that has an error. Counter clears upon read. Counter value is valid only when SERDES RX test pattern verification bits are set. COR Table 2-87. CH1_TESTFAIL_ERR_COUNTER ADDRESS: 0x9501 BIT(s) 38145.7:0 NAME Ch1_Testfail error counter[7:0] DEFAULT: 0x00FD DESCRIPTION ACCESS This counter reflects error count during PRBS test. Counter increments for each received character that has an error. Counter clears upon read. Counter value is valid only when SERDES RX test pattern verification bits are set. COR Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 55 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 2-88. STCI_CONTROL_STATUS ADDRESS: 0x9600 BIT(s) DEFAULT: 0x0000 NAME 38400.15 DESCRIPTION STCI_CLK Bit to generate STCI clock in functional mode. STCI_CFG[1:0] STCI CFG control 38400.7 STCI_D STCI data in 38400.3 STCI_Q STCI read data 38400.11:10 ACCESS RW RO Table 2-89. TESTCLK_CONTROL ADDRESS: 0x9601 BIT(s) 38401.15 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS Bit to generate TESTCLKT clock in functional mode. For TI test purposes only. TESTCLKT RW Table 2-90. BIDI_CMOS_CONTROL ADDRESS: 0x9700 BIT(s) 38656.15 NAME MDIO Disable Comp Test Control DEFAULT: 0x0000 DESCRIPTION ACCESS 0 = MDIO/MDC Bidi cells automatically detects operating voltage (default) 1 = MDIO/MDC Bidi cells expects 2.5 V operating voltage RW Table 2-91. DEBUG_CONTROL ADDRESS: 0x9800 BIT(s) NAME DEFAULT: 0x001F DESCRIPTION ACCESS 38912:8 DEBUG_SEL_EN 1 = Sends debug status signals onto debug outputs (GPO) 0 = Debug outputs are tied to 0. For TI test purposes only. 38912.7 DIG_TST_OUT_EN 1 = Enables sending DIG TST debug signal onto GPO4 0 = Disables sending DIG TST debug signal onto GPO4. For TI test purposes only. DEBUG_SEL Debug select bits. For TI test purposes only. 38912.4:0 RW Table 2-92. DUTY_CYCLE_CONTROL ADDRESS: 0x9900 BIT(s) 39168.15 56 NAME Duty Cycle Correction Bypass DEFAULT: 0x0000 DESCRIPTION ACCESS 1 = Bypasses duty cycle corrected RX/TXBCLK. (Duty cycle set to 40-60, same clocks as SERDES parallel launch and capture clocks) 0 = Uses duty cycle corrected RX/TXBCLK. (Duty cycle set to 50-50, no phase relationship to SERDES parallel launch and capture clock)(default). For TI test purposes only. RW Detailed Description Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 3 Device Reset Requirements/Procedure 3.1 Gigabit Ethernet Mode (RGMII) Note: All global registers must be accessed indirectly through Clause 22. REFCLK frequency = 125 MHz, Serdes Data Rate = Half Rate, Mode = Transceiver, Edge Mode = Source Centered Mode, RX_CLK[n] out = TXBCLK[n], Jitter Cleaner PLL Multiplier Ratio = 1X or Off • Device Pin Setting(s) – Pin settings allow for maximum software configurability. – Ensure CODE input pin is Low. – Ensure PLOOP input pin is Low. – Ensure SLOOP input pin is Low. – Ensure SPEED [1:0] input pins are both High. – Ensure ENABLE input pin is High. – Ensure PRBS_EN input pin is Low. • Reset Device – Issue a hard or soft reset (RST_N asserted for at least 10 μs -or- Write 1’b1 to 0.15) • Clock Configuration – If using JCPLL (JCPLL 1X) • JCPLL Mux Settings (see Figure 1-2) – Select REFCLK input (Default = Differential) – If Single Ended REFCLK used – Write 2’b01 to 37120.15:14 – If Differential REFCLK used – Write 2’b00 to 37120.15:14 • Write 2’b11 to 37120.13:12 to select differential REFCLKP/N as RXBYTECLK • Write 4’b0000 to 37120.11:8 to select jitter cleaned clock for SERDES TX/RX. • Write 2’b11 to 37120.7:6 to select differential REFCLKP/N as delay stopwatch clock input • Write 2’b00 to 37120.5:4 to select jitter cleaned clock for HSTL VTP 2x • Write 2’b00 to 16.10:9 to select SERDES TX clock as RX_CLK output • Write 16’h0081 to 37126 to set Charge pump control • Write 16’h00A0 to 37128 to set TXRX output divider • Clock Divide Settings (see Figure A-1) – Write 7’b1000000 to 37124.14:8 to set REF_DIV to value of 1 – Write 1’b1 to 37124.15 REFDIV_EN to enable reference clock divider – Write 7’h18 to 37124.6:0 to set FB_DIV to value of 24 – Write 1’b1 to 37124.7 FBDIV_EN to enable feedback divider – Write 7’h18 to 37125.6:0 to set RXTX_DIV to value of 24 – Write 1’b1 to 37125.7 OUTDIV_EN to enable RXTX_DIV output divider – Write 7’h0D to 37121.14:8 to set HSTL_DIV to value of 13 – Write 7’h06 to 37121.6:0 to set HSTL_DIV2 to value of 6 – Write 2’b11 to 36864.14:13 to set RX Loop Bandwidth – Write 2’b11 to 36864.6:5 to set TX Loop Bandwidth – Write 4’b0101 to 36864.11:8 to set MPY RX multiplier factor to 10 – Write 4’b0101 to 36864.3:0 to set MPY TX multiplier factor to 10 – Write 16’h5050 to 36865 SERDES_RATE_CONFIG_TX_RX to set Half Rate – Write 3'b000 to 37127.14:12 to set control bits for VCO tail current to 0 – Write 1’b1 to 37127.15 to enable Jitter Cleaner – Wait 50 ms in order for JCPLL to lock – Else if using clock bypass mode (JCPLL Off) • JCPLL Mux Settings (see Figure 1-2) Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 57 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 • • • • 58 www.ti.com – Select REFCLK input (Default = Differential) – If Single Ended REFCLK used – Write 2’b01 to 37120.15:14 – If Differential REFCLK used – Write 2’b00 to 37120.15:14 – Select RXBYTE_CLK (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 37120.13:12 – If Differential REFCLK used – Write 2’b11 to 37120.13:12 – Select SERDES TX Reference Clock Input (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 37120.11:10 – If Differential REFCLK used – Write 2’b11 to 37120.11:10 – Select SERDES RX Reference Clock Input (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 37120.9:8 – If Differential REFCLK used – Write 2’b11 to 37120.9:8 – Select DELAY_CLK (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 37120.7:6 – If Differential REFCLK used – Write 2’b11 to 37120.7:6 – Select HSTL_2X_CLK (Default = Differential) – Write 2’b01 to 4/5.37120.5:4 to select RX SERDES recovered clock as HSTL_2X_CLK – Write 2’b00 to 16.10:9 to select SERDES TX clock as RX_CLK output (per channel) – Write 7’h04 to 37121.6:0 to set HSTL_DIV2 to value of 4. – Write 15’h1515 to 36864.14:0 SERDES_PLL_CONFIG to set MPY RX/TX multiplier factor to 10 – Write 16’h5050 to 36865 SERDES_RATE_CONFIG_TX_RX to set Half Rate Mode Control (see Table 2-2) – Write 1’b0 to 17.0 for RX source centered mode (per channel) – Write 1’b0 to 17.1 for TX source centered mode (per channel) – Write 1’b1 to 17.2 to enable 8B/10B encode decode functions (per channel) – Write 1’b1 to 17.3 to enable 1000Base-X PCS TX & PCS RX functions (per channel) – Write 1’b1 to 17.4 to set nibble order, LSB on rising edge, MSB on falling edge (per channel) – Write 1’b1 to 17.5 to enable DDR data on TX/RX direction (per channel) – Write 1’b0 to 17.6 to disable FC_PH overlay detection (per channel) – Write 1’b1 to 17.7 to enable comma detection (per channel) – Write 1’b0 to 17.9 to disable full DDR mode (per channel) – Write 1’b0 to 16.8 to disable Farend Loop back (per channel) – Write 1’b0 to 0.14 to disable loop back mode (per channel) – Write 3’b111 to 36874.11:9 to set channel 0 TX swing setting amplitude to 1375 mVdfpp – Write 1’b1 to 36874.8 to set channel 0 TX CM bit – § Write 3’b111 to 36876.11:9 to set channel 1 TX swing setting amplitude to 1375 mVdfpp – § Write 1’b1 to 36876.8 to set channel 1 TX CM bit RX equalization settings – Write 4’b0001 to 36866.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 4’b0001 to 36868.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 2’b01 to 36866.3:2 for AC coupled mode (2’b00 is DC coupled mode) – Write 2’b01 to 36868.3:2 for AC coupled mode (2’b00 is DC coupled mode) TX DLL Offset – Write 16'h0028 to 37888 TX0_DLL_CONTROL – Write 16'h0028 to 37889 TX0_DLL_CONTROL Poll Serdes PLL Status for Locked State Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com • • • 3.2 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 – Read 36891.4,0 SERDES_PLL_STATUS – PLL_LOCK_TX/RX – Keep polling until both bits are high. Issue Data path Reset – Write 1’b1 to 16.11 (per channel) – Write 1’b0, then 1’b1, followed by 1’b0 to 37636.14. Clear Latched Registers – Read 1 PHY_STATUS_1 to clear (per channel) – Read 18 PHY_RX_CTC_FIFO_STATUS to clear (per channel) – Read 19 PHY_TX_CTC_FIFO_STATUS to clear (per channel) – Read 28 PHY_CHANNEL_STATUS to clear (per channel) – Read 36891 SERDES_PLL_STATUS to clear Operational Mode Status – Read Verify 1.2 PHY_STATUS_1 – Link Status (1’b1) (per channel) – Read Verify 18.15 PHY_RX_CTC_FIFO_STATUS – RX_CTC_Reset (1’b0) (per channel) – Read Verify 19.15 PHY_TX_CTC_FIFO_STATUS – TX_FIFO_Reset_1Gx (1’b0) (per channel) – Read Verify 28.13:12 PHY_CHANNEL_STATUS – Enc/Dec Invalid Code Word (2’b00) (per channel) – Read Verify 36891.4 SERDES_PLL_STATUS – PLL_LOCK_RX (1’b1) – Read Verify 36891.0 SERDES_PLL_STATUS – PLL_LOCK_TX (1’b1) JITTER TEST PATTERN GENERATION AND VERIFICATION PROCEDURES Use one of the following procedures to generate and verify the respective test patterns. It is assumed that an appropriate external cable has been connected between serial outputs and serial inputs. No functional parallel side connections are necessary. • 1000Base-X Based High/Mixed/Low Frequency Test Pattern: – Device Pin Setting(s): • Ensure CODE primary input pin is low. – Reset Device • Issue a hard or soft reset (RST_N asserted for at least 10 us -or- Write 1’b1 to 0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used – Write 2’b01 to 37120.15:14 • If Differential REFCLK used – Write 2’b00 to 37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.11:10 • If Differential REFCLK used – Write 2’b11 to 37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.9:8 • If Differential REFCLK used – Write 2’b11 to 37120.9:8 – Disable Comma Detection: • Write 1’b0 to 17.7 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – Issue Datapath Reset: • Write 1’b1 to 16.11 • Write 1’b0, then 1’b1, followed by 1’b0 to 37636.14. – Select Test Pattern: • If High Frequency Pattern is desired: Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 59 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com – Write 3’b000 to 16.2:0 If Low Frequency Pattern is desired: – Write 3’b001 to 16.2:0 • If Mixed Frequency Pattern is desired: – Write 3’b010 to 16.2:0 – Enable Test Pattern Generation: • Write 1’b1 to 16.4 – Clear Counters: • Read 22.15:0 and discard the value. – Enable Test Pattern Verification: • Write 1’b1 to 16.3 – Verify Test In Progress: • Poll 21.1 asserted. – The pattern verification is now in progress. – Verify Error Free Operation (as many times as desired during the duration of the test period): • Read 22.15:0, and verify 16’h0000 is read to confirm error free operation. 1000Base-X Based Continuous Random Pattern (CRPAT) Long/Short Test Pattern: – Device Pin Setting(s): • Ensure CODE primary input pin is high. – Reset Device: • Issue a hard or soft reset (RST_N asserted -or- Write 1 to 0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used – Write 2’b01 to 37120.15:14 • If Differential REFCLK used – Write 2’b00 to 37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.11:10 • If Differential REFCLK used – Write 2’b11 to 37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.9:8 • If Differential REFCLK used – Write 2’b11 to 37120.9:8 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – Enable Encoder/Decoder • Write 1’b1 to 17.2 – Issue Datapath Reset: • Write 1’b1 to 16.11 • Write 1’b0, then 1’b1, followed by 1’b0 to 37636.14 – Select Test Pattern: • If CRPAT Long Pattern is desired: – Write 3’b011 to 16.2:0 • If CRPAT Short Pattern is desired: – Write 3’b100 to 16.2:0 – Enable Test Pattern Generation: • Write 1’b1 to 16.4 – Clear Counters: • Read 23.15:0 and 24.15:0 and discard the values. • • 60 Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 – Enable Test Pattern Verification: • Write 1’b1 to 16.3 – Verify Test In Progress: • Poll 21.0 asserted. – The pattern verification is now in progress. – Verify Error Free Operation (as many times as desired during the duration of the test period): • Read 23.15:0, and verify 16’h0000 is read to confirm error free operation. • Read 24.15:0, and verify 16’h0000 is read to confirm error free operation. If more than one test is specified results are unpredictable. If another test type is desired, please begin at the first step of that procedure. 3.3 PRBS Test Generation and Verification Procedures Use one of the following procedures to generate and verify the respective PRBS test patterns. It is assumed that an appropriate external cable has been connected between serial outputs and serial inputs. No functional parallel side connections are necessary. • 1000Base-X 27-1 PRBS Register Based Testing – Device Pin Setting(s): • Ensure CODE primary input pin is low. – Reset Device: • Issue a hard or soft reset (RST_N asserted -or- Write 1 to 0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used – Write 2’b01 to 37120.15:14 • If Differential REFCLK used – Write 2’b00 to 37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.11:10 • If Differential REFCLK used – Write 2’b11 to 37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.9:8 • If Differential REFCLK used – Write 2’b11 to 37120.9:8 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – Issue Datapath Reset: • Write 1’b1 to 16.11 • Write 1’b0, then 1’b1, followed by 1’b0 to 37636.14. – Enable PRBS Generator (On Channel Desired): • Write 1’b1 to 16.6 – Enable Test Pattern Verification: • Write 1’b1 to 16.7 – Clear Counters: • Read 29.15:0 and discard the value. – The pattern verification is now in progress. – Verify Error Free Operation (as many times as desired during the duration of the test period): • Read 29.15:0, and verify 16’h0000 is read to confirm error free operation. – GPO1 contains a real time output that when high indicates if the input PRBS pattern on TD×1/RD×1 is errored. – GPO0 contains a real time output that when high indicates if the input PRBS pattern on Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 61 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 • • 62 www.ti.com TD×0/RD×0 is errored. 27-1 PRBS Pin Based Testing – Device Pin Setting(s): • Ensure PRBS_EN primary input pin is high. • PRBS Selection: – For PRBS 27-1 will be selected – Reset Device: • Issue a hard or soft reset (RST_N asserted -or- Write 1 to 0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used – Write 2’b01 to 37120.15:14 • If Differential REFCLK used – Write 2’b00 to 37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.11:10 • If Differential REFCLK used – Write 2’b11 to 37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.9:8 • If Differential REFCLK used – Write 2’b11 to 37120.9:8 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – Issue Datapath Reset: • Write 1’b1 to 16.11 • Write 1’b0, then 1'b1, followed by 1'b0 to 37636.14 – GPO1 contains a real time output that when high indicates if the input PRBS pattern on TD×1/RD×1 is errored. – GPO0 contains a real time output that when high indicates if the input PRBS pattern on TD×0/RD×0 is errored. SERDES Macro 27-1/223-1 PRBS Register Based Testing – Reset Device: • Issue a hard or soft reset (RST_N asserted -or- Write 1 to 0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used – Write 2’b01 to 37120.15:14 • If Differential REFCLK used – Write 2’b00 to 37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.11:10 • If Differential REFCLK used – Write 2’b11 to 37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used – Write 2’b10 to 37120.9:8 • If Differential REFCLK used – Write 2’b11 to 37120.9:8 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – PRBS Selection: • For PRBS 27-1– Write 2’b10 36881.1:0. – Write 2’b10 36882.1:0. • For PRBS 223-1– Write 2’b11 36881.1:0. Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 – Write 2’b11 36882.1:0. – Enable PRBS Generation: • Write 1’b1 to 36881.2 • Write 1’b1 to 36874.1 • Write 1’b1 to 36876.1 – Enable PRBS Verification: • Write 1’b1 to 36882.3 • Write 1’b1 to 36866.1 • Write 1’b1 to 36868.1 – Clear Counters: • Read 38144.7:0 and discard the value. • Read 38145.7:0 and discard the value. – The pattern verification is now in progress – Verify Error Free Operation (as many times as desired during the duration of the test period): • Read 38145.7:0, and verify 8’h00 is read to confirm error free operation on TD×1/RD×1. • Read 38144.7:0, and verify 8’h00 is read to confirm error free operation on TD×0/RD×0. – GPO1 contains a real time output that when high indicates if the input PRBS pattern on TD×1/RD×1 is errored. – GPO0 contains a real time output that when high indicates if the input PRBS pattern on TD×0/RD×0 is errored. Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 63 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 3.4 www.ti.com Signal Pin Description Table 3-1. Global Signals SIGNAL LOCATION VOLTAGE TYPE DESCRIPTION RST_N N1 VDDO 2.5 V LVCMOS Input Chip Reset (Active Low) When asserted (low logic level), this signal reinitializes the entire device. Must be held asserted (low logic level) for at least 10 μS after device power up. VDDO 2.5 V LVCMOS Input Device Enable. When this pin is held low, the device is in a low power state. When high the device operates normally. A hard or soft reset must be applied after a change of state occurs on this input signal. ENABLE M2 Speed Selection pins. These pins put all four channels of TLK3132 into one of the three supported (full/half/quarter) operation speeds. 00 – Both channels in Full Rate mode 01 – Both channels in Half Rate mode 10 – Both channels in Quarter rate mode 11 – Software Selectable Rate SPEED[1:0] F2 J14 VDDO 2.5 V LVCMOS Input In the software selectable rate mode, the rate may be configured independently by the MDIO interface. The SPEED[1:0] inputs control both RX and TX directions. See Appendix A for further information on speed selection (full/half/quarter) for proper settings as a function of the application mode and reference clock frequency. Note that if these pins are not configured on the application board to select “Software Selectable Rate”, then the internal speed register bits cannot be used to control the rate settings, and the full/half/quarter rate selection is fixed. PLOOP SLOOP PRBS_EN M13 J13 M1 VDDO VDDO VDDO 2.5 V LVCMOS Input Parallel Loop Enable. When high, the serial output is internally looped back to the serial input so that the transmit parallel interface input data is output onto the receive parallel interface. 2.5 V LVCMOS Input Serial Loop Enable. When high, the serial input is internally looped back to the serial output, making a serial repeater. In device configurations where clock tolerance compensation is not performed in the transmit direction, there are two options for error free serial loopback operation: 1. Frequency lock (0 ppm) the incoming serial data rate to the local reference clock device input. 2. Provision the TX SERDES REFCLK to run from a jitter cleaned version of the RX SERDES RXBCLK (Receive Byte Clock). 2.5 V LVCMOS Input PRBS Enable. When this pin is asserted high, the internal PRBS generator and comparator circuits are enabled on the transmit and receive data paths. The PRBS results can be read through MDIO counters. Primary chip output signals GPO0/GPO1 remain low during PRBS testing when the input serial stream PRBS pattern is correct, and pulses high when PRBS errors are detected on the input serial stream. GPO1 contains the Channel 1 PRBS currently passing (when low) indication. GPO0 contains the Channel 0 PRBS currently passing (when low) indication. An external loopback connection (via external cables) is required during PRBS testing. PRBS 27-1 is transmitted on each transmit channel serial output, and compared on each receive channel serial input. CODE 64 K3 VDDO 2.5 V LVCMOS Input Code Enable. This signal is logically ORed with the PCS_EN register bit (Register Bit 17.3). RGMII/GMII applications can either tie this input signal high (preferred) or tie this signal low (must program the PCS_EN 17.3 register bit after device reset to high if CODE is tied off low). Non RGMII/GMII applications must tie this input signal low. Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 3-2. JTAG Signals SIGNAL LOCATION VOLTAGE TYPE DESCRIPTION JTAG Input Data. TDI is used to serially shift test data and test instructions into the device during the operation of the test port. TDI K13 VDDO 2.5 V LVCMOS Input (Internal Pullup) TDO H14 VDDO 2.5 V LVCMOS Output JTAG Output Data. TDO is used to serially shift test data and test instructions out of the device during operation of the test port. When the JTAG port is not in use, TDO is in a high impedance state. TMS K14 VDDO 2.5 V LVCMOS Input (Internal Pullup) JTAG Mode Select. TMS is used to control the state of the internal test-port controller. TCK J12 VDDO 2.5 V LVCMOS Input JTAG Clock. TCK is used to clock state information and test data into and out of the device during the operation of the test port. TRST_N M14 VDDO 2.5 V LVCMOS Input (Internal Pullup) JTAG Test Reset. TRST_N is used to reset the JTAG logic into system operational mode. Table 3-3. MDIO Related Signals SIGNAL MDC MDIO LOCATION G13 F13 VOLTAGE TYPE DESCRIPTION VDDM 1.2 V OR 2.5 V LVCMOS Management Interface Clock This clock is used to sample the MDIO signal. Input VDDM Management Interface Data This bidirectional data line for MDIO Port is 1.2 V OR 2.5 sampled on the rising edge of MDC. V LVCMOS Input/ Output THIS SIGNAL MUST BE EXTERNALLY PULLED UP TO VDDM. Consult IEEE802.3 Clause 22/45 for an appropriate resistance value. Port Address Used to select Port ID in Clause 22 MDIO modes. PRTAD[4:0] L13 N13 L3 N3 J11 VDDO 2.5 V LVCMOS Input PRTAD[4:1] selects a block of two sequential Clause 22 port addresses. Each channel is implemented as a different port address, and can be accessed by setting the appropriate port address field within the Clause 22 MDIO transaction. PRTAD[0] is not used functionally, but is needed for device testability with other devices in the family of products. Channel 0 responds to port address 0 within the block of two port addresses. Channel 1 responds to port address 1 within the block of two port addresses. REFCLK K2 VDDO 2.5 V LVCMOS Input Single Ended Reference Clock Single ended reference clock input. By default, the differential reference clock (REFCLKP/N) is selected. This default value may be changed by a mdio register (37120.15:14). The acceptable input frequency range on this input signal is 50 MHz → 150 MHz. Jitter performance is optimal when using the differential REFCLK input. Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 65 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 3-4. Parallel Data Pins SIGNAL LOCATION VOLTAGE TXCLK_[1:0] D10 G12 VDDQ/ VREF1/2 TXD_[15:0] B8 C9 A8 B10 A12 A13 B12 A14 B14 D11 E12 F11 C11 F12 D12 C12 VDDQ/ VREF1/2 TXC_[5,4,1,0] B9 D9 D13 C14 VDDQ/ VREF1/2 RXCLK_[1:0] B5 A6 VDDQ RXD_[15:0] E4 E3 D4 E2 D3 E1 C1 D2 B1 C3 D6 C2 B2 C7 A4 A2 RXC_[5,4,1,0] 66 C4 A5 C6 D7 VDDQ VDDQ TYPE DESCRIPTION 1.5/1.8 V Transmit Data Clock (Parallel I/F) These two signals are the parallel side HSTL Input input clocks per channel. Transmit Data Pins Parallel interface data pins. See the following tables for functionality per application mode: Table 2-3 RGMII - Lane To Functional Pin Mapping Table 2-4 RTBI - Lane To Functional Pin Mapping Table 2-5 TBI - Lane To Functional Pin Mapping Table 2-6 GMII - Lane To Functional Pin Mapping Table 2-7 EBI - Lane To Functional Pin Mapping 1.5/1.8 V Table 2-8 REBI - Lane To Functional Pin Mapping HSTL Input Table 2-9 NBI - Lane To Functional Pin Mapping Table 2-10 RNBI - Lane To Functional Pin Mapping Table 2-11 TBID - Lane To Functional Pin Mapping Table 2-12 NBID - Lane To Functional Pin Mapping Transmit Data Control Parallel Control inputs. See the following tables for functionality per application mode: Table 2-3 RGMII - Lane To Functional Pin Mapping Table 2-4 RTBI - Lane To Functional Pin Mapping Table 2-5 TBI - Lane To Functional Pin Mapping 1.5/1.8 V Table 2-6 GMII - Lane To Functional Pin Mapping HSTL Input Table 2-7 EBI - Lane To Functional Pin Mapping Table 2-8 REBI - Lane To Functional Pin Mapping Table 2-9 NBI - Lane To Functional Pin Mapping Table 2-10 RNBI - Lane To Functional Pin Mapping Table 2-11 TBID - Lane To Functional Pin Mapping Table 2-12 NBID - Lane To Functional Pin Mapping 1.5/1.8 V HSTL Output 1.5/1.8 V HSTL Output 1.5/1.8 V HSTL Output Receive Data Clock These two signals are the parallel side output clocks per channel. Receive Data Pins Parallel interface data pins. See the following tables for functionality per application mode: Table 2-3 RGMII - Lane To Functional Pin Mapping Table 2-4 RTBI - Lane To Functional Pin Mapping Table 2-5 TBI - Lane To Functional Pin Mapping Table 2-6 GMII - Lane To Functional Pin Mapping Table 2-7 EBI - Lane To Functional Pin Mapping Table 2-8 REBI - Lane To Functional Pin Mapping Table 2-9 NBI - Lane To Functional Pin Mapping Table 2-10 RNBI - Lane To Functional Pin Mapping Table 2-11 TBID - Lane To Functional Pin Mapping Table 2-12 NBID - Lane To Functional Pin Mapping Receive Data Control Control inputs. See the following tables for functionality per application mode: Table 2-3 RGMII - Lane To Functional Pin Mapping Table 2-4 RTBI - Lane To Functional Pin Mapping Table 2-5 TBI - Lane To Functional Pin Mapping Table 2-6 GMII - Lane To Functional Pin Mapping Table 2-7 EBI - Lane To Functional Pin Mapping Table 2-8 REBI - Lane To Functional Pin Mapping Table 2-9 NBI - Lane To Functional Pin Mapping Table 2-10 RNBI - Lane To Functional Pin Mapping Table 2-11 TBID - Lane To Functional Pin Mapping Table 2-12 NBID - Lane To Functional Pin Mapping Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 3-5. Serial Side Data/Clock Pins SIGNAL LOCATION TDP1/TDN1 TDP0/TDN0 P6 N7 M5 M4 VOLTAGE TYPE DESCRIPTION AVDD CML Output RDP1/RDN1 RDP0/RDN0 M11 N11 N9 M9 AVDD CML Input Transmit Differential Pairs High speed serial outputs. The data rate of these signals is from 600 Mbps minimum to 3.75 Gbps maximum. Receive Differential Pairs, High speed serial inputs with on-chip 100 Ω differential termination. Each input pair is terminated differentially across an on chip 100 Ω resistor. The data rate of these signals is from 600 Mbps minimum to 3.75 Gbps maximum. Table 3-6. Miscellaneous Pins SIGNAL LOCATION VOLTAGE TYPE DESCRIPTION VPP C8 D8 DVDD P TESTEN P3 VDDO LVCMOS 2.5 V Input Test Mode Enable Input – Must Be Grounded in the System Application. AMUX1 M10 N/A Analog Output SERDES Analog Mux 1 RX – Must be Unconnected/Open in the System Application AMUX0 N6 N/A Analog Output SERDES Analog Mux 0 TX – Must be Unconnected/Open in the System Application RES[4:3,1] A10 D14 C5 N/A Resistive Connection GPI1 N14 VDDO LVCMOS 2.5 V Input GPO[4:0] L1 H10 H12 H11 P2 Efuse Controller Voltage (1.2 V). Must be tied to 1.2 V (DVDD) in the system application. HSTL Impedance Control Resistors – 0.5% Tolerance Resistor required of the following values: 150 Ohms between RES4 and GND 150 Ohms between RES3 and GND 50 Ohms between RES1 and GND Note: These resistors cannot be shared between output pins. General Purpose Input – Must be Grounded in the System Application. General Purpose Outputs – Must be Unconnected/Open in the System Application. VDDO LVCMOS 2.5 V Output It is recommended that these output ports go to headers or non-populated resistor pads to facilitate probing of internal device functions/settings during the initial system bring up process. Also, to monitor PRBS testing real time, these outputs must be available for probing on the application board. Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 67 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 3-7. Voltage Supply and Reference Pins 68 SIGNAL LOCATION TYPE DVDD E6, E8, F10, F4, F5, G10, K10 K5, L2, L8, N2 DESCRIPTION P Digital Core Power Supply (1.2 V ±5%) VDDO F3, H13, K12, K4 P LVCMOS and Bias Power (2.5 V ±5%) VDDM G14 P MDIO Power (2.5 V or 1.2 V ±5%) VDDQ A3, A7, B11, B13 B6, D1, E10, E5, E7, E9, F14, G11 P HSTL Power (1.5/1.8 V) 1.5 V Operation Range: 1.4 V → 1.6 V 1.8 V Operation Range: 1.7V → 1.9 V VREF1, VREF2 E14, A11 P HSTL Reference Voltage (0.75 V or 0.9 V) These signals should be equal to VDDQ divided by 2. DGND A1, A9, B3, B4, B7, C10, C13, D5, E11, E13, F1, F6, F7, F8, F9, G6, G7, G8, G9, H6, H7, H8, H9, J10, J5, J6, J7, J8, J9, K1, L14, P1, P14 G Digital Ground AVDD K6, K8, K9, L11 M12, M3, M6, P10, P7 P Analog Power (1.2 V ±5%) AGND K11, L10, L4, L5, L6, L9, M8, N12, N4, P12, P5, P9 G Analog Ground VDDR K7, L7 P SERDES Voltage Regulator Input (1.5 V -or- 1.8 V) VDDT L12, M7, N10, N5, N8 P SERDES Termination Voltage (1.2 V) VDDD P11, P13, P4, P8 P SERDES Digital Power (1.2 V) Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 3-8. Jitter Cleaner Related Pins SIGNAL LOCATION TYPE DESCRIPTION I Differential Reference Clock Inputs By default, the differential reference clock (REFCLKP/N) is selected. This default value may be changed by a mdio register (37120.15:14). Must Be Externally AC Coupled REFCLKP – DPECL REFCLK P Input REFCLKN – DPECL REFCLK N Input Acceptable input frequency range is 50 MHz → 375 MHz. Jitter performance is optimal when using the differential REFCLK input. G4 P Jitter Cleaner – VCO Supply – 1.2 V G2 G Jitter Cleaner Ground REFCLKP/ REFCLKN J1 H1 VDDA_VCO VSSA_VCO VDDA_CP J4 P Jitter Cleaner – Charge Pump – 1.2 V VSSA_CP H4 G Jitter Cleaner Ground VDD_CML H3 P Jitter Cleaner – REFCLKP/N Input Supply – 1.2 V VSS_CML J3 G Jitter Cleaner Ground VDD_PLL G5 P Jitter Cleaner Digital Power (1.2 V) VSS_PLL H5 G Jitter Cleaner Ground VCO_TL_TST J2 Analog Input VCO Testability Input. This signal should be grounded in the application. TST_OUT G1 Analog Input/Output Jitter Cleaner Testability Pin. This signal should be left open (unconnected) in the application. CP_OUT G3 Analog Output Charge Pump Output. If the internal Jitter Cleaner PLL is used, this signal should be connected to the input of the external loop filter (See Figure B-1). If the internal Jitter Cleaner PLL is not used, this node should be left open (unconnected). VTUNE H2 Analog Input LC VCO Bias Voltage. This signal should be connected to the output of the external loop filter if the Jitter Cleaner PLL is used (Figure B-1). If the internal Jitter Cleaner PLL is not used, this node should be grounded. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A DGND RXD_0 VDDQ RXD_1 RXC_4 RXCLK_0 VDDQ TXD_13 DGND RES4 VREF2 TXD_11 TXD_10 TXD_8 B RXD_7 RXD_3 DGND DGND RXCLK_1 VDDQ DGND TXD_15 TXC_5 TXD_12 VDDQ TXD_9 VDDQ TXD_7 C RXD_9 RXD_4 RXD_6 RXC_5 RES1 RXC_1 RXD_2 VPP TXD_14 DGND TXD_3 TXD_0 DGND TXC_0 D VDDQ RXD_8 RXD_11 RXD_13 DGND RXD_5 RXC_0 VPP TXC_4 TXCLK_1 TXD_6 TXD_1 TXC_1 RES3 E RXD_10 RXD_12 RXD_14 RXD_15 VDDQ DVDD VDDQ DVDD VDDQ VDDQ DGND TXD_5 DGND VREF1 F DGND SPEED1 VDDO DVDD DVDD DGND DGND DGND DGND DVDD TXD_4 TXD_2 MDIO VDDQ G TST_OUT VSSA_VCO CP_OUT VDDA_VCO VDD_PLL DGND DGND DGND DGND DVDD VDDQ TXCLK_0 MDC VDDM H REFCLKN VTUNE VDD_CML VSSA_CP VSS_PLL DGND DGND DGND DGND GPO3 GPO1 GPO2 VDDO TDO J REFCLKP VCO_TL_TST VSS_CML VDDA_CP DGND DGND DGND DGND DGND DGND PRTAD0 TCK SLOOP SPEED0 K DGND REFCLK CODE VDDO DVDD AVDD VDDR AVDD AVDD DVDD AGND VDDO TDI TMS L GPO4 DVDD PRTAD2 AGND AGND AGND VDDR DVDD AGND AGND AVDD VDDT PRTAD4 DGND M PRBS_EN ENABLE AVDD TDN0 TDP0 AVDD VDDT AGND RDN0 AMUX1 RDP1 AVDD PLOOP TRST_N N RST_N DVDD PRTAD1 AGND VDDT AMUX0 TDN1 VDDT RDP0 VDDT RDN1 AGND PRTAD3 GPI1 P DGND GPO0 TESTEN VDDD AGND TDP1 AVDD VDDD AGND AVDD VDDD AGND VDDD DGND Figure 3-1. Device Pinout Diagram – (Top View) Device Reset Requirements/Procedure Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 69 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 4 Electrical Specifications 4.1 ABSOLUTE MAXIMUM RATINGS (1) (2) over operating free-air temperature range (unless otherwise noted) UNIT Supply voltage (2) AVDD, DVDD, VDDT, VDDD, VDDA_VCO, VDD_PLL, VDDA_CP, VDD_CML, VREF1/2 –0.3 to 1.5 V VDDQ, VDDR –0.3 to 2.0 V VDDO, VDDM –0.3 to 3.0 V Input Voltage, VI (LVCMOS) –0.3 to Supply + 0.3 V Input Voltage, VI (HSTL CLASS 1) –0.3 to 2.0 V Storage temperature –65°C to 150°C Electrostatic Discharge HBM: 2KV, CDM:500V Characterized free-air operating temperature range (1) (2) –40°C to 85°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. 4.2 RECOMMENDED OPERATING CONDITIONS MIN NOM MAX UNIT DVDD Core supply voltage 1.14 1.2 1.26 V AVDD Analog supply voltage 1.14 1.2 1.26 V 1.4 1.5 1.6 V VDDQ Parallel HSTL I/O supply voltage VDDO LVCMOS I/O supply voltage VDDM MDIO CMOS I/O supply voltage VREF1/2 HSTL reference voltage IDD Supply current 1.5 V Application 1.8 V Application 1.7 1.8 1.9 2.37 2.5 2.63 1.2 V Application 1.14 1.2 1.26 2.5 V Application 2.37 2.5 2.63 1.5 V Application 0.65 0.75 0.85 1.8 V Application 0.85 0.90 0.95 mA DVDD 176 mA VDDR 30 mA VDDQ (1.6 V) 3.75 Gbps 300 360 VDDA_VCO, VDD_PLL, VDD_CML, VDDA_CP power consumption DVDD (1.26V) VDDR (1.9V) VDDO (2.63V) VDDA_VCO, VDD_PLL, VDD_CML, VDDA_CP (1.26V) 70 30 mA mA W ENABLE low 25 ENABLE low, HSTL powerdown 25 ENABLE low 61 ENABLE low, HSTL powerdown 21 ENABLE low 1 ENABLE low, HSTL powerdown 1 ENABLE low VDDQ (1.9V) mA 100 See Table 4-4 AVDD, VDDD, VDDT (1.26V) (1) V 262 VDDO ISD (1) Shutdown current V AVDD, VDDD, VDDT VDDQ (1.9 V) PD V 140 ENABLE low, HSTL powerdown 10 ENABLE low 17 ENABLE low, HSTL powerdown 17 ENABLE low 1 ENABLE low, HSTL powerdown 1 mA mA mA mA mA mA Toggle RST_N before setting ENABLE low for proper shutdown. Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 REFERENCE CLOCK TIMING REQUIREMENTS (REFCLKP/N) (1) 4.3 PARAMETER CONDITION Frequency Minimum data rate Accuracy 1G PCS Mode Accuracy to TXCLK All (1) NOM MAX UNIT 60 – 375 MHz 100 ppm ppm –100 Duty Cycle Jitter MIN 0 0 0 45% 50% 55% Random and deterministic 40 ps This clock should be crystal referenced to meet the requirements of the above table. Contact TI for specific clocking recommendations. 4.4 REFERENCE CLOCK ELECTRICAL CHARACTERISTICS (REFCLKP/N) PARAMETER CONDITION Vid Differential Input Voltage CIN Input Capacitance RIN Input Differential Impedance trise Rise Time 4.5 MAX UNIT 100 2000 mVPP 3 80 20% to 80% 50 100 pF 120 Ω 600 ps SINGLE ENDED REFERENCE CLOCK ELECTRICAL CHARACTERISTICS (REFCLK) PARAMETER CONDITION MIN VIH High-Level Input Voltage 1.7 VIL Low-Level Input Voltage –0.3 IIH/IIL High/Low Input Current trise Rise Time 20% → 80% Jitter Peak to Peak Jitter Jitter Cleaner not used on REFCLK Tcyc Duty Cycle 4.6 MIN NOM NOM MAX UNIT VDDO + 0.3 V 0.7 V ±10 μA 1 ns 40 40% 50% ps 60% Period JITTER CLEANER TIMING PARAMETERS PARAMETER PLL Bandwidth CONDITION MIN NOM MAX UNIT 1 MHz –3dB Jitter Peaking 0.1 dB VCO Output Jitter (rms) 2 MHz → 30 MHz 2 ps VCO Output Jitter (rms) 1.2 MHz → 30 MHz 2.5 ps VCO Output Jitter (rms) 600 kHz → 30 MHz 4 ps VCO Output Jitter (rms) 300 kHz → 30 MHz 8 ps 4.7 LVCMOS ELECTRICAL CHARACTERISTICS PARAMETER CONDITION VOH High-level output voltage IOH = –100 μA, Driver Enabled VOL Low-level output voltage IOL = 100 μA, Driver Enabled VIH VIL IIH, IIL Receiver Only Low/High Input Current IOZ CIN MIN NOM MAX UNIT 2.1 VDDO V 0 0.2 V High-level input voltage 1.7 VDDO + 0.3 V Low-level input voltage –0.3 0.7 V ±10 μA Driver Only Driver Disabled Driver/Receiver With Pullup/Pulldown Driver Disabled With Pull Up/Down Enabled Input capacitance ±35 μA ±100 μA 5 pF Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 71 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 4.8 www.ti.com MDIO ELECTRICAL CHARACTERISTICS PARAMETER CONDITION MIN NOM MAX UNIT VIH High-level input voltage VDDM = 2.5 V 2.1 VDDM + 0.3 V VIL Low-level input voltage VDDM = 2.5 V –0.3 0.7 V VIH High-level input voltage VDDM = 1.2 V 0.84 VDDM + 0.3 V VIL Low-level input voltage VDDM = 1.2 V –0.3 0.36 V VDDM = 2.5 V (IOL = 100 μA) 0 0.2 V VDDM = 1.2 V (IOL = 100 μA) 0 0.2 V – – V VOL Low Level Output Voltage VOH High Level Output Voltage VDDM = 1.2/2.5 V (Open Drain Driver) Must be pulled up to VDDM on the customer board. IIH, IIL Low/High Input Current MDC Signal ±20 μA IZ Low/High input current MDIO – Driver disabled ±50 μA CIN Input capacitance 5 pF 4.9 HSTL SIGNALS (VDDQ = 1.5/1.8 V) PARAMETER CONDITION MIN VOH(dc) High-level output voltage VOL(dc) Low-level output voltage VOH(ac) High-level output voltage VOL(ac) Low-level output voltage VIH(dc) High-level DC input voltage DC input, logic high VIL(dc) Low-level DC input voltage DC input, logic low VIH(ac) High-level AC input voltage AC input, logic high VIL(ac) Low-level AC input voltage AC input, logic low IOH(dc) High output current –8 IOL(dc) Low output current 8 CIN Input Capacitance Tacr AC Test Condition Rise Time (20 → 80%) 1 Tacs AC Test Condition Signal Swing 1 72 – NOM VDDQ– 0.4 MAX UNIT VDDQ V 0.40 V VDDQ V 0.50 V VREF1/2 + 0.10 VDDQ + 0.3 V VDDQ– 0.5 –0.30 VREF1/2 – 0.1 V VREF1/2 + 0.20 VDDQ+ 0.3 V –0.30 VREF1/2 – 0.20 Electrical Specifications V mA mA 4 pF 1 1 ns 1 1 V Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 4.10 SERIAL TRANSMITTER/RECEIVER CHARACTERISTICS PARAMETER VOD(pp) TX Output Differential Peak-to-Peak voltage swing. De-emphasis Amount = 0%. See Figure 4-1 MIN NOM MAX SWING = 000 (See Table 2-40) CONDITION 80 125 180 SWING = 001 (See Table 2-40 210 250 330 SWING = 010 (See Table 2-40) 425 500 630 SWING = 011 (See Table 2-40 530 625 780 SWING = 100 (See Table 2-40 635 750 900 SWING = 101 (See Table 2-40 900 1000 1200 SWING = 110 (See Table 2-40 1000 1250 1500 SWING = 111 (See Table 2-40 1080 1375 1650 4.7% UNIT mVPP VDE TX Output De-Emphasis (VOD(dpp) = VDE × Percentage of nominal VOD(pp)) See Table 2-39 for details on de-emphasis settings. VCMT TX output common mode voltage See Figure 4-1. VID RX input differential voltage |RXP – RXN| See Figure 4-3. Direct Coupled Mode Only 100 600 See Figure 4-3. AC Coupled Mode Only 100 1100 RX input differential peak-to-peak voltage swing 2 × |RXP – RXN| See Figure 4-3. Direct Coupled Mode Only 200 1200 See Figure 4-3. AC Coupled Mode Only 200 2200 VCMR RX input common mode voltage range See Figure 4-3. Direct Coupled Mode Only 800 0.9 × AVDD mV ILKG RX input leakage current –10 10 μA CI RX input capacitance 2 pF tr, tf Differential output signal rise, fall time (20% to 80%) RL = 50 Ω, CL = 5 pF, See Figure 4-1 160 ps JTOL Jitter Tolerance, Total Jitter at Serial Input Zero crossing, See Figure 4-4. 0.65 UI (1) JDR Serial Input Deterministic Jitter Zero crossing, See Figure 4-4. 0.37 UI JT Serial Output Total Jitter 3.125 GHz 0.35 UI JD Serial Output Deterministic Jitter 3.125 GHz 0.17 UI R(LATENCY) Total delay from RX input to RD output 1000Base-X Mode 190 Bit Times T(LATENCY) Total delay from TD input to TX output 1000Base-X Mode 130 Bit Times R(LATENCY) Total delay from RX input to RD output NBID Mode 110 200 Bit Times T(LATENCY) Total delay from TD input to TX output NBID Mode 90 250 Bit Times R(LATENCY) Total delay from RX input to RD output TBID Mode 90 200 Bit Times T(LATENCY) Total delay from TD input to TX output TBID Mode 80 250 Bit Times VID(pp) (1) 72% AVDD – (0.25 × VOD(pp)) 80 0.20 mV mV mVPP Unit Interval = one serial bit time (min. 320 ps) Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 73 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 4.11 PARAMETER MEASUREMENT Table 4-1. Driver Template Parameters PARAMETER NEAR END VALUE FAR END VALUE UNIT X1 (See Figure 4-2) 0.175 0.275 UI X2 (See Figure 4-2) 0.390 0.400 UI A1 (See Figure 4-2) 400 100 mV A2 (See Figure 4-2) 800 800 mV VCMT 0.5 * VDE* 0.5 * VOD(pp) VOD(pp) 0.25 * VDE * VOD(pp) 0.25 * VOD(pp) bit tr, tf time Figure 4-1. Transmit Output Waveform Parameter Definitions D iffe re ntia l A m plitude (m V ) A2 A1 0 –A1 –A2 X1 X2 1-X2 1-X1 1.0 Time (UI) Figure 4-2. Transmit Template 74 Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 D iffe re ntia l A m plitude (m V ) www.ti.com +100 0 -100 0.325 0.675 Unit Interval 1.0 Figure 4-3. Receive Template JDR JR JR JTOL Note: JTOL = JR + JDR, where JTOL is the receive jitter tolerance, JDR is the received deterministic jitter, and JR is the Gaussian random edge jitter distribution at a maximum BER = 10-12. Figure 4-4. Input Jitter The TLK3132 has several different application modes, which impact parallel interface I/O timing definitions. Each of the modes is defined below, and then subsequently referred to in the detailed timing parameter definitions. RXDATA and RXCLK, and TXDATA and TXCLK in the detailed timing specification will be defined by the exact following signal definitions. Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 75 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 4-2. Parallel Interface – Valid Signal Operational Mode Definitions TIMING MODE NAME USAGE MODE TX SIGNALS USED RX SIGNALS USED TXDATA = TXD_[4:0] TXCLK = TXCLK_[0] -ORTXDATA = TXD_[12:8] TXCLK = TXCLK_[1] RXDATA = RXD_[4:0] RXCLK = RXCLK_[0] -ORRXDATA = RXD_[12:8] RXCLK = RXCLK_[1] TBI, GMII Ten Bit Interface Mode (TBI) Only SDR Timing Supported See Section 4.13: HSTL Output Switching Characteristics (SDR Timing Mode Only) and Section 4.15: HSTL (SDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In GMII Mode CH0: TX_EN = TXC_[0] CH1: TX_EN = TXC_[1] CH0: TX_ER = TXC_[4] CH1: TX_ER = TXC_[5] CH0: RX_DV = RXC_[0] CH1: TX_DV = RXC_[1] CH0: RX_ER = RXC_[4] CH1: RX_ER = RXC_[5] Note: In TBI Mode CH0: TX Data Bit 8 = TXC_[0] CH1: TX Data Bit 8 = TXC_[1] CH0: TX Data Bit 9 = TXC_[4] CH1: TX Data Bit 9 = TXC_[5] CH0: RX Data Bit 8 = RXC_[0] CH1: RX Data Bit 8 = RXC_[1] CH0: RX Data Bit 9 = RXC_[4] CH1: RX Data Bit 9 = RXC_[5] TXDATA = TXC_ [4],TXC_ [0], TXD[7:0] TXCLK = TXCLK_ [0] -ORTXDATA = TXC_ [5],TXC_ [1], TXD[15:8] TXCLK = TXCLK_ [1] RXDATA = RXC_ [4],RXC_ [0], RXD[7:0] RXCLK = RXCLK_ [0] -ORRXDATA = RXC_ [5],RXC_ [1], RXD[15:8] RXCLK = RXCLK_ [1] EBI Eight Bit Interface Mode (EBI) SDR Timing Support See Section 4.13: HSTL Output Switching Characteristics (SDR Timing Mode Only) and Section 4.15: HSTL (SDR Timing Mode Only) Input Timing Requirements for AC timing details. TXDATA = TXD_ [7:0] TXCLK = TXCLK_ [0] -ORTXDATA = TXD_ [15:8] TXCLK = TXCLK_ [1] RXDATA = RXD_ [7:0] RXCLK = RXCLK_ [0] -ORRXDATA = RXD_ [15:8] RXCLK = RXCLK_ [1] REBI Reduced Eight Bit Interface Mode (REBI) DDR Timing Support See Section 4.12: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.14: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. TXDATA = TXD_ [3:0] TXCLK = TXCLK_ [0] -ORTXDATA = TXD_ [11:8] TXCLK = TXCLK_ [1] RXDATA = RXD_ [3:0] RXCLK = RXCLK_ [0] -ORRXDATA = RXD_ [11:8] RXCLK = RXCLK_ [1] NBI Nine Bit Interface Mode (NBI) (Un-encoded Data Byte + 1 Control Bit) SDR Timing Support See Section 4.13: HSTL Output Switching Characteristics (SDR Timing Mode Only) and Section 4.15: HSTL (SDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In NBI Mode CH0: TX Control Bit = TXC_[0] CH1: TX Control Bit = TXC_[1] CH0: RX Control Bit = RXC_[0] CH1: RX Control Bit = RXC_[1] TXDATA = TXC_ [0], TXD[7:0] TXCLK = TXCLK_ [0] -ORTXDATA = TXC_ [1], TXD[15:8] TXCLK = TXCLK_ [1] RXDATA = RXC_ [0], RXD[7:0] RXCLK = RXCLK_ [0] -ORRXDATA = RXC_ [1], RXD[15:8] RXCLK = RXCLK_ [1] RNBI Reduced Nine Bit Interface Mode (RNBI) (Un-encoded Data Byte + 1 Control Bit) DDR Timing Support See Section 4.12: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.14: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In RNBI Mode CH0: TX Control Bit = TXD_[4] CH1: TX Control Bit = TXD_[12] CH0: RX Control Bit = RXD_[4] CH1: RX Control Bit = RXD_[12] TXDATA = TXD_[4:0] TXCLK = TXCLK_[0] -ORTXDATA = TXD_[12:8] TXCLK = TXCLK_[1] RXDATA = RXD_[4:0] RXCLK = RXCLK_[0] -ORRXDATA = RXD_[12:8] RXCLK = RXCLK_[1] TBID Ten Bit Interface DDR Mode (TBID) Only DDR Timing Supported See Section 4.12: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.14: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In TBID Mode CH0: TX Data Bit 8 = TXC_[0] CH1: TX Data Bit 8 = TXC_[1] CH0: TX Data Bit 9 = TXC_[4] CH1: TX Data Bit 9 = TXC_[5] CH0: RX Data Bit 8 = RXC_[0] CH1: RX Data Bit 8 = RXC_[1] CH0: TX Data Bit 9 = RXC_[4] CH1: TX Data Bit 9 = RXC_[5] TXDATA = TXC_ [4],TXC_ [0], TXD[7:0] TXCLK = TXCLK_ [0] -ORTXDATA = TXC_ [5],TXC_ [1], TXD[15:8] TXCLK = TXCLK_ [1] RXDATA = RXC_ [4],RXC_ [0], RXD[7:0] RXCLK = RXCLK_ [0] OR RXDATA = RXC_ [5],RXC_ [1], RXD[15:8] RXCLK = RXCLK_ [1] 1000Base-X Applications, Reduced Ten Bit Applications (RTBI) Only DDR Timing Supported See Section 4.12: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.14: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. RGMII, RTBI Note: In RGMII Mode CH0: TX_EN/TX_ER = TXD_[4] CH1: TX_EN/TX_ER = TXD_[12] CH0: RX_DV/RX_ER = RXD_[4] CH1: RX_EN/RX_ER = RXD_[12] 76 Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table 4-2. Parallel Interface – Valid Signal Operational Mode Definitions (continued) TIMING MODE NAME NBID USAGE MODE TX SIGNALS USED RX SIGNALS USED Nine Bit Interface DDR Mode (NBID) (Un-encoded Data Byte + 1 Control Bit) DDR Timing Support See Section 4.12: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.14: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In NBID Mode CH0: TX Control Bit = TXC_[0] CH1: TX Control Bit = TXC_[1] CH0: RX Control Bit = RXC_[0] CH1: RX Control Bit = RXC_[1] TXDATA = TXC_ [0], TXD[7:0] TXCLK = TXCLK_ [0] OR TXDATA = TXC_ [1], TXD[15:8] TXCLK = TXCLK_ [1] RXDATA = RXC_ [0], RXD[7:0] RXCLK = RXCLK_ [0] OR RXDATA = RXC_ [1], RXD[15:8] RXCLK = RXCLK_ [1] Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 77 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 4.12 HSTL Output Switching Characteristics (DDR Timing Mode Only) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT tsetup RXDATA setup prior to Source Centered, See Figure 4-5. RXCLK transition high or low Note: Cload = 10 pF, using timing reference of VDDQ/2 0.15 × tperiod ps thold RXDATA hold after RXCLK transition high or low Source Centered, See Figure 4-5. Note: Cload = 10 pF, using timing reference of VDDQ/2 0.15 × tperiod ps Tduty RXCLK Duty Cycle Source Centered and Source Aligned. Note: Cload = 10 pF, using timing reference of VDDQ/2. 45% 55% tperiod RXCLK Period Source Centered and Source Aligned 6.25 16.67 (1) (2) 160 –0.10 × tperiod 0.10 × tperiod Tfreq RXCLK Frequency Source Centered and Source Aligned Tpd RXCLK rising or falling to RXDATA valid. Source Aligned, See Figure 4-6. Note: Cload = 10 pF, using timing reference of VDDQ/2 (1) (2) 60 ns MHz ps In TBID/NBID Modes Only, the maximum allowed RXCLK period is 33.33 ns. In TBID/NBID Modes Only, the minimum allowed RXCLK frequency is 30 MHz. tPERIOD VOH(ac) VDDQ/2 RXCLK VOL(ac) tSETUP tHOLD tSETUP tHOLD VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-5. HSTL (DDR Timing Mode Only) Source Centered Output Timing Requirements VOH(ac) VDDQ/2 RXCLK VOL(ac) Tpd Tpd VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-6. HSTL (DDR Timing Mode Only) Source Aligned Output Timing Requirements 78 Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 4.13 HSTL Output Switching Characteristics (SDR Timing Mode Only) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX 40% 60% UNIT Tduty RXCLK Duty Cycle Rising and Falling Edge Aligned Data Note: Cload = 10pF, using timing reference of VDDQ/2 tperiod RXCLK Period Rising and Falling Edge Aligned Data 2.67 16.67 Tfreq RXCLK Frequency Rising and Falling Edge Aligned Data 60 375 Tpd RXCLK rising to RXDATA valid Rising Edge Aligned, See Figure 4-7 Note: Cload = 10pF, using timing reference of VDDQ/2. –0.10 × tperiod +0.10 × tperiod ps Tpd RXCLK falling to RXDATA valid Falling Edge Aligned, See Figure 4-8 Note: Cload = 10pF, using timing reference of VDDQ/2. –0.10 × tperiod +0.10 × tperiod ps ns MHz tPERIOD VOH(ac) VDDQ/2 RXCLK VOL(ac) TPD VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-7. HSTL (SDR Timing Mode Only) Rising Edge Aligned Output Timing Requirements tPERIOD VOH(ac) VDDQ/2 RXCLK VOL(ac) TPD VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-8. HSTL (SDR Timing Mode Only) Falling Edge Aligned Output Timing Requirements Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 79 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 4.14 HSTL (DDR Timing Mode Only) Input Timing Requirements over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN NOM (1) MAX UNIT tsetup TXDATA setup prior to TXCLK transition high or low Source Centered. See Figure 4-9. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all input signals. 0.075 × tperiod ps thold Source Centered. See Figure 4-9. TXDATA hold after TXCLK Note: Input timing reference of VDDQ/2, with ±1 ns/V transition high or low rise time on all input signals. 0.075 × tperiod ps tduty TXCLK Duty Cycle Source Centered Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all input signals. 40% 60% tduty TXCLK Duty Cycle Source Aligned Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all input signals. 45% 55% tperiod TXCLK Period Source Centered and Aligned. 6.25 16.67 (2) (3) 160 Tfreq TXCLK Frequency Source Centered and Aligned. Tskew TXCLK rising or falling to TXDATA valid. Source Aligned. See Figure 4-10. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. (1) (2) (3) (4) (5) 60 –0.175 × tperiod (4) +0.175 × tperiod (5) ns MHz ps All typical values are at 25°C and with a nominal supply. In TBID/NBID Modes Only, the maximum allowed TXCLK period is 33.33 ns. In TBID/NBID Modes Only, the minimum allowed TXCLK frequency is 30 MHz. In TBID/NBID Modes, when the TXCLK is in the 30 → 60 MHz range, this parameter becomes -0.10 × tperiod In TBID/NBID Modes, when the TXCLK is in the 30→ 60 MHz range, this parameter becomes +0.10 × tperiod tPERIOD VIH(ac) VDDQ/2 TXCLK VIL(ac) tSETUP tHOLD tSETUP tHOLD VIH(ac) TXDATA VDDQ/2 VIL(ac) Figure 4-9. HSTL (DDR Timing Mode Only) Source Centered Data Input Timing Requirements VOH(ac) VDDQ/2 TXCLK VOL(ac) Tskew Tskew VOH(ac) TXDATA VDDQ/2 VOL(ac) Figure 4-10. HSTL (DDR Timing Mode Only) Source Aligned Data Input Timing Requirements 80 Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 4.15 HSTL (SDR Timing Mode Only) Input Timing Requirements PARAMETER TEST CONDITIONS MIN NOM (1) MAX UNIT tsetup TXDATA setup prior to TXCLK transition high Falling Edge Aligned (Rising Edge Sampled) Data See Figure 4-11. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all input signals. 480 ps thold TXDATA hold after TXCLK Falling Edge Aligned (Rising Edge Sampled) Data See Figure 4-11. transition high Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all input signals. 480 ps tsetup TXDATA setup prior to TXCLK transition low Rising Edge Aligned (Falling Edge Sampled) Data See Figure 4-12. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all input signals. 480 ps thold TXDATA hold after TXCLK Rising Edge Aligned (Falling Edge Sampled) Data See Figure 4-12. transition low Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all input signals. 480 ps tduty TXCLK Duty Cycle Rising and Falling Edge Sampled Data Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all input signals. 40% 60% tperiod TXCLK Period Rising and Falling Edge Aligned Data 2.67 16.67 Tfreq Rising and Falling Edge Aligned Data 60 (1) TXCLK Frequency ns 375 MHz All typical values are at 25°C and with a nominal supply. t PERIOD VIH(ac) VDDQ/2 TXCLK VIL(ac) t SETUP t HOLD VIH(ac) TXDATA VDDQ/2 V IL(ac) Figure 4-11. HSTL (SDR Timing Mode Only) Falling Edge Aligned (Rising Edge Sampled) Data Input Timing Requirements tPERIOD VIH(ac) VDDQ/2 TXCLK VIL(ac) tSETUP tHOLD VIH(ac) TXDATA VDDQ/2 VIL(ac) Figure 4-12. HSTL (SDR Timing Mode Only) Rising Edge Aligned (Falling Edge Sampled) Data Input Timing Requirements Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 81 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 4.16 MDIO Timing Requirements Over Recommended Operating Conditions (Unless otherwise noted) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT tperiod MDC period See Figure 4-13. 100 ns tsetup MDIO setup to ↑ MDC See Figure 4-13. 10 ns thold MDIO hold to ↑ MDC See Figure 4-13. 10 ns Tvalid MDIO valid from MDC ↑ 0 40 ns MDC tPERIOD tSETUP tHOLD MDIO Figure 4-13. MDIO Read/Write Timing 82 Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 4.17 JTAG Timing Requirements Over Recommended Operating Conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT tperiod TCK period See Figure 4-14. 66.67 ns tsetup TDI/TMS/TRST_N setup to ↑ TCK See Figure 4-14. 3 ns thold TDI/TMS/TRST_N hold from ↑ TCK See Figure 4-14. 5 ns Tvalid TDO delay from TCK falling See Figure 4-14. 0 5 ns TCK tPERIOD tSETUP tHOLD TDI/TMS/ TRST_N tVALID TDO Figure 4-14. JTAG Timing VDDQ 150/200/ 300/Open (W) 50 W 50 W transmission line + 150/200/ 300/Open (W) VDDQ GND - RW RW GND OUTPUT PCB VREF INPUT Figure 4-15. HSTL I/O Schematic Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 83 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 4-3. TLK3132 Application Mode –vs– Interface Timing Mode Support (1) Application Mode RGMII GMII TBI RTBI NBI RNBI EBI REBI TBID NBID Gigabit Ethernet (1000Base-X) 1.25 Gbps Y Y N N N N N N N N CPRI x1 0.6144 Gbps N N Y Y Y Y N N Y Y CPRI x2 1.2288 Gbps N N Y Y Y Y N N Y Y CPRI x4 2.4576 Gbps N N Y N Y N N N Y Y OBSAI x1 0.768 Gbps N N Y Y Y Y N N Y Y OBSAI x2 1.536 Gbps N N Y Y Y Y N N Y Y OBSAI x4 3.072 Gbps N N Y N Y N N N Y Y Fibre Channel 1X 1.0625 Gbps N N Y Y Y Y N N Y Y Fibre Channel 2X 2.125 Gbps N N Y N Y N N N Y Y 8 Bit SERDES Mode 0.600 → 1.28 Gbps N N N N N N Y Y N N 8 Bit SERDES Mode 1.28 → 3.0 Gbps N N N N N N Y N N N 10 Bit SERDES Mode 0.600 → 1.6 Gbps N N Y Y N N N N Y N 10 Bit SERDES Mode 1.6 → 3.2 Gbps N N Y N N N N N Y N 10 Bit SERDES Mode 3.2 → 3.75 Gbps N N Y N N N N N N N 9 Bit SERDES Mode 0.600 → 1.6 Gbps N N N N Y Y N N N Y 9 Bit SERDES Mode 1.6 → 3.2 Gbps N N N N Y N N N N Y 9 Bit SERDES Mode 3.2 → 3.75 Gbps N N N N Y N N N N N (1) 84 Latency Measurement only operates in TBI, TBID, and RTBI Modes Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Figure 4-16. PACKAGE Information (Package Designator = ZEN) 4.18 Package Dissipation Rating PARAMETER CONDITION MIN NOM MAX UNIT θJA Junction to free air thermal resistance Airflow = 0 M/S 22.9 °C/W θJA Junction to free air thermal resistance Airflow = 1 M/S 20.4 °C/W Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 85 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table 4-4. Worst Case Device Power Dissipation Device Total Worst Case Power (All Channels Active, All Supplies +5%, T=85C) Serial Bit Rate = 3.75 Gbps VDDQ Voltage 1.6V JC PLL Enabled 1.9V N Y N Y HSTL Input Termination None Max. None Max. None Max. None Max. Total Power (mW) 983 1153 1027 1194 1129 1371 1177 1414 Serial Bit Rate = 3.125 Gbps VDDQ Voltage 1.6V JC PLL Enabled 1.9V N Y N Y HSTL Input Termination None Max. None Max. None Max. None Max. Total Power (mW) 909 1074 949 1113 1051 1285 1092 1330 Serial Bit Rate =1.25 Gbps (Gigabit Ethernet) VDDQ Voltage 1.6V JC PLL Enabled 86 1.9V N Y N Y HSTL Input Termination None Max. None Max. None Max. None Max. Total Power (mW) 686 940 737 986 769 1126 821 1179 Electrical Specifications Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 TLK3132 www.ti.com A SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 APPENDIX A – Frequency Ranges Supported The following tables show the details of REFCLK input frequency versus Jitter Cleaner PLL multiplier value for each application TLK3132 supports. If the desired serial bit rate is between 2.0 Gbps and 3.75 Gbps, full rate should be selected for the RATE[1:0] bits for that channel. If the desired serial bit rate is between 1.0 Gbps and 2.125 Gbps, half rate should be selected for the RATE[1:0] bits for that channel. If the desired serial bit rate is between 600 Mbps and 1.0625 Gbps, quarter rate should be selected for the RATE[1:0] bits for that channel. If the desired serial bit rate falls in the overlap between the full and half rate ranges defined above, then either setting is appropriate. If the desired serial bit rate falls in the overlap between the half and quarter rate ranges defined above, then either setting is appropriate. In general, there are many different settings that will yield the same serial bit rate. It should be noted that selecting the setting with the highest SERDES REFCLK and the lowest SERDES PLL Multiplier will give the best serial performance. Table A-1. Reference Clock Selection – Gigabit Ethernet Mode Gigabit Ethernet Mode - Legal Clocking Mode Settings TLK3132 REFCLK Input (MHz) Jitter Cleaner Multiplier SERDES REFCLK Input (MHz) SERDES PLL Multiplier Full (00) Half (01) Qrtr (10) 62.50000 OFF 62.50000 20 2500.000 1250.000 625.000 62.50000 0.25 15.62500 62.50000 0.5 31.25000 62.50000 1 62.50000 20 2500.000 1250.000 625.000 62.50000 2 125.00000 10 2500.000 1250.000 625.000 125.00000 OFF 125.00000 10 2500.000 1250.000 625.000 125.00000 0.25 31.25000 125.00000 0.5 62.50000 20 2500.000 1250.000 625.000 125.00000 1 125.00000 10 2500.000 1250.000 625.000 125.00000 2 250.00000 5 2500.000 1250.000 625.000 250.00000 OFF 250.00000 5 2500.000 1250.000 625.000 250.00000 0.25 62.50000 20 2500.000 1250.000 625.000 250.00000 0.5 125.00000 10 2500.000 1250.000 625.000 250.00000 1 250.00000 5 2500.000 1250.000 625.000 250.00000 2 500.00000 Copyright © 2008–2009, Texas Instruments Incorporated Serial Data Rate = f(SPEED[1:0]) (Mbps) APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 87 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table A-2. Reference Clock Selection – 1X/2X Fibre Channel Mode Fibre Channel Mode - Legal Clocking Mode Settings TLK3132 REFCLK Input (MHz) Jitter Cleaner Multiplier SERDES REFCLK Input (MHz) SERDES PLL Multiplier Serial Data Rate = f(SPEED[1:0]) (Mbps) Full (00) Half (01) 53.12500 OFF 53.12500 20 2125.000 1062.500 53.12500 0.25 13.28125 53.12500 0.5 26.56250 53.12500 1 53.12500 20 2125.000 1062.500 53.12500 2 106.25000 10 2125.000 1062.500 106.25000 OFF 106.25000 10 2125.000 1062.500 106.25000 0.25 26.56250 106.25000 0.5 53.12500 20 2125.000 1062.500 106.25000 1 106.25000 10 2125.000 1062.500 106.25000 2 212.50000 5 2125.000 1062.500 212.50000 OFF 212.50000 5 2125.000 1062.500 212.50000 0.25 53.12500 20 2125.000 1062.500 212.50000 0.5 106.25000 10 2125.000 1062.500 212.50000 1 212.50000 5 2125.000 1062.500 Qrtr. (10) Table A-3. Reference Clock Selection – OBSAI Mode Gigabit Ethernet Mode - Legal Clocking Mode Settings TLK3132 REFCLK Input (MHz) Jitter Cleaner Multiplier SERDES REFCLK Input (MHz) SERDES PLL Multiplier Full (00) Half (01) Qrtr. (10) 76.80000 OFF 76.80000 20 3072.000 1536.000 768.000 76.80000 0.25 19.20000 76.80000 0.5 38.40000 76.80000 1 76.80000 20 3072.000 1536.000 768.000 88 Serial Data Rate = f(SPEED[1:0]) (Mbps) 76.80000 2 153.60000 10 3072.000 1536.000 768.000 153.60000 OFF 153.60000 10 3072.000 1536.000 768.000 153.60000 0.25 38.40000 153.60000 0.5 76.80000 20 3072.000 1536.000 768.000 153.60000 1 153.60000 10 3072.000 1536.000 768.000 153.60000 2 307.20000 5 3072.000 1536.000 768.000 307.20000 OFF 307.20000 5 3072.000 1536.000 768.000 307.20000 0.25 76.80000 20 3072.000 1536.000 768.000 307.20000 0.5 153.60000 10 3072.000 1536.000 768.000 307.20000 1 307.20000 5 3072.000 1536.000 768.000 307.20000 2 614.40000 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table A-4. Reference Clock Selection – CPRI Mode Legal Clocking Mode – CPRI Mode Settings TLK3132 REFCLK Input (MHz) Jitter Cleaner Multiplier SERDES REFCLK Input (MHz) SERDES PLL Multiplier Serial Data Rate = f(SPEED[1:0]) (Mbps) Full (00) Half (01) Qrtr. (10) 61.44000 OFF 61.44000 20 2457.600 1228.800 614.400 61.44000 0.25 15.36000 61.44000 0.5 30.72000 61.44000 1 61.44000 20 2457.600 1228.800 614.400 61.44000 2 122.88000 10 2457.600 1228.800 614.400 122.88000 OFF 122.88000 10 2457.600 1228.800 614.400 122.88000 0.25 30.72000 122.88000 0.5 61.44000 20 2457.600 1228.800 614.400 122.88000 1 122.88000 10 2457.600 1228.800 614.400 122.88000 2 245.76000 5 2457.600 1228.800 614.400 245.76000 OFF 245.76000 5 2457.600 1228.800 614.400 245.76000 0.25 61.44000 20 2457.600 1228.800 614.400 245.76000 0.5 122.88000 10 2457.600 1228.800 614.400 245.76000 1 245.76000 5 2457.600 1228.800 614.400 Table A-5. Reference Clock Selection – 9/10 Bit SERDES Mode – Full Rate (SPEED[1:0] = 00) Nine/Ten Bit SERDES Mode – Clock Range Support (RATE[1:0]=00) (Full) REFCLK SERDES REFCLK Minimum (MHz) Maximum (MHz) 200.0000 375.0000 100.0000 50.0000 Jitter Cleaner Multiplier Minimum (MHz) Maximum (MHz) OFF 200.0000 375.0000 187.5000 OFF 100.0000 93.7500 OFF 50.0000 Maximum 5 2000.00 3750.00 187.5000 10 2000.00 3750.00 93.7500 20 2000.00 3750.00 2000.00 3750.00 5 0.25 375.0000 0.25 FULL Minimum 0.25 200.0000 Serial Data Rate (Mbps) SERDES PLL Multiplier 10 50.0000 93.7500 0.5 20 5 200.0000 375.0000 0.5 100.0000 187.5000 10 2000.00 3750.00 100.0000 187.5000 0.5 50.0000 93.7500 20 2000.00 3750.00 1 5 100.0000 187.5000 1 100.0000 187.5000 10 2000.00 3750.00 50.0000 93.7500 1 50.0000 93.7500 20 2000.00 3750.00 2000.00 3750.00 2 50.0000 93.7500 2 2 Copyright © 2008–2009, Texas Instruments Incorporated 5 100.0000 187.5000 10 20 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 89 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Table A-6. Reference Clock Selection – 9/10 Bit SERDES Mode – Half Rate (SPEED[1:0] = 01) Nine/Ten Bit SERDES Mode – Clock Range Support (RATE[1:0]=01) (Half) REFCLK SERDES REFCLK Minimum (MHz) Maximum (MHz) 200.0000 375.0000 100.0000 212.5000 50.0000 106.2500 200.0000 375.0000 200.0000 375.0000 100.0000 212.5000 Jitter Cleaner Multiplier Serial Data Rate (Mbps) SERDES PLL Multiplier Minimum (MHz) Maximum (MHz) OFF 200.0000 375.0000 OFF 100.0000 212.5000 OFF 50.0000 106.2500 20 Maximum 5 1000.00 1875.00 10 1000.00 2125.00 1000.00 2125.00 1000.00 1875.00 0.25 5 0.25 10 0.25 Half Minimum 50.0000 93.7500 20 0.5 100.0000 187.5000 10 1000.00 1875.00 0.5 50.0000 106.2500 20 1000.00 2125.00 0.5 5 1 5 100.0000 200.0000 1 100.0000 200.0000 10 1000.00 2000.00 50.0000 106.2500 1 50.0000 106.2500 20 1000.00 2125.00 1000.00 2000.00 2 50.0000 100.0000 2 5 100.0000 200.0000 2 10 20 Table A-7. Reference Clock Selection – 9/10 Bit SERDES Mode – Quarter Rate (SPEED[1:0] = 10) Nine/Ten Bit SERDES Mode – Clock Range Support (RATE[1:0]=10) (Quarter) REFCLK Minimum (MHz) Maximum (MHz) 240.0000 375.0000 120.0000 60.0000 SERDES REFCLK Jitter Cleaner Multiplier Maximum (MHz) OFF 240.0000 375.0000 5 600.00 937.50 212.5000 OFF 120.0000 212.5000 10 600.00 1062.50 106.2500 OFF 60.0000 106.2500 20 600.00 1062.50 600.00 937.50 375.0000 240.0000 375.0000 120.0000 212.5000 120.0000 200.0000 60.0000 106.2500 5 0.25 10 0.25 Maximum 60.0000 93.7500 20 0.5 120.0000 187.5000 10 600.00 937.50 0.5 60.0000 106.2500 20 600.00 1062.50 1 120.0000 200.0000 10 600.00 1000.00 1 60.0000 106.2500 20 600.00 1062.50 600.00 1000.00 5 1 5 2 100.0000 Minimum 0.25 0.5 2 5 120.0000 200.0000 2 90 Quarter Minimum (MHz) 240.0000 60.0000 Serial Data Rate (Mbps) SERDES PLL Multiplier APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 10 20 Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 Table A-8. Reference Clock Selection – 8 Bit SERDES Mode – Full Rate (SPEED[1:0] = 00) Eight Bit SERDES Mode – Clock Range Support (RATE[1:0]=00) (Full) REFCLK SERDES REFCLK Minimum (MHz) Maximum (MHz) 250.0000 375.0000 125.0000 187.5000 Jitter Cleaner Multiplier Minimum (MHz) Maximum (MHz) OFF 250.0000 375.0000 OFF 125.0000 187.5000 375.0000 125.0000 187.5000 2000.00 3000.00 8 2000.00 3000.00 2000.00 3000.00 2000.00 3000.00 2000.00 3000.00 8 1 4 125.0000 187.5000 125.0000 187.5000 2 8 4 2 93.7500 4 0.25 1 62.5000 Maximum 4 0.5 FULL Minimum 0.25 0.5 250.0000 Serial Data Rate (Mbps) SERDES PLL Multiplier 8 4 125.0000 187.5000 8 Table A-9. Reference Clock Selection – 8 Bit SERDES Mode – Half Rate (SPEED[1:0] = 01) Eight Bit SERDES Mode – Clock Range Support (RATE[1:0]=01) (Half) REFCLK SERDES REFCLK Minimum (MHz) Maximum (MHz) 250.0000 375.0000 125.0000 265.6250 Jitter Cleaner Multiplier Minimum (MHz) Maximum (MHz) OFF 250.0000 375.0000 OFF 125.0000 265.6250 375.0000 200.0000 62.5000 100.0000 1000.00 1500.00 8 1000.00 2125.00 1000.00 1500.00 1000.00 1600.00 1000.00 1600.00 0.25 8 4 125.0000 187.5000 1 125.0000 Maximum 4 4 0.5 1 8 4 125.0000 200.0000 125.0000 200.0000 2 2 Half Minimum 0.25 0.5 250.0000 Serial Data Rate (Mbps) SERDES PLL Multiplier 8 4 8 Table A-10. Reference Clock Selection – 8 Bit SERDES Mode – Quarter Rate (SPEED[1:0] = 10) Eight Bit SERDES Mode – Clock Range Support (RATE[1:0]=10) (Quarter) REFCLK Minimum (MHz) Maximum (MHz) 300.0000 375.0000 150.0000 265.6250 SERDES REFCLK Jitter Cleaner Multiplier 375.0000 150.0000 200.0000 Maximum (MHz) OFF 300.0000 375.0000 4 600.00 750.00 OFF 150.0000 265.6250 8 600.00 1062.50 600.00 750.00 600.00 800.00 600.00 800.00 4 0.25 8 0.5 1 2 Copyright © 2008–2009, Texas Instruments Incorporated Maximum 4 150.0000 187.5000 150.0000 200.0000 8 4 2 100.0000 Minimum 0.25 1 75.0000 Quarter Minimum (MHz) 0.5 300.0000 Serial Data Rate (Mbps) SERDES PLL Multiplier 8 4 150.0000 200.0000 8 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 91 Jitter Cleaner PLL Multiplier Ratio REFCLK REF_DIV[6:0] FB_DIV[6:0] 2X 1X 0.5X 0.25X (Mhz) 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] PLL_MULT[3:0] RXTX_DIV[6:0] PLL_MULT[3:0] RXTX_DIV[6:0] PLL_MULT[3:0] RXTX_DIV[6:0] (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 See Note 1 Below 4/5.37125:6:0 See Note 1 Below 4/5.37125:6:0 See Note 1 Below 4/5.37125:6:0 62.5 1 48 10 24 20 48 96 192 Gigabit Ethernet 125 1 24 5 12 10 24 20 48 96 250 4 48 6 5 12 10 24 20 48 61.44 1 48 10 24 20 48 96 192 CPRI (1x/2x/4x) 122.88 1 24 5 12 10 24 20 48 96 245.76 4 48 6 5 12 10 24 20 48 76.8 1 40 10 20 20 40 80 160 OBSAI (1x/2x/4x) 153.6 1 20 5 10 10 20 20 40 20 80 307.2 4 40 5 5 10 10 20 20 40 78.125 1 40 10 20 20 40 80 160 XAUI (10 GbE) 156.25 1 20 5 10 10 20 20 40 80 312.5 4 40 5 5 10 10 20 20 40 79.6875 1 38 10 19 20 38 76 152 10GFC 159.375 1 19 9.5 10 19 20 38 76 318.75 4 38 4.75 9.5 10 19 20 38 53.125 1 56 10 28 20 56 FC (1x/2x) 106.25 1 28 5 14 10 28 20 56 112 212.5 4 56 7 5 14 10 28 20 56 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. Application Mode 92 If 1x --> 2'b01 (Half) If 2x --> 2'b00 (Full) 2'b00 (Full) 2'b00 (Full) If 1x --> 2'b10 (1/4) If 2x --> 2'b01 (Half) If 4x --> 2'b00 (Full) If 1x --> 2'b10 (1/4) If 2x --> 2'b01 (Half) If 4x --> 2'b00 (Full) 2'b01 (Half) SERDES RATE[1:0] See Note 2 Below TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Figure A-1. Standard Based Jitter Cleaner/SERDES Provisioning APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 9/10 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (2x) Mode SERDES REF_DIV[6:0] FB_DIV[6:0] 2'b00 (Full) 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max 50.0000 52.0833 1 60 10 30 2000.000 2083.333 50.4310 53.8793 1 58 10 29 2017.241 2155.172 52.2321 55.8036 1 56 10 28 2089.286 2232.143 54.1667 57.8704 1 54 10 27 2166.667 2314.815 56.2500 60.0962 1 52 10 26 2250.000 2403.846 58.5000 62.5000 1 50 10 25 2340.000 2500.000 60.9375 65.1042 1 48 10 24 2437.500 2604.167 63.5870 67.9348 1 46 10 23 2543.478 2717.391 66.4773 71.0227 1 44 10 22 2659.091 2840.909 69.6429 74.4048 1 42 10 21 2785.714 2976.190 73.1250 78.1250 1 40 10 20 2925.000 3125.000 76.9737 82.2368 1 38 10 19 3078.947 3289.474 81.2500 86.8056 1 36 10 18 3250.000 3472.222 86.0294 91.9118 1 34 10 17 3441.176 3676.471 91.4063 97.6563 1 32 10 16 3656.250 3750.000 97.5000 100.0000 1 30 10 15 3900.000 4000.000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) RATE [1:0] (See Note 2 Below) 2'b01 (Half) Min 1000.000 1008.621 1044.643 1083.333 1125.000 1170.000 1218.750 1271.739 1329.545 1392.857 1462.500 1539.474 1625.000 1720.588 1828.125 1950.000 Max 1041.667 1077.586 1116.071 1157.407 1201.923 1250.000 1302.083 1358.696 1420.455 1488.095 1562.500 1644.737 1736.111 1838.235 1953.125 2000.000 2'b10 (Quarter) Min 500.000 504.310 522.321 541.667 562.500 600.000 609.375 635.870 664.773 696.429 731.250 769.737 812.500 860.294 914.063 975.000 Max 520.833 538.793 558.036 578.704 600.962 625.000 651.042 679.348 710.227 744.048 781.250 822.368 868.056 919.118 976.563 1000.000 Note that REFCLK is limited to 93.75 MHz when in full rate mode to achieve 3750 Mbps serial data rate. Figure A-2. 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (2x) Provisioning Copyright © 2008–2009, Texas Instruments Incorporated APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 93 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 9/10 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (1x) Mode SERDES REF_DIV[6:0] FB_DIV[6:0] RATE[1:0] =2'b00 Full 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max 50.0000 53.8793 1 58 20 58 2000.000 2155.172 51.3158 54.8246 1 57 20 57 2052.632 2192.982 52.2321 55.8036 1 56 20 56 2089.286 2232.143 53.1818 56.8182 1 55 20 55 2127.273 2272.727 54.1667 57.8704 1 54 20 54 2166.667 2314.815 55.1887 58.9623 1 53 20 53 2207.547 2358.491 56.2500 60.0962 1 52 20 52 2250.000 2403.846 57.3529 61.2745 1 51 20 51 2294.118 2450.980 58.5000 62.5000 1 50 20 50 2340.000 2500.000 59.6939 63.7755 1 49 20 49 2387.755 2551.020 60.9375 65.1042 1 48 20 48 2437.500 2604.167 62.2340 66.4894 1 47 20 47 2489.362 2659.574 63.5870 67.9348 1 46 20 46 2543.478 2717.391 65.0000 69.4444 1 45 20 45 2600.000 2777.778 66.4773 71.0227 1 44 20 44 2659.091 2840.909 68.0233 72.6744 1 43 20 43 2720.930 2906.977 69.6429 74.4048 1 42 20 42 2785.714 2976.190 71.3415 76.2195 1 41 20 41 2853.659 3048.780 73.1250 78.1250 1 40 20 40 2925.000 3125.000 75.0000 80.1282 1 39 20 39 3000.000 3205.128 76.9737 82.2368 1 38 20 38 3078.947 3289.474 79.0541 84.4595 1 37 20 37 3162.162 3378.378 81.2500 86.8056 1 36 20 36 3250.000 3472.222 83.5714 89.2857 1 35 20 35 3342.857 3571.429 86.0294 91.9118 1 34 20 34 3441.176 3676.471 88.6364 94.6970 1 33 20 33 3545.455 3750.000 91.4063 97.6563 1 32 20 32 3656.250 3750.000 94.3548 100.8065 1 31 20 31 3774.194 4032.258 97.5000 104.1667 1 30 20 30 3900.000 4166.667 100.8621 106.2500 1 29 20 29 4034.483 4250.000 104.4643 106.2500 1 28 20 28 4178.571 4250.000 100.0000 104.1667 1 30 10 30 2000.000 2083.333 100.0000 107.7586 1 29 10 29 2000.000 2155.172 104.4643 111.6071 1 28 10 28 2089.286 2232.143 108.3333 115.7407 1 27 10 27 2166.667 2314.815 112.5000 120.1923 1 26 10 26 2250.000 2403.846 117.0000 125.0000 1 25 10 25 2340.000 2500.000 121.8750 130.2083 1 24 10 24 2437.500 2604.167 127.1739 135.8696 1 23 10 23 2543.478 2717.391 132.9545 142.0455 1 22 10 22 2659.091 2840.909 139.2857 148.8095 1 21 10 21 2785.714 2976.190 146.2500 156.2500 1 20 10 20 2925.000 3125.000 153.9474 164.4737 1 19 10 19 3078.947 3289.474 162.5000 173.6111 1 18 10 18 3250.000 3472.222 172.0588 183.8235 1 17 10 17 3441.176 3676.471 182.8125 195.3125 1 16 10 16 3656.250 3750.000 195.0000 200.0000 1 15 10 15 3900.000 4000.000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) RATE [1:0] (See Note 2 Below) RATE[1:0] =2'b01 Half RATE[1:0] =2'b10 Qrtr. Min 1000.000 1026.316 1044.643 1063.636 1083.333 1103.774 1125.000 1147.059 1170.000 1193.878 1218.750 1244.681 1271.739 1300.000 1329.545 1360.465 1392.857 1426.829 1462.500 1500.000 1539.474 1581.081 1625.000 1671.429 1720.588 1772.727 1828.125 1887.097 1950.000 2017.241 2089.286 1000.000 1000.000 1044.643 1083.333 1125.000 1170.000 1218.750 1271.739 1329.545 1392.857 1462.500 1539.474 1625.000 1720.588 1828.125 1950.000 Max 1077.586 1096.491 1116.071 1136.364 1157.407 1179.245 1201.923 1225.490 1250.000 1275.510 1302.083 1329.787 1358.696 1388.889 1420.455 1453.488 1488.095 1524.390 1562.500 1602.564 1644.737 1689.189 1736.111 1785.714 1838.235 1893.939 1953.125 2016.129 2083.333 2125.000 2125.000 1041.667 1077.586 1116.071 1157.407 1201.923 1250.000 1302.083 1358.696 1420.455 1488.095 1562.500 1644.737 1736.111 1838.235 1953.125 2000.000 Min 500.000 513.158 522.321 531.818 541.667 551.887 562.500 600.000 600.000 600.000 609.375 622.340 635.870 650.000 664.773 680.233 696.429 713.415 731.250 750.000 769.737 790.541 812.500 835.714 860.294 886.364 914.063 943.548 975.000 1008.621 1044.643 500.000 500.000 522.321 541.667 562.500 600.000 600.000 635.870 664.773 696.429 731.250 769.737 812.500 860.294 914.063 975.000 Max 538.793 548.246 558.036 568.182 578.704 589.623 600.962 612.745 625.000 637.755 651.042 664.894 679.348 694.444 710.227 726.744 744.048 762.195 781.250 801.282 822.368 844.595 868.056 892.857 919.118 946.970 976.563 1008.065 1041.667 1062.500 1062.500 520.833 538.793 558.036 578.704 600.962 625.000 651.042 679.348 710.227 744.048 781.250 822.368 868.056 919.118 976.563 1000.000 Note that REFCLK is limited to 187.5 MHz when in full rate mode to achieve 3750 Mbps serial data rate. Figure A-3. 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (1x) Provisioning 94 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 9/10 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (0.5X) Mode SERDES RATE[1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] RATE[1:0] =2'b00 Full RATE[1:0] =2'b01 Half RATE[1:0] =2'b10 Qrtr. 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 100.0000 105.9322 4 118 20 59 2000.000 2118.644 1000.000 1059.322 500.000 529.661 100.8621 107.7586 4 116 20 58 2017.241 2155.172 1008.621 1077.586 504.310 538.793 102.6316 109.6491 4 114 20 57 2052.632 2192.982 1026.316 1096.491 513.158 548.246 104.4643 111.6071 4 112 20 56 2089.286 2232.143 1044.643 1116.071 522.321 558.036 106.3636 113.6364 4 110 20 55 2127.273 2272.727 1063.636 1136.364 531.818 568.182 108.3333 115.7407 4 108 20 54 2166.667 2314.815 1083.333 1157.407 541.667 578.704 110.3774 117.9245 4 106 20 53 2207.547 2358.491 1103.774 1179.245 551.887 589.623 112.5000 120.1923 4 104 20 52 2250.000 2403.846 1125.000 1201.923 562.500 600.962 114.7059 122.5490 4 102 20 51 2294.118 2450.980 1147.059 1225.490 600.000 612.745 117.0000 125.0000 4 100 20 50 2340.000 2500.000 1170.000 1250.000 600.000 625.000 119.3878 127.5510 4 98 20 49 2387.755 2551.020 1193.878 1275.510 600.000 637.755 121.8750 130.2083 4 96 20 48 2437.500 2604.167 1218.750 1302.083 609.375 651.042 124.4681 132.9787 4 94 20 47 2489.362 2659.574 1244.681 1329.787 622.340 664.894 127.1739 135.8696 4 92 20 46 2543.478 2717.391 1271.739 1358.696 635.870 679.348 130.0000 138.8889 4 90 20 45 2600.000 2777.778 1300.000 1388.889 650.000 694.444 132.9545 142.0455 4 88 20 44 2659.091 2840.909 1329.545 1420.455 664.773 710.227 136.0465 145.3488 4 86 20 43 2720.930 2906.977 1360.465 1453.488 680.233 726.744 139.2857 148.8095 4 84 20 42 2785.714 2976.190 1392.857 1488.095 696.429 744.048 142.6829 152.4390 4 82 20 41 2853.659 3048.780 1426.829 1524.390 713.415 762.195 146.2500 156.2500 4 80 20 40 2925.000 3125.000 1462.500 1562.500 731.250 781.250 150.0000 160.2564 4 78 20 39 3000.000 3205.128 1500.000 1602.564 750.000 801.282 153.9474 164.4737 4 76 20 38 3078.947 3289.474 1539.474 1644.737 769.737 822.368 158.1081 168.9189 4 74 20 37 3162.162 3378.378 1581.081 1689.189 790.541 844.595 162.5000 173.6111 4 72 20 36 3250.000 3472.222 1625.000 1736.111 812.500 868.056 167.1429 178.5714 4 70 20 35 3342.857 3571.429 1671.429 1785.714 835.714 892.857 172.0588 183.8235 4 68 20 34 3441.176 3676.471 1720.588 1838.235 860.294 919.118 177.2727 189.3939 4 66 20 33 3545.455 3750.000 1772.727 1893.939 886.364 946.970 182.8125 195.3125 4 64 20 32 3656.250 3750.000 1828.125 1953.125 914.063 976.563 188.7097 201.6129 4 62 20 31 3774.194 4032.258 1887.097 2016.129 943.548 1008.065 195.0000 208.3333 4 60 20 30 3900.000 4166.667 1950.000 2083.333 975.000 1041.667 201.7241 212.5000 4 58 20 29 4034.483 4250.000 2017.241 2125.000 1008.621 1062.500 208.9286 212.5000 4 56 20 28 4178.571 4250.000 2089.286 2125.000 1044.643 1062.500 200.0000 208.3333 4 60 10 30 2000.000 2083.333 1000.000 1041.667 500.000 520.833 201.7241 215.5172 4 58 10 29 2017.241 2155.172 1008.621 1077.586 504.310 538.793 208.9286 223.2143 4 56 10 28 2089.286 2232.143 1044.643 1116.071 522.321 558.036 216.6667 231.4815 4 54 10 27 2166.667 2314.815 1083.333 1157.407 541.667 578.704 225.0000 240.3846 4 52 10 26 2250.000 2403.846 1125.000 1201.923 562.500 600.962 234.0000 250.0000 4 50 10 25 2340.000 2500.000 1170.000 1250.000 600.000 625.000 243.7500 260.4167 4 48 10 24 2437.500 2604.167 1218.750 1302.083 609.375 651.042 254.3478 271.7391 4 46 10 23 2543.478 2717.391 1271.739 1358.696 635.870 679.348 265.9091 284.0909 4 44 10 22 2659.091 2840.909 1329.545 1420.455 664.773 710.227 278.5714 297.6190 4 42 10 21 2785.714 2976.190 1392.857 1488.095 696.429 744.048 292.5000 312.5000 4 40 10 20 2925.000 3125.000 1462.500 1562.500 731.250 781.250 307.8947 328.9474 4 38 10 19 3078.947 3289.474 1539.474 1644.737 769.737 822.368 325.0000 347.2222 4 36 10 18 3250.000 3472.222 1625.000 1736.111 812.500 868.056 344.1176 367.6471 4 34 10 17 3441.176 3676.471 1720.588 1838.235 860.294 919.118 365.6250 375.0000 4 32 10 16 3656.250 3750.000 1828.125 1875.000 914.063 937.500 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) Figure A-4. 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (0.5x) Provisioning Copyright © 2008–2009, Texas Instruments Incorporated APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 95 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com 9/10 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (0.25X) Mode SERDES RATE[1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] RATE[1:0] =2'b00 Full RATE[1:0] =2'b01 HalfRATE[1:0] =2'b10 Qrtr. 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 200.0000 211.8644 4 59 20 59 2000.000 2118.644 1000.000 1059.322 500.000 529.661 201.7241 215.5172 4 58 20 58 2017.241 2155.172 1008.621 1077.586 504.310 538.793 205.2632 219.2982 4 57 20 57 2052.632 2192.982 1026.316 1096.491 513.158 548.246 208.9286 223.2143 4 56 20 56 2089.286 2232.143 1044.643 1116.071 522.321 558.036 212.7273 227.2727 4 55 20 55 2127.273 2272.727 1063.636 1136.364 531.818 568.182 216.6667 231.4815 4 54 20 54 2166.667 2314.815 1083.333 1157.407 541.667 578.704 220.7547 235.8491 4 53 20 53 2207.547 2358.491 1103.774 1179.245 551.887 589.623 225.0000 240.3846 4 52 20 52 2250.000 2403.846 1125.000 1201.923 562.500 600.962 229.4118 245.0980 4 51 20 51 2294.118 2450.980 1147.059 1225.490 573.529 612.745 234.0000 250.0000 4 50 20 50 2340.000 2500.000 1170.000 1250.000 585.000 625.000 238.7755 255.1020 4 49 20 49 2387.755 2551.020 1193.878 1275.510 600.000 637.755 243.7500 260.4167 4 48 20 48 2437.500 2604.167 1218.750 1302.083 609.375 651.042 248.9362 265.9574 4 47 20 47 2489.362 2659.574 1244.681 1329.787 622.340 664.894 254.3478 271.7391 4 46 20 46 2543.478 2717.391 1271.739 1358.696 635.870 679.348 260.0000 277.7778 4 45 20 45 2600.000 2777.778 1300.000 1388.889 650.000 694.444 265.9091 284.0909 4 44 20 44 2659.091 2840.909 1329.545 1420.455 664.773 710.227 272.0930 290.6977 4 43 20 43 2720.930 2906.977 1360.465 1453.488 680.233 726.744 278.5714 297.6190 4 42 20 42 2785.714 2976.190 1392.857 1488.095 696.429 744.048 285.3659 304.8780 4 41 20 41 2853.659 3048.780 1426.829 1524.390 713.415 762.195 292.5000 312.5000 4 40 20 40 2925.000 3125.000 1462.500 1562.500 731.250 781.250 300.0000 320.5128 4 39 20 39 3000.000 3205.128 1500.000 1602.564 750.000 801.282 307.8947 328.9474 4 38 20 38 3078.947 3289.474 1539.474 1644.737 769.737 822.368 316.2162 337.8378 4 37 20 37 3162.162 3378.378 1581.081 1689.189 790.541 844.595 325.0000 347.2222 4 36 20 36 3250.000 3472.222 1625.000 1736.111 812.500 868.056 334.2857 357.1429 4 35 20 35 3342.857 3571.429 1671.429 1785.714 835.714 892.857 344.1176 367.6471 4 34 20 34 3441.176 3676.471 1720.588 1838.235 860.294 919.118 354.5455 375.0000 4 33 20 33 3545.455 3750.000 1772.727 1875.000 886.364 937.500 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) Figure A-5. 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (0.25x) Provisioning 8 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (2x) Mode SERDES RATE [1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] 2'b00 (Full) 2'b01 (Half) 2'b10 (Quarter) 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 62.5000 65.1042 1 48 8 24 2000.000 2083.333 1000.000 1041.667 500.000 520.833 63.5870 67.9348 1 46 8 23 2034.783 2173.913 1017.391 1086.957 508.696 543.478 66.4773 71.0227 1 44 8 22 2127.273 2272.727 1063.636 1136.364 531.818 568.182 69.6429 74.4048 1 42 8 21 2228.571 2380.952 1114.286 1190.476 557.143 595.238 73.1250 78.1250 1 40 8 20 2340.000 2500.000 1170.000 1250.000 600.000 625.000 76.9737 82.2368 1 38 8 19 2463.158 2631.579 1231.579 1315.789 615.789 657.895 81.2500 86.8056 1 36 8 18 2600.000 2777.778 1300.000 1388.889 650.000 694.444 86.0294 91.9118 1 34 8 17 2752.941 2941.176 1376.471 1470.588 688.235 735.294 91.4063 97.6563 1 32 8 16 2925.000 3000.000 1462.500 1562.500 731.250 781.250 97.5000 100.0000 1 30 8 15 3120.000 3200.000 1560.000 1600.000 780.000 800.000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) A. Note that REFCLK is limited to 93.75 MHz when in Full rate mode to achieve 3000 Mbps serial data rate. Figure A-6. 8 BIT SERDES Mode – Jitter Cleaner/SERDES (2x) Provisioning 96 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 8 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (1x) Mode SERDES RATE [1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] 2'b00 (Full) 2'b01 (Half) 2'b10 (Quarter) 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 125.0000 130.2083 1 24 8 24 2000.000 2083.333 1000.000 1041.667 500.000 520.833 127.1739 135.8696 1 23 8 23 2034.783 2173.913 1017.391 1086.957 508.696 543.478 132.9545 142.0455 1 22 8 22 2127.273 2272.727 1063.636 1136.364 531.818 568.182 139.2857 148.8095 1 21 8 21 2228.571 2380.952 1114.286 1190.476 557.143 595.238 146.2500 156.2500 1 20 8 20 2340.000 2500.000 1170.000 1250.000 600.000 625.000 153.9474 164.4737 1 19 8 19 2463.158 2631.579 1231.579 1315.789 615.789 657.895 162.5000 173.6111 1 18 8 18 2600.000 2777.778 1300.000 1388.889 650.000 694.444 172.0588 183.8235 1 17 8 17 2752.941 2941.176 1376.471 1470.588 688.235 735.294 182.8125 195.3125 1 16 8 16 2925.000 3000.000 1462.500 1562.500 731.250 781.250 195.0000 200.0000 1 15 8 15 3120.000 3200.000 1560.000 1600.000 780.000 800.000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) Note that REFCLK is limited to 187.5 MHz when in Full rate mode to achieve 3000 Mbps serial data rate. Figure A-7. 8 BIT SERDES Mode – Jitter Cleaner/SERDES (1x) Provisioning 8 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (0.5x) Mode SERDES RATE [1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] 2'b00 (Full) 2'b01 (Half) 2'b10 (Quarter) 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 250.0000 260.4167 4 48 8 24 2000.000 2083.333 1000.000 1041.667 500.000 520.833 254.3478 271.7391 4 46 8 23 2034.783 2173.913 1017.391 1086.957 508.696 543.478 265.9091 284.0909 4 44 8 22 2127.273 2272.727 1063.636 1136.364 531.818 568.182 278.5714 297.6190 4 42 8 21 2228.571 2380.952 1114.286 1190.476 557.143 595.238 292.5000 312.5000 4 40 8 20 2340.000 2500.000 1170.000 1250.000 600.000 625.000 307.8947 328.9474 4 38 8 19 2463.158 2631.579 1231.579 1315.789 615.789 657.895 325.0000 347.2222 4 36 8 18 2600.000 2777.778 1300.000 1388.889 650.000 694.444 344.1176 367.6471 4 34 8 17 2752.941 2941.176 1376.471 1470.588 688.235 735.294 365.6250 375.0000 4 32 8 16 2925.000 3000.000 1462.500 1500.000 731.250 750.000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) Figure A-8. 8 BIT SERDES Mode – Jitter Cleaner/SERDES (0.5x) Provisioning A.1 Recovered Byte Clock Jitter Cleaner Mode: If it is desired to dedicate the Jitter Cleaner PLL to clean the RX SERDES recovered byte clock, then the following procedure must be followed: 1. Program REF_SEL[1:0] to 2’b10. 2. Program RXB_SEL[1:0] to 2’b00. 3. Program RX_SEL to 2’b10 -or- 2’b11. 4. Program TX_SEL as desired. 5. Program 16.10:9 as desired on a per channel basis. 6. Consult the rows in the appropriate Appendix A table to find the appropriate REFCLK and SERDES mode settings. Note that only rows indicating that the Jitter Cleaner PLL is OFF may be used. Provision the SERDES settings appropriately. 7. Divide the selected SERDES serial rate by 8 if in EBI/REBI modes, or 10 otherwise, and use that frequency as the input to Figure A-9 Recovered Byte Clock Jitter Cleaner Mode, to determine the appropriate Jitter Cleaner PLL settings. Note that only a 1:1 frequency ratio is supported between the SERDES output byte clock and the parallel interface output recovered byte clock. Depending upon the selection of TX_SEL, it may also be necessary to provision RXTX_DIV with the same value as RXB_DIV. Copyright © 2008–2009, Texas Instruments Incorporated APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 97 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 www.ti.com Recovered Byte Clock Cleaning Mode - Jitter Cleaner (1x) Mode Recovered Byte Clock (Mhz) Min 50.0000 51.3158 52.2321 53.1818 54.1667 55.1887 56.2500 57.3529 58.5000 59.6939 60.9375 62.2340 63.5870 65.0000 66.4773 68.0233 69.6429 71.3415 73.1250 75.0000 76.9737 79.0541 81.2500 83.5714 86.0294 88.6364 91.4063 94.3548 97.5000 100.8621 104.4643 108.3333 112.5000 117.0000 121.8750 127.1739 132.9545 139.2857 146.2500 153.9474 162.5000 172.0588 182.8125 195.0000 208.9286 225.0000 243.7500 265.9091 292.5000 325.0000 365.6250 Max 53.8793 54.8246 55.8036 56.8182 57.8704 58.9623 60.0962 61.2745 62.5000 63.7755 65.1042 66.4894 67.9348 69.4444 71.0227 72.6744 74.4048 76.2195 78.1250 80.1282 82.2368 84.4595 86.8056 89.2857 91.9118 94.6970 97.6563 100.8065 104.1667 107.7586 111.6071 115.7407 120.1923 125.0000 130.2083 135.8696 142.0455 148.8095 156.2500 164.4737 173.6111 183.8235 195.3125 208.3333 223.2143 240.3846 260.4167 284.0909 312.5000 347.2222 375.0000 REF_DIV[6:0] FB_DIV[6:0] 4/5.37124:14:8 4/5.37124:6:0 RXB_DIV[6:0] (Decimal) (Decimal) 4/5.37125:14:8 1 58 58 1 57 57 1 56 56 1 55 55 1 54 54 1 53 53 1 52 52 1 51 51 1 50 50 1 49 49 1 48 48 1 47 47 1 46 46 1 45 45 1 44 44 1 43 43 1 42 42 1 41 41 1 40 40 1 39 39 1 38 38 1 37 37 1 36 36 1 35 35 1 34 34 1 33 33 1 32 32 1 31 31 1 30 30 1 29 29 1 28 28 1 27 27 1 26 26 1 25 25 1 24 24 1 23 23 1 22 22 1 21 21 1 20 20 1 19 19 1 18 18 1 17 17 1 16 16 1 15 15 1 14 14 1 13 13 1 12 12 1 11 11 1 10 10 1 9 9 1 8 8 Figure A-9. Recovered Byte Clock Jitter Cleaner Mode 98 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback Product Folder Link(s): TLK3132 Copyright © 2008–2009, Texas Instruments Incorporated TLK3132 www.ti.com B SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 APPENDIX B – Jitter Cleaner PLL External Loop Filter The following external loop filter is required anytime the Jitter Cleaner PLL is enabled. TLK Device CP_OUT VTUNE R3=1.21k R3=1.21kW C2=1.5nF R1=100W R1=100 VSSA_VCO C1=3.3uF C3=1.800nF VSSA_VCO VSSA_VCO External passive loop filter Figure B-1. Jitter Cleaner External Loop Filter Copyright © 2008–2009, Texas Instruments Incorporated APPENDIX B – Jitter Cleaner PLL External Loop Filter Submit Documentation Feedback Product Folder Link(s): TLK3132 99 TLK3132 SLLS956A – DECEMBER 2008 – REVISED DECEMBER 2009 C www.ti.com APPENDIX C – Device Test Mode This device can be placed into one of the three modes: functional mode including JTAG testing mode, scan testing mode, and Jadis/eFuse testing mode. The scan testing mode and Jadis/eFuse testing modes are for TI use only, and may be ignored by external users of this device. Table C-1. Device Mode Configuration FUNCTIONAL DEVICE PIN NAME FUNCTIONAL MODE/JTAG TESTING SCAN MODE Jadis/eFuse MODE TESTEN 0 or 1 0 1 GPI1 0 1 1 Table C-2. Device Test Mode Pin Configuration FUNCTIONAL DEVICE PIN NAME FUNCTIONAL MODE SIGNAL DIRECTION TEST MODE SIGNAL DIRECTION FUNCTIONAL MODE/JTAG TESTING SCAN MODE SPEED1 I I SPEED1 Scan In 5 STCI_D SPEED0 I I SPEED0 Scan In 4 EFUSE_TMS PLOOP I I PLOOP Scan In 3 EFUSE_TDI SLOOP I I SLOOP Scan In 2 STCICFG1 PRBS_EN I I PRBS_EN Scan In 1 EFUSE_INITZ CODE I I CODE Scan Enable Jadis/eFuse MODE TESTCLK_T TDI I I TDI Adaptive Scan Enable (Test Mode) PRTAD4 I I PRTAD4 Scan HS Enable (Transition Fault) PRTAD3 I I PRTAD3 Scan Clock STCICLK PRTAD2 Scan Out 5 STCICFG0 PRTAD1 Scan Clock Select (0: from device pin, 1: from Jadis), also EFUSE_SYS_CLK EFUSE_SYS_CLK EFUSE_TCK PRTAD2 I PRTAD1 I I: Jadis/eFuse O: Scan I JADIS_EFUSE_SEL TESTCLK_R PRTAD0 I I PRTAD0 HSTL Force Down GPO0 O O TEST_DOUT0 Scan Out 4 Tied LOW GPO1 O O TEST_DOUT1 Scan Out 3 Tied LOW GPO2 O O TEST_DOUT2 Scan Out 2 STCI_Q GPO3 O O TEST_DOUT3 Scan Out 1 EFUSE_TDO O TEST_DOUT4 or JC PLL Digital Test Out Burnin_Output Burnin_Output GPO4 O Spacer Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Original (December 2008) to A Revision ................................................................................................ Page • • 100 Added text to - This is a global bit (not per channel). Asserting this bit is equivalent to asserting the device primary input RST_N. .............................................................................................................. 34 Changed - Transmit Template, Y-axis values .................................................................................. 74 APPENDIX C – Device Test Mode Copyright © 2008–2009, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TLK3132 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLK3132ZEN ACTIVE BGA ZEN 196 126 RoHS & Green SNAGCU Level-4-260C-72 HR -40 to 85 TLK3132 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LTC1343IGW#TRPBF 价格&库存

很抱歉,暂时无法提供与“LTC1343IGW#TRPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货