LTC4365
Overvoltage,
Undervoltage and Reverse
Supply Protection Controller
DESCRIPTION
FEATURES
Wide Operating Voltage Range: 2.5V to 34V
Overvoltage Protection to 60V
Reverse Supply Protection to –40V
LTC4365: Blocks 50Hz and 60Hz AC Power
LTC4365-1: Fast (1ms) Recovery from Fault
No Input Capacitor or TVS Required for Most
Applications
n Adjustable Undervoltage and Overvoltage
Protection Range
n Charge Pump Enhances External N-Channel MOSFET
n Low Operating Current: 125µA
n Low Shutdown Current: 10µA
n Compact 8-Lead, 3mm × 2mm DFN and
TSOT-23 (ThinSOT™) Packages
nn AEC-Q100 Qualified for Automotive Applications
n
n
n
n
n
n
APPLICATIONS
n
n
n
n
The LTC®4365 protects applications where power supply
input voltages may be too high, too low or even negative.
It does this by controlling the gate voltages of a pair of
external N-channel MOSFETs to ensure that the output
stays within a safe operating range.The LTC4365 can
withstand voltages between –40V and 60V and has an
operating range of 2.5V to 34V, while consuming only
125µA in normal operation.
Two comparator inputs allow configuration of the overvoltage (OV) and undervoltage (UV) set points using an
external resistive divider. A shutdown pin provides external
control for enabling and disabling the MOSFETs as well
as placing the device in a low current shutdown state. A
fault output provides status of the gate pin pulling low. A
fault is indicated when the part is in shutdown or the input
voltage is outside the UV and OV set points.
The LTC4365 has a 36ms turn-on delay that debounces
live connections and blocks 50Hz to 60Hz AC power. For
fast recovery after faults, the LTC4365-1 has a reduced
1ms turn-on delay.
Portable Instrumentation
Industrial Automation
Laptops
Automotive Surge Protection
All registered trademarks and trademarks are the property of their respective owners. Protected
by U.S. patents, including XXXXX, XXXXX.
TYPICAL APPLICATION
12V Automotive Application
SiSB46DN
VIN
12V
GATE
VIN
Load Protected from Reverse and Overvoltage at VIN
VOUT
3A
30V
VIN
VALID
WINDOW
VOUT
LTC4365
510k
UV = 5V
OV = 18V
GND
SHDN
VOUT
VOUT
2740k
UV
10V/DIV
FAULT
215k
–30V
OV
84.5k
GND
OV = 18V
UV = 5V
VIN
1s/DIV
4365 TA01b
4365 TA01a
Rev. B
Document Feedback
For more information www.analog.com
1
LTC4365
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (Note 1)
VIN........................................................... –40V to 60V
Input Voltages (Note 3)
UV, SHDN............................................... –0.3V to 60V
OV............................................................. –0.3V to 6V
VOUT....................................................... –0.3V to 40V
Output Voltages (Note 4)
FAULT...................................................... –0.3V to 60V
GATE........................................................ –40V to 45V
Input Currents
UV, OV, SHDN.....................................................–1mA
Operating Ambient Temperature Range
LTC4365C................................................. 0°C to 70°C
LTC4365I..............................................–40°C to 85°C
LTC4365H........................................... –40°C to 125°C
Storage Temperature Range................... –65°C to 150°C
Lead Temperature (Soldering, 10 sec)
for TSOT Only.................................................... 300°C
PIN CONFIGURATION
TOP VIEW
GND 1
OV 2
UV 3
VIN 4
9
GND
8
SHDN
7
FAULT
6
VOUT
5
GATE
TOP VIEW
VIN
UV
OV
GND
1
2
3
4
8
7
6
5
GATE
VOUT
FAULT
SHDN
TS8 PACKAGE
8-LEAD PLASTIC TSOT-23
TJMAX = 150°C, θJA = 195°C/W
DDB PACKAGE
8-LEAD (3mm × 2mm) PLASTIC DFN
TJMAX = 150°C, θJA = 76°C/W
EXPOSED PAD (PIN 9) PCB GROUND CONNECTION OPTIONAL
ORDER INFORMATION
Lead Free Finish
TAPE AND REEL (MINI)
TAPE AND REEL
PART MARKING*
PACKAGE DESCRIPTION
TEMPERATURE RANGE
LTC4365CDDB#TRMPBF
LTC4365CDDB#TRPBF
LFKS
8-Lead (3mm × 2mm) Plastic DFN
0°C to 70°C
LTC4365CDDB-1#TRMPBF
LTC4365CDDB-1#TRPBF
LGMB
8-Lead (3mm × 2mm) Plastic DFN
0°C to 70°C
LTC4365IDDB#TRMPBF
LTC4365IDDB#TRPBF
LFKS
8-Lead (3mm × 2mm) Plastic DFN
–40°C to 85°C
LTC4365IDDB-1#TRMPBF
LTC4365IDDB-1#TRPBF
LGMB
8-Lead (3mm × 2mm) Plastic DFN
–40°C to 85°C
LTC4365HDDB#TRMPBF
LTC4365HDDB#TRPBF
LFKS
8-Lead (3mm × 2mm) Plastic DFN
–40°C to 125°C
LTC4365HDDB-1#TRMPBF
LTC4365HDDB-1#TRPBF
LGMB
8-Lead (3mm × 2mm) Plastic DFN
–40°C to 125°C
LTC4365CTS8#TRMPBF
LTC4365CTS8#TRPBF
LTFKT
8-Lead Plastic TSOT-23
0°C to 70°C
LTC4365CTS8-1#TRMPBF
LTC4365CTS8-1#TRPBF
LTGKZ
8-Lead Plastic TSOT-23
0°C to 70°C
LTC4365ITS8#TRMPBF
LTC4365ITS8#TRPBF
LTFKT
8-Lead Plastic TSOT-23
–40°C to 85°C
LTC4365ITS8-1#TRMPBF
LTC4365ITS8-1#TRPBF
LTGKZ
8-Lead Plastic TSOT-23
–40°C to 85°C
LTC4365HTS8#TRMPBF
LTC4365HTS8#TRPBF
LTFKT
8-Lead Plastic TSOT-23
–40°C to 125°C
LTC4365HTS8-1#TRMPBF
LTC4365HTS8-1#TRPBF
LTGKZ
8-Lead Plastic TSOT-23
–40°C to 125°C
Rev. B
2
For more information www.analog.com
LTC4365
ORDER INFORMATION
Lead Free Finish
AUTOMOTIVE PRODUCTS**
TAPE AND REEL (MINI)
TAPE AND REEL
PART MARKING*
PACKAGE DESCRIPTION
TEMPERATURE RANGE
LTC4365ITS8#WTRMPBF
LTC4365ITS8#WTRPBF
LTFKT
8-Lead Plastic TSOT-23
–40°C to 85°C
LTC4365ITS8-1#WTRMPBF
LTC4365ITS8-1#WTRPBF
LTGKZ
8-Lead Plastic TSOT-23
–40°C to 85°C
LTC4365HTS8#WTRMPBF
LTC4365HTS8#WTRPBF
LTFKT
8-Lead Plastic TSOT-23
–40°C to 125°C
LTC4365HTS8-1#WTRMPBF
LTC4365HTS8-1#WTRPBF LTGKZ
8-Lead Plastic TSOT-23
–40°C to 125°C
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for
these models.
ELECTRICAL
CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TA = 25°C. VIN = 2.5V to 34V, unless otherwise noted. (Note 2)
SYMBOL
PARAMETER
CONDITIONS
MIN
VIN
Input Voltage Range
Operating Range
Protection Range
l
l
IVIN
Input Supply Current
SHDN = 0V, VIN = VOUT, –40°C to 85°C
SHDN = 0V, VIN = VOUT, –40°C to 125°C
SHDN = 2.5V
l
l
l
IVIN(R)
Reverse Input Supply Current
VIN = –40V, VOUT = 0V
l
VIN(UVLO)
Input Supply Undervoltage Lockout
VIN Rising
l
IVOUT
VOUT Input Current
SHDN = 0V, VIN = VOUT
SHDN = 2.5V, VIN = VOUT
VIN = –40V, VOUT = 0V
l
l
l
ΔVGATE
N-Channel Gate Drive
(GATE-VOUT)
VIN = VOUT = 5.0V, IGATE = –1µA
VIN = VOUT = 12V to 34V, IGATE = –1µA
l
l
IGATE(UP)
N-Channel Gate Pull Up Current
GATE = VIN = VOUT = 12V
IGATE(FAST)
N-Channel Gate Fast Pull Down Current
TYP
MAX
UNITS
VIN, VOUT
2.5
–40
34
60
V
V
10
10
25
50
100
150
µA
µA
µA
–1.2
–1.8
mA
2.2
2.4
V
6
100
20
30
250
50
µA
µA
µA
3
7.4
3.6
8.4
4.2
9.8
V
V
l
–12
–20
–30
µA
Fast Shutdown, GATE = 20V, VIN = VOUT = 12V
l
31
50
72
mA
Gentle Shutdown, GATE = 20V, VIN = VOUT = 12V
l
50
90
150
µA
2
4
µs
1.8
GATE
IGATE(SLOW) N-Channel Gate Gentle Pull Down Current
tGATE(FAST)
N-Channel Gate Fast Turn Off Delay
tGATE(SLOW) N-Channel Gentle Turn Off Delay
tRECOVERY
GATE Recovery Delay Time
CGATE = 2.2nF, UV or OV Fault
l
CGATE = 2.2nF, SHDN Falling, VIN = VOUT = 12V
l
150
250
350
µs
VIN = 12V, Power Good to ΔVGATE > 0V
LTC4365, CGATE = 2.2nF
LTC4365-1, CGATE = 2.2nF
l
l
26
0.6
36
1
49
1.5
ms
ms
Rev. B
For more information www.analog.com
3
LTC4365
ELECTRICAL
CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TA = 25°C. VIN = 2.5V to 34V, unless otherwise noted. (Note 2)
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
VUV
UV Input Threshold Voltage
UV Falling → ΔVGATE = 0V
l
492.5
500
507.5
mV
l
VOV
OV Input Threshold Voltage
OV Rising → ΔVGATE = 0V
VUVHYST
492.5
500
507.5
mV
UV Input Hysteresis
l
20
25
32
mV
VOVHYST
OV Input Hysteresis
l
20
25
32
mV
ILEAK
UV, OV Leakage Current
V = 0.5V, VIN = 34V
l
±10
nA
tFAULT
UV, OV Fault Propagation Delay
Overdrive = 50mV
VIN = VOUT = 12V
l
2
µs
UV, OV
1
SHDN
VSHDN
SHDN Input Threshold
SHDN Falling to ΔVGATE = 0V
l
ISHDN
SHDN Input Current
SHDN = 0.75V, VIN = 34V
l
tSTART
Delay Coming Out of Shutdown Mode
SHDN Rising to ΔVGATE > 0V, VIN = VOUT = 12V
l
tSHDN(F)
SHDN to FAULT Asserted
VIN = VOUT = 12V
l
tLOWPWR
Delay from Turn Off to Low Power Operation
VIN = VOUT = 12V
LTC4365
LTC4365-1
l
l
0.4
400
26
0.3
0.75
1.2
V
±10
nA
800
1200
µs
1.5
3
µs
36
0.7
55
2
ms
ms
0.15
0.4
V
±20
nA
FAULT
VOL
FAULT Output Voltage Low
IFAULT = 500µA
l
IFAULT
FAULT Leakage Current
FAULT = 5V, VIN = 34V
l
Note 1. Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2. All currents into pins are positive; all voltages are referenced to
GND unless otherwise noted.
Note 3. These pins can be tied to voltages below –0.3V through a resistor
that limits the current below 1mA.
Note 4. The GATE pin is referenced to VOUT and does not exceed 44V for
the entire operating range.
Rev. B
4
For more information www.analog.com
LTC4365
TYPICAL PERFORMANCE CHARACTERISTICS
VIN Operating Current vs
Temperature
VIN Shutdown Current vs VIN
30
100
SHDN = 2.5V
VOUT = VIN
80
VIN Current vs VIN (–40 to 60V)
400
VIN = VOUT
SHDN = 0V
25
SHDN = UV = 0V
0
125°C
VIN = 34V
70°C
15
IVIN (µA)
VIN = 12V
40
IVIN (µA)
IVIN (µA)
20
60
25°C
–45°C
–400
–800
125°C
10
20
VIN = 2.5V
0
–50
–25
–45°C
5
75
0
50
25
TEMPERATURE (°C)
100
0
125
5
0
10
15
20
VIN (V)
–1200
25
30
–1600
–50
200
SHDN = 2.5V
VIN = VOUT
20
15
IVOUT (µA)
–45°C
VOUT = 34V
IVOUT (µA)
VOUT = 34V
10
VOUT = 12V
40
15
25°C
10
125°C
5
VOUT = 2.5V
75
VOUT = 0V
SHDN = 0V
VIN = VOUT
80
50
VOUT Current vs Reverse VIN
25
20
VOUT = 12V
25
4365 G03
VOUT Shutdown Current vs
Temperature
120
0
–25
4365 G02
VOUT Operating Current vs
Temperature
IVOUT (µA)
35
25°C
VIN (V)
4365 G01
160
25°C
5
VOUT = 2.5V
0
–50
–25
0
75
25
50
TEMPERATURE (°C)
100
0
–50
125
–25
0
25
50
75
TEMPERATURE (°C)
100
4365 G04
GATE Drive vs VIN
VOUT = VIN
∆VGATE (V)
∆VGATE (V)
4
IGATE = –1µA
T = 25°C
IGATE = –1µA
0
5
10
15
20
VIN (V)
25
30
35
4365 G07
–40
VIN = VOUT = 12V
VIN = VOUT = 12V
–20
4
0
–50
VIN = VOUT = 2.5V
–25
75
0
50
25
TEMPERATURE (°C)
–50
125°C
6
2
2
0
–25
VIN = VOUT = 34V
6
–30
–20
VIN (V)
GATE Current vs GATE Drive
GATE Drive vs Temperature
8
8
–10
4365 G06
10
VOUT = 0V
10
0
4365 G05
IGATE(UP) (µA)
12
0
125
–15
25°C
–10
–45°C
–5
100
125
4365 G08
0
0
2
6
4
∆VGATE (V)
8
10
4365 G09
Rev. B
For more information www.analog.com
5
LTC4365
TYPICAL PERFORMANCE CHARACTERISTICS
OV Threshold vs Temperature
UV Threshold vs Temperature
507.5
507.5
VIN = VOUT = 12V
505.0
505.0
502.5
502.5
UV/OV Leakage vs Temperature
1.00
VIN = VOUT = 12V
VUV/OV = 0.5V
VIN = 12V
500.0
ILEAK (nA)
VOV (mV)
VUV (mV)
0.75
500.0
497.5
497.5
495.0
495.0
492.5
–50
492.5
–50
0.50
0.25
OV
–25
75
0
50
25
TEMPERATURE (°C)
100
125
–25
75
0
50
25
TEMPERATURE (°C)
100
4365 G10
50
tRECOVERY (ms)
tFAULT (µs)
50
40
12
8
4
VIN = 12V
30
20
VIN = 2.5V
10
0
–50
1000
–25
75
0
25
50
TEMPERATURE (°C)
20V/DIV
GND
5V/DIV
100µF, 12Ω LOAD ON VOUT
60V SI9945 DUAL NCH MOSFET
VIN = 12V
100
20
0
125
5
0
10
15
20
VIN (V)
25
30
35
4365 G15
Turn-Off Timing
GATE
GATE
100µF, 12Ω LOAD ON VOUT
60V SI9945 DUAL NCH MOSFET
5V/DIV
VOUT
VOUT
GND
GATE
25°C
30
10
Turn-On Timing
VIN
125°C
4365 G14
LTC4365 AC Blocking
VOUT
175
LTC4365 Recovery Delay Time
vs VIN
40
VIN = 34V
4365 G13
1V/DIV
75
25
125
TEMPERATURE (°C)
–45°C
16
10
100
OVERDRIVE (mV)
–25
4365 G12
Recovery Delay Time vs
Temperature
VIN = VOUT = 12V
T = 25°C
1
125
tRECOVERY (ms)
20
0
–75
4365 G11
UV/OV Propagation Delay vs
Overdrive
0
UV
GND
GND
10µF, 1k LOAD ON VOUT
60V DUAL NCH MOSFET
2.5ms/DIV
4365 G16
3V/DIV
SHDN
GND
250µs/DIV
4365 G17
3V/DIV
SHDN
GND
250µs/DIV
4365 G18
Rev. B
6
For more information www.analog.com
LTC4365
PIN FUNCTIONS
Exposed Pad: Connect to device ground.
FAULT: Fault Indication Output. This high voltage open drain
output is pulled low if UV is below its monitor threshold,
if OV is above its monitor threshold, if SHDN is low, or if
VIN has not risen above VIN(UVLO).
GATE: Gate Drive Output for External N-channel MOSFETs.
An internal charge pump provides 20µA of pull-up current
and up to 9.8V of enhancement to the gate of an external
N-channel MOSFET.
When turned off, GATE is pulled just below the lower of
VIN or VOUT. When VIN goes negative, GATE is automatically connected to VIN.
GND: Device Ground.
OV: Overvoltage Comparator Input. Connect this pin to an
external resistive divider to set the desired VIN overvoltage
fault threshold. The OV input connects to an accurate, fast
(1µs) comparator with a 0.5V rising threshold and 25mV
of hysteresis. When OV rises above its threshold, a 50mA
current sink pulls down on the GATE output. When OV
falls back below 0.475V, and after a 36ms recovery delay
waiting period (1ms for LTC4365-1), the GATE charge
pump is enabled. The low leakage current of the OV input
allows the use of large valued resistors for the external
resistive divider. Connect to GND if unused.
SHDN: Shutdown Control Input. SHDN high enables the
GATE charge pump which in turn enhances the gate of an
external N-channel MOSFET. A low on SHDN generates a
pull down on the GATE output with a 90µA current sink and
places the LTC4365 in low current mode (10µA). If unused,
connect to VIN. If VIN goes below ground, or if VIN rings
to 60V, use a current limiting resistor of at least 100k.
UV: Undervoltage Comparator Input. Connect this pin to an
external resistive divider to set the desired VIN undervoltage fault threshold. The UV input connects to an accurate,
fast (1µs) comparator with a 0.5V falling threshold and
25mV of hysteresis. When UV falls below its threshold, a
50mA current sink pulls down on the GATE output. When
UV rises back above 0.525V, and after a 36ms recovery
delay waiting period (1ms for LTC4365-1), the GATE
charge pump is enabled. The low leakage current of the
UV input allows the use of large valued resistors for the
external resistive divider. If unused, connect to VIN. While
connected to VIN, if VIN goes below ground, or if VIN rings
to 60V, use a current limiting resistor of at least 100k.
VIN: Power Supply Input. Maximum protection range:
–40V to 60V. Operating range: 2.5V to 34V.
VOUT: Output Voltage Sense Input. This pin senses the voltage at the output side of the external N-channel MOSFET.
The GATE charge pump voltage is referenced to VOUT. It
is used as the charge pump input when VOUT is greater
than approximately 6.5V.
Rev. B
For more information www.analog.com
7
LTC4365
BLOCK DIAGRAM
REVERSE
PROTECTION
VIN
–40V TO 60V
GATE
–
+
CLOSES SWITCH
WHEN VIN IS NEGATIVE
5V INTERNAL
SUPPLY
LDO
6.5V INTERNAL
SUPPLY
VOUT
ENABLE
2.2V
UVLO
UV
GATE
CHARGE
PUMP
f = 400kHz
DELAY TIMERS
SHDN
+
+
FAULT
OFF
TURN
OFF
SHDN
LOGIC
–
OV
IGATE
50mA
25mV
HYSTERESIS
90µA
FAULT
GATE PULLDOWN
–
0.5V
GND
4365 BD
OPERATION
Many of today’s electronic systems get their power from
external sources such as wall wart adapters, batteries and
custom power supplies. A typical supply arrangement for
a portable product is shown by the operational diagram
in Figure 1. Power is supplied by an AC adaptor or, if the
plug is withdrawn, by a removable battery. Trouble arises
when any of the following occurs:
• The battery is installed backwards
• An AC adaptor of opposite polarity is attached
• An AC adaptor of excessive voltage is attached
• The battery is discharged below a safe level
This can lead to supply voltages that are too high, too
low, or even negative. If these power sources are applied
directly to the electronic systems, the systems could be
subject to damage. The LTC4365 is an input voltage fault
protection N-channel MOSFET controller. The part isolates
an input supply from its load to protect the load from
unexpected supply voltage conditions, while providing a
low loss path for qualified power.
To protect electronic systems from improperly connected
power supplies, system designers will often add discrete
diodes, transistors and high voltage comparators. The high
voltage comparators enable system power only if the input
supply falls within a desired voltage window. A Schottky
diode or P-channel MOSFET typically added in series with
the supply protects against reverse supply connections.
The LTC4365 provides accurate overvoltage and undervoltage comparators to ensure that power is applied to
Rev. B
8
For more information www.analog.com
LTC4365
OPERATION
the system only if the input supply meets the user selectable voltage window. Reverse supply protection circuits
automatically isolate the load from negative input voltages.
During normal operation, a high voltage charge pump
enhances the gate of external N-channel power MOSFETs.
Power consumption is 10µA during shutdown and 125µA
while operating. The LTC4365 integrates all these functions in tiny TSOT-23 and 3mm × 2mm DFN packages.
–40V TO 60V PROTECTION RANGE
AC
ADAPTOR
INPUT
M1
+
M2
LOAD
CIRCUIT
–
BATTERY
GATE
VIN
VOUT
LTC4365
R5
SHDN
R3
OV, UV PROTECTION
THRESHOLDS SET TO
SATISFY LOAD CIRCUIT
UV
FAULT
R2
OV
R1
2.5V TO 34V
OPERATING RANGE
GND
4365 F01
Figure 1. Operational Diagram Common to Many Portable Products
APPLICATIONS INFORMATION
The LTC4365 is an N-channel MOSFET controller that
protects a load from faulty supply connections. A basic
application circuit using the LTC4365 is shown in Figure 2
The circuit provides a low loss connection from VIN to
VOUT as long as the voltage at VIN is between 5V and
SiSB46DN
40V DUAL
VIN
12V NOMINAL
M1
R5
100k
R3
2740k
M2
GATE
VIN
+
VOUT
5V TO 18V
COUT
100µF
VOUT
The LTC4365 turns on the external N-channel MOSFETs by
driving the GATE pin above VOUT. The voltage difference
between the GATE and VOUT pins (gate drive) is a function
of VIN and VOUT.
SHDN
FAULT
R2
215k
OV
R1
84.5k
During normal operation, the LTC4365 provides up to
9.8V of gate enhancement to the external back-to-back
N-channel MOSFETs. This turns on the MOSFET, thus
connecting the load at VOUT to the supply at VIN.
GATE Drive
LTC4365
UV
18V. Voltages at VIN outside of the 5V to 18V range are
prevented from getting to the load and can be as high as
40V and as low as –40V. The circuit of Figure 2 protects
against negative voltages at VIN as shown. No other external
components are needed.
OV = 18V
UV = 5V
GND
4365 F02
Figure 2. LTC4365 Protects Load from –40V
to 40V VIN Faults
Rev. B
For more information www.analog.com
9
LTC4365
APPLICATIONS INFORMATION
Figure 3 highlights the dependence of the gate drive on VIN
and VOUT. When system power is first turned on (SHDN
low to high, VOUT = 0V), gate drive is at a maximum for all
values of VIN. This helps prevent start-up problems into
heavy loads by ensuring that there is enough gate drive
to support the load.
As VOUT ramps up from 0V, the absolute value of the GATE
voltage remains fixed until VOUT is greater than the lower
of (VIN –1V) or 6V. Once VOUT crosses this threshold,
gate drive begins to increase up to a maximum of 9.8V
(for VIN ≥ 12V). The curves of Figure 3 were taken with
a GATE load of –1µA. If there were no load on GATE, the
gate drive for each VIN would be slightly higher.
Note that when VIN is at the lower end of the operating
range, the external N-channel MOSFET must be selected
with a corresponding lower threshold voltage.
The LTC4365 provides two accurate comparators to monitor for overvoltage (OV) and undervoltage (UV) conditions
at VIN. If the input supply rises above the user adjustable
OV threshold, the gate of the external MOSFET is quickly
turned off, thus disconnecting the load from the input.
Similarly, if the input supply falls below the user adjustable UV threshold, the gate of the external MOSFET also
is quickly turned off. Figure 4 shows a UV/OV application
for an input supply of 12V.
12V
T = 25°C
IGATE = –1µA
10
UV
UVTH = 5V
0.5V
–
+
25mV
OV
COMPARATOR
OV
R1
84.5k
8
UV
COMPARATOR
R3
2470k
OVTH = 18V
VIN = 30V
LTC4365
VIN
R2
215k
12
∆VGATE (V)
Overvoltage and Undervoltage Protection
DISCHARGE GATE
WITH 50mA SINK
+
25mV
0.5V
–
6
4365 F04
VIN = 12V
4
VIN = 5V
2
0
Figure 4. UV, OV Comparators Monitor 12V Supply
VIN = 3.3V
VIN = 2.5V
0
3
6
9
VOUT (V)
12
15
4365 F03
Figure 3. Gate Drive (GATE – VOUT) vs VOUT
Table 1 lists some external MOSFETs compatible with
different VIN supply voltages.
Table 1. Dual MOSFETs for Various Supply Ranges
VIN
MOSFET
VTH(MAX)
VGS(MAX)
VDS(MAX)
2.5V
SiB914
0.8V
5V
8V
3.3V
Si5920
1.0V
5V
8V
5V
Si7940
1.5V
8V
12V
≤30V
Si4214
3.0V
20V
30V
≤60V
Si9945
3.0V
20V
60V
The external resistive divider allows the user to select
an input supply range that is compatible with the load at
VOUT. Furthermore, the UV and OV inputs have very low
leakage currents (typically < 1nA at 100°C), allowing for
large values in the external resistive divider. In the application of Figure 4, the load is connected to the supply only
if VIN lies between 5V and 18V. In the event that VIN goes
above 18V or below 5V, the gate of the external N-channel
MOSFET is immediately discharged with a 50mA current
sink, thus isolating the load from the supply.
Rev. B
10
For more information www.analog.com
LTC4365
APPLICATIONS INFORMATION
Figure 5 shows the timing associated with the UV pin.
Once a UV fault propagates through the UV comparator
(tFAULT), the FAULT output is asserted low and a 50mA
current sink discharges the GATE pin. As VOUT falls, the
GATE pin tracks VOUT.
UV
VUV
tFAULT
FAULT
tGATE(FAST)
The following 3-step procedure helps select the resistor
values for the resistive divider of Figure 4. This procedure
minimizes UV and OV offset errors caused by leakage
currents at the respective pins.
1.
Choose maximum tolerable offset at the UV pin,
VOS(UV). Divide by the worst case leakage current at
the UV pin, IUV (10nA). Set the sum of R1 + R2 equal
to VOS(UV) divided by 10nA. Note that due to the
presence of R3, the actual offset at UV will be slightly
lower:
VUV + VUVHYST
tFAULT
Procedure for Selecting UV/OV External Resistor Values
tRECOVERY
EXTERNAL N-CHANNEL MOSFET
TURNS OFF
GATE
R1 + R2 =
4365 F05
Figure 5. UV Timing (OV < (VOV – VOVHYST), SHDN > 1.2V)
Figure 6 shows the timing associated with the OV pin.
Once an OV fault propagates through the OV comparator
(tFAULT), the FAULT output is asserted low and a 50mA
current sink discharges the GATE pin. As VOUT falls, the
GATE pin tracks VOUT.
OV
VOV
I UV
2.
Select the desired VIN UV trip threshold, UVTH. Find
the value of R3:
VOS(UV)
R3 =
I UV
⎛ UV TH – 0.5V⎞
• ⎜
⎟⎠
0.5V
⎝
3.
Select the desired VIN OV trip threshold, OVTH. Find
the values of R1 and R2:
VOV – VOVHYST
tFAULT
tFAULT
R1 =
FAULT
tGATE(FAST)
GATE
VOS(UV)
tRECOVERY
EXTERNAL N-CHANNEL MOSFET
TURNS OFF
4365 F06
Figure 6. OV Timing (UV > (VUV + VUVHYST), SHDN > 1.2V)
When both the UV and OV faults are removed, the external
MOSFET is not immediately turned on. The input supply
must remain within the user selected power good window
for at least 36ms (tRECOVERY) before the load is again
connected to the supply. This recovery timeout period
filters noise (including line noise) at the input supply and
prevents chattering of power at the load. For applications
that require faster turn-on after a fault, the LTC4365-1
provides a 1ms recovery timeout period.
R2 =
⎛ VOS(UV) ⎞
⎜
⎟ + R3
⎝ I UV ⎠
OV TH
VOS(UV)
I UV
• 0.5V
– R1
The example of Figure 4 uses standard 1% resistor values.
The following parameters were selected:
VOS(UV) = 3mV
IUV = 10nA
UVTH = 5V
OVTH = 18V
Rev. B
For more information www.analog.com
11
LTC4365
APPLICATIONS INFORMATION
As shown in Figure 7, external back-to-back N-channel
MOSFETs are required for reverse supply protection. When
VIN goes negative, the reverse VIN comparator closes the
internal switch, which in turn connects the gates of the
external MOSFETs to the negative VIN voltage. The body
diode (D1) of M1 turns on, but the body diode (D2) of
M2 remains in reverse blocking mode. This means that
the common source connection of M1 and M2 remains
about a diode drop higher than VIN. Since the gate voltage
of M2 is shorted to VIN, M2 will be turned off and no current can flow from VIN to the load at VOUT. Note that the
voltage rating of M2 must withstand the reverse voltage
excursion at VIN.
The resistor values can then be solved:
1.
1. R1 + R2 =
2. R3 = 2 •
3mV
10nA
3mV
10nA
= 300k
• ( 5V − 0.5V ) = 2.7M
The closest 1% value: R3 = 2.74M:
3. R1=
300k + 1.82M
2 • 18V
= 84.4k
The closest 1% value: R1 = 84.5k:
Figure 8 illustrates the waveforms that result when VIN
is hot plugged to –20V. VIN, GATE and VOUT start out at
ground just before the connection is made. Due to the
parasitic inductance of the VIN and GATE connections, the
voltage at the VIN and GATE pins ring significantly below
–20V. Therefore, a 40V N-channel MOSFET was selected
to survive the overshoot.
R2 = 300k – 84.5k = 215.5k
The closest 1% value: R2 = 215k
Therefore: OV = 17.99V, UV = 5.07V.
Reverse VIN Protection
The LTC4365’s rugged and hot-swappable VIN input helps
protect the more sensitive circuits at the output load. If
the input supply is plugged in backwards, or a negative
supply is inadvertently connected, the LTC4365 prevents
this negative voltage from passing to the output load.
The LTC4365 employs a novel, high speed reverse supply
voltage monitor. When the negative VIN voltage is detected,
an internal switch connects the gates of the external backto-back N-channel MOSFETs to the negative input supply.
D1
The trace at VOUT, on the other hand, does not respond
to the negative voltage at VIN, demonstrating the desired
reverse supply protection. The waveforms of Figure 8 were
captured using a 40V dual N-channel MOSFET, a 10µF
ceramic output capacitor and no load current on VOUT.
D2
VIN = –40V
M1
VIN
The speed of the LTC4365 reverse protection circuits is
evident by how closely the GATE pin follows VIN during
the negative transients. The two waveforms are almost
indistinguishable on the scale shown.
M2
GATE
TO LOAD
+
COUT
VOUT
GND
VOUT
5V/DIV
LTC4365
REVERSE VIN
COMPARATOR
–20V
+
GND
–
VIN
GATE
CLOSES SWITCH
WHEN VIN IS NEGATIVE
4365 F07
Figure 7. Reverse VIN Protection Circuits
500ns/DIV
4365 F07
Figure 8. Hot Swapping VIN to –20V
Rev. B
12
For more information www.analog.com
LTC4365
APPLICATIONS INFORMATION
Recovery Timer
The LTC4365 has a recovery delay timer that filters noise
at VIN and helps prevent chatter at VOUT. After either an
OV or UV fault has occurred, the input supply must return
to the desired operating voltage window for at least 36ms
(tRECOVERY) in order to turn the external MOSFET back on
as illustrated in Figure 5 and Figure 6. For applications
that require faster turn-on after a fault, the LTC4365-1
provides a 1ms recovery timeout period.
Going out of and then back into fault in less than tRECOVERY
will keep the MOSFET off continuously. Similarly, coming
out of shutdown (SHDN low to high) triggers an 800µs
start-up delay timer (see Figure 11).
The recovery timer is also active while the part is powering up. The recovery timer starts once VIN rises above
VIN(UVLO) and VIN lies within the user selectable UV/OV
power good window. See Figure 9.
MOSFET OFF
GATE
VOUT
5V/DIV
SHDN
GND
100µs/DIV
4365 F10
Figure 10. Gentle Shutdown: GATE Tracks VOUT as VOUT Decays
The FAULT high voltage open drain output is driven low if
SHDN is asserted low, if VIN is outside the desired UV/OV
voltage window, or if VIN has not risen above VIN(UVLO).
Figure 5, Figure 6 and Figure 11 show the FAULT output
timing.
tRECOVERY
GATE
VIN = 12V
T = 25°C
FAULT Status
VIN(UVLO)
VIN
further decrease GATE pin slew rate, place a capacitor
across the gate and source terminals of the external MOSFETs. The waveforms of Figure 10 were captured using
the Si4214 dual N-channel MOSFETs, and a 2A load with
100µF output capacitor.
MOSFET ON
4365 F09
SHDN
Figure 9. Recovery Timing During Power-On (OV
= GND, UV = SHDN = VIN)
tGATE(SLOW)
GATE
tSTART
∆VGATE
Gentle Shutdown
GATE = VOUT
The SHDN input turns off the external MOSFETs in a gentle,
controlled manner. When SHDN is asserted low, a 90µA
current sink slowly begins to turn off the external MOSFETs.
Once the voltage at the GATE pin falls below the voltage
at the VOUT pin, the current sink is throttled back and a
feedback loop takes over. This loop forces the GATE voltage
to track VOUT, thus keeping the external MOSFETs off as
VOUT decays. Note that when VOUT < 4.5V, the GATE pin
is pulled to within 400mV of ground.
Gentle gate turn off reduces load current slew rates and
mitigates voltage spikes due to parasitic inductances. To
VOUT
tSHDN(F)
FAULT
4365 F11
Figure 11. Gentle Shutdown Timing
Select Between Two Input Supplies
With the part in shutdown, the VIN and VOUT pins can be
driven by separate power supplies. The LTC4365 then
automatically drives the GATE pin just below the lower of
Rev. B
For more information www.analog.com
13
LTC4365
APPLICATIONS INFORMATION
the two supplies, thus turning off the external back-to-back
MOSFETs. The application of Figure 12 uses two LTC4365s
to select between two power supplies. Care should be taken
to ensure that only one of the two LTC4365s is enabled
at any given time.
Limiting Inrush Current During Turn-On
The LTC4365 turns on the external N-channel MOSFET
with a 20µA current source. The maximum slew rate at
the GATE pin can be reduced by adding a capacitor on
the GATE pin:
V1
M1
Slew Rate =
M2
GATE
VIN
VOUT
LTC4365
OUT
SHDN
V2
M1
Since the MOSFET acts like a source follower, the slew
rate at VOUT equals the slew rate at GATE.
M2
GATE
IINRUSH =
C OUT
C GATE
• 20µA
For example, a 1A inrush current to a 330µF output
capacitance requires a GATE capacitance of:
VOUT
LTC4365
SHDN
SEL
C GATE
Therefore, inrush current is given by:
SEL OUT
0
V1
1
V2
VIN
20µA
4365 F12
20µA • C OUT
C GATE =
IINRUSH
Figure 12. Selecting One of Two Supplies
Single MOSFET Application
When reverse VIN protection is not needed, only a single
external N-channel MOSFET is necessary. The application circuit of Figure 13 connects the load to VIN when
VIN is less than 30V, and uses the minimal set of external
components.
SI7120DN
60V
VIN
24V
+
R5
100k
R2
2370k
GATE
VIN
VOUT
20µA • 330µF
M1
FAULT
= 6.6nF
VIN
SHDN
UV
1A
The 6.8nF CGATE capacitor in the application circuit of
Figure 14 limits the inrush current to approximately 1A.
RGATE makes sure that CGATE does not affect the fast GATE
turn off characteristics during UV/OV faults, or during
reverse VIN connection. R4A and R4B help prevent high
frequency oscillations with the external N-channel MOSFET
and related board parasitics.
LTC4365
VIN
R4A
10Ω
R4B
10Ω
GATE
M2
+
COUT
330µF
CGATE
6.8nF
OV = 30V
GND
VOUT
RGATE
5.1k
VOUT
LTC4365
OV
R1
40.2k
VOUT
COUT
100µF
C GATE =
4365 F14
4365 F13
Figure 13. Small Footprint Single MOSFET Application
Protects Against 60V
Figure 14. Limiting Inrush Current with CGATE
Rev. B
14
For more information www.analog.com
LTC4365
APPLICATIONS INFORMATION
Transients During OV Fault
pacitance at the VIN node. D1 is an optional power clamp
(TVS, Tranzorb) recommended for applications where
the DC input voltage can exceed 24V and with large VIN
parasitic inductance. No clamp was used to capture the
waveforms of Figure 16. In order to maintain reverse supply protection, D1 must be a bi-directional clamp rated for
at least 225W peak pulse power dissipation.
The circuit of Figure 15 was used to display transients
during an overvoltage condition. The nominal input supply
is 24V and it has an overvoltage threshold of 30V. The
parasitic inductance is that of a 1 foot wire (roughly 300nH).
Figure 16 shows the waveforms during an overvoltage
condition at VIN. These transients depend on the parasitic
inductance and resistance of the wire along with the ca-
VIN
24V
12 INCH WIRE
LENGTH
+
SI9945
60V
CIN
1000µF
M1
D1
OPTIONAL
+
M2
GATE
VIN
R3
100k
VOUT
COUT
100µF
9Ω
VOUT
LTC4365
SHDN
UV
FAULT
R2
2370k
OV
R1
40.2k
OV = 30V
GND
4365 F15
Figure 15. OV Fault with Large VIN Inductance
GATE
VOUT
VOUT
GATE
20V/DIV
GND
VIN
20V/DIV
GND
IIN
2A/DIV
0A
250ns/DIV
4365 F16
Figure 16. Transients During OV Fault When No
Tranzorb (TVS) Is Used
Rev. B
For more information www.analog.com
15
LTC4365
APPLICATIONS INFORMATION
REGULATOR APPLICATIONS
and duty cycle of the VIN glitch must not exceed the SOA
rating of the external MOSFETs.
Hysteretic Regulator
Solar Charger
Built-in hysteresis and the availability of both inverting
and noninverting control inputs (OV and UV) facilitate the
design of hysteretic regulators. Figure 17 shows how the
LTC4365-1 can protect a load from OV transients, while
regulating the output voltage at a user-defined level. When
the output voltage reaches its OV limit, the LTC4365-1
turns off the external MOSFETs. The load current then
discharges the output capacitance until OV falls below the
hysteresis voltage. The external MOSFETs are turned back
on after a 1ms delay. Figure 18 shows the waveforms for
the circuit of Figure 17. Note that the duration, magnitude
VIN
12V
OPTIONAL
SNUBBER
Figure 19 shows a series regulator for a solar charger.
The LTC4365-1 connects the solar charger to the battery
when the battery voltage falls below 13.9V (after a 1ms
delay). Conversely, when the battery reaches 14.6V, the
LTC4365-1 immediately (2µs) opens the charging path.
Regulation of the battery voltage is achieved by connecting a resistive divider from the battery to the accurate OV
comparator input (with 5% hysteresis). The fast rising
response of the OV comparator prevents the battery voltage
from rising above the user-selected threshold.
Si4946
DUAL NCH
+
R7
1Ω
1µF
R5
510k
GATE
VIN
UV
VOUT
CLOAD
47µF
RLOAD
100Ω
VIN
VOUT
LTC4365-1
FAULT
SHDN
5V/DIV
R2
1820k
VOUT
OV
R1
59k
GND
4365 F17
COV
220pF
GND
2.5ms/DIV
Figure 17. Hysteretic Regulation of VOUT During OV Transients
15W
SOLAR
PANEL
Figure 18. VOUT Regulates at 16V When VIN
Glitches Above Desired Level
1/2 OF Si4214
D1
D4
B130
1/2 OF Si4214
D2
M1
M2
+
CBYP
100nF
SHDN UV VOUT GATE
4365 F18
TO LOAD
CBATT
100µF
12V, 8Ah
GELCELL
VIN
R2
3.24M
LTC4365-1
OV
GND
R1
115k
14.6V OFF
13.9V ON
COV
220pF
4365 F19
Figure 19. Series Hysteretic Solar Charger with Reverse-Battery and Solar Panel Protection
Rev. B
16
For more information www.analog.com
LTC4365
APPLICATIONS INFORMATION
Note that during initial start-up, the LTC4365-1 will not
turn on the external MOSFETs until a battery is first connected to the VIN pin. To begin operation, VIN must initially
rise above the 2.2V UVLO lockout voltage. Connecting the
battery ensures that the LTC4365-1 comes out of UVLO.
handling capability, drain and gate breakdown voltages,
and threshold voltage.
The drain to source breakdown voltage must be higher
than the maximum voltage expected between VIN and VOUT.
Note that if an application generates high energy transients
during normal operation or during Hot Swap™, the external
MOSFET must be able to withstand this transient voltage.
12V Application with 150V Transient Protection
Figure 20 shows a 12V application that withstands input
supply transients up to 150V. When the input voltage exceeds 17.9V, the OV resistive divider turns off the external
MOSFETs. As VIN rises to 150V, the gate of transistor M1
remains in the Off condition, thus preventing conduction
from VIN to VOUT. Note that M1 must have an operating
range above 150V.
Due to the high impedance nature of the charge pump that
drives the GATE pin, the total leakage on the GATE pin must
be kept low. The gate drive curves of Figure 2 were measured
with a 1µA load on the GATE pin. Therefore, the leakage on
the GATE pin must be no greater than 1µA in order to match
the curves of Figure 2. Higher leakage currents will result
in lower gate drive. The dual N-channel MOSFETs shown
in Table 1 all have a maximum GATE leakage current of
100nA. Additionally, Table 1 lists representative MOSFETs
that would work at different values of VIN.
Resistor R6 and diode D3 clamp the LTC4365 supply voltage to 50V. To prevent R6 from interfering with reverse
operation, the recommended value is 1k or less. Note that
the power handling capability of R6 must be considered in
order to avoid overheating during transients. D3 is shown
as a bidirectional clamp in order to achieve reverse-polarity
protection at VIN. M2 is also required in order to protect
VOUT from negative voltages at VIN and should have an
operating range beyond the breakdown of D3. If reverse
protection is not desired remove M2 and connect the
source of M1 directly to VOUT.
Layout Considerations
The trace length between the VIN pin and the drain of the
external MOSFET should be minimized, as well as the trace
length between the GATE pin of the LTC4365 and the gates
of the external MOSFETs.
Place the bypass capacitors at VOUT as close as possible
to the external MOSFET. Use high frequency ceramic
capacitors in addition to bulk capacitors to mitigate Hot
Swap ringing. Place the high frequency capacitors closest
to the MOSFET. Note that bulk capacitors mitigate ringing
by virtue of their ESR. Ceramic capacitors have low ESR
and can thus ring near their resonant frequency.
MOSFET Selection
To protect against a negative voltage at VIN, the external
N-channel MOSFETs must be configured in a back-toback arrangement. Dual N-channel packages are thus the
best choice. The MOSFET is selected based on its power
FDB33N25
M1
VIN
12V
M2
VOUT
R6
1k
R2
2050k
D3
R3
510k
GATE
VIN
SHDN
UV
FAULT
OV
R1
59k
VOUT
LTC4365
GND
OV = 17.9V
D3: SMAJ43CA BI-DIRECTIONAL
4365 F20
Figure 20. 12V Application Protected from 150V Transients
Rev. B
For more information www.analog.com
17
LTC4365
PACKAGE DESCRIPTION
TS8 Package
8-Lead Plastic TSOT-23
(Reference LTC DWG # 05-08-1637 Rev A)
0.40
MAX
2.90 BSC
(NOTE 4)
0.65
REF
1.22 REF
1.4 MIN
3.85 MAX 2.62 REF
2.80 BSC
1.50 – 1.75
(NOTE 4)
PIN ONE ID
RECOMMENDED SOLDER PAD LAYOUT
PER IPC CALCULATOR
0.22 – 0.36
8 PLCS (NOTE 3)
0.65 BSC
0.80 – 0.90
0.20 BSC
0.01 – 0.10
1.00 MAX
DATUM ‘A’
0.30 – 0.50 REF
1.95 BSC
0.09 – 0.20
(NOTE 3)
NOTE:
1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254mm
6. JEDEC PACKAGE REFERENCE IS MO-193
TS8 TSOT-23 0710 REV A
DDB Package
8-Lead Plastic DFN (3mm × 2mm)
(Reference LTC DWG # 05-08-1702 Rev B)
0.61 ±0.05
(2 SIDES)
3.00 ±0.10
(2 SIDES)
0.70 ±0.05
2.55 ±0.05
1.15 ±0.05
PACKAGE
OUTLINE
0.25 ± 0.05
0.50 BSC
2.20 ±0.05
(2 SIDES)
PIN 1 BAR
TOP MARK
(SEE NOTE 6)
0.200 REF
R = 0.115
TYP
5
R = 0.05
TYP
0.40 ± 0.10
8
2.00 ±0.10
(2 SIDES)
0.56 ± 0.05
(2 SIDES)
0.75 ±0.05
0 – 0.05
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
4
0.25 ± 0.05
1
PIN 1
R = 0.20 OR
0.25 × 45°
CHAMFER
(DDB8) DFN 0905 REV B
0.50 BSC
2.15 ±0.05
(2 SIDES)
BOTTOM VIEW—EXPOSED PAD
NOTE:
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE
Rev. B
18
For more information www.analog.com
LTC4365
REVISION HISTORY
REV
DATE
DESCRIPTION
A
09/13
Added LTC4365-1 Information
8, 9
Table 1: MOSFET for ≤30V changed to Si4214 from Si4230
10
Figure 13: Inserted R5, 100k resistor to SHDN pin
14
Updated Typical Application
09/19
Multiple
Operation section: Rewritten with new Figure 1
Added "Regulator Applications" with three subsections and Figures 17 to 20
B
PAGE NUMBER
16, 17
20
Added AEC-Q100 qualification and "W” part numbers
1, 3
Revised application examples (Figures 2 and 4) to support VOUT = 5V to 18V
9-12
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications
subject to change without notice. No license For
is granted
implication or
otherwise under any patent or patent rights of Analog Devices.
more by
information
www.analog.com
19
LTC4365
TYPICAL APPLICATION
LTC4365 Protects Step Down Regulator from –40V to 40V VIN Faults
SiSB46DN
DUAL N-CHANNEL
VIN
12V NOMINAL
VOUT
OUTPUT
5V
3.5A
10µF
VOUT PROTECTED
FROM –40V TO 40V
VIN
BD
RUN/SS BOOST
GATE
VIN
VOUT
15k
LTC4365
510k
680pF
SHDN
1820k
UV
FAULT
63.4k
97.6k
OV
54.9k
LT1913
VC
0.47µF
4.7µH
SW
RT
PG
FB
SYNC GND
536k
100k
47µF
OV = 18V
UV = 6.5V
GND
4365 TA02
RELATED PARTS
PART NUMBER
DESCRIPTION
COMMENTS
LT4363
Surge Stopper Overvoltage/Overcurrent Protection
Regulator
Wide Operating Range: 4V to 80V, Reverse Protection to –60V, Adjustable
Output Clamp Voltage
LTC4364
Surge Stopper with Ideal Diode
4V to 80V Operation, –40V Reverse Input, –20V Reverse Output
LTC4366
Floating Surge Stopper
9V to >500V Operation, 8-Pin TSOT and 3mm × 2mm DFN Packages
LTC4361
Overvoltage/Overcurrent Protection Controllers
5.8V Overvoltage Threshold, 85V Absolute Maximum
LTC2909
Triple/Dual Inputs UV/OV Negative Monitor
Pin Selectable Input Polarity Allows Negative and OV Monitoring
LTC2912/LTC2913
Single/Dual UV/OV Voltage Monitor
Ads UV and OV Trip Values, ±1.5% Threshold Accuracy
LTC2914
Quad UV/OV Monitor
For Positive and Negative Supplies
LTC2955
Pushbutton On/Off Controller
Automatic Turn-On, 1.5V to 36V Input, ±36V PB Input
LT4256
Positive 48V Hot Swap Controller with
Open-Circuit Detect
Foldback Current Limiting, Open-Circuit and Overcurrent Fault Output,
Up to 80V Supply
LTC4260
Positive High Voltage Hot Swap Controller with
ADC and I2C
Wide Operating Range 8.5V to 80V
LTC4352
Ideal MOSFET ORing Diode
External N-Channel MOSFETs Replace ORing Diodes, 0V to 18V
LTC4354
Negative Voltage Diode-OR Controller
Controls Two N-Channel MOSFETs, 1.2µs Turn-Off, –80V Operation
LTC4355
Positive Voltage Diode-OR Controller
Controls Two N-Channel MOSFETs, 0.4µs Turn-Off, 80V Operation
LT1913
Step-Down Switching Regulator
3.6V to 25V Input, 3.5A Maximum Current, 200kHz to 2.4MHz
Rev. B
20
09/19
www.analog.com
For more information www.analog.com
ANALOG DEVICES, INC. 2013–2019