0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTM4601IV-1#PBF

LTM4601IV-1#PBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    LGA118

  • 描述:

    非隔离 PoL 模块 直流转换器 1 输出 0.6 ~ 5V 12A 4.5V - 20V 输入

  • 数据手册
  • 价格&库存
LTM4601IV-1#PBF 数据手册
LTM4601/LTM4601-1 12A µModule Regulators with PLL, Output Tracking and Margining Description Features n n n n n n n n n n n n n n n n n Complete Switch Mode Power Supply Wide Input Voltage Range: 4.5V to 20V 12A DC Typical, 14A Peak Output Current 0.6V to 5V Output Voltage Output Voltage Tracking and Margining Parallel Multiple µModule Regulators for Current Sharing Differential Remote Sensing for Precision Regulation (LTM4601 Only) PLL Frequency Synchronization ±1.5% Regulation Current Foldback Protection (Disabled at Start-Up) SnPb or RoHS Compliant Finish UltraFast™ Transient Response Current Mode Control Up to 95% Efficiency at 5VIN, 3.3VOUT Programmable Soft-Start Output Overvoltage Protection Small Footprint, Low Profile (15mm × 15mm × 2.82mm) Surface Mount LGA and (15mm × 15mm × 3.42mm) BGA Packages The LTM®4601 is a complete 12A step-down switch mode DC/DC power supply with onboard switching controller, MOSFETs, inductor and all support components. The µModule® regulator is housed in small surface mount 15mm × 15mm × 2.82mm LGA and 15mm × 15mm × 3.42mm BGA packages. Operating over an input voltage range of 4.5V to 20V, the LTM4601 supports an output voltage range of 0.6V to 5V as well as output voltage tracking and margining. The high efficiency design delivers 12A continuous current (14A peak). Only bulk input and output capacitors are needed to complete the design. The low profile and light weight package easily mounts in unused space on the back side of PC boards for high density point of load regulation. The µModule regulator can be synchronized with an external clock for reducing undesirable frequency harmonics and allows PolyPhase® operation for high load currents. A high switching frequency and adaptive on-time current mode architecture deliver a very fast transient response to line and load changes without sacrificing stability. An onboard differential remote sense amplifier can be used to accurately regulate an output voltage independent of load current. The onboard remote sense amplifier is not available in the LTM4601-1. Applications Telecom and Networking Equipment Servers n Industrial Equipment n Point of Load Regulation n n L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and PolyPhase are registered trademarks and UltraFast and LTpowerCAD are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 5481178, 5847554, 6580258, 6304066, 6476589, 6774611, 6677210. Typical Application Efficiency and Power Loss vs Load Current 1.5V/12A Power Supply with 4.5V to 20V Input 95 CLOCK SYNC TRACK/SS CONTROL ON/OFF CIN R1 392k 5% MARGIN RUN COMP INTVCC DRVCC MPGM SGND PLLIN TRACK/SS VOUT LTM4601 PGND VFB MARG0 MARG1 VOUT 1.5V 12A 100pF MARGIN CONTROL COUT VOUT_LCL DIFFVOUT VOSNS+ VOSNS– fSET 3.5 85 12VIN 80 12VIN 70 1.5 POWER LOSS 55 4601 TA01a 2.0 5VIN 65 50 3.0 2.5 75 60 RSET 40.2k 4.0 5VIN 0 2 4 6 8 10 LOAD CURRENT (A) 1.0 12 14 4601 TA01b For more information www.linear.com/LTM4601 POWER LOSS (W) VIN PGOOD EFFICIENCY 90 EFFICIENCY (%) VIN 4.5V TO 20V 0.5 4601fe 1 LTM4601/LTM4601-1 Absolute Maximum Ratings (Note 1) INTVCC, DRVCC, VOUT_LCL, VOUT (VOUT ≤ 3.3V with DIFFVOUT )..................................................... –0.3V to 6V PLLIN, TRACK/SS, MPGM, MARG0, MARG1, PGOOD, fSET...............................–0.3V to INTVCC + 0.3V RUN (Note 5)................................................ –0.3V to 5V VFB, COMP................................................. –0.3V to 2.7V VIN.............................................................. –0.3V to 20V VOSNS+, VOSNS –...........................–0.3V to INTVCC + 0.3V Operating Temperature Range (Note 2)....–40°C to 85°C Junction Temperature............................................ 125°C Storage Temperature Range................... –55°C to 125°C Reflow (Peak Body) Temperature........................... 245°C fSET VIN MPGM COMP RUN fSET MARG0 MARG1 MARG1 DRVCC DRVCC VFB PGND PGOOD PGOOD SGND SGND VOSNS+/NC2* VOSNS+/NC2* DIFFVOUT/NC3* VOUT TRACK/SS VIN MARG0 VFB PGND PLLIN INTVCC MPGM COMP TOP VIEW RUN PLLIN INTVCC TOP VIEW TRACK/SS Pin Configuration DIFFVOUT/NC3* VOUT VOUT_LCL VOUT_LCL VOSNS–/NC1* VOSNS–/NC1* BGA PACKAGE 118-LEAD (15mm × 15mm × 3.42mm) LGA PACKAGE 118-LEAD (15mm × 15mm × 2.82mm) TJMAX = 125°C, θJA = 15.5°C/W, θJC = 6.5°C/W, θJA DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS WEIGHT = 1.9g *LTM4601-1 ONLY TJMAX = 125°C, θJA = 15°C/W, θJC = 6°C/W, θJA DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS WEIGHT = 1.7g *LTM4601-1 ONLY Order Information PART NUMBER PAD OR BALL FINISH LTM4601EV#PBF Au (RoHS) PART MARKING* DEVICE FINISH CODE PACKAGE TYPE LTM4601V e4 LGA MSL RATING 3 TEMPERATURE RANGE (Note 2) –40°C to 85°C LTM4601IV#PBF Au (RoHS) LTM4601V e4 LGA 3 –40°C to 85°C LTM4601EV-1#PBF Au (RoHS) LTM4601V-1 e4 LGA 3 –40°C to 85°C LTM4601IV-1#PBF Au (RoHS) LTM4601V-1 e4 LGA 3 –40°C to 85°C LTM4601EY#PBF SAC305 (RoHS) LTM4601Y e1 BGA 3 –40°C to 85°C LTM4601IY#PBF SAC305 (RoHS) LTM4601Y e1 BGA 3 –40°C to 85°C LTM4601EY-1#PBF SAC305 (RoHS) LTM4601Y-1 e1 BGA 3 –40°C to 85°C LTM4601IY-1#PBF SAC305 (RoHS) LTM4601Y-1 e1 BGA 3 –40°C to 85°C LTM4601IY SnPb (63/37) LTM4601Y e0 BGA 3 –40°C to 85°C LTM4601IY-1 SnPb (63/37) LTM4601Y-1 e0 BGA 3 –40°C to 85°C 2 4601fe For more information www.linear.com/LTM4601 LTM4601/LTM4601-1 Order Information Consult Marketing for parts specified with wider operating temperature ranges. *Device temperature grade is indicated by a label on the shipping container. Pad or ball finish code is per IPC/JEDEC J-STD-609. • Recommended LGA and BGA PCB Assembly and Manufacturing Procedures: www.linear.com/umodule/pcbassembly • Terminal Finish Part Marking: www.linear.com/leadfree • LGA and BGA Package and Tray Drawings: www.linear.com/packaging Electrical Characteristics The l denotes the specifications which apply over the –40°C to 85°C temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration. SYMBOL PARAMETER VIN(DC) Input DC Voltage VOUT(DC) Output Voltage CONDITIONS CIN = 10µF ×3, COUT = 200µF, RSET = 40.2k VIN = 5V, VOUT = 1.5V, IOUT = 0A VIN = 12V, VOUT = 1.5V, IOUT = 0A MIN l 4.5 l l 1.478 1.478 TYP MAX UNITS 20 V 1.5 1.5 1.522 1.522 V V 4 V Input Specifications VIN(UVLO) Undervoltage Lockout Threshold IOUT = 0A 3.2 IINRUSH(VIN) Input Inrush Current at Start-Up IOUT = 0A. VOUT = 1.5V VIN = 5V VIN = 12V 0.6 0.7 A A IQ(VIN,NOLOAD) Input Supply Bias Current VIN = 12V, No Switching VIN = 12V, VOUT = 1.5V, Switching Continuous VIN = 5V, No Switching VIN = 5V, VOUT = 1.5V, Switching Continuous Shutdown, RUN = 0, VIN = 12V 3.8 38 2.5 42 22 mA mA mA mA µA IS(VIN) Input Supply Current VIN = 12V, VOUT = 1.5V, IOUT = 12A VIN = 12V, VOUT = 3.3V, IOUT = 12A VIN = 5V, VOUT = 1.5V, IOUT = 12A 1.81 3.63 4.29 A A A INTVCC VIN = 12V, RUN > 2V No Load 4.7 5 5.3 V 12 A Output Specifications IOUTDC Output Continuous Current Range VIN = 12V, VOUT = 1.5V (Note 6) 0 ΔVOUT(LINE) Line Regulation Accuracy VOUT = 1.5V, IOUT = 0A, VIN from 4.5V to 20V l 0.3 % Load Regulation Accuracy VOUT = 1.5V, 0A to 12A (Note 6) VIN = 12V, with Remote Sense Amplifier VIN = 12V (LTM4601-1) l l 0.25 1 % % VOUT ΔVOUT(LOAD) VOUT VOUT(AC) Output Ripple Voltage IOUT = 0A, COUT = 2× 100µF X5R Ceramic VIN = 12V, VOUT = 1.5V VIN = 5V, VOUT = 1.5V 20 18 mVP-P mVP-P fS Output Ripple Voltage Frequency IOUT = 5A, VIN = 12V, VOUT = 1.5V 850 kHz ΔVOUT(START) Turn-On Overshoot COUT = 200µF, VOUT = 1.5V, IOUT = 0A, TRACK/SS = 10nF VIN = 12V VIN = 5V 20 20 mV mV COUT = 200µF, VOUT = 1.5V, TRACK/SS = Open, IOUT = 1A Resistive Load VIN = 12V VIN = 5V 0.5 0.5 ms ms tSTART Turn-On Time 4601fe For more information www.linear.com/LTM4601 3 LTM4601/LTM4601-1 Electrical Characteristics The l denotes the specifications which apply over the –40°C to 85°C temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration. SYMBOL PARAMETER CONDITIONS MIN ΔVOUTLS Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load, COUT = 2 × 22µF Ceramic, 470µF 4V Sanyo POSCAP VIN = 12V VIN = 5V tSETTLE Settling Time for Dynamic Load Step Load: 0% to 50%, or 50% to 0% of Full Load VIN = 12V IOUTPK Output Current Limit COUT = 200µF Ceramic VIN = 12V, VOUT = 1.5V VIN = 5V, VOUT = 1.5V TYP MAX UNITS 35 35 mV mV 25 µs 17 17 A A Remote Sense Amp (Note 3) (LTM4601 Only, Not Supported in the LTM4601-1) VOSNS+, VOSNS– CM Range Common Mode Input Voltage Range VIN = 12V, RUN > 2V 0 INTVCC – 1 V DIFFVOUT Range Output Voltage Range 0 INTVCC – 1 V VOS Input Offset Voltage Magnitude AV Differential Gain 1 V/V GBP Gain Bandwidth Product 3 MHz SR Slew Rate 2 V/µs 20 kW 100 dB RIN Input Resistance CMRR Common Mode Rejection Mode VIN = 12V, DIFFVOUT Load = 100k 1.25 VOSNS+ to GND mV Control Stage VFB Error Amplifier Input Voltage Accuracy IOUT = 0A, VOUT = 1.5V VRUN RUN Pin On/Off Threshold ITRACK/SS Soft-Start Charging Current VTRACK/SS = 0V tON(MIN) Minimum On Time (Note 4) tOFF(MIN) Minimum Off Time (Note 4) RPLLIN PLLIN Input Resistance IDRVCC Current into DRVCC Pin l 0.594 0.6 0.606 V 1 1.5 1.9 V –1.0 –1.5 –2.0 µA 50 100 ns 250 400 ns 50 VOUT = 1.5V, IOUT = 1A, DRVCC = 5V 60.098 kΩ 18 25 mA 60.4 60.702 kΩ RFBHI Resistor Between VOUT_LCL and VFB VMPGM Margin Reference Voltage 1.18 V VMARG0, VMARG1 MARG0, MARG1 Voltage Thresholds 1.4 V PGOOD Output ΔVFBH PGOOD Upper Threshold VFB Rising 7 10 13 % ΔVFBL PGOOD Lower Threshold VFB Falling –7 –10 –13 % ΔVFB(HYS) PGOOD Hysteresis VFB Returning Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTM4601 is tested under pulsed load conditions such that TJ ≈ TA. The LTM4601E/LTM4601E-1 are guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and 4 1.5 % correlation with statistical process controls. The LTM4601I/LTM4601I-1 are guaranteed over the –40°C to 85°C operating temperature range. Note 3: Remote sense amplifier recommended for ≤3.3V output. Note 4: 100% tested at wafer level only. Note 5: Limit current into RUN pin to less than 1mA. Note 6: See output current derating curves for different VIN, VOUT and TA. 4601fe For more information www.linear.com/LTM4601 LTM4601/LTM4601-1 Typical Performance Characteristics (See Figure 18 for all curves) Efficiency vs Load Current with 5VIN 100 95 100 95 95 85 80 75 0.6VOUT 1.2VOUT 1.5VOUT 2.5VOUT 3.3VOUT 70 65 0 5 90 85 80 75 70 0.6VOUT 1.2VOUT 1.5VOUT 2.5VOUT 3.3VOUT 5VOUT 65 60 55 10 50 15 EFFICIENCY (%) EFFICIENCY (%) EFFICIENCY (%) 100 90 90 60 Efficiency vs Load Current with 20VIN Efficiency vs Load Current with 12VIN 0 LOAD CURRENT (A) 80 75 65 15 60 0 10 5 LOAD CURRENT (A) 1.5V Transient Response 1.8V Transient Response VOUT 50mV/DIV VOUT 50mV/DIV VOUT 50mV/DIV 0A TO 6A LOAD STEP 0A TO 6A LOAD STEP 0A TO 6A LOAD STEP 4601 G04 20µs/DIV 1.5V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 2.5V Transient Response 4601 G05 20µs/DIV 1.8V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 4601 G06 3.3V Transient Response VOUT 50mV/DIV VOUT 50mV/DIV 0A TO 6A LOAD STEP 0A TO 6A LOAD STEP 20µs/DIV 2.5V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 15 4601 G03 4601 G02 1.2V Transient Response 20µs/DIV 1.2V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 1.2VOUT 1.5VOUT 2.5VOUT 3.3VOUT 5.0VOUT 70 10 5 LOAD CURRENT (A) 4601 G01 85 4601 G07 20µs/DIV 3.3V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 4601 G08 4601fe For more information www.linear.com/LTM4601 5 LTM4601/LTM4601-1 Typical Performance Characteristics (See Figure 18 for all curves) Start-Up, IOUT = 12A (Resistive Load) Start-Up, IOUT = 0A VOUT 0.5V/DIV VOUT 0.5V/DIV IIN 1A/DIV IIN 0.5A/DIV 5ms/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 5.5 VIN to VOUT Step-Down Ratio 3.3V OUTPUT WITH 130k FROM VOUT TO ION 4.5 5V OUTPUT WITH 100k RESISTOR ADDED FROM fSET TO GND 4.0 3.5 3.0 2.0 5V OUTPUT WITH NO RESISTOR ADDED FROM fSET TO GND 1.5 2.5V OUTPUT 1.0 1.8V OUTPUT 0.5 1.5V OUTPUT 2.5 0 TRACK/SS 0.5V/DIV VFB 0.5V/DIV VOUT 1V/DIV 2ms/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 1.2V OUTPUT 0 2 4 4601 G10 Track, IOUT = 12A 5.0 OUTPUT VOLTAGE (V) 2ms/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 4601 G09 4601 G12 6 8 10 12 14 16 18 20 INPUT VOLTAGE (V) 4601 G11 Short-Circuit Protection, IOUT = 0A VOUT 0.5V/DIV VOUT 0.5V/DIV IIN 1A/DIV IIN 1A/DIV 50µs/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 6 Short-Circuit Protection, IOUT = 12A 4601 G13 50µs/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 4601 G14 4601fe For more information www.linear.com/LTM4601 LTM4601/LTM4601-1 Pin Functions (See Package Description for Pin Assignment) VIN (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between VIN pins and PGND pins. VOUT (Bank 3): Power Output Pins. Apply output load between these pins and PGND pins. Recommend placing output decoupling capacitance directly between these pins and PGND pins. See Figure 15. PGND (Bank 2): Power ground pins for both input and output returns. TRACK/SS (Pin A9): Output Voltage Tracking and SoftStart Pin. When the module is configured as a master output, then a soft-start capacitor is placed from this pin to ground to control the master ramp rate. A soft-start capacitor can also be used for soft-start turn-on of a stand alone regulator. Slave operation is performed by putting a resistor divider from the master output to the ground, and connecting the center point of the divider to this pin. See the Applications Information section. NC1 (Pin M12): No internal connection on the LTM4601-1. MPGM (Pin A12): Programmable Margining Input. A resistor from this pin to ground sets a current that is equal to 1.18V/R. This current multiplied by 10kΩ will equal a value in millivolts that is a percentage of the 0.6V reference voltage. See the Applications Information section. To parallel LTM4601s, each requires an individual MPGM resistor. Do not tie MPGM pins together. VOSNS+ (Pin J12): (+) Input to the Remote Sense Amplifier. This pin connects to the output remote sense point. The remote sense amplifier is used for VOUT ≤3.3V. Tie to ground if not used. fSET (Pin B12): Frequency Set Internally to 850kHz. An external resistor can be placed from this pin to ground to increase frequency. See the Applications Information section for frequency adjustment. NC2 (Pin J12): No internal connection on the LTM4601-1. VFB (Pin F12): The Negative Input of the Error Amplifier. Internally, this pin is connected to VOUT_LCL pin with a 60.4k precision resistor. Different output voltages can be programmed with an additional resistor between VFB and SGND pins. See the Applications Information section. VOSNS– (Pin M12): (–) Input to the Remote Sense Amplifier. This pin connects to the ground remote sense point. The remote sense amplifier is used for VOUT ≤3.3V. Tie to INTVCC if not used. DIFFVOUT (Pin K12): Output of the Remote Sense Amplifier. This pin connects to the VOUT_LCL pin. Leave floating if not used. NC3 (Pin K12): No internal connection on the LTM4601-1. DRVCC (Pin E12): This pin normally connects to INTVCC for powering the internal MOSFET drivers. This pin can be biased up to 6V from an external supply with about 50mA capability, or an external circuit as shown in Figure 16. This improves efficiency at the higher input voltages by reducing power dissipation in the module. INTVCC (Pin A7): This pin is for additional decoupling of the 5V internal regulator. PLLIN (Pin A8): External Clock Synchronization Input to the Phase Detector. This pin is internally terminated to SGND with a 50k resistor. Apply a clock with a high level above 2V and below INTVCC. See the Applications Information section. MARG0 (Pin C12): This pin is the LSB logic input for the margining function. Together with the MARG1 pin it will determine if margin high, margin low or no margin state is applied. The pin has an internal pull-down resistor of 50k. See the Applications Information section. MARG1 (Pin D12): This pin is the MSB logic input for the margining function. Together with the MARG0 pin it will determine if margin high, margin low or no margin state is applied. The pin has an internal pull-down resistor of 50k. See the Applications Information section. 4601fe For more information www.linear.com/LTM4601 7 LTM4601/LTM4601-1 Pin Functions (See Package Description for Pin Assignment) SGND (Pin H12): Signal Ground. This pin connects to PGND at output capacitor point. See Figure 15. COMP (Pin A11): Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.7V corresponding to zero sense voltage (zero current). PGOOD (Pin G12): Output Voltage Power Good Indicator. Open-drain logic output that is pulled to ground when the output voltage is not within ±10% of the regulation point, after a 25µs power bad mask timer expires. 8 RUN (Pin A10): Run Control Pin. A voltage above 1.9V will turn on the module, and when below 1V, will turn off the module. A programmable UVLO function can be accomplished by connecting to a resistor divider from VIN to ground. See Figure 1. This pin has a 5.1V Zener to ground. Maximum pin voltage is 5V. Limit current into the RUN pin to less than 1mA. VOUT_LCL (Pin L12): VOUT connects directly to this pin to bypass the remote sense amplifier, or DIFFVOUT connects to this pin when the remote sense amplifier is used. VOUT_LCL can be connected to VOUT on the LTM4601-1, VOUT is internally connected to VOUT_LCL with 50Ω in the LTM4601-1. 4601fe For more information www.linear.com/LTM4601 LTM4601/LTM4601-1 Simplified Block Diagram VOUT_LCL VIN R1 UVLO FUNCTION >1.9V = ON 4.8V use 4.8V. LTM4601 minimum on-time = 100ns tON = ((VOUT • 10pF)/IfSET) LTM4601 minimum off-time = 400ns tOFF = t – tON, where t = 1/Frequency LTM4601 minimum off-time = 400ns tOFF = t – tON, where t = 1/Frequency Duty Cycle = tON/t or VOUT/VIN Duty Cycle (DC) = tON/t or VOUT/VIN Equations for setting frequency: Equations for setting frequency: IfSET = (VIN/(3 • RfSET)), for 20V operation, IfSET = 170µA, tON = ((4.8 • 10pF)/IfSET), tON = 282ns, where the internal RfSET is 39.2k. Frequency = (VOUT/(VIN • tON)) = (5V/(20 • 282ns)) ~ 886kHz. The inductor ripple current begins to get high at the higher input voltages due to a larger voltage across the inductor. This is noted in the Inductor Ripple Current vs Duty Cycle graph (Figure 3) where IL ≈ 10A at 25% duty cycle. The inductor ripple current can be lowered at the higher input voltages by adding an external resistor from fSET to ground to increase the switching frequency. An 8A ripple current is chosen, and the total peak current is equal to 1/2 of the 8A ripple current plus the output current. The 5V output current is limited to 8A, so the total peak current is less than 12A. This is below the 14A peak specified value. A 100k resistor is placed from fSET to ground, and the parallel combination of 100k and 39.2k equates to 28k. The IfSET calculation with 28k and 20V input voltage equals 238µA. This equates to a tON of 200ns. This will increase the switching frequency from ~886kHz to ~1.25MHz for the 20V to 5V conversion. The minimum on-time is above 100ns at 20V input. Since the switching frequency is approximately constant over input and output conditions, then the lower input voltage range is limited to 10V for the 1.25MHz operation due to the 400ns minimum off-time. Equation: tON = (VOUT/VIN) • (1/Frequency) equates to a 400ns on-time, and a 400ns off-time. The VIN to VOUT Step-Down Ratio curve reflects an operating range of 10V to 20V for 1.25MHz operation with a 100k resistor to ground, and an 8V to 16V operation for fSET floating. These modifications are made to provide wider input voltage ranges for the 5V output designs while limiting the inductor ripple current, and maintaining the 400ns minimum off-time. IfSET = (VIN /(3 • RfSET)), for 20V operation, IfSET = 170µA, tON = ((3.3 • 10pf)/IfSET), tON = 195ns, where the internal RfSET is 39.2k. Frequency = (VOUT/(VIN • tON)) = (3.3V/ (20 • 195ns)) ~ 846kHz. The minimum on-time and minimum off-time are within specification at 195ns and 980ns. The 4.5V minimum input for converting 3.3V output will not meet the minimum off-time specification of 400ns. tON = 868ns, Frequency = 850kHz, tOFF = 315ns. Solution Lower the switching frequency at lower input voltages to allow for higher duty cycles, and meet the 400ns minimum off-time at 4.5V input voltage. The off-time should be about 500ns, which includes a 100ns guard band. The duty cycle for (3.3V/4.5V) = ~73%. Frequency = (1 – DC)/tOFF or (1 – 0.73)/500ns = 540kHz. The switching frequency needs to be lowered to 540kHz at 4.5V input. tON = DC/ frequency, or 1.35µs. The fSET pin voltage is 1/3 of VIN, and the IfSET current equates to 38µA with the internal 39.2k. The IfSET current needs to be 24µA for 540kHz operation. A resistor can be placed from VOUT to fSET to lower the effective IfSET current out of the fSET pin to 24µA. The fSET pin is 4.5V/3 =1.5V and VOUT = 3.3V, therefore 130k will source 14µA into the fSET node and lower the IfSET current to 24µA. This enables the 540kHz operation and the 4.5V to 20V input operation for down converting to 3.3V output. The frequency will scale from 540kHz to 1.1 MHz over this input range. This provides for an effective output current of 8A over the input range. 4601fe For more information www.linear.com/LTM4601 21 LTM4601/LTM4601-1 Applications information VOUT VIN 10V TO 20V R2 100k TRACK/SS CONTROL R4 100k VIN PGOOD MPGM RUN COMP INTVCC DRVCC 5% MARGIN CIN 10µF 25V ×2 R1 392k 1% SGND REVIEW TEMPERATURE DERATING CURVE PLLIN TRACK/SS VOUT LTM4601-1 + C3 100pF VFB MARG0 MARG1 VOUT 5V 8A COUT1 100µF REFER TO 6.3V SANYO POSCAP TABLE 2 VOUT_LCL NC3 NC1 NC2 fSET PGND RfSET 100k RSET 8.25k MARGIN CONTROL IMPROVE EFFICIENCY FOR ≥12V INPUT SOT-323 DUAL CMSSH-3C3 4601 F16 Figure 16. 5V at 8A Design Without Differential Amplifier VIN 4.5V TO 16V VOUT R2 100k TRACK/SS CONTROL R4 100k VIN PGOOD PGOOD CIN 10µF 25V ×3 MPGM RUN COMP INTVCC DRVCC PLLIN TRACK/SS VOUT LTM4601 R1 392k SGND 5% MARGIN PGND REVIEW TEMPERATURE DERATING CURVE VFB MARG0 MARG1 VOUT_LCL DIFFVOUT VOSNS+ VOSNS– fSET C3 100pF + RfSET 130k MARGIN CONTROL VOUT 3.3V 10A COUT1 100µF 6.3V SANYO POSCAP RSET 13.3k 4601 F17 Figure 17. 3.3V at 10A Design 22 4601fe For more information www.linear.com/LTM4601 LTM4601/LTM4601-1 Applications information CLOCK SYNC C5 0.01µF VOUT VIN 4.5V TO 20V R2 100k R4 100k PGOOD CIN BULK OPT + CIN 10µF 25V ×3 CER PLLIN TRACK/SS VOUT VIN PGOOD MPGM RUN ON/OFF COMP INTVCC DRVCC R1 392k LTM4601 SGND PGND REVIEW TEMPERATURE DERATING CURVE VFB MARG0 MARG1 C3 100pF COUT1 100µF 6.3V MARGIN CONTROL VOUT_LCL DIFFVOUT VOSNS+ VOSNS– fSET RSET 40.2k 4601 F18 5% MARGIN + COUT2 470µF 6.3V VOUT 1.5V 12A REFER TO TABLE 2 FOR DIFFERENT OUTPUT VOLTAGE Figure 18. Typical 4.5V to 20V, 1.5V at 12A Design VOUT VIN 4.5V TO 20V 118k 1% R2 100k + C1 0.1µF LTC6908-1 1 2 3 V+ OUT1 GND OUT2 SET MOD 6 5 4 CLOCK SYNC 0° PHASE C5* 100µF 25V C2 10µF 25V ×2 R4 100k VIN PGOOD MPGM RUN COMP INTVCC DRVCC R1 392k SGND PLLIN TRACK/SS VOUT LTM4601 PGND VFB MARG0 MARG1 TRACK/SS CONTROL C6 220pF VOUT_LCL DIFFVOUT VOSNS+ VOSNS– C3 22µF 6.3V C4 470µF 6.3V VOUT 1.5V 24A + REFER TO TABLE 2 fSET 5% MARGIN 2-PHASE OSCILLATOR 60.4k + R SET N RSET N = NUMBER OF PHASES VOUT = 0.6V RSET 20k 100pF MARGIN CONTROL CLOCK SYNC 180° PHASE TRACK/SS CONTROL 4.5V TO 20V C7 0.033µF VIN PGOOD PGOOD MPGM RUN COMP INTVCC DRVCC C8 10µF 25V ×2 PLLIN TRACK/SS VOUT LTM4601-1 392k SGND PGND C3 22µF 6.3V VFB MARG0 MARG1 C4 470µF 6.3V REFER TO TABLE 2 VOUT_LCL NC3 NC2 NC1 fSET + 4601 F19 *C5 OPTIONAL TO REDUCE ANY LC RINGING. NOT NEEDED FOR LOW INDUCTANCE PLANE CONNECTION Figure 19. 2-Phase Parallel, 1.5V at 24A Design 4601fe For more information www.linear.com/LTM4601 23 24 + C11 100µF 35V OPT For more information www.linear.com/LTM4601 C2 10µF 25V ×3 VIN PGOOD SGND SGND MPGM RUN ON/OFF COMP INTVCC DRVCC R1 392k R3 100k 8V TO 16V 5% MARGIN PGOOD R2 100k 3.3V VIN PGOOD MPGM RUN ON/OFF COMP INTVCC DRVCC R27 392k 5% MARGIN C8 10µF 25V ×3 PGOOD R7 100k 8V TO 16V INTERMEDIATE BUS 3.3V R6 100k –48V INPUT fSET VOUT_LCL DIFFVOUT VOSNS+ VOSNS– PGND LTM4601 fSET VOUT_LCL DIFFVOUT VOSNS+ VOSNS– VFB MARG0 MARG1 PLLIN TRACK/SS VOUT CLOCK SYNC 3 PGND LTM4601 VFB MARG0 MARG1 PLLIN TRACK/SS VOUT MARGIN CONTROL C8 100pF R19 30.1k MARGIN CONTROL R8 13.3k R12 30.1k R21 60.4k C7 0.15µF C12 100pF TRACK/SS CONTROL CLOCK SYNC 1 3.3V + REFER TO TABLE 2 C3 22µF 6.3V + 1.8V AT 12A REFER TO TABLE 2 C9 22µF 6.3V R17 59k LTC6902 C4 470µF 6.3V C10 470µF 6.3V V+ SET DIV MOD PH GND OUT1 OUT4 OUT2 OUT3 3.3V AT 10A 4-PHASE OSCILLATOR 8V TO 16V C26 0.1µF C14 10µF 25V ×3 PGND LTM4601 VIN PGOOD SGND PGND LTM4601 fSET VOUT_LCL DIFFVOUT VOSNS+ VOSNS– VFB MARG0 MARG1 PLLIN TRACK/SS VOUT fSET VOUT_LCL DIFFVOUT VOSNS+ VOSNS– VFB MARG0 MARG1 PLLIN TRACK/SS VOUT CLOCK SYNC 4 SGND MPGM RUN ON/OFF COMP INTVCC DRVCC R14 392k R16 100k 8V TO 16V 5% MARGIN PGOOD R15 100k VIN PGOOD CLOCK SYNC 2 MPGM RUN ON/OFF COMP INTVCC DRVCC R9 392k 5% MARGIN 3.3V C14 10µF 25V ×3 8V TO 16V R11 100k PGOOD R10 100k 3.3V 4-Phase, Four Outputs (3.3V, 2.5V, 1.8V and 1.5V) with Coincident Tracking R18 19.1k R13 40.2k R25 60.4k 4601 TA02 MARGIN CONTROL C24 100pF R26 40.2k MARGIN CONTROL C18 100pF R24 19.1k R23 60.4k 3.3V 3.3V + REFER TO TABLE 2 C16 22µF 6.3V + 1.5V AT 12A REFER TO TABLE 2 C16 22µF 6.3V 2.5V AT 12A C15 470µF 6.3V C15 470µF 6.3V LTM4601/LTM4601-1 Typical Applications 4601fe aaa Z 0.630 ±0.025 Ø 118x 3.1750 3.1750 SUGGESTED PCB LAYOUT TOP VIEW 1.9050 PACKAGE TOP VIEW E 0.6350 0.0000 0.6350 4 1.9050 PIN “A1” CORNER 6.9850 5.7150 4.4450 4.4450 5.7150 6.9850 Y For more information www.linear.com/LTM4601 6.9850 5.7150 4.4450 3.1750 1.9050 0.6350 0.0000 0.6350 1.9050 3.1750 4.4450 5.7150 6.9850 X D aaa Z bbb Z 0.27 2.45 MIN 2.72 0.60 NOM 2.82 0.63 15.00 15.00 1.27 13.97 13.97 0.32 2.50 DIMENSIONS 0.37 2.55 0.15 0.10 0.05 MAX 2.92 0.66 NOTES DETAIL B PACKAGE SIDE VIEW A TOTAL NUMBER OF LGA PADS: 118 SYMBOL A b D E e F G H1 H2 aaa bbb eee H1 SUBSTRATE eee S X Y DETAIL A 0.630 ±0.025 SQ. 118x DETAIL B H2 MOLD CAP Z (Reference LTC DWG # 05-08-1801 Rev B) LGA Package 118-Lead (15mm × 15mm × 2.82mm) e b L K J G G F e E PACKAGE BOTTOM VIEW H D C B A DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE 4 7 TRAY PIN 1 BEVEL ! PACKAGE IN TRAY LOADING ORIENTATION LTMXXXXXX µModule 1 2 3 4 5 6 7 8 9 7 SEE NOTES C(0.30) PAD 1 10 11 12 LGA 118 1212 REV B PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY 6. THE TOTAL NUMBER OF PADS: 118 5. PRIMARY DATUM -Z- IS SEATING PLANE LAND DESIGNATION PER JESD MO-222, SPP-010 3 2. ALL DIMENSIONS ARE IN MILLIMETERS NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 COMPONENT PIN “A1” 3 SEE NOTES F b M DETAIL A LTM4601/LTM4601-1 Package Description Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. 25 4601fe aaa Z 0.630 ±0.025 Ø 118x 4 E PACKAGE TOP VIEW 3.1750 3.1750 SUGGESTED PCB LAYOUT TOP VIEW 1.9050 PIN “A1” CORNER 0.6350 0.0000 0.6350 Y For more information www.linear.com/LTM4601 6.9850 5.7150 4.4450 3.1750 1.9050 0.6350 0.0000 0.6350 1.9050 3.1750 4.4450 5.7150 6.9850 X D 2.45 – 2.55 aaa Z SYMBOL A A1 A2 b b1 D E e F G aaa bbb ccc ddd eee NOM 3.42 0.60 2.82 0.75 0.63 15.0 15.0 1.27 13.97 13.97 DIMENSIONS 0.15 0.10 0.20 0.30 0.15 MAX 3.62 0.70 2.92 0.90 0.66 NOTES DETAIL B PACKAGE SIDE VIEW TOTAL NUMBER OF BALLS: 118 MIN 3.22 0.50 2.72 0.60 0.60 b1 0.27 – 0.37 SUBSTRATE ddd M Z X Y eee M Z DETAIL A Øb (118 PLACES) DETAIL B MOLD CAP ccc Z A1 A2 A (Reference LTC DWG # 05-08-1903 Rev B) // bbb Z 26 1.9050 BGA Package 118-Lead (15mm × 15mm × 3.42mm) Z e b L K J G G F e E PACKAGE BOTTOM VIEW H D C B A DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE BALL DESIGNATION PER JESD MS-028 AND JEP95 7 TRAY PIN 1 BEVEL ! PACKAGE IN TRAY LOADING ORIENTATION LTMXXXXXX µModule 1 2 3 4 5 6 7 8 9 10 11 12 7 SEE NOTES PIN 1 BGA 118 1112 REV B PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY 6. SOLDER BALL COMPOSITION IS 96.5% Sn/3.0% Ag/0.5% Cu 5. PRIMARY DATUM -Z- IS SEATING PLANE 4 3 2. ALL DIMENSIONS ARE IN MILLIMETERS NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 COMPONENT PIN “A1” 3 SEE NOTES F b M DETAIL A LTM4601/LTM4601-1 Package Description Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. 4601fe 6.9850 5.7150 4.4450 4.4450 5.7150 6.9850 LTM4601/LTM4601-1 Package Description Table 5. Pin Assignment (Arranged by Pin Number) PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION A1 VIN B1 VIN C1 VIN D1 PGND E1 PGND F1 PGND A2 VIN B2 VIN C2 VIN D2 PGND E2 PGND F2 PGND A3 VIN B3 VIN C3 VIN D3 PGND E3 PGND F3 PGND A4 VIN B4 VIN C4 VIN D4 PGND E4 PGND F4 PGND A5 VIN B5 VIN C5 VIN D5 PGND E5 PGND F5 PGND A6 VIN B6 VIN C6 VIN D6 PGND E6 PGND F6 PGND A7 INTVCC B7 – C7 – D7 – E7 PGND F7 PGND A8 PLLIN B8 – C8 – D8 – E8 – F8 PGND A9 TRACK/SS B9 – C9 – D9 – E9 – F9 PGND A10 RUN B10 – C10 – D10 – E10 – F10 – A11 COMP B11 – C11 – D11 – E11 – F11 – A12 MPGM B12 fSET C12 MARG0 D12 MARG1 E12 DRVCC F12 VFB PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION G1 PGND H1 PGND J1 VOUT K1 VOUT L1 VOUT M1 VOUT G2 PGND H2 PGND J2 VOUT K2 VOUT L2 VOUT M2 VOUT G3 PGND H3 PGND J3 VOUT K3 VOUT L3 VOUT M3 VOUT G4 PGND H4 PGND J4 VOUT K4 VOUT L4 VOUT M4 VOUT G5 PGND H5 PGND J5 VOUT K5 VOUT L5 VOUT M5 VOUT G6 PGND H6 PGND J6 VOUT K6 VOUT L6 VOUT M6 VOUT G7 PGND H7 PGND J7 VOUT K7 VOUT L7 VOUT M7 VOUT G8 PGND H8 PGND J8 VOUT K8 VOUT L8 VOUT M8 VOUT G9 PGND H9 PGND J9 VOUT K9 VOUT L9 VOUT M9 VOUT G10 – H10 – J10 VOUT K10 VOUT L10 VOUT M10 VOUT G11 – H11 – J11 – K11 VOUT L11 VOUT M11 VOUT G12 PGOOD H12 SGND J12 VOSNS+/NC2* K12 DIFFVOUT/NC2* L12 VOUT_LCL M12 VOSNS–/NC1* *LTM4601-1 Only 4601fe For more information www.linear.com/LTM4601 27 LTM4601/LTM4601-1 Package Description Table 6. Pin Assignment (Arranged by Pin Function) PIN NAME PIN NAME A1 A2 A3 A4 A5 A6 VIN VIN VIN VIN VIN VIN D1 D2 D3 D4 D5 D6 PGND PGND PGND PGND PGND PGND B1 B2 B3 B4 B5 B6 VIN VIN VIN VIN VIN VIN C1 C2 C3 C4 C5 C6 VIN VIN VIN VIN VIN VIN E1 E2 E3 E4 E5 E6 E7 PGND PGND PGND PGND PGND PGND PGND F1 F2 F3 F4 F5 F6 F7 F8 F9 PGND PGND PGND PGND PGND PGND PGND PGND PGND G1 G2 G3 G4 G5 G6 G7 G8 G9 PGND PGND PGND PGND PGND PGND PGND PGND PGND H1 H2 H3 H4 H5 H6 H7 H8 H9 PGND PGND PGND PGND PGND PGND PGND PGND PGND 28 PIN NAME J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT PIN NAME A7 A8 A9 A10 A11 A12 INTVCC PLLIN TRACK/SS RUN COMP MPGM B12 fSET C12 MARG0 D12 MARG1 E12 DRVCC F12 VFB G12 PGOOD H12 SGND J12 VOSNS+/NC2* K12 DIFFVOUT/NC3* L12 VOUT_LCL M12 VOSNS–/NC1* *LTM4601-1 Only PIN NAME B7 B8 B9 B10 B11 - C7 C8 C9 C10 C11 - D7 D8 D9 D10 D11 - E8 E9 E10 E11 - F10 F11 - G10 G11 - H10 H11 - J11 - 4601fe For more information www.linear.com/LTM4601 LTM4601/LTM4601-1 Revision History (Revision history begins at Rev B) REV DATE DESCRIPTION PAGE NUMBER B 01/10 Added Note 5 2, 4 C 03/12 Revised entire data sheet to include the BGA package. D 02/14 Added SnPb BGA option E 04/14 Added LTM4601-1 BGA package diagram and package information 1 to 30 1, 2 2 4601fe Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representaFor more www.linear.com/LTM4601 tion that the interconnection of its information circuits as described herein will not infringe on existing patent rights. 29 LTM4601/LTM4601-1 Package Photo 2.82mm 15mm 3.42mm 15mm 15mm 15mm Related Parts PART NUMBER DESCRIPTION COMMENTS LTM4628 26V, Dual 8A, DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 26.5V, 0.6V ≤ VOUT ≤ 5V, Remote Sense Amplifier, Internal Temperature Sensing Output, 15mm × 15mm × 4.32mm LGA LTM4627 20V, 15A DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 20V, 0.6V ≤ VOUT ≤ 5V, PLL Input, VOUT Tracking, Remote Sense Amplifier, 15mm × 15mm × 4.32mm LGA LTM4611 1.5VIN(MIN), 15A DC/DC Step-Down μModule Regulator 1.5V ≤ VIN ≤ 5.5V, 0.8V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier, VOUT Tracking, 15mm × 15mm × 4.32mm LGA LTM4613 8A EN55022 Class B DC/DC Step-Down μModule Regulator 5V ≤ VIN ≤ 36V, 3.3V ≤ VOUT ≤ 15V, PLL Input, VOUT Tracking and Margining, 15mm × 15mm × 4.32mm LGA LTM4601AHV 28V, 12A DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 28V, 0.6V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier, VOUT Tracking and Margining, 15mm × 15mm × 2.82mm LGA or 15mm × 15mm × 3.42mm BGA LTM4601A 20V, 12A DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 20V, 0.6V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier, VOUT Tracking and Margining, 15mm × 15mm × 2.82mm LGA or 15mm × 15mm × 3.42mm BGA LTM8027 60V, 4A DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 60V, 2.5V ≤ VOUT ≤ 24V, CLK Input, 15mm × 15mm × 4.32mm LGA LTM8032 36V, 2A EN55022 Class B DC/DC Step-Down μModule Regulator 3.6V ≤ VIN ≤ 36V, 0.8V ≤ VOUT ≤ 10V, Synchronizable, 9mm × 15mm × 2.82mm LGA or 9mm × 15mm × 3.42mm BGA LTM8061 32V, 2A Step-Down μModule Battery Charger with Programmable Input Current Limit Compatible with Single Cell or Dual Cell Li-Ion or Li-Poly Battery Stacks (4.1V, 4.2V, 8.2V, or 8.4V), 4.95V ≤ VIN ≤ 32V, C/10 or Adjustable Timer Charge Termination, NTC Resistor Monitor Input, 9mm × 15mm × 4.32mm LGA 30 This product contains technology licensed from Silicon Semiconductor Corporation. Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 For more information www.linear.com/LTM4601 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LTM4601 ® 4601fe LT 0414 REV E • PRINTED IN USA  LINEAR TECHNOLOGY CORPORATION 2007
LTM4601IV-1#PBF 价格&库存

很抱歉,暂时无法提供与“LTM4601IV-1#PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货