LTM4601/LTM4601-1
12A µModule Regulators
with PLL, Output Tracking
and Margining
Description
Features
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Complete Switch Mode Power Supply
Wide Input Voltage Range: 4.5V to 20V
12A DC Typical, 14A Peak Output Current
0.6V to 5V Output Voltage
Output Voltage Tracking and Margining
Parallel Multiple µModule Regulators for Current
Sharing
Differential Remote Sensing for Precision
Regulation (LTM4601 Only)
PLL Frequency Synchronization
±1.5% Regulation
Current Foldback Protection (Disabled at Start-Up)
SnPb or RoHS Compliant Finish
UltraFast™ Transient Response
Current Mode Control
Up to 95% Efficiency at 5VIN, 3.3VOUT
Programmable Soft-Start
Output Overvoltage Protection
Small Footprint, Low Profile
(15mm × 15mm × 2.82mm) Surface Mount LGA and
(15mm × 15mm × 3.42mm) BGA Packages
The LTM®4601 is a complete 12A step-down switch mode
DC/DC power supply with onboard switching controller,
MOSFETs, inductor and all support components. The
µModule® regulator is housed in small surface mount
15mm × 15mm × 2.82mm LGA and 15mm × 15mm ×
3.42mm BGA packages. Operating over an input voltage
range of 4.5V to 20V, the LTM4601 supports an output
voltage range of 0.6V to 5V as well as output voltage
tracking and margining. The high efficiency design delivers 12A continuous current (14A peak). Only bulk input
and output capacitors are needed to complete the design.
The low profile and light weight package easily mounts
in unused space on the back side of PC boards for high
density point of load regulation. The µModule regulator
can be synchronized with an external clock for reducing
undesirable frequency harmonics and allows PolyPhase®
operation for high load currents.
A high switching frequency and adaptive on-time current
mode architecture deliver a very fast transient response
to line and load changes without sacrificing stability. An
onboard differential remote sense amplifier can be used
to accurately regulate an output voltage independent of
load current. The onboard remote sense amplifier is not
available in the LTM4601-1.
Applications
Telecom and Networking Equipment
Servers
n Industrial Equipment
n Point of Load Regulation
n
n
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and PolyPhase are registered
trademarks and UltraFast and LTpowerCAD are trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners. Protected by U.S. Patents
including 5481178, 5847554, 6580258, 6304066, 6476589, 6774611, 6677210.
Typical Application
Efficiency and Power Loss
vs Load Current
1.5V/12A Power Supply with 4.5V to 20V Input
95
CLOCK SYNC
TRACK/SS CONTROL
ON/OFF
CIN
R1
392k
5% MARGIN
RUN
COMP
INTVCC
DRVCC
MPGM
SGND
PLLIN TRACK/SS
VOUT
LTM4601
PGND
VFB
MARG0
MARG1
VOUT
1.5V
12A
100pF
MARGIN
CONTROL
COUT
VOUT_LCL
DIFFVOUT
VOSNS+
VOSNS–
fSET
3.5
85
12VIN
80
12VIN
70
1.5
POWER LOSS
55
4601 TA01a
2.0
5VIN
65
50
3.0
2.5
75
60
RSET
40.2k
4.0
5VIN
0
2
4
6
8
10
LOAD CURRENT (A)
1.0
12
14
4601 TA01b
For more information www.linear.com/LTM4601
POWER LOSS (W)
VIN
PGOOD
EFFICIENCY
90
EFFICIENCY (%)
VIN
4.5V TO 20V
0.5
4601fe
1
LTM4601/LTM4601-1
Absolute Maximum Ratings
(Note 1)
INTVCC, DRVCC, VOUT_LCL, VOUT (VOUT ≤ 3.3V with
DIFFVOUT )..................................................... –0.3V to 6V
PLLIN, TRACK/SS, MPGM, MARG0, MARG1,
PGOOD, fSET...............................–0.3V to INTVCC + 0.3V
RUN (Note 5)................................................ –0.3V to 5V
VFB, COMP................................................. –0.3V to 2.7V
VIN.............................................................. –0.3V to 20V
VOSNS+, VOSNS –...........................–0.3V to INTVCC + 0.3V
Operating Temperature Range (Note 2)....–40°C to 85°C
Junction Temperature............................................ 125°C
Storage Temperature Range................... –55°C to 125°C
Reflow (Peak Body) Temperature........................... 245°C
fSET
VIN
MPGM
COMP
RUN
fSET
MARG0
MARG1
MARG1
DRVCC
DRVCC
VFB
PGND
PGOOD
PGOOD
SGND
SGND
VOSNS+/NC2*
VOSNS+/NC2*
DIFFVOUT/NC3*
VOUT
TRACK/SS
VIN
MARG0
VFB
PGND
PLLIN
INTVCC
MPGM
COMP
TOP VIEW
RUN
PLLIN
INTVCC
TOP VIEW
TRACK/SS
Pin Configuration
DIFFVOUT/NC3*
VOUT
VOUT_LCL
VOUT_LCL
VOSNS–/NC1*
VOSNS–/NC1*
BGA PACKAGE
118-LEAD (15mm × 15mm × 3.42mm)
LGA PACKAGE
118-LEAD (15mm × 15mm × 2.82mm)
TJMAX = 125°C, θJA = 15.5°C/W, θJC = 6.5°C/W,
θJA DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS
WEIGHT = 1.9g
*LTM4601-1 ONLY
TJMAX = 125°C, θJA = 15°C/W, θJC = 6°C/W,
θJA DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS
WEIGHT = 1.7g
*LTM4601-1 ONLY
Order Information
PART NUMBER
PAD OR BALL FINISH
LTM4601EV#PBF
Au (RoHS)
PART MARKING*
DEVICE
FINISH CODE
PACKAGE
TYPE
LTM4601V
e4
LGA
MSL
RATING
3
TEMPERATURE RANGE
(Note 2)
–40°C to 85°C
LTM4601IV#PBF
Au (RoHS)
LTM4601V
e4
LGA
3
–40°C to 85°C
LTM4601EV-1#PBF
Au (RoHS)
LTM4601V-1
e4
LGA
3
–40°C to 85°C
LTM4601IV-1#PBF
Au (RoHS)
LTM4601V-1
e4
LGA
3
–40°C to 85°C
LTM4601EY#PBF
SAC305 (RoHS)
LTM4601Y
e1
BGA
3
–40°C to 85°C
LTM4601IY#PBF
SAC305 (RoHS)
LTM4601Y
e1
BGA
3
–40°C to 85°C
LTM4601EY-1#PBF
SAC305 (RoHS)
LTM4601Y-1
e1
BGA
3
–40°C to 85°C
LTM4601IY-1#PBF
SAC305 (RoHS)
LTM4601Y-1
e1
BGA
3
–40°C to 85°C
LTM4601IY
SnPb (63/37)
LTM4601Y
e0
BGA
3
–40°C to 85°C
LTM4601IY-1
SnPb (63/37)
LTM4601Y-1
e0
BGA
3
–40°C to 85°C
2
4601fe
For more information www.linear.com/LTM4601
LTM4601/LTM4601-1
Order Information
Consult Marketing for parts specified with wider operating temperature
ranges. *Device temperature grade is indicated by a label on the shipping
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.
• Recommended LGA and BGA PCB Assembly and Manufacturing
Procedures:
www.linear.com/umodule/pcbassembly
• Terminal Finish Part Marking:
www.linear.com/leadfree
• LGA and BGA Package and Tray Drawings:
www.linear.com/packaging
Electrical Characteristics
The l denotes the specifications which apply over the –40°C to 85°C
temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration.
SYMBOL
PARAMETER
VIN(DC)
Input DC Voltage
VOUT(DC)
Output Voltage
CONDITIONS
CIN = 10µF ×3, COUT = 200µF, RSET = 40.2k
VIN = 5V, VOUT = 1.5V, IOUT = 0A
VIN = 12V, VOUT = 1.5V, IOUT = 0A
MIN
l
4.5
l
l
1.478
1.478
TYP
MAX
UNITS
20
V
1.5
1.5
1.522
1.522
V
V
4
V
Input Specifications
VIN(UVLO)
Undervoltage Lockout Threshold
IOUT = 0A
3.2
IINRUSH(VIN)
Input Inrush Current at Start-Up
IOUT = 0A. VOUT = 1.5V
VIN = 5V
VIN = 12V
0.6
0.7
A
A
IQ(VIN,NOLOAD)
Input Supply Bias Current
VIN = 12V, No Switching
VIN = 12V, VOUT = 1.5V, Switching Continuous
VIN = 5V, No Switching
VIN = 5V, VOUT = 1.5V, Switching Continuous
Shutdown, RUN = 0, VIN = 12V
3.8
38
2.5
42
22
mA
mA
mA
mA
µA
IS(VIN)
Input Supply Current
VIN = 12V, VOUT = 1.5V, IOUT = 12A
VIN = 12V, VOUT = 3.3V, IOUT = 12A
VIN = 5V, VOUT = 1.5V, IOUT = 12A
1.81
3.63
4.29
A
A
A
INTVCC
VIN = 12V, RUN > 2V
No Load
4.7
5
5.3
V
12
A
Output Specifications
IOUTDC
Output Continuous Current Range
VIN = 12V, VOUT = 1.5V (Note 6)
0
ΔVOUT(LINE)
Line Regulation Accuracy
VOUT = 1.5V, IOUT = 0A, VIN from 4.5V to 20V
l
0.3
%
Load Regulation Accuracy
VOUT = 1.5V, 0A to 12A (Note 6)
VIN = 12V, with Remote Sense Amplifier
VIN = 12V (LTM4601-1)
l
l
0.25
1
%
%
VOUT
ΔVOUT(LOAD)
VOUT
VOUT(AC)
Output Ripple Voltage
IOUT = 0A, COUT = 2× 100µF X5R Ceramic
VIN = 12V, VOUT = 1.5V
VIN = 5V, VOUT = 1.5V
20
18
mVP-P
mVP-P
fS
Output Ripple Voltage Frequency
IOUT = 5A, VIN = 12V, VOUT = 1.5V
850
kHz
ΔVOUT(START)
Turn-On Overshoot
COUT = 200µF, VOUT = 1.5V, IOUT = 0A,
TRACK/SS = 10nF
VIN = 12V
VIN = 5V
20
20
mV
mV
COUT = 200µF, VOUT = 1.5V, TRACK/SS = Open,
IOUT = 1A Resistive Load
VIN = 12V
VIN = 5V
0.5
0.5
ms
ms
tSTART
Turn-On Time
4601fe
For more information www.linear.com/LTM4601
3
LTM4601/LTM4601-1
Electrical Characteristics
The l denotes the specifications which apply over the –40°C to 85°C
temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration.
SYMBOL
PARAMETER
CONDITIONS
MIN
ΔVOUTLS
Peak Deviation for Dynamic Load
Load: 0% to 50% to 0% of Full Load,
COUT = 2 × 22µF Ceramic, 470µF 4V Sanyo
POSCAP
VIN = 12V
VIN = 5V
tSETTLE
Settling Time for Dynamic Load Step Load: 0% to 50%, or 50% to 0% of Full Load
VIN = 12V
IOUTPK
Output Current Limit
COUT = 200µF Ceramic
VIN = 12V, VOUT = 1.5V
VIN = 5V, VOUT = 1.5V
TYP
MAX
UNITS
35
35
mV
mV
25
µs
17
17
A
A
Remote Sense Amp (Note 3) (LTM4601 Only, Not Supported in the LTM4601-1)
VOSNS+, VOSNS–
CM Range
Common Mode Input Voltage Range VIN = 12V, RUN > 2V
0
INTVCC – 1
V
DIFFVOUT Range
Output Voltage Range
0
INTVCC – 1
V
VOS
Input Offset Voltage Magnitude
AV
Differential Gain
1
V/V
GBP
Gain Bandwidth Product
3
MHz
SR
Slew Rate
2
V/µs
20
kW
100
dB
RIN
Input Resistance
CMRR
Common Mode Rejection Mode
VIN = 12V, DIFFVOUT Load = 100k
1.25
VOSNS+ to GND
mV
Control Stage
VFB
Error Amplifier Input Voltage
Accuracy
IOUT = 0A, VOUT = 1.5V
VRUN
RUN Pin On/Off Threshold
ITRACK/SS
Soft-Start Charging Current
VTRACK/SS = 0V
tON(MIN)
Minimum On Time
(Note 4)
tOFF(MIN)
Minimum Off Time
(Note 4)
RPLLIN
PLLIN Input Resistance
IDRVCC
Current into DRVCC Pin
l
0.594
0.6
0.606
V
1
1.5
1.9
V
–1.0
–1.5
–2.0
µA
50
100
ns
250
400
ns
50
VOUT = 1.5V, IOUT = 1A, DRVCC = 5V
60.098
kΩ
18
25
mA
60.4
60.702
kΩ
RFBHI
Resistor Between VOUT_LCL and VFB
VMPGM
Margin Reference Voltage
1.18
V
VMARG0, VMARG1
MARG0, MARG1 Voltage Thresholds
1.4
V
PGOOD Output
ΔVFBH
PGOOD Upper Threshold
VFB Rising
7
10
13
%
ΔVFBL
PGOOD Lower Threshold
VFB Falling
–7
–10
–13
%
ΔVFB(HYS)
PGOOD Hysteresis
VFB Returning
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTM4601 is tested under pulsed load conditions such that
TJ ≈ TA. The LTM4601E/LTM4601E-1 are guaranteed to meet performance
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C
operating temperature range are assured by design, characterization and
4
1.5
%
correlation with statistical process controls. The LTM4601I/LTM4601I-1
are guaranteed over the –40°C to 85°C operating temperature range.
Note 3: Remote sense amplifier recommended for ≤3.3V output.
Note 4: 100% tested at wafer level only.
Note 5: Limit current into RUN pin to less than 1mA.
Note 6: See output current derating curves for different VIN, VOUT and TA.
4601fe
For more information www.linear.com/LTM4601
LTM4601/LTM4601-1
Typical Performance Characteristics (See Figure 18 for all curves)
Efficiency vs Load Current
with 5VIN
100
95
100
95
95
85
80
75
0.6VOUT
1.2VOUT
1.5VOUT
2.5VOUT
3.3VOUT
70
65
0
5
90
85
80
75
70
0.6VOUT
1.2VOUT
1.5VOUT
2.5VOUT
3.3VOUT
5VOUT
65
60
55
10
50
15
EFFICIENCY (%)
EFFICIENCY (%)
EFFICIENCY (%)
100
90
90
60
Efficiency vs Load Current
with 20VIN
Efficiency vs Load Current
with 12VIN
0
LOAD CURRENT (A)
80
75
65
15
60
0
10
5
LOAD CURRENT (A)
1.5V Transient Response
1.8V Transient Response
VOUT
50mV/DIV
VOUT
50mV/DIV
VOUT
50mV/DIV
0A TO 6A
LOAD STEP
0A TO 6A
LOAD STEP
0A TO 6A
LOAD STEP
4601 G04
20µs/DIV
1.5V AT 6A/µs LOAD STEP
COUT = 3 • 22µF 6.3V CERAMICS
470µF 4V SANYO POSCAP
C3 = 100pF
2.5V Transient Response
4601 G05
20µs/DIV
1.8V AT 6A/µs LOAD STEP
COUT = 3 • 22µF 6.3V CERAMICS
470µF 4V SANYO POSCAP
C3 = 100pF
4601 G06
3.3V Transient Response
VOUT
50mV/DIV
VOUT
50mV/DIV
0A TO 6A
LOAD STEP
0A TO 6A
LOAD STEP
20µs/DIV
2.5V AT 6A/µs LOAD STEP
COUT = 3 • 22µF 6.3V CERAMICS
470µF 4V SANYO POSCAP
C3 = 100pF
15
4601 G03
4601 G02
1.2V Transient Response
20µs/DIV
1.2V AT 6A/µs LOAD STEP
COUT = 3 • 22µF 6.3V CERAMICS
470µF 4V SANYO POSCAP
C3 = 100pF
1.2VOUT
1.5VOUT
2.5VOUT
3.3VOUT
5.0VOUT
70
10
5
LOAD CURRENT (A)
4601 G01
85
4601 G07
20µs/DIV
3.3V AT 6A/µs LOAD STEP
COUT = 3 • 22µF 6.3V CERAMICS
470µF 4V SANYO POSCAP
C3 = 100pF
4601 G08
4601fe
For more information www.linear.com/LTM4601
5
LTM4601/LTM4601-1
Typical Performance Characteristics (See Figure 18 for all curves)
Start-Up, IOUT = 12A
(Resistive Load)
Start-Up, IOUT = 0A
VOUT
0.5V/DIV
VOUT
0.5V/DIV
IIN
1A/DIV
IIN
0.5A/DIV
5ms/DIV
VIN = 12V
VOUT = 1.5V
COUT = 470µF, 3 × 22µF
SOFT-START = 10nF
5.5
VIN to VOUT Step-Down Ratio
3.3V OUTPUT WITH
130k FROM VOUT
TO ION
4.5
5V OUTPUT WITH
100k RESISTOR
ADDED FROM fSET
TO GND
4.0
3.5
3.0
2.0
5V OUTPUT WITH
NO RESISTOR ADDED
FROM fSET TO GND
1.5
2.5V OUTPUT
1.0
1.8V OUTPUT
0.5
1.5V OUTPUT
2.5
0
TRACK/SS
0.5V/DIV
VFB
0.5V/DIV
VOUT
1V/DIV
2ms/DIV
VIN = 12V
VOUT = 1.5V
COUT = 470µF, 3 × 22µF
SOFT-START = 10nF
1.2V OUTPUT
0
2
4
4601 G10
Track, IOUT = 12A
5.0
OUTPUT VOLTAGE (V)
2ms/DIV
VIN = 12V
VOUT = 1.5V
COUT = 470µF, 3 × 22µF
SOFT-START = 10nF
4601 G09
4601 G12
6 8 10 12 14 16 18 20
INPUT VOLTAGE (V)
4601 G11
Short-Circuit Protection, IOUT = 0A
VOUT
0.5V/DIV
VOUT
0.5V/DIV
IIN
1A/DIV
IIN
1A/DIV
50µs/DIV
VIN = 12V
VOUT = 1.5V
COUT = 470µF, 3 × 22µF
SOFT-START = 10nF
6
Short-Circuit Protection, IOUT = 12A
4601 G13
50µs/DIV
VIN = 12V
VOUT = 1.5V
COUT = 470µF, 3 × 22µF
SOFT-START = 10nF
4601 G14
4601fe
For more information www.linear.com/LTM4601
LTM4601/LTM4601-1
Pin Functions
(See Package Description for Pin Assignment)
VIN (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing
input decoupling capacitance directly between VIN pins
and PGND pins.
VOUT (Bank 3): Power Output Pins. Apply output load
between these pins and PGND pins. Recommend placing
output decoupling capacitance directly between these pins
and PGND pins. See Figure 15.
PGND (Bank 2): Power ground pins for both input and
output returns.
TRACK/SS (Pin A9): Output Voltage Tracking and SoftStart Pin. When the module is configured as a master
output, then a soft-start capacitor is placed from this pin
to ground to control the master ramp rate. A soft-start
capacitor can also be used for soft-start turn-on of a stand
alone regulator. Slave operation is performed by putting
a resistor divider from the master output to the ground,
and connecting the center point of the divider to this pin.
See the Applications Information section.
NC1 (Pin M12): No internal connection on the LTM4601-1.
MPGM (Pin A12): Programmable Margining Input. A resistor from this pin to ground sets a current that is equal
to 1.18V/R. This current multiplied by 10kΩ will equal a
value in millivolts that is a percentage of the 0.6V reference voltage. See the Applications Information section.
To parallel LTM4601s, each requires an individual MPGM
resistor. Do not tie MPGM pins together.
VOSNS+ (Pin J12): (+) Input to the Remote Sense Amplifier. This pin connects to the output remote sense point.
The remote sense amplifier is used for VOUT ≤3.3V. Tie to
ground if not used.
fSET (Pin B12): Frequency Set Internally to 850kHz. An
external resistor can be placed from this pin to ground
to increase frequency. See the Applications Information
section for frequency adjustment.
NC2 (Pin J12): No internal connection on the LTM4601-1.
VFB (Pin F12): The Negative Input of the Error Amplifier.
Internally, this pin is connected to VOUT_LCL pin with a
60.4k precision resistor. Different output voltages can be
programmed with an additional resistor between VFB and
SGND pins. See the Applications Information section.
VOSNS– (Pin M12): (–) Input to the Remote Sense Amplifier. This pin connects to the ground remote sense point.
The remote sense amplifier is used for VOUT ≤3.3V. Tie to
INTVCC if not used.
DIFFVOUT (Pin K12): Output of the Remote Sense Amplifier. This pin connects to the VOUT_LCL pin. Leave floating
if not used.
NC3 (Pin K12): No internal connection on the LTM4601-1.
DRVCC (Pin E12): This pin normally connects to INTVCC
for powering the internal MOSFET drivers. This pin can be
biased up to 6V from an external supply with about 50mA
capability, or an external circuit as shown in Figure 16.
This improves efficiency at the higher input voltages by
reducing power dissipation in the module.
INTVCC (Pin A7): This pin is for additional decoupling of
the 5V internal regulator.
PLLIN (Pin A8): External Clock Synchronization Input
to the Phase Detector. This pin is internally terminated
to SGND with a 50k resistor. Apply a clock with a high
level above 2V and below INTVCC. See the Applications
Information section.
MARG0 (Pin C12): This pin is the LSB logic input for the
margining function. Together with the MARG1 pin it will
determine if margin high, margin low or no margin state
is applied. The pin has an internal pull-down resistor of
50k. See the Applications Information section.
MARG1 (Pin D12): This pin is the MSB logic input for the
margining function. Together with the MARG0 pin it will
determine if margin high, margin low or no margin state
is applied. The pin has an internal pull-down resistor of
50k. See the Applications Information section.
4601fe
For more information www.linear.com/LTM4601
7
LTM4601/LTM4601-1
Pin Functions
(See Package Description for Pin Assignment)
SGND (Pin H12): Signal Ground. This pin connects to
PGND at output capacitor point. See Figure 15.
COMP (Pin A11): Current Control Threshold and Error
Amplifier Compensation Point. The current comparator
threshold increases with this control voltage. The voltage
ranges from 0V to 2.4V with 0.7V corresponding to zero
sense voltage (zero current).
PGOOD (Pin G12): Output Voltage Power Good Indicator.
Open-drain logic output that is pulled to ground when the
output voltage is not within ±10% of the regulation point,
after a 25µs power bad mask timer expires.
8
RUN (Pin A10): Run Control Pin. A voltage above 1.9V
will turn on the module, and when below 1V, will turn
off the module. A programmable UVLO function can be
accomplished by connecting to a resistor divider from
VIN to ground. See Figure 1. This pin has a 5.1V Zener to
ground. Maximum pin voltage is 5V. Limit current into the
RUN pin to less than 1mA.
VOUT_LCL (Pin L12): VOUT connects directly to this pin
to bypass the remote sense amplifier, or DIFFVOUT connects to this pin when the remote sense amplifier is used.
VOUT_LCL can be connected to VOUT on the LTM4601-1,
VOUT is internally connected to VOUT_LCL with 50Ω in the
LTM4601-1.
4601fe
For more information www.linear.com/LTM4601
LTM4601/LTM4601-1
Simplified Block Diagram
VOUT_LCL
VIN
R1
UVLO
FUNCTION
>1.9V = ON
4.8V use 4.8V.
LTM4601 minimum on-time = 100ns
tON = ((VOUT • 10pF)/IfSET)
LTM4601 minimum off-time = 400ns
tOFF = t – tON, where t = 1/Frequency
LTM4601 minimum off-time = 400ns
tOFF = t – tON, where t = 1/Frequency
Duty Cycle = tON/t or VOUT/VIN
Duty Cycle (DC) = tON/t or VOUT/VIN
Equations for setting frequency:
Equations for setting frequency:
IfSET = (VIN/(3 • RfSET)), for 20V operation, IfSET = 170µA,
tON = ((4.8 • 10pF)/IfSET), tON = 282ns, where the internal
RfSET is 39.2k. Frequency = (VOUT/(VIN • tON)) = (5V/(20
• 282ns)) ~ 886kHz. The inductor ripple current begins
to get high at the higher input voltages due to a larger
voltage across the inductor. This is noted in the Inductor
Ripple Current vs Duty Cycle graph (Figure 3) where IL ≈
10A at 25% duty cycle. The inductor ripple current can be
lowered at the higher input voltages by adding an external
resistor from fSET to ground to increase the switching
frequency. An 8A ripple current is chosen, and the total
peak current is equal to 1/2 of the 8A ripple current plus
the output current. The 5V output current is limited to 8A,
so the total peak current is less than 12A. This is below the
14A peak specified value. A 100k resistor is placed from
fSET to ground, and the parallel combination of 100k and
39.2k equates to 28k. The IfSET calculation with 28k and
20V input voltage equals 238µA. This equates to a tON of
200ns. This will increase the switching frequency from
~886kHz to ~1.25MHz for the 20V to 5V conversion. The
minimum on-time is above 100ns at 20V input. Since
the switching frequency is approximately constant over
input and output conditions, then the lower input voltage
range is limited to 10V for the 1.25MHz operation due to
the 400ns minimum off-time. Equation: tON = (VOUT/VIN)
• (1/Frequency) equates to a 400ns on-time, and a 400ns
off-time. The VIN to VOUT Step-Down Ratio curve reflects
an operating range of 10V to 20V for 1.25MHz operation
with a 100k resistor to ground, and an 8V to 16V operation
for fSET floating. These modifications are made to provide
wider input voltage ranges for the 5V output designs while
limiting the inductor ripple current, and maintaining the
400ns minimum off-time.
IfSET = (VIN /(3 • RfSET)), for 20V operation, IfSET = 170µA,
tON = ((3.3 • 10pf)/IfSET), tON = 195ns, where the internal
RfSET is 39.2k. Frequency = (VOUT/(VIN • tON)) = (3.3V/
(20 • 195ns)) ~ 846kHz. The minimum on-time and minimum off-time are within specification at 195ns and 980ns.
The 4.5V minimum input for converting 3.3V output will
not meet the minimum off-time specification of 400ns.
tON = 868ns, Frequency = 850kHz, tOFF = 315ns.
Solution
Lower the switching frequency at lower input voltages to
allow for higher duty cycles, and meet the 400ns minimum
off-time at 4.5V input voltage. The off-time should be about
500ns, which includes a 100ns guard band. The duty cycle
for (3.3V/4.5V) = ~73%. Frequency = (1 – DC)/tOFF or
(1 – 0.73)/500ns = 540kHz. The switching frequency
needs to be lowered to 540kHz at 4.5V input. tON = DC/
frequency, or 1.35µs. The fSET pin voltage is 1/3 of VIN, and
the IfSET current equates to 38µA with the internal 39.2k.
The IfSET current needs to be 24µA for 540kHz operation. A resistor can be placed from VOUT to fSET to lower
the effective IfSET current out of the fSET pin to 24µA.
The fSET pin is 4.5V/3 =1.5V and VOUT = 3.3V, therefore
130k will source 14µA into the fSET node and lower the
IfSET current to 24µA. This enables the 540kHz operation
and the 4.5V to 20V input operation for down converting to
3.3V output. The frequency will scale from 540kHz to 1.1
MHz over this input range. This provides for an effective
output current of 8A over the input range.
4601fe
For more information www.linear.com/LTM4601
21
LTM4601/LTM4601-1
Applications information
VOUT
VIN
10V TO 20V
R2
100k
TRACK/SS CONTROL
R4
100k
VIN
PGOOD
MPGM
RUN
COMP
INTVCC
DRVCC
5% MARGIN
CIN
10µF
25V
×2
R1
392k
1%
SGND
REVIEW TEMPERATURE
DERATING CURVE
PLLIN TRACK/SS
VOUT
LTM4601-1
+
C3 100pF
VFB
MARG0
MARG1
VOUT
5V
8A
COUT1
100µF
REFER TO
6.3V
SANYO POSCAP TABLE 2
VOUT_LCL
NC3
NC1
NC2
fSET
PGND
RfSET
100k
RSET
8.25k
MARGIN CONTROL
IMPROVE
EFFICIENCY
FOR ≥12V INPUT
SOT-323
DUAL
CMSSH-3C3
4601 F16
Figure 16. 5V at 8A Design Without Differential Amplifier
VIN
4.5V TO 16V
VOUT
R2
100k
TRACK/SS CONTROL
R4
100k
VIN
PGOOD
PGOOD
CIN
10µF
25V
×3
MPGM
RUN
COMP
INTVCC
DRVCC
PLLIN TRACK/SS
VOUT
LTM4601
R1
392k
SGND
5% MARGIN
PGND
REVIEW TEMPERATURE
DERATING CURVE
VFB
MARG0
MARG1
VOUT_LCL
DIFFVOUT
VOSNS+
VOSNS–
fSET
C3 100pF
+
RfSET
130k
MARGIN CONTROL
VOUT
3.3V
10A
COUT1
100µF
6.3V
SANYO POSCAP
RSET
13.3k
4601 F17
Figure 17. 3.3V at 10A Design
22
4601fe
For more information www.linear.com/LTM4601
LTM4601/LTM4601-1
Applications information
CLOCK SYNC
C5
0.01µF
VOUT
VIN
4.5V TO 20V
R2
100k
R4
100k
PGOOD
CIN
BULK
OPT
+
CIN
10µF
25V
×3 CER
PLLIN TRACK/SS
VOUT
VIN
PGOOD
MPGM
RUN
ON/OFF
COMP
INTVCC
DRVCC
R1
392k
LTM4601
SGND
PGND
REVIEW TEMPERATURE
DERATING CURVE
VFB
MARG0
MARG1
C3 100pF
COUT1
100µF
6.3V
MARGIN
CONTROL
VOUT_LCL
DIFFVOUT
VOSNS+
VOSNS–
fSET
RSET
40.2k
4601 F18
5% MARGIN
+
COUT2
470µF
6.3V
VOUT
1.5V
12A
REFER TO
TABLE 2 FOR
DIFFERENT
OUTPUT
VOLTAGE
Figure 18. Typical 4.5V to 20V, 1.5V at 12A Design
VOUT
VIN
4.5V TO 20V
118k
1%
R2
100k
+
C1
0.1µF
LTC6908-1
1
2
3
V+
OUT1
GND
OUT2
SET
MOD
6
5
4
CLOCK SYNC
0° PHASE
C5*
100µF
25V
C2
10µF
25V
×2
R4
100k
VIN
PGOOD
MPGM
RUN
COMP
INTVCC
DRVCC
R1
392k
SGND
PLLIN TRACK/SS
VOUT
LTM4601
PGND
VFB
MARG0
MARG1
TRACK/SS CONTROL
C6 220pF
VOUT_LCL
DIFFVOUT
VOSNS+
VOSNS–
C3
22µF
6.3V
C4
470µF
6.3V
VOUT
1.5V
24A
+
REFER TO
TABLE 2
fSET
5%
MARGIN
2-PHASE
OSCILLATOR
60.4k + R
SET
N
RSET
N = NUMBER OF PHASES
VOUT = 0.6V
RSET
20k
100pF
MARGIN
CONTROL
CLOCK SYNC
180° PHASE
TRACK/SS CONTROL
4.5V TO 20V
C7
0.033µF
VIN
PGOOD
PGOOD
MPGM
RUN
COMP
INTVCC
DRVCC
C8
10µF
25V
×2
PLLIN TRACK/SS
VOUT
LTM4601-1
392k
SGND
PGND
C3
22µF
6.3V
VFB
MARG0
MARG1
C4
470µF
6.3V
REFER TO
TABLE 2
VOUT_LCL
NC3
NC2
NC1
fSET
+
4601 F19
*C5 OPTIONAL TO REDUCE ANY LC RINGING.
NOT NEEDED FOR LOW INDUCTANCE PLANE CONNECTION
Figure 19. 2-Phase Parallel, 1.5V at 24A Design
4601fe
For more information www.linear.com/LTM4601
23
24
+
C11
100µF
35V
OPT
For more information www.linear.com/LTM4601
C2
10µF
25V
×3
VIN
PGOOD
SGND
SGND
MPGM
RUN
ON/OFF
COMP
INTVCC
DRVCC
R1
392k
R3
100k
8V TO 16V
5% MARGIN
PGOOD
R2
100k
3.3V
VIN
PGOOD
MPGM
RUN
ON/OFF
COMP
INTVCC
DRVCC
R27
392k
5% MARGIN
C8
10µF
25V
×3
PGOOD
R7
100k
8V TO 16V
INTERMEDIATE
BUS
3.3V
R6
100k
–48V
INPUT
fSET
VOUT_LCL
DIFFVOUT
VOSNS+
VOSNS–
PGND
LTM4601
fSET
VOUT_LCL
DIFFVOUT
VOSNS+
VOSNS–
VFB
MARG0
MARG1
PLLIN TRACK/SS
VOUT
CLOCK SYNC 3
PGND
LTM4601
VFB
MARG0
MARG1
PLLIN TRACK/SS
VOUT
MARGIN
CONTROL
C8 100pF
R19
30.1k
MARGIN
CONTROL
R8
13.3k
R12
30.1k
R21
60.4k
C7
0.15µF
C12 100pF
TRACK/SS
CONTROL
CLOCK SYNC 1
3.3V
+
REFER TO
TABLE 2
C3
22µF
6.3V
+
1.8V AT 12A
REFER TO
TABLE 2
C9
22µF
6.3V
R17
59k
LTC6902
C4
470µF
6.3V
C10
470µF
6.3V
V+
SET
DIV
MOD
PH
GND
OUT1 OUT4
OUT2 OUT3
3.3V AT 10A
4-PHASE
OSCILLATOR
8V TO 16V
C26
0.1µF
C14
10µF
25V
×3
PGND
LTM4601
VIN
PGOOD
SGND
PGND
LTM4601
fSET
VOUT_LCL
DIFFVOUT
VOSNS+
VOSNS–
VFB
MARG0
MARG1
PLLIN TRACK/SS
VOUT
fSET
VOUT_LCL
DIFFVOUT
VOSNS+
VOSNS–
VFB
MARG0
MARG1
PLLIN TRACK/SS
VOUT
CLOCK SYNC 4
SGND
MPGM
RUN
ON/OFF
COMP
INTVCC
DRVCC
R14
392k
R16
100k
8V TO 16V
5% MARGIN
PGOOD
R15
100k
VIN
PGOOD
CLOCK SYNC 2
MPGM
RUN
ON/OFF
COMP
INTVCC
DRVCC
R9
392k
5% MARGIN
3.3V
C14
10µF
25V
×3
8V TO 16V
R11
100k
PGOOD
R10
100k
3.3V
4-Phase, Four Outputs (3.3V, 2.5V, 1.8V and 1.5V) with Coincident Tracking
R18
19.1k
R13
40.2k
R25
60.4k
4601 TA02
MARGIN
CONTROL
C24 100pF
R26
40.2k
MARGIN
CONTROL
C18 100pF
R24
19.1k
R23
60.4k
3.3V
3.3V
+
REFER TO
TABLE 2
C16
22µF
6.3V
+
1.5V AT 12A
REFER TO
TABLE 2
C16
22µF
6.3V
2.5V AT 12A
C15
470µF
6.3V
C15
470µF
6.3V
LTM4601/LTM4601-1
Typical Applications
4601fe
aaa Z
0.630 ±0.025 Ø 118x
3.1750
3.1750
SUGGESTED PCB LAYOUT
TOP VIEW
1.9050
PACKAGE TOP VIEW
E
0.6350
0.0000
0.6350
4
1.9050
PIN “A1”
CORNER
6.9850
5.7150
4.4450
4.4450
5.7150
6.9850
Y
For more information www.linear.com/LTM4601
6.9850
5.7150
4.4450
3.1750
1.9050
0.6350
0.0000
0.6350
1.9050
3.1750
4.4450
5.7150
6.9850
X
D
aaa Z
bbb Z
0.27
2.45
MIN
2.72
0.60
NOM
2.82
0.63
15.00
15.00
1.27
13.97
13.97
0.32
2.50
DIMENSIONS
0.37
2.55
0.15
0.10
0.05
MAX
2.92
0.66
NOTES
DETAIL B
PACKAGE SIDE VIEW
A
TOTAL NUMBER OF LGA PADS: 118
SYMBOL
A
b
D
E
e
F
G
H1
H2
aaa
bbb
eee
H1
SUBSTRATE
eee S X Y
DETAIL A
0.630 ±0.025 SQ. 118x
DETAIL B
H2
MOLD
CAP
Z
(Reference LTC DWG # 05-08-1801 Rev B)
LGA Package
118-Lead (15mm × 15mm × 2.82mm)
e
b
L
K
J
G
G
F
e
E
PACKAGE BOTTOM VIEW
H
D
C
B
A
DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL,
BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR
MARKED FEATURE
4
7
TRAY PIN 1
BEVEL
!
PACKAGE IN TRAY LOADING ORIENTATION
LTMXXXXXX
µModule
1
2
3
4
5
6
7
8
9
7
SEE NOTES
C(0.30)
PAD 1
10
11
12
LGA 118 1212 REV B
PACKAGE ROW AND COLUMN LABELING MAY VARY
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE
LAYOUT CAREFULLY
6. THE TOTAL NUMBER OF PADS: 118
5. PRIMARY DATUM -Z- IS SEATING PLANE
LAND DESIGNATION PER JESD MO-222, SPP-010
3
2. ALL DIMENSIONS ARE IN MILLIMETERS
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
COMPONENT
PIN “A1”
3
SEE NOTES
F
b
M
DETAIL A
LTM4601/LTM4601-1
Package Description
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
25
4601fe
aaa Z
0.630 ±0.025 Ø 118x
4
E
PACKAGE TOP VIEW
3.1750
3.1750
SUGGESTED PCB LAYOUT
TOP VIEW
1.9050
PIN “A1”
CORNER
0.6350
0.0000
0.6350
Y
For more information www.linear.com/LTM4601
6.9850
5.7150
4.4450
3.1750
1.9050
0.6350
0.0000
0.6350
1.9050
3.1750
4.4450
5.7150
6.9850
X
D
2.45 – 2.55
aaa Z
SYMBOL
A
A1
A2
b
b1
D
E
e
F
G
aaa
bbb
ccc
ddd
eee
NOM
3.42
0.60
2.82
0.75
0.63
15.0
15.0
1.27
13.97
13.97
DIMENSIONS
0.15
0.10
0.20
0.30
0.15
MAX
3.62
0.70
2.92
0.90
0.66
NOTES
DETAIL B
PACKAGE SIDE VIEW
TOTAL NUMBER OF BALLS: 118
MIN
3.22
0.50
2.72
0.60
0.60
b1
0.27 – 0.37
SUBSTRATE
ddd M Z X Y
eee M Z
DETAIL A
Øb (118 PLACES)
DETAIL B
MOLD
CAP
ccc Z
A1
A2
A
(Reference LTC DWG # 05-08-1903 Rev B)
// bbb Z
26
1.9050
BGA Package
118-Lead (15mm × 15mm × 3.42mm)
Z
e
b
L
K
J
G
G
F
e
E
PACKAGE BOTTOM VIEW
H
D
C
B
A
DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL,
BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR
MARKED FEATURE
BALL DESIGNATION PER JESD MS-028 AND JEP95
7
TRAY PIN 1
BEVEL
!
PACKAGE IN TRAY LOADING ORIENTATION
LTMXXXXXX
µModule
1
2
3
4
5
6
7
8
9
10
11
12
7
SEE NOTES
PIN 1
BGA 118 1112 REV B
PACKAGE ROW AND COLUMN LABELING MAY VARY
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE
LAYOUT CAREFULLY
6. SOLDER BALL COMPOSITION IS 96.5% Sn/3.0% Ag/0.5% Cu
5. PRIMARY DATUM -Z- IS SEATING PLANE
4
3
2. ALL DIMENSIONS ARE IN MILLIMETERS
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
COMPONENT
PIN “A1”
3
SEE NOTES
F
b
M
DETAIL A
LTM4601/LTM4601-1
Package Description
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
4601fe
6.9850
5.7150
4.4450
4.4450
5.7150
6.9850
LTM4601/LTM4601-1
Package Description
Table 5. Pin Assignment (Arranged by Pin Number)
PIN ID
FUNCTION
PIN ID
FUNCTION
PIN ID
FUNCTION
PIN ID
FUNCTION
PIN ID
FUNCTION
PIN ID
FUNCTION
A1
VIN
B1
VIN
C1
VIN
D1
PGND
E1
PGND
F1
PGND
A2
VIN
B2
VIN
C2
VIN
D2
PGND
E2
PGND
F2
PGND
A3
VIN
B3
VIN
C3
VIN
D3
PGND
E3
PGND
F3
PGND
A4
VIN
B4
VIN
C4
VIN
D4
PGND
E4
PGND
F4
PGND
A5
VIN
B5
VIN
C5
VIN
D5
PGND
E5
PGND
F5
PGND
A6
VIN
B6
VIN
C6
VIN
D6
PGND
E6
PGND
F6
PGND
A7
INTVCC
B7
–
C7
–
D7
–
E7
PGND
F7
PGND
A8
PLLIN
B8
–
C8
–
D8
–
E8
–
F8
PGND
A9
TRACK/SS
B9
–
C9
–
D9
–
E9
–
F9
PGND
A10
RUN
B10
–
C10
–
D10
–
E10
–
F10
–
A11
COMP
B11
–
C11
–
D11
–
E11
–
F11
–
A12
MPGM
B12
fSET
C12
MARG0
D12
MARG1
E12
DRVCC
F12
VFB
PIN ID
FUNCTION
PIN ID
FUNCTION
PIN ID
FUNCTION
PIN ID
FUNCTION
PIN ID
FUNCTION
PIN ID
FUNCTION
G1
PGND
H1
PGND
J1
VOUT
K1
VOUT
L1
VOUT
M1
VOUT
G2
PGND
H2
PGND
J2
VOUT
K2
VOUT
L2
VOUT
M2
VOUT
G3
PGND
H3
PGND
J3
VOUT
K3
VOUT
L3
VOUT
M3
VOUT
G4
PGND
H4
PGND
J4
VOUT
K4
VOUT
L4
VOUT
M4
VOUT
G5
PGND
H5
PGND
J5
VOUT
K5
VOUT
L5
VOUT
M5
VOUT
G6
PGND
H6
PGND
J6
VOUT
K6
VOUT
L6
VOUT
M6
VOUT
G7
PGND
H7
PGND
J7
VOUT
K7
VOUT
L7
VOUT
M7
VOUT
G8
PGND
H8
PGND
J8
VOUT
K8
VOUT
L8
VOUT
M8
VOUT
G9
PGND
H9
PGND
J9
VOUT
K9
VOUT
L9
VOUT
M9
VOUT
G10
–
H10
–
J10
VOUT
K10
VOUT
L10
VOUT
M10
VOUT
G11
–
H11
–
J11
–
K11
VOUT
L11
VOUT
M11
VOUT
G12
PGOOD
H12
SGND
J12
VOSNS+/NC2*
K12
DIFFVOUT/NC2*
L12
VOUT_LCL
M12
VOSNS–/NC1*
*LTM4601-1 Only
4601fe
For more information www.linear.com/LTM4601
27
LTM4601/LTM4601-1
Package Description
Table 6. Pin Assignment (Arranged by Pin Function)
PIN NAME
PIN NAME
A1
A2
A3
A4
A5
A6
VIN
VIN
VIN
VIN
VIN
VIN
D1
D2
D3
D4
D5
D6
PGND
PGND
PGND
PGND
PGND
PGND
B1
B2
B3
B4
B5
B6
VIN
VIN
VIN
VIN
VIN
VIN
C1
C2
C3
C4
C5
C6
VIN
VIN
VIN
VIN
VIN
VIN
E1
E2
E3
E4
E5
E6
E7
PGND
PGND
PGND
PGND
PGND
PGND
PGND
F1
F2
F3
F4
F5
F6
F7
F8
F9
PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND
G1
G2
G3
G4
G5
G6
G7
G8
G9
PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND
H1
H2
H3
H4
H5
H6
H7
H8
H9
PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND
28
PIN NAME
J1
J2
J3
J4
J5
J6
J7
J8
J9
J10
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
PIN NAME
A7
A8
A9
A10
A11
A12
INTVCC
PLLIN
TRACK/SS
RUN
COMP
MPGM
B12
fSET
C12
MARG0
D12
MARG1
E12
DRVCC
F12
VFB
G12
PGOOD
H12
SGND
J12
VOSNS+/NC2*
K12
DIFFVOUT/NC3*
L12
VOUT_LCL
M12
VOSNS–/NC1*
*LTM4601-1 Only
PIN NAME
B7
B8
B9
B10
B11
-
C7
C8
C9
C10
C11
-
D7
D8
D9
D10
D11
-
E8
E9
E10
E11
-
F10
F11
-
G10
G11
-
H10
H11
-
J11
-
4601fe
For more information www.linear.com/LTM4601
LTM4601/LTM4601-1
Revision History
(Revision history begins at Rev B)
REV
DATE
DESCRIPTION
PAGE NUMBER
B
01/10
Added Note 5
2, 4
C
03/12
Revised entire data sheet to include the BGA package.
D
02/14
Added SnPb BGA option
E
04/14
Added LTM4601-1 BGA package diagram and package information
1 to 30
1, 2
2
4601fe
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representaFor more
www.linear.com/LTM4601
tion that the interconnection
of its information
circuits as described
herein will not infringe on existing patent rights.
29
LTM4601/LTM4601-1
Package Photo
2.82mm
15mm
3.42mm
15mm
15mm
15mm
Related Parts
PART NUMBER DESCRIPTION
COMMENTS
LTM4628
26V, Dual 8A, DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 26.5V, 0.6V ≤ VOUT ≤ 5V, Remote Sense Amplifier, Internal
Temperature Sensing Output, 15mm × 15mm × 4.32mm LGA
LTM4627
20V, 15A DC/DC Step-Down μModule Regulator
4.5V ≤ VIN ≤ 20V, 0.6V ≤ VOUT ≤ 5V, PLL Input, VOUT Tracking, Remote Sense
Amplifier, 15mm × 15mm × 4.32mm LGA
LTM4611
1.5VIN(MIN), 15A DC/DC Step-Down μModule
Regulator
1.5V ≤ VIN ≤ 5.5V, 0.8V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier,
VOUT Tracking, 15mm × 15mm × 4.32mm LGA
LTM4613
8A EN55022 Class B DC/DC Step-Down μModule
Regulator
5V ≤ VIN ≤ 36V, 3.3V ≤ VOUT ≤ 15V, PLL Input, VOUT Tracking and Margining,
15mm × 15mm × 4.32mm LGA
LTM4601AHV
28V, 12A DC/DC Step-Down μModule Regulator
4.5V ≤ VIN ≤ 28V, 0.6V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier,
VOUT Tracking and Margining, 15mm × 15mm × 2.82mm LGA or
15mm × 15mm × 3.42mm BGA
LTM4601A
20V, 12A DC/DC Step-Down μModule Regulator
4.5V ≤ VIN ≤ 20V, 0.6V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier,
VOUT Tracking and Margining, 15mm × 15mm × 2.82mm LGA or
15mm × 15mm × 3.42mm BGA
LTM8027
60V, 4A DC/DC Step-Down μModule Regulator
4.5V ≤ VIN ≤ 60V, 2.5V ≤ VOUT ≤ 24V, CLK Input, 15mm × 15mm × 4.32mm LGA
LTM8032
36V, 2A EN55022 Class B DC/DC Step-Down
μModule Regulator
3.6V ≤ VIN ≤ 36V, 0.8V ≤ VOUT ≤ 10V, Synchronizable,
9mm × 15mm × 2.82mm LGA or 9mm × 15mm × 3.42mm BGA
LTM8061
32V, 2A Step-Down μModule Battery Charger with
Programmable Input Current Limit
Compatible with Single Cell or Dual Cell Li-Ion or Li-Poly Battery Stacks
(4.1V, 4.2V, 8.2V, or 8.4V), 4.95V ≤ VIN ≤ 32V, C/10 or Adjustable Timer Charge
Termination, NTC Resistor Monitor Input, 9mm × 15mm × 4.32mm LGA
30
This product contains technology licensed from Silicon Semiconductor Corporation.
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
For more information www.linear.com/LTM4601
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com/LTM4601
®
4601fe
LT 0414 REV E • PRINTED IN USA
LINEAR TECHNOLOGY CORPORATION 2007