0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTM4606MPV#PBF

LTM4606MPV#PBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    BLGA133 模块

  • 描述:

    非隔离 PoL 模块 直流转换器 1 输出 0.6 ~ 5V 6A 4.5V - 28V 输入

  • 数据手册
  • 价格&库存
LTM4606MPV#PBF 数据手册
LTM4606 Ultralow EMI 28VIN, 6A DC/DC µModule Regulator FEATURES DESCRIPTION Complete Low EMI Switch Mode Power Supply n Wide Input Voltage Range: 4.5V to 28V n 6A DC Typical, 8A Peak Output Current n 0.6V to 5V Output Voltage Range n EN55022 Class B Certified n Output Voltage Tracking and Margining n PLL Frequency Synchronization n ±1.75% Total DC Error n Power Good Output n Current Foldback Protection (Disabled at Start-Up) n Parallel/Current Sharing n Current Mode Control n Up to 93% Efficiency at 5V , 3.3V IN OUT n Programmable Soft-Start n Output Overvoltage Protection n –55°C to 125°C Operating Temperature Range (LTM4606MP) n SnPb or RoHS Compliant Finish n 15mm × 15mm × 2.82mm LGA Package 15mm × 15mm × 3.42mm BGA Package The LTM®4606 is a complete EN55022 Class B certified noise high voltage 6A switching mode DC/DC power supply. Included in the package are the switching controller, power FETs, inductor, and all support components. The on-board input filter and noise cancellation circuits achieve low noise operation, thus effectively reducing the electromagnetic interference (EMI). Operating over an input voltage range of 4.5V to 28V, the LTM4606 supports an output voltage range of 0.6V to 5V, set by a single resistor. This high efficiency design delivers 6A continuous current (8A peak). Only bulk input and output capacitors are needed to finish the design. n APPLICATIONS High switching frequency and an adaptive on-time current mode architecture enables a very fast transient response to line and load changes without sacrificing stability. The device supports output voltage tracking and output voltage margining. Furthermore, the µModule® regulator can be synchronized with an external clock for reducing undesirable frequency harmonics and allows PolyPhase® operation for high load currents. The LTM4606 is offered in space saving 15mm × 15mm × 2.82mm LGA and 15mm × 15mm × 3.42mm BGA packages. The LTM4606 is available with SnPb (BGA) or RoHS compliant terminal finish. ASICs or FPGA Transceivers Telecom, Servers and Networking Equipment n Industrial Equipment n RF Equipment n n All registered trademarks and trademarks are the property of their respective owners. Protected by U.S. patents, including 5481178, 5847554, 6304066, 6476589, 6580258, 6677210, 6774611, 8163643. TYPICAL APPLICATION Radiated Emission Scan at 12VIN, 2.5VOUT/6A 50 Ultralow Noise 2.5V/6A Power Supply with 4.5V to 28V Input ON/OFF CIN 10µF 35V CERAMIC x2 40 CLOCK SYNC TRACK/SS CONTROL 10µF 35V VIN PLLIN VOUT PGOOD RUN LTM4606 COMP INTVCC DRVCC fSET TRACK/SS VD SGND 2.5V AT 6A 47pF VFB FCB MARG0 MARG1 MPGM PGND COUT RFB 19.1k MARGIN CONTROL 392k 5% MARGIN 4606 TA01a SIGNAL AMPLITUDE (dBµV/m) 4.5V TO 28V 30 20 10 0 –10 –20 –30 30 226.2 422.4 618.6 814.8 1010 128.1 324.3 520.5 716.7 912.9 FREQUENCY (MHz) 4606 TA01b Rev. E Document Feedback For more information www.analog.com 1 LTM4606 ABSOLUTE MAXIMUM RATINGS (Note 1) DRVCC, VOUT................................................. –0.3V to 6V PLLIN, FCB, TRACK/SS, MPGM, MARG0, MARG1, PGOOD, RUN ...............–0.3V to INTVCC + 0.3V VFB, COMP................................................. –0.3V to 2.7V VIN, VD........................................................ –0.3V to 28V Internal Operating Temperature Range (Note 2) E and I Grades.................................... –40°C to 125°C MP Grade............................................ –55°C to 125°C Junction Temperature............................................ 125°C Storage Temperature Range................... –55°C to 125°C PIN CONFIGURATION VIN BANK 1 VD SGND PGND BANK 2 VOUT BANK 3 INTVCC VIN BANK 1 fSET MARG0 MARG1 DRVCC VFB PGOOD SGND NC NC NC FCB PLLIN TRACK/SS RUN COMP MPGM TOP VIEW PLLIN TRACK/SS RUN COMP MPGM INTVCC TOP VIEW VD SGND PGND BANK 2 VOUT BANK 3 BGA PACKAGE 133-LEAD (15mm × 15mm × 3.42mm) TJMAX = 125°C, θJA = 15°C/W, θJCbottom = 6°C/W, θJCtop = 16°C/W θJA DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS WEIGHT = 1.9g fSET MARG0 MARG1 DRVCC VFB PGOOD SGND NC NC NC FCB LGA PACKAGE 133-LEAD (15mm × 15mm × 2.82mm) TJMAX = 125°C, θJA = 15°C/W, θJCbottom = 6°C/W, θJCtop = 16°C/W θJA DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS WEIGHT = 1.7g ORDER INFORMATION PART MARKING* PART NUMBER PAD OR BALL FINISH LTM4606EV#PBF Au (RoHS) DEVICE FINISH CODE PACKAGE TYPE MSL RATING LTM4606V e4 LGA 3 TEMPERATURE RANGE (Note 2) –40°C to 125°C LTM4606IV#PBF Au (RoHS) LTM4606V e4 LGA 3 –40°C to 125°C LTM4606MPV#PBF Au (RoHS) LTM4606MPV e4 LGA 3 –55°C to 125°C LTM4606EY#PBF SAC305 (RoHS) LTM4606Y e1 BGA 3 –40°C to 125°C LTM4606IY#PBF SAC305 (RoHS) LTM4606Y e1 BGA 3 –40°C to 125°C LTM4606IY SnPb (63/37) LTM4606Y e0 BGA 3 –40°C to 125°C LTM4606MPY#PBF SAC305 (RoHS) LTM4606Y e1 BGA 3 –55°C to 125°C LTM4606MPY SnPb (63/37) LTM4606Y e0 BGA 3 –55°C to 125°C • Contact the factory for parts specified with wider operating temperature ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609. 2 • Recommended LGA and BGA PCB Assembly and Manufacturing Procedures • LGA and BGA Package and Tray Drawings Rev. E For more information www.analog.com LTM4606 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 12V, unless otherwise noted. Per typical application (front page) configuration, RFB = 40.2k. SYMBOL PARAMETER VIN(DC) Input DC Voltage CONDITIONS VOUT(DC) Output Voltage, Total Variation with Line and Load CIN = 10µF ×2, COUT = 200µF; FCB = 0 VIN = 5V to 28V, IOUT = 0A to 6A, (Note 4) VIN(UVLO) Undervoltage Lockout Threshold IINRUSH(VIN) Input Inrush Current at Start-Up MIN l 4.5 l 1.474 TYP MAX UNITS 28 V 1.5 1.526 V IOUT = 0A 3.2 4 V IOUT = 0A, CIN = 10µF ×2, COUT = 200µF, VOUT = 1.5V VIN = 5V VIN = 12V 0.6 0.7 A A VIN = 5V, VOUT = 1.5V, Switching Continuous VIN = 12V, VOUT = 1.5V, Switching Continuous Shutdown, RUN = 0, VIN = 12V 27 25 22 mA mA µA Input Specifications IQ(VIN) Input Supply Bias Current IS(VIN) Input Supply Current INTVCC VIN = 12V, RUN > 2V VIN = 12V, VOUT = 1.5V, IOUT = 6A VIN = 5V, VOUT = 1.5V, IOUT = 6A 0.96 2.18 No Load 4.7 5 A A 5.3 V 6 A 0.3 % 0.3 % Output Specifications IOUT(DC) Output Continuous Current Range VIN = 12V, VOUT = 1.5V (Note 4) DVOUT(LINE)/VOUT Line Regulation Accuracy VOUT = 1.5V, FCB = 0V, VIN = 4.5V to 28V, IOUT = 0A DVOUT(LOAD)/VOUT Load Regulation Accuracy VOUT = 1.5V, FCB = 0V, IOUT = 0A to 6A VIN = 12V (Note 4) VIN(AC) VOUT(AC) Input Ripple Voltage Output Ripple Voltage 0 l 0.05 l IOUT = 0A, CIN = 10µF X5R Ceramic ×3 and 100µF Electrolytic VIN = 5V, VOUT = 1.5V VIN = 12V, VOUT = 1.5V 2 3 mVP-P mVP-P IOUT = 0A, COUT = 22µF X5R Ceramic ×3 and 100µF X5R Ceramic VIN = 5V, VOUT = 1.5V VIN = 12V, VOUT = 1.5V 8 11 mVP-P mVP-P fS Output Ripple Voltage Frequency IOUT = 5A, VIN = 12V, VOUT = 1.5V 900 kHz DVOUT(START) Turn-On Overshoot COUT = 200µF, VOUT = 1.5V, IOUT = 0A, TRACK/SS = 10nF VIN = 12V VIN = 5V 20 20 mV mV 0.5 0.5 ms ms 35 mV 25 µs 10 10 A A tSTART Turn-On Time COUT = 200µF; VOUT = 1.5V, TRACK/SS = Open IOUT = 1A Resistive Load VIN = 5V VIN = 12V DVOUT(LS) Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load COUT = 22µF Ceramic, 470µF ×2 VIN = 12V VOUT = 1.5V tSETTLE Settling Time for Dynamic Load Step Load: 0% to 50% to 0% of Full Load, VIN = 12V IOUT(PK) Output Current Limit COUT = 200µF VIN = 5V, VOUT = 1.5V VIN = 12V, VOUT = 1.5V Rev. E For more information www.analog.com 3 LTM4606 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 12V, unless otherwise noted. Per typical application (front page) configuration, RFB = 40.2k. SYMBOL PARAMETER CONDITIONS VFB Voltage at VFB Pin IOUT = 0A, VOUT = 1.5V VRUN RUN Pin On/Off Threshold ITRACK/ SS Soft-Start Charging Current VFCB Forced Continuous Threshold IFCB Forced Continuous Pin Current VFCB = 0V tON(MIN) Minimum On Time (Note 3) tOFF(MIN) Minimum Off Time (Note 3) RPLLIN PLLIN Input Resistor IDRVCC Current into DRVCC Pin RFBHI Resistor Between VOUT and VFB Pins VRUN(MAX) Maximum RUN Pin Voltage MIN TYP MAX UNITS 0.591 0.6 0.609 V 1 1.5 1.9 V –1 –1.5 –2 µA 0.57 0.6 0.63 V –1 –2 µA 50 100 ns 250 400 ns Control Section VTRACK/SS = 0V l 50 VOUT = 1.5V, IOUT = 1A, DRVCC = 5V 60.098 5.1V Zener Clamp kW 15 25 mA 60.4 60.702 kW 5 V Margin Section VMPGM Margin Reference Voltage 1.18 V VMARG0, VMARG1 MARG0, MARG1 Voltage Threshold 1.4 V PGOOD DVFBH PGOOD Upper Threshold VFB Rising 7 10 13 % DVFBL PGOOD Lower Threshold VFB Falling –7 –10 –13 % DVFB(HYS) PGOOD Hysteresis VFB Returning 1.5 VPGL PGOOD Low Voltage IPGOOD = 5mA 0.15 Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTM4606E is guaranteed to meet performance specifications over the 0°C to 125°C internal operating temperature range. Specifications over the –40°C to 125°C internal operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4606I is guaranteed to meet specifications over the 4 % 0.4 V –40°C to 125°C internal operating temperature range. The LTM4606MP is guaranteed and tested over the –55°C to 125°C internal operating temperature range. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal resistance and other environmental factors. Note 3: 100% tested at die level only. Note 4: See output current derating curves for different VIN, VOUT and TA. Rev. E For more information www.analog.com LTM4606 TYPICAL PERFORMANCE CHARACTERISTICS 100 80 70 0.6VOUT 1.2VOUT 1.8VOUT 2.5VOUT 3.3VOUT 60 50 100 90 EFFICIENCY (%) EFFICIENCY (%) 90 Efficiency vs Load Current with 12VIN (FCB = 0) 0 1 2 3 4 LOAD CURRENT (A) 5 80 70 1.2VOUT 1.5VOUT 2.5VOUT 3.3VOUT 5VOUT 60 6 50 0 1 2 3 4 LOAD CURRENT (A) 5 80 70 60 6 4606 G01 50 1.5V Transient Response 1 2 3 4 LOAD CURRENT (A) IOUT 2A/DIV VOUT 50mV/DIV VOUT 50mV/DIV VOUT 50mV/DIV 4606 G04 50µs/DIV 1.5V AT 3.5A/µs LOAD STEP COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC 2.5V Transient Response 4606 G05 50µs/DIV 1.8V AT 3.5A/µs LOAD STEP COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC 3.3V Transient Response IOUT 2A/DIV IOUT 2A/DIV VOUT 50mV/DIV VOUT 100mV/DIV 5 6 1.8V Transient Response IOUT 2A/DIV 4606 G07 0 4606 G03 IOUT 2A/DIV 50µs/DIV 2.5V AT 3.5A/µs LOAD STEP COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC 2.5VOUT 3.3VOUT 5VOUT 4606 G02 1.2V Transient Response 50µs/DIV 1.2V AT 3.5A/µs LOAD STEP COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC Efficiency vs Load Current with 24VIN (FCB = 0) 90 EFFICIENCY (%) 100 Efficiency vs Load Current with 5VIN (FCB = 0) 4606 G06 –55°C, Start-Up, IOUT = 0A VOUT 0.5V/DIV IIN 0.5A/DIV 50µs/DIV 3.3V AT 3.5A/µs LOAD STEP COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC 4606 G08 1ms/DIV VIN = 12V VOUT = 1.5V COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC SOFT-START = 3.9nF 4606 G09 Rev. E For more information www.analog.com 5 LTM4606 TYPICAL PERFORMANCE CHARACTERISTICS –55°C, Start-Up, IOUT = 6A Start-Up, IOUT = 6A (Resistive Load) Start-Up, IOUT = 0A VOUT 0.5V/DIV VOUT 0.5V/DIV VOUT 0.5V/DIV IIN 0.5A/DIV 4606 G10 1ms/DIV VIN = 12V VOUT = 1.5V COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC SOFT-START = 3.9nF IIN 0.5A/DIV IIN 0.5A/DIV 4606 G11 1ms/DIV VIN = 12V VOUT = 1.5V COUT = 1× 22µF, 6.3V CERAMIC 1× 330µF, 4V SANYO POSCAP SOFT-START = 3.9nF 1ms/DIV VIN = 12V VOUT = 1.5V COUT = 1× 22µF, 6.3V CERAMIC 1× 330µF, 4V SANYO POSCAP SOFT-START = 3.9nF Short-Circuit Protection, IOUT = 0A Start Into Pre-Biased Output 4606 G12 Short-Circuit Protection, IOUT = 6A VIN 2V/DIV VOUT 1V/DIV 20ms/DIV VIN = 12V VOUT = 5V COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC SOFT-START = 0.1µF VOUT 2V/DIV VOUT 1V/DIV IIN 0.2A/DIV IIN 2A/DIV 4606 G13a 4606 G13 50µs/DIV VIN = 12V VOUT = 2.5V COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC SOFT-START = 0.1µF VIN to VOUT Step-Down Operation Region 28 24 VFB vs Temperature SEE FREQUENCY ADJUSTMENT SECTION FOR OPERATIONS OUTSIDE THIS REGION 0.604 0.602 VFB (V) VIN (V) OPERATION REGION WITH DEFAULT FREQUENCY 0.600 12 0.598 8 0.596 4.5 0.6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VOUT (V) 0.594 –55 4606 G15 6 4606 G14 0.606 20 16 50µs/DIV VIN = 12V VOUT = 2.5V COUT = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC SOFT-START = 0.1µF –25 35 65 5 TEMPERATURE (°C) 95 125 4606 G16 Rev. E For more information www.analog.com LTM4606 TYPICAL PERFORMANCE CHARACTERISTICS Input Ripple Output Ripple VOUT 2mV/DIV VIN 10mV/DIV 2µs/DIV VIN = 5V VOUT = 1V AT 6A CIN = 3× 10µF, 25V CERAMIC 1× 150µF BULK BW = 300MHz 4606 G17 2µs/DIV VIN = 5V VOUT = 1V AT 6A COUT = 2× 22µF, 6.3V CERAMIC 1× 100µF, 6.3V CERAMIC BW = 300MHz 4606 G18 PIN FUNCTIONS PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY. VIN (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between VIN pins and PGND pins. VOUT (Bank 3): Power Output Pins. Apply output load between these pins and PGND pins. Recommend placing output decoupling capacitance directly between these pins and PGND pins (see Figure 17). PGND (Bank 2): Power Ground Pins for Both Input and Output Returns. VD (Pins B7, C7): Top FET Drain Pins. Add more capacitors between VD and ground to handle the input RMS current and reduce the input ripple further. DRVCC (Pins C10, E11, E12): These pins normally connect to INTVCC for powering the internal MOSFET drivers. They can be biased up to 6V from an external supply with about 50mA capability, or an external circuit as shown in Figure 18. This improves efficiency at the higher input voltages by reducing power dissipation in the module. INTVCC (Pin A7): This pin is for additional decoupling of the 5V internal regulator. PLLIN (Pin A8): External Clock Synchronization Input to the Phase Detector. This pin is internally terminated to SGND with a 50k resistor. Apply a clock with high level above 2V and below INTVCC. See the Applications Information section. FCB (Pin M12): Forced Continuous Input. Connect this pin to SGND to force continuous synchronization operation at low load, to INTVCC to enable discontinuous mode operation at low load or to a resistive divider from a secondary output when using a secondary winding. TRACK/SS (Pin A9): Output Voltage Tracking and SoftStart Pin. When the module is configured as a master output, then a soft-start capacitor is placed on this pin to ground to control the master ramp rate. A soft-start capacitor can be used for soft-start turn-on in a standalone regulator. Slave operation is performed by putting a resistor divider from the master output to ground, and connecting the center point of the divider to this pin. See the Applications Information section. MPGM (Pins A12, B11): Programmable Margining Input. A resistor from these pins to ground sets a current that is equal to 1.18V/R. This current multiplied by 10kW will equal a value in millivolts that is a percentage of the 0.6V reference voltage. See the Applications Information section. To parallel LTM4606s, each requires an individual MPGM resistor. Do not tie MPGM pins together. Rev. E For more information www.analog.com 7 LTM4606 PIN FUNCTIONS fSET (Pin B12): Frequency set internally to 800kHz in continuous conducting mode at light load. An external resistor can be placed from this pin to ground to increase frequency. See the Applications Information section for frequency adjustment. VFB (Pin F12): The Negative Input of the Error Amplifier. Internally, this pin is connected to VOUT with a 60.4k precision resistor. Different output voltages can be programmed with an additional resistor between the VFB and SGND pins. See the Applications Information section. MARG0 (Pin C12): LSB Logic Input for the Margining Function. Together with the MARG1 pin, the MARG0 pin will determine if a margin high, margin low, or no margin state is applied. The pin has an internal pull-down resistor of 50k. See the Applications Information section. MARG1 (Pins C11, D12): MSB Logic Input for the Margining Function. Together with the MARG0 pin, the MARG1 pins will determine if a margin high, margin low, or no margin state is applied. The pins have an internal pull-down resistor of 50k. See the Applications Information section. 8 SGND (Pins D9, H12): Signal Ground Pins. These pins connect to PGND at output capacitor point. See Figure 17. COMP (Pins A11, D11): Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.7V corresponding to zero sense voltage (zero current). PGOOD (Pin G12): Output Voltage Power Good Indicator. Open-drain logic output that is pulled to ground when the output voltage is not within ±10% of the regulation point, after a 25µs power bad mask timer expires. RUN (Pins A10, B9): Run Control Pins. A voltage above 1.9V will turn on the module, and below 1V will turn off the module. A programmable UVLO function can be accomplished with a resistor divider from VIN to ground. See Figure 1. This pin has a 5.1V Zener to ground. Maximum pin voltage is 5V. Limit current into the RUN pin to less than 1mA. NC (Pins J12, K12, L12): These pads must be left floating (electrical open circuit) and are used for enhanced solder joint strength. Rev. E For more information www.analog.com LTM4606 BLOCK DIAGRAM VIN R1 UVLO FUNCTION >1.9V = ON 4.8V use 4.8V Duty Cycle (DC) = tON/t or VOUT/VIN LTM4606 minimum off-time = 400ns tOFF = t – tON, where t = 1/Frequency Duty Cycle = tON/t or VOUT/VIN Equations for setting frequency: IfSET = (VIN/(3 • RfSET)), where the internal RfSET is 41.2k. For 28V input operation, IfSET = 227µA. tON = ((4.8 • 10pF)/ IfSET), tON = 211ns. Frequency = (VOUT/(VIN • tON)) = (5V/ (28 • 211ns)) ~ 850kHz. The inductor ripple current begins to get high at the higher input voltages due to a larger voltage across the inductor. The current ripple is ~5A at 20% duty cycle for the integrated 1µH inductor. The inductor ripple current can be lowered at the higher input voltages by adding an external resistor from fSET to ground to increase the switching frequency. A 4A ripple current is chosen, and the total peak current is equal to 1/2 of the 4A ripple current plus the output current. For 5V output, current is limited to 5A, so the total peak current is less than 7A. This is below the 8A peak specified value. A 150k resistor is placed from fSET to ground, and the parallel combination of 150k and 41.2k equates to 32.3k. The IfSET calculation with 32.3k and 28V input voltage equals 289µA. This equates to a tON of 166ns. This will increase the switching frequency from 850kHz to ~1MHz for the 28V to 5V conversion. The minimum on time is above 100ns at 28V input. Since the switching frequency is approximately constant over input and output conditions, then the lower input voltage range is limited to 8V for the 1MHz operation due to the 400ns minimum off time. Equation: tON = (VOUT/VIN) • (1/ Frequency) equates to a 375ns on time, and a 400ns off 20 Equations for setting frequency: IfSET = (VIN/(3 • RfSET)), for 28V input operation, IfSET = 227µA, tON = ((3.3 • 10pF)/IfSET), tON = 145ns, where the internal RfSET is 41.2k. Frequency = (VOUT/(VIN • tON)) = (3.3V/(28 • 145ns)) ~ 810kHz. The minimum on-time and minimum-off time are within specification at 146ns and 1089ns. But the 4.5V minimum input for converting 3.3V output will not meet the minimum off-time specification of 400ns. tON = 905ns, Frequency = 810kHz, tOFF = 329ns. Solution Lower the switching frequency at lower input voltages to allow for higher duty cycles, and meet the 400ns minimum off-time at 4.5V input voltage. The off-time should be about 500ns with 100ns guard band. The duty cycle for (3.3V/4.5V) = ~73%. Frequency = (1 – DC)/tOFF or (1 – 0.73)/500ns = 540kHz. The switching frequency needs to be lowered to 540kHz at 4.5V input. tON = DC/ frequency, or 1.35µs. The fSET pin voltage compliance is 1/3 of VIN, and the IfSET current equates to 36µA with the internal 41.2k. The IfSET current needs to be 24µA for 540kHz operation. A resistor can be placed from VOUT to fSET to lower the effective IfSET current out of the fSET pin to 24µA. The fSET pin is 4.5V/3 =1.5V and VOUT = 3.3V, therefore a 150k resistor will source 12µA into the fSET node and lower the IfSET current to 24µA. This enables the 540kHz operation and the 4.5V to 28V input operation for down converting to 3.3V output as shown in Figure 19. The frequency will scale from 540kHz to 950kHz over this input range. This provides for an effective output current of 5A over the input range. Rev. E For more information www.analog.com LTM4606 TYPICAL APPLICATIONS VOUT 10V TO 28V C1 10µF R3 100k R4 100k VD VIN PLLIN VOUT PGOOD RUN LTM4606 VFB COMP INTVCC FCB DRVCC MARG0 fSET MARG1 TRACK/SS MPGM ON/OFF CIN 10µF 35V CERAMIC x2 TRACK/SS CONTROL SGND PGND RfSET 150k 5V AT 5A C2 100pF RFB 8.25k MARGIN CONTROL COUT1 22µF 6.3V + COUT2 220µF 6.3V REFER TO TABLE 2 FOR OUTPUT CAPACITOR SELECTIONS R1 392k 5% MARGIN IMPROVE EFFICIENCY FOR ≥12V INPUT 4606 TA02 Figure 18. 10V to 28VIN, 5V at 5A Design VOUT 4.5V TO 28V C1 10µF R3 100k R4 100k VD VIN PLLIN VOUT PGOOD RUN LTM4606 VFB COMP INTVCC FCB DRVCC MARG0 fSET MARG1 TRACK/SS MPGM SGND PGND ON/OFF CIN 10µF 35V CERAMIC x2 RfSET 150k VOUT TRACK/SS CONTROL 3.3V AT 5A C2 100pF RFB 13.3k MARGIN CONTROL R1 392k 5% MARGIN COUT1 22µF 6.3V x2 + COUT2 220µF 6.3V REFER TO TABLE 2 FOR OUTPUT CAPACITOR SELECTIONS 4606 TA03 Figure 19. 3.3V at 5A Design Rev. E For more information www.analog.com 21 LTM4606 TYPICAL APPLICATIONS VOUT 4.5V TO 28V CLOCK SYNC C1 10µF R4 100k R3 100k VD VIN PLLIN VOUT PGOOD RUN LTM4606 VFB COMP INTVCC FCB DRVCC MARG0 fSET MARG1 TRACK/SS MPGM SGND PGND ON/OFF CIN 10µF 35V CERAMIC x2 C4 0.01µF 2.5V AT 6A C2 100pF COUT1 22µF 6.3V RFB 19.1k + COUT2 220µF 6.3V MARGIN CONTROL R1 392k 5% MARGIN 4606 TA04 Figure 20. Typical 4.5V to 28VIN, 2.5V at 6A Design VOUT VIN 4.5V TO 28V C1 10µF R4 100k + 2-PHASE OSCILLATOR R5 118k C7 0.1µF C5 100µF 35V R2 100k C2 10µF 35V C4 0.33µF V+ OUT1 GND OUT2 SET MOD CLOCK SYNC 0° PHASE VD VIN PLLIN PGOOD VOUT RUN LTM4606 VFB COMP FCB INTVCC DRVCC MARG0 fSET TRACK/SS MARG1 MPGM SGND PGND 2.5V AT 12A C6 220pF COUT1 22µF 6.3V + COUT2 220µF 6.3V MARGIN CONTROL R1 392k RFB 9.53k 5% MARGIN C3 10µF LTC6908-1 R3 100k C8 10µF 35V CLOCK SYNC 180° PHASE VD VIN PLLIN VOUT PGOOD LTM4606 RUN VFB COMP FCB INTVCC DRVCC fSET TRACK/SS SGND MARG0 MARG1 MPGM PGND COUT3 22µF 6.3V + COUT4 220µF 6.3V R6 392k 5% MARGIN 4606 TA05 Figure 21. 2-Phase, Parallel 2.5V at 12A Design 22 Rev. E For more information www.analog.com LTM4606 TYPICAL APPLICATIONS 3.3V VIN 5V TO 28V C3 10µF R2 100k R4 100k + 2-PHASE OSCILLATOR R5 118k C9 0.1µF C5 100µF 35V C2 10µF 35V C7 0.15µF V+ OUT1 GND OUT2 SET MOD CLOCK SYNC 0° PHASE PLLIN VD VIN PGOOD VOUT RUN LTM4606 VFB COMP FCB INTVCC DRVCC MARG0 fSET TRACK/SS MARG1 MPGM SGND PGND R3 100k COUT1 100µF 6.3V + COUT3 100µF 6.3V + COUT2 220µF 6.3V MARGIN CONTROL RFB1 13.3k R1 392k 5% MARGIN 3.3V LTC6908-1 3.3V AT 6A C6 22pF C4 10µF R7 100k C8 3.3V TRACK 10µF 35V R8 60.4k R9 19.1k CLOCK SYNC 180° PHASE VD VIN PLLIN VOUT PGOOD RUN LTM4606 VFB FCB COMP INTVCC DRVCC fSET TRACK/SS SGND 2.5V AT 6A C1 22pF MARG0 MARG1 MPGM PGND COUT4 220µF 6.3V MARGIN CONTROL R6 392k RFB2 19.1k 4606 TA06 Figure 22. 2-Phase, 3.3V and 2.5V Outputs at 6A with Tracking and Margining 1.8V 4.5V TO 28V C3 10µF R4 100k + 2-PHASE OSCILLATOR R5 182k C9 0.1µF C5 100µF 35V R2 100k C2 10µF 35V C7 0.15µF V+ OUT1 GND OUT2 SET MOD CLOCK SYNC 0° PHASE VD VIN PLLIN PGOOD VOUT RUN LTM4606 VFB COMP FCB INTVCC DRVCC MARG0 fSET TRACK/SS MARG1 MPGM SGND PGND C4 10µF R3 100k COUT1 100µF 6.3V + COUT2 220µF 6.3V MARGIN CONTROL R1 392k RFB1 30.1k 5% MARGIN 1.8V LTC6908-1 1.8V AT 6A C6 100pF R7 100k C8 10µF 1.8V TRACK 35V R8 60.4k R9 40.2k CLOCK SYNC 180° PHASE VD VIN PLLIN VOUT PGOOD RUN LTM4606 COMP INTVCC DRVCC fSET TRACK/SS SGND 1.5V AT 6A C1 100pF VFB FCB MARG0 MARG1 MPGM PGND COUT3 22µF 6.3V + COUT4 220µF 6.3V MARGIN CONTROL R6 392k RFB2 40.2k 4606 TA07 Figure 23. 2-Phase, 1.8V and 1.5V Outputs at 6A with Tracking and Margining For more information www.analog.com Rev. E 23 LTM4606 PACKAGE DESCRIPTION Pin Assignment Tables (Arranged by Pin Function) PIN NAME 24 PIN NAME A1 A2 A3 A4 A5 A6 VIN VIN VIN VIN VIN VIN D1 D2 D3 D4 D5 D6 PGND PGND PGND PGND PGND PGND B1 B2 B3 B4 B5 B6 VIN VIN VIN VIN VIN VIN C1 C2 C3 C4 C5 C6 VIN VIN VIN VIN VIN VIN E1 E2 E3 E4 E5 E6 E7 E8 PGND PGND PGND PGND PGND PGND PGND PGND F1 F2 F3 F4 F5 F6 F7 F8 F9 PGND PGND PGND PGND PGND PGND PGND PGND PGND G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 PGND PGND PGND PGND PGND PGND PGND PGND PGND PGND PGND H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 PGND PGND PGND PGND PGND PGND PGND PGND PGND PGND PGND PIN NAME J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT PIN NAME A7 A8 A9 A10 A11 A12 INTVCC PLLIN TRACK/SS RUN COMP MPGM B7 B8 B9 B10 B11 B12 VD RUN MPGM fSET C7 C8 C9 C10 C11 C12 VD DRVCC MARG1 MARG0 D7 D8 D9 D10 D11 D12 SGND COMP MARG1 E9 E10 E11 E12 DRVCC DRVCC F10 F11 F12 VFB G12 PGOOD H12 SGND J12 NC K12 NC L12 NC M12 FCB Rev. E For more information www.analog.com aaa Z 0.630 ±0.025 Ø 133x 3.1750 3.1750 SUGGESTED PCB LAYOUT TOP VIEW 1.9050 PACKAGE TOP VIEW E 0.6350 0.0000 0.6350 4 1.9050 PIN “A1” CORNER 6.9850 5.7150 4.4450 4.4450 5.7150 6.9850 Y For more information www.analog.com 6.9850 5.7150 4.4450 3.1750 1.9050 0.6350 0.0000 0.6350 1.9050 3.1750 4.4450 5.7150 6.9850 X D aaa Z MAX 3.62 0.70 2.92 0.90 0.66 BALL DIMENSION PAD DIMENSION BALL HT NOTES DETAIL B PACKAGE SIDE VIEW DIMENSIONS NOM 3.42 0.60 2.82 0.75 0.63 15.0 15.0 1.27 13.97 13.97 0.32 2.50 A A2 SUBSTRATE THK 0.37 MOLD CAP HT 2.55 0.15 0.10 0.20 0.30 0.15 TOTAL NUMBER OF BALLS: 133 0.27 2.45 MIN 3.22 0.50 2.72 0.60 0.60 H1 SUBSTRATE ddd M Z X Y eee M Z DETAIL A Øb (133 PLACES) // bbb Z SYMBOL A A1 A2 b b1 D E e F G H1 H2 aaa bbb ccc ddd eee b1 DETAIL B H2 MOLD CAP ccc Z A1 Z (Reference LTC DWG # 05-08-1943 Rev A) Z BGA Package 133-Lead (15mm × 15mm × 3.42mm) e b L K J G G F e E PACKAGE BOTTOM VIEW H D C B A DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE BALL DESIGNATION PER JESD MS-028 AND JEP95 6 TRAY PIN 1 BEVEL ! PACKAGE IN TRAY LOADING ORIENTATION LTMXXXXXX µModule 1 2 3 4 5 6 7 8 9 10 11 12 6 SEE NOTES PIN 1 BGA 133 0517 REV A PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY 5. PRIMARY DATUM -Z- IS SEATING PLANE 4 3 2. ALL DIMENSIONS ARE IN MILLIMETERS NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 COMPONENT PIN “A1” 3 SEE NOTES F b M DETAIL A LTM4606 PACKAGE DESCRIPTION Rev. E 25 For more information www.analog.com PACKAGE TOP VIEW 3.1750 5.7150 6.9850 X 15 BSC Y 6.9850 DETAIL B LAND DESIGNATION PER JESD MO-222, SPP-010 DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE 3 4 2. ALL DIMENSIONS ARE IN MILLIMETERS PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY SYMBOL TOLERANCE aaa 0.10 bbb 0.10 eee 0.05 ! 3 M L TRAY PIN 1 BEVEL COMPONENT PIN “A1” PADS SEE NOTES 1.27 BSC 13.97 BSC 0.12 – 0.28 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 DETAIL A 0.27 – 0.37 SUBSTRATE eee S X Y DETAIL B 0.630 ±0.025 SQ. 133x aaa Z 2.45 – 2.55 MOLD CAP 2.72 – 2.92 (Reference LTC DWG # 05-08-1766 Rev A) 7 4.4450 5.7150 SUGGESTED PCB LAYOUT TOP VIEW 3.1750 6. THE TOTAL NUMBER OF PADS: 133 4.4450 5. PRIMARY DATUM -Z- IS SEATING PLANE 5.7150 4.4450 6.9850 3.1750 1.9050 0.6350 0.0000 0.6350 1.9050 3.1750 4.4450 5.7150 6.9850 4 1.9050 PAD 1 CORNER 15 BSC 0.6350 0.0000 0.6350 aaa Z 1.9050 bbb Z 26 Z LGA Package 133-Lead (15mm × 15mm × 2.82mm) K G F E LTMXXXXXX µModule PACKAGE BOTTOM VIEW H D C B A LGA 133 1212 REV A PACKAGE IN TRAY LOADING ORIENTATION J 13.97 BSC DETAIL A 1 2 3 4 5 6 7 8 9 10 11 12 C(0.30) PAD 1 7 SEE NOTES LTM4606 PACKAGE DESCRIPTION Rev. E LTM4606 REVISION HISTORY REV DATE DESCRIPTION A 3/10 Change to Features. Change to Absolute Maximum Ratings. B 3/11 10/13 1 2 Changes to Electrical Characteristics. 2, 3 Changes to Related Parts. 25 Text updated throughout the data sheet. Graph replaced on the front page, Figure 2, and Figure 16. C PAGE NUMBER 1-28 1, 12, 17 Added value of 1µH to inductor on Figure 1. 9 Updated Related Parts. 28 Add BGA Package Option. 1, 2, 19, 25, 28 Add Start Into Pre-Bias Output Graph. 6 Clarify Voltage Margining function. 11 Add Recommended External Heat Sink Vendors. 19 Update LGA Package Outline Drawing. 26 D 2/14 Added SnPb package option. 1, 2 E 6/21 Added MPV to part marking. 2 Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license For is granted implication or otherwise under any patent or patent rights of Analog Devices. more by information www.analog.com 27 LTM4606 PACKAGE PHOTOGRAPH 2.82mm 15mm 15mm 3.42mm 15mm 15mm RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTM4601/ LTM4601A 12A DC/DC µModule Regulator with PLL, Output Tracking/Margining and Remote Sensing Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version Has No Remote Sensing, LGA Package LTM4618 6A DC/DC µModule Regulator with PLL, Output Tracking 4.5V ≤ VIN ≤ 26.5V, 0.8V ≤ VOUT ≤ 5V, Synchronizable, 9mm × 15mm × 4.3mm LGA Package LTM4604A Low VIN 4A DC/DC µModule Regulator 2.375V ≤ VIN ≤ 5.5V, 0.8V ≤ VOUT ≤ 5V, 9mm × 15mm × 2.3mm LGA Package LTM4608A Low VIN 8A DC/DC µModule Regulator 2.375V ≤ VIN ≤ 5.5V, 0.6V ≤ VOUT ≤ 5V, 9mm × 15mm × 2.8mm LGA Package LTM4612 Low Noise 5A, 15VOUT DC/DC µModule Regulator Low Noise, with PLL, Output Tracking and Margining, LTM4606 Pin-Compatible LTM4613 Low Noise 8A, 15VOUT DC/DC µModule Regulator Low Noise, with PLL, Output Tracking and Margining, EN55022B Compliant LTM4627 15A DC/DC µModule Regulator 4.5V ≤ VIN ≤ 20V, 0.6V ≤ VOUT ≤ 5V, ±1.5% Total DC Output Accuracy, 15mm × 15mm × 4.32mm LGA Package EN55022 Class B Certified DC/DC µModule Regulators LTM8020 High VIN 0.2A DC/DC Step-Down µModule Regulator 4V ≤ VIN ≤ 36V, 1.25V ≤ VOUT ≤ 5V, 6.25mm × 6.25mm × 2.3mm LGA Package LTM8021 High VIN 0.5A DC/DC Step-Down µModule Regulator 3V ≤ VIN ≤ 36V, 0.8V ≤ VOUT ≤ 5V, 6.25mm × 11.25mm × 2.8mm LGA Package LTM8022/ LTM8023 36VIN, 1A and 2A DC/DC µModule Regulators Pin Compatible, 4.5V ≤ VIN ≤ 36V, 9mm × 11.25mm × 2.8mm LGA Package LTM8031/ LTM8032 1A, 2A EMC DC/DC µModule Regulators EN55022 Class B Compliant, 3.6V ≤ VIN ≤ 36V, 0.8V ≤ VOUT ≤ 10V, Pin Compatible, 9mm × 15mm × 2.82mm LGA Package LTM8033 3A EMC DC/DC µModule Regulator 3.6V ≤ VIN ≤ 36V, 0.8V ≤ VOUT ≤ 24V, 11.25mm × 15mm × 4.32mm LGA Package 28 Rev. E 06/21 www.analog.com For more information www.analog.com  ANALOG DEVICES, INC. 2008-2021
LTM4606MPV#PBF 价格&库存

很抱歉,暂时无法提供与“LTM4606MPV#PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货