LTM9008-14/
LTM9007-14/LTM9006-14
14-Bit, 65Msps/40Msps/
25Msps Low Power Octal ADCs
FEATURES
DESCRIPTION
8-Channel Simultaneous Sampling ADC
n 73dB SNR
n 90dB SFDR
n Low Power: 88mW/59mW/46mW per Channel
n Single 1.8V Supply
n Serial LVDS Outputs: 1 or 2 Bits per Channel
n Selectable Input Ranges: 1V
P-P to 2VP-P
n 800MHz Full Power Bandwidth S/H
n Shutdown and Nap Modes
n Serial SPI Port for Configuration
n Internal Bypass Capacitance, No External
Components
n 140-Pin (11.25mm × 9mm) BGA Package
The LTM®9008-14/LTM9007-14/LTM9006-14 are 8-channel, simultaneous sampling 14-bit A/D converters designed
for digitizing high frequency, wide dynamic range signals.
AC performance includes 73dB SNR and 90dB spurious
free dynamic range (SFDR). Low power consumption per
channel reduces heat in high channel count applications.
Integrated bypass capacitance and flowthrough pinout
reduces overall board space requirements.
n
DC specs include ±1LSB INL (typ), ±0.3LSB DNL (typ)
and no missing codes over temperature. The transition
noise is a low 1.2LSBRMS.
The digital outputs are serial LVDS to minimize the number of data lines. Each channel outputs two bits at a time
(2-lane mode). At lower sampling rates there is a one bit
per channel option (1-lane mode).
APPLICATIONS
n
n
n
n
n
n
Communications
Cellular Base Stations
Software Defined Radios
Portable Medical Imaging
Multichannel Data Acquisition
Nondestructive Testing
The ENC+ and ENC– inputs may be driven differentially
or single-ended with a sine wave, PECL, LVDS, TTL, or
CMOS inputs. An internal clock duty cycle stabilizer allows high performance at full speed for a wide range of
clock duty cycles.
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
TYPICAL APPLICATION
1.8V
VDD
14-BIT
ADC CORE
OUT1A
0
OUT1B
–10
S/H
14-BIT
ADC CORE
OUT2A
–30
ENCODE
INPUT
S/H
•••
SERIALIZED
LVDS
OUTPUTS
OUT8A
14-BIT
ADC CORE
OUT8B
DATA
CLOCK
OUT
PLL
FRAME
90067814 TA01
GND
GND
AMPLITUDE (dBFS)
CHANNEL 8
ANALOG
INPUT
DATA
SERIALIZER
–20
OUT2B
•••
•••
CHANNEL 2
ANALOG
INPUT
S/H
•••
CHANNEL 1
ANALOG
INPUT
LTM9008-14, 65Msps,
2-Tone FFT, fIN = 70MHz and 75MHz
1.8V
OVDD
–40
–50
–60
–70
–80
–90
–100
–110
–120
0
20
10
FREQUENCY (MHz)
30
90067814 TA01b
90067814fb
For more information www.linear.com/LTM9008-14
1
LTM9008-14/
LTM9007-14/LTM9006-14
ABSOLUTE MAXIMUM RATINGS
PIN CONFIGURATION
(Notes 1, 2)
Supply Voltages
VDD, OVDD................................................. –0.3V to 2V
Analog Input Voltage (AIN+, AIN –,
PAR/SER, SENSE) (Note 3)........... –0.3V to (VDD + 0.2V)
Digital Input Voltage (ENC+, ENC–, CS,
SDI, SCK) (Note 4)..................................... –0.3V to 3.9V
SDO (Note 4).............................................. –0.3V to 3.9V
Digital Output Voltage................. –0.3V to (OVDD + 0.3V)
Operating Temperature Range
LTM9008C, LTM9007C, LTM9006C......... 0°C to 70°C
LTM9008I, LTM9007I, LTM9006I.........–40°C to 85°C
Storage Temperature Range................... –55°C to 125°C
TOP VIEW
A
B
C
D
E
F
G
H
J
K
L
M
N
P
2
1
3
4
5
6
7
8
9
10
BGA PACKAGE
140-LEAD (11.25mm × 9.00mm × 2.72mm)
TJMAX = 150°C, θJA = 30°C/W, θJC = 25°C/W, θJB = 15°C/W, θJCbottom = 12°C/W
ORDER INFORMATION
LEAD FREE FINISH
TRAY
http://www.linear.com/product/LTM9008-14#orderinfo
PART MARKING*
PACKAGE DESCRIPTION
TEMPERATURE RANGE
LTM9008CY-14#PBF
LTM9008CY-14#PBF
LTM9008Y14
140-Lead (11.25mm × 9mm × 2.72mm) BGA 0°C to 70°C
LTM9008IY-14#PBF
LTM9008IY-14#PBF
LTM9008Y14
140-Lead (11.25mm × 9mm × 2.72mm) BGA –40°C to 85°C
LTM9007CY-14#PBF
LTM9007CY-14#PBF
LTM9007Y14
140-Lead (11.25mm × 9mm × 2.72mm) BGA 0°C to 70°C
LTM9007IY-14#PBF
LTM9007IY-14#PBF
LTM9007Y14
140-Lead (11.25mm × 9mm × 2.72mm) BGA –40°C to 85°C
LTM9006CY-14#PBF
LTM9006CY-14#PBF
LTM9006Y14
140-Lead (11.25mm × 9mm × 2.72mm) BGA 0°C to 70°C
LTM9006IY-14#PBF
LTM9006IY-14#PBF
LTM9006Y14
140-Lead (11.25mm × 9mm × 2.72mm) BGA –40°C to 85°C
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through
designated sales channels with #TRMPBF suffix.
2
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
CONVERTER
CHARACTERISTICS The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TA = 25°C. (Note 5)
PARAMETER
LTM9008-14
MIN
TYP MAX
CONDITIONS
Resolution (No Missing Codes)
l
LTM9007-14
MIN
TYP MAX
14
LTM9006-14
MIN
TYP MAX
14
UNITS
14
Bits
Integral Linearity Error
Differential Analog Input (Note 6) l
–4.1
±1.2
4.1
–2.75
±1
2.75
–2.75
±1
2.75
LSB
Differential Linearity Error
Differential Analog Input
l
–0.9
±0.3
0.9
–0.8
±0.3
0.8
–0.8
±0.3
0.8
LSB
Offset Error
(Note 7)
l
–12
±3
12
–12
±3
12
–12
±3
12
mV
Gain Error
Internal Reference
External Reference
–2.5
–1.3
–1.3
–2.5
–1.3
–1.3
–2.6
–1.3
–1.3
0.5
%FS
%FS
l
Offset Drift
0.5
0.5
±20
±20
±20
µV/°C
Full-Scale Drift
Internal Reference
External Reference
±35
±25
±35
±25
±35
±25
ppm/°C
ppm/°C
Gain Matching
External Reference
±0.2
±0.2
±0.2
%FS
±3
±3
±3
mV
External Reference
1.2
1.2
1.2
LSBRMS
Offset Matching
Transition Noise
ANALOG
INPUT
The l denotes the specifications which apply over the full operating temperature range, otherwise
specifications are at TA = 25°C. (Note 5)
SYMBOL PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
VIN(CM)
Analog Input Range (AIN+ – AIN–)
Analog Input Common Mode (AIN+ + AIN–)/2
VSENSE
External Voltage Reference Applied to SENSE External Reference Mode
IINCM
Analog Input Common Mode Current
Per Pin, 65Msps
Per Pin, 40Msps
Per Pin, 25Msps
IIN1
Analog Input Leakage Current
0 < AIN+, AIN– < VDD, No Encode
l
–1
1
µA
IIN2
PAR/SER Input Leakage Current
0 < PAR/SER < VDD
l
–3
3
µA
IIN3
SENSE Input Leakage Current
0.625 < SENSE < 1.3V
l
–6
6
µA
tAP
Sample-and-Hold Acquisition Delay Time
0
tJITTER
Sample-and-Hold Acquisition Delay Jitter
0.15
CMRR
Analog Input Common Mode Rejection Ratio
BW-3B
Full-Power Bandwidth
VIN
1.7V < VDD < 1.9V
l
Differential Analog Input (Note 8)
l
VCM – 100mV
1 to 2
VCM
VCM + 100mV
VP-P
V
l
0.625
1.250
1.300
V
81
50
31
Figure 6 Test Circuit
µA
µA
µA
ns
psRMS
80
dB
800
MHz
90067814fb
For more information www.linear.com/LTM9008-14
3
LTM9008-14/
LTM9007-14/LTM9006-14
DYNAMIC ACCURACY
The l denotes the specifications which apply over the full operating temperature range,
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)
SYMBOL
PARAMETER
CONDITIONS
LTM9008-14
MIN
TYP MAX
LTM9007-14
MIN
TYP MAX
LTM9006-14
MIN
TYP MAX
UNITS
SNR
Signal-to-Noise Ratio
5MHz Input
30MHz Input
70MHz Input
140MHz Input
73.7
73.7
73.5
73
73.5
73.4
73.4
72.8
72.9
72.9
72.8
72.3
dBFS
dBFS
dBFS
dBFS
90
90
89
84
dBFS
dBFS
dBFS
dBFS
90
90
90
90
dBFS
dBFS
dBFS
dBFS
72.8
72.7
72.5
71.9
dBFS
dBFS
dBFS
dBFS
SFDR
Spurious Free Dynamic Range 5MHz Input
2nd or 3rd Harmonic
30MHz Input
70MHz Input
140MHz Input
Spurious Free Dynamic Range 5MHz Input
4th Harmonic or Higher
30MHz Input
70MHz Input
140MHz Input
S/(N+D)
l
71.8
l
74
l
84
l
71
69.6
90
90
89
84
76.8
90
90
90
90
84
73.6
73.5
73.2
72.5
90
90
89
84
69.6
76.8
90
90
90
90
84
73.3
73.2
73.1
72.3
Signal-to-Noise Plus
Distortion Ratio
5MHz Input
30MHz Input
70MHz Input
140MHz Input
Crosstalk, Near Channel
10MHz Input (Note 12)
–90
–90
–90
dBc
Crosstalk, Far Channel
10MHz Input (Note 12)
–105
–105
–105
dBc
69.5
69.5
INTERNAL
REFERENCE CHARACTERISTICS
The l denotes the specifications which apply over the
full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)
PARAMETER
CONDITIONS
VCM Output Voltage
IOUT = 0
MIN
TYP
MAX
0.5 • VDD – 25mV
0.5 • VDD
0.5 • VDD + 25mV
VCM Output Temperature Drift
±25
VCM Output Resistance
–600µA < IOUT < 1mA
VREF Output Voltage
IOUT = 0
VREF Output Temperature Drift
±25
VREF Output Resistance
–400µA < IOUT < 1mA
VREF Line Regulation
1.7V < VDD < 1.9V
4
1.250
7
0.6
V
ppm/°C
4
1.225
UNITS
Ω
1.275
V
ppm/°C
Ω
mV/V
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
DIGITAL
INPUTS AND OUTPUTS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TA = 25°C. (Note 5)
SYMBOL PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
ENCODE INPUTS (ENC+, ENC– )
Differential Encode Mode (ENC– Not Tied to GND)
VID
Differential Input Voltage
(Note 8)
l
0.2
VICM
Common Mode Input Voltage
Internally Set
Externally Set (Note 8)
l
1.1
l
0.2
VIN
Input Voltage Range
ENC+, ENC– to GND
RIN
Input Resistance
(See Figure 10)
CIN
Input Capacitance
V
1.2
1.6
V
V
3.6
V
10
kΩ
3.5
pF
Single-Ended Encode Mode (ENC– Tied to GND)
VIH
High Level Input Voltage
VDD = 1.8V
1.26
V
VIL
Low Level Input Voltage
VDD = 1.8V
0.54
V
VIN
Input Voltage Range
ENC+ to GND
RIN
Input Resistance
(See Figure 11)
CIN
Input Capacitance
0 to 3.6
V
30
kΩ
3.5
pF
DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)
VIH
High Level Input Voltage
VDD = 1.8V
VIL
Low Level Input Voltage
VDD = 1.8V
l
IIN
Input Current
VIN = 0V to 3.6V
l
CIN
Input Capacitance
l
1.3
V
–10
0.6
V
10
µA
3
pF
200
Ω
SDO OUTPUT (Serial Programming Mode. Open-Drain Output. Requires 2kΩ Pull-Up Resistor if SDO Is Used)
ROL
Logic Low Output Resistance to GND
VDD = 1.8V, SDO = 0V
IOH
Logic High Output Leakage Current
SDO = 0V to 3.6V
COUT
Output Capacitance
l
–10
10
3
µA
pF
DIGITAL DATA OUTPUTS
VOD
Differential Output Voltage
100Ω Differential Load, 3.5mA Mode
100Ω Differential Load, 1.75mA Mode
l
l
247
125
350
175
454
250
VOS
Common Mode Output Voltage
100Ω Differential Load, 3.5mA Mode
100Ω Differential Load, 1.75mA Mode
l
l
1.125
1.125
1.250
1.250
1.375
1.375
RTERM
On-Chip Termination Resistance
Termination Enabled, OVDD = 1.8V
100
mV
mV
V
V
Ω
90067814fb
For more information www.linear.com/LTM9008-14
5
LTM9008-14/
LTM9007-14/LTM9006-14
POWER
REQUIREMENTS
The l denotes the specifications which apply over the full operating temperature
range, otherwise specifications are at TA = 25°C. (Note 9)
SYMBOL PARAMETER
VDD
Analog Supply Voltage
OVDD
IVDD
IOVDD
PDISS
CONDITIONS
LTM9008-14
MIN
TYP MAX
LTM9007-14
MIN
TYP MAX
LTM9006-14
MIN
TYP MAX UNITS
1.9
1.7
1.9
1.7
1.7
1.7
(Note 10)
l
1.7
Output Supply Voltage
(Note 10)
l
1.7
1.8
1.9
1.8
1.9
1.8
1.9
V
Analog Supply Current
Sine Wave Input
l
357
400
232
275
175
250
mA
Digital Supply Current
1-Lane Mode, 1.75mA Mode
1-Lane Mode, 3.5mA Mode
2-Lane Mode, 1.75mA Mode
2-Lane Mode, 3.5mA Mode
l
l
32
60
50
94
58
104
32
58
48
92
54
102
30
56
48
90
54
100
mA
mA
mA
mA
l
l
700
751
733
812
824
907
475
522
504
583
592
679
369
416
401
477
547
630
mW
mW
mW
mW
Power Dissipation
1-Lane Mode, 1.75mA Mode
1-Lane Mode, 3.5mA Mode
2-Lane Mode, 1.75mA Mode
2-Lane Mode, 3.5mA Mode
1.8
1.8
1.8
1.9
V
PSLEEP
Sleep Mode Power
2
2
2
mW
PNAP
Nap Mode Power
170
170
170
mW
PDIFFCLK
Power Decrease With Single-Ended Encode Mode Enabled
(No Decrease for Sleep Mode)
40
40
40
mW
TIMING
CHARACTERISTICS
The l denotes the specifications which apply over the full operating temperature
range, otherwise specifications are at TA = 25°C. (Note 5)
LTM9008-14
MIN
TYP MAX
LTM9007-14
MIN
TYP MAX
LTM9006-14
MIN
TYP MAX
SYMBOL
PARAMETER
CONDITIONS
fS
Sampling Frequency
(Notes 10,11)
l
5
65
5
40
5
25
MHz
tENCL
ENC Low Time (Note 8)
Duty Cycle Stabilizer Off
Duty Cycle Stabilizer On
l
l
7.3
2
7.69
7.69
100
100
11.88
2
12.5
12.5
100
100
19
2
20
20
100
100
ns
ns
tENCH
ENC High Time (Note 8)
Duty Cycle Stabilizer Off
Duty Cycle Stabilizer On
l
l
7.3
2
7.69
7.69
100
100
11.88
2
12.5
12.5
100
100
19
2
20
20
100
100
ns
ns
tAP
Sample-and-Hold
Acquisition Delay Time
SYMBOL
PARAMETER
0
0
CONDITIONS
MIN
0
TYP
UNITS
ns
MAX
UNITS
Digital Data Outputs (RTERM = 100Ω Differential, CL = 2pF to GND on Each Output)
1/(8 • fS)
1/(7 • fS)
1/(6 • fS)
1/(16 • fS)
1/(14 • fS)
1/(12 • fS)
s
s
s
s
s
s
tSER
Serial Data Bit Period
2-Lanes, 16-Bit Serialization
2-Lanes, 14-Bit Serialization
2-Lanes, 12-Bit Serialization
1-Lane, 16-Bit Serialization
1-Lane, 14-Bit Serialization
1-Lane, 12-Bit Serialization
tFRAME
FR to DCO Delay
(Note 8)
l
0.35 • tSER
0.5 • tSER
0.65 • tSER
s
tDATA
DATA to DCO Delay
(Note 8)
l
0.35 • tSER
0.5 • tSER
0.65 • tSER
s
tPD
Propagation Delay
(Note 8)
l
tR
Output Rise Time
tF
0.7n + 2 • tSER 1.1n + 2 • tSER 1.5n + 2 • tSER
s
Data, DCO, FR, 20% to 80%
0.17
ns
Output Fall Time
Data, DCO, FR, 20% to 80%
0.17
DCO Cycle-Cycle Jitter
tSER = 1ns
Pipeline Latency
6
ns
60
psP-P
6
Cycles
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
TIMING
CHARACTERISTICS
The l denotes the specifications which apply over the full operating temperature
range, otherwise specifications are at TA = 25°C. (Note 5)
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
SPI Port Timing (Note 8)
tSCK
SCK Period
tS
Write Mode
Read Back Mode, CSDO = 20pF,
RPULLUP = 2k
l
l
40
250
ns
ns
CS to SCK Setup Time
l
5
ns
tH
SCK to CS Setup Time
l
5
ns
tDS
SDI Setup Time
l
5
ns
tDH
SDI Hold Time
l
5
ns
tDO
SCK Falling to SDO Valid
Read Back Mode, CSDO = 20pF,
RPULLUP = 2k
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: All voltage values are with respect to GND (unless otherwise
noted).
Note 3: When these pin voltages are taken below GND or above VDD, they
will be clamped by internal diodes. This product can handle input currents
of greater than 100mA below GND or above VDD without latchup.
Note 4: When these pin voltages are taken below GND they will be
clamped by internal diodes. When these pin voltages are taken above VDD
they will not be clamped by internal diodes. This product can handle input
currents of greater than 100mA below GND without latchup.
Note 5: VDD = OVDD = 1.8V, fSAMPLE = 65MHz (LTM9008), 40MHz
(LTM9007), or 25MHz (LTM9006), 2-lane output mode, differential ENC+/
ENC– = 2VP-P sine wave, input range = 2VP-P with differential drive, unless
otherwise noted.
Note 6: Integral nonlinearity is defined as the deviation of a code from a
best fit straight line to the transfer curve. The deviation is measured from
the center of the quantization band.
l
125
ns
Note 7: Offset error is the offset voltage measured from –0.5 LSB when
the output code flickers between 00 0000 0000 0000 and 11 1111 1111
1111 in 2’s complement output mode.
Note 8: Guaranteed by design, not subject to test.
Note 9: VDD = OVDD = 1.8V, fSAMPLE = 65MHz (LTM9008), 40MHz
(LTM9007), or 25MHz (LTM9006), 2-lane output mode, differential
ENC+/ENC– = 2VP-P sine wave, input range = 2VP-P with differential
drive, unless otherwise noted. The supply current and power dissipation
specifications are totals for the entire device, not per channel.
Note 10: Recommended operating conditions.
Note 11: The maximum sampling frequency depends on the speed grade
of the part and also which serialization mode is used. The maximum serial
data rate is 1000Mbps so tSER must be greater than or equal to 1ns.
Note 12: Near-channel crosstalk refers to Ch. 1 to Ch.2, and Ch.7 to Ch.8.
Far-channel crosstalk refers to Ch.1 to Ch.7, Ch.1 to Ch.8, Ch.2 to Ch.7, and
Ch.2 to Ch.8.
90067814fb
For more information www.linear.com/LTM9008-14
7
LTM9008-14/
LTM9007-14/LTM9006-14
TIMING DIAGRAMS
2-Lane Output Mode, 16-Bit Serialization*
tAP
ANALOG
INPUT
N+1
N
tENCH
ENC–
tENCL
ENC+
tSER
DCO–
DCO+
tFRAME
FR–
FR+
tDATA
tSER
tPD
OUT#A–
OUT#A+
OUT#B–
OUT#B+
tSER
D5
D3
D1
0
D13 D11 D9
D7
D5
D3
D1
0
D13 D11 D9
D4
D2
D0
0
D12 D10 D8
D6
D4
D2
D0
0
D12 D10 D8
SAMPLE N-6
SAMPLE N-5
SAMPLE N-4
90067814 TD01
*SEE THE DIGITAL OUTPUTS SECTION
2-Lane Output Mode, 14-Bit Serialization
tAP
ANALOG
INPUT
N+2
N
tENCH
ENC–
N+1
tENCL
ENC+
tSER
DCO–
DCO+
tFRAME
FR–
FR+
OUT#A–
OUT#A+
OUT#B–
OUT#B+
tDATA
tSER
tPD
tSER
D7
D5
D3
D1 D13 D11 D9
D7
D5
D3
D1 D13 D11 D9
D7
D5
D3
D1 D13 D11 D9
D6
D4
D2
D0 D12 D10 D8
D6
D4
D2
D0 D12 D10 D8
D6
D4
D2
D0 D12 D10 D8
SAMPLE N-6
SAMPLE N-5
SAMPLE N-4
SAMPLE N-3
90067814 TD02
NOTE THAT IN THIS MODE FR+/FR– HAS TWO TIMES THE PERIOD OF ENC+/ENC–
8
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
TIMING DIAGRAMS
2-Lane Output Mode, 12-Bit Serialization
tAP
ANALOG
INPUT
N
N+1
tENCH
ENC–
tENCL
ENC+
tSER
DCO–
DCO+
FR+
tFRAME
tDATA
tPD
tSER
FR–
OUT#A–
OUT#A+
OUT#B–
OUT#B+
tSER
D9
D7
D5
D3 D13 D11 D9
D7
D5
D3 D13 D11 D9
D8
D6
D4
D2 D12 D10 D8
D6
D4
D2 D12 D10 D8
SAMPLE N-6
SAMPLE N-5
SAMPLE N-4
90067814 TD03
1-Lane Output Mode, 16-Bit Serialization
tAP
ANALOG
INPUT
N+1
N
tENCH
ENC–
tENCL
ENC+
tSER
DCO–
DCO+
tFRAME
FR–
FR+
OUT#A–
OUT#A+
tDATA
tSER
tPD
D1
D0
0
tSER
0
SAMPLE N-6
D13 D12 D11 D10 D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
SAMPLE N-5
0
D13 D12 D11 D10
SAMPLE N-4
90067814 TD04
OUT#B+, OUT#B– ARE DISABLED
1-Lane Output Mode, 14-Bit Serialization
tAP
ANALOG
INPUT
N+1
N
tENCH
ENC–
tENCL
ENC+
tSER
DCO–
DCO+
tFRAME
FR–
FR+
OUT#A–
OUT#A+
tDATA
tSER
tPD
D3
D2
SAMPLE N-6
D1
tSER
D0 D13 D12 D11 D10 D9
D8
D7
D6
D5
D4
D3
D2
SAMPLE N-5
D1
D0 D13 D12 D11 D10
SAMPLE N-4
90067814 TD06
OUT#B+, OUT#B– ARE DISABLED
90067814fb
For more information www.linear.com/LTM9008-14
9
LTM9008-14/
LTM9007-14/LTM9006-14
TIMING DIAGRAMS
1-Lane Output Mode, 12-Bit Serialization
tAP
ANALOG
INPUT
N+1
N
tENCH
ENC–
tENCL
ENC+
tSER
DCO–
DCO+
tFRAME
FR–
FR+
OUT#A–
OUT#A+
tDATA
tSER
tPD
D5
D4
D3
tSER
D2 D13 D12 D11 D10 D9
SAMPLE N-6
D8
D7
D6
D5
D4
D3
D2 D13 D12 D11
SAMPLE N-5
SAMPLE N-4
90067814 TD07
OUT#B+, OUT#B– ARE DISABLED
SPI Port Timing (Readback Mode)
tDS
tS
tDH
tSCK
tH
CS
SCK
tDO
SDI
SDO
R/W
A6
A5
A4
A3
A2
A1
A0
XX
D7
HIGH IMPEDANCE
XX
D6
XX
D5
XX
D4
XX
D3
XX
D2
XX
XX
D1
D0
SPI Port Timing (Write Mode)
CS
SCK
SDI
SDO
10
R/W
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
90067814 TD08
HIGH IMPEDANCE
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
TYPICAL PERFORMANCE CHARACTERISTICS
LTM9008-14: Integral
Nonlinearity (INL) vs Output Code
LTM9008-14: Differential
Nonlinearity (DNL) vs Output Code
2.0
1.5
0
0.4
–10
–20
0.3
0.5
0
–0.5
–1.0
–30
0.2
AMPLITUDE (dBFS)
DNL ERROR (LSB)
1.0
0.1
0
–0.1
–0.2
–1.5
–0.4
–2.0
–0.5
8192
4096
12288
16384
0
4096
12288
8192
OUTPUT CODE
–80
–120
16384
0
5
20
15
10
25
FREQUENCY (MHz)
LTM9008-14: 64k Point FFT,
fIN = 30MHz, –1dBFS, SENSE = VDD
0
–20
–20
–30
–30
AMPLITUDE (dBFS)
–10
–40
–50
–60
–70
–80
–90
35
LTM9008-14: 64k Point FFT,
fIN = 70MHz, –1dBFS, SENSE = VDD
–40
–50
–60
–70
–80
–90
–100
–100
–110
–110
0
5
20
15
10
25
FREQUENCY (MHz)
30
–120
35
0
20
15
10
25
FREQUENCY (MHz)
5
90067814 G04
0
30
90067814 G03
90067814 G02
–10
–120
–70
–110
90067814 G01
0
–50
–60
–100
OUTPUT CODE
AMPLITUDE (dBFS)
30
35
90067814 G05
LTM9008-14: 64k Point 2-Tone FFT,
fIN = 28.5MHz and fIN = 31.5MHz,
–7dBFS per Tone, SENSE = VDD
LTM9008-14: Shorted Input
Histogram
6000
–10
–20
5000
–30
–40
4000
–50
COUNT
0
–40
–90
–0.3
AMPLITUDE (dBFS)
INL ERROR (LSB)
0.5
LTM9008-14: 64k Point FFT,
fIN = 5MHz, –1dBFS, SENSE = VDD
–60
–70
–80
3000
2000
–90
–100
1000
–110
–120
0
5
20
15
10
25
FREQUENCY (MHz)
30
35
0
8197
8199
90067814 G06
8201
8203
OUTPUT CODE
8205
90067814 G07
90067814fb
For more information www.linear.com/LTM9008-14
11
LTM9008-14/
LTM9007-14/LTM9006-14
TYPICAL PERFORMANCE CHARACTERISTICS
LTM9008-14: SNR vs Input
Frequency, –1dBFS, 2V Range,
65Msps
LTM9008-14: SFDR vs Input
Frequency, –1dBFS, 2V Range,
65Msps
74
110
95
100
73
90
70
69
SFDR (dBc AND dBFS)
SFDR (dBFS)
SNR (dBFS)
71
85
80
75
68
80
70
60
dBc
50
40
30
20
70
67
dBFS
90
72
66
LTM9008-14: SFDR vs Input Level,
fIN = 70MHz, 2V Range, 65Msps
10
0
50
100 150 200 250 300
INPUT FREQUENCY (MHz)
65
350
0
50
100 150 200 250 300
INPUT FREQUENCY (MHz)
90067814 G08
80
90067814 G09
LTM9008-14: SNR vs Input Level,
fIN = 70MHz, 2V Range, 65Msps
320
dBFS
90067814 G11
LTM9008-14: IVDD vs Sample Rate,
5MHz Sine Wave Input, –1dBFS
300
60
290
dBc
IVDD (mA)
50
40
30
280
270
260
250
20
240
10
230
0
–60
–50
–40
–30
–20
INPUT LEVEL (dBFS)
–10
220
0
0
10
20
30
40
50
SAMPLE RATE (Msps)
IOVDD vs Sample Rate, 5MHz Sine
Wave Input, –1dBFS
50
75
LTM9008-14: SNR vs SENSE,
fIN = 5MHz, –1dBFS
74
2-LANE, 3.5mA
40
60
90067814 G12
90067814 G11
73
1-LANE, 3.5mA
30
SNR (dBFS)
IOVDD (mA)
0
310
70
SNR (dBc AND dBFS)
0
–80 –70 –60 –50 –40 –30 –20 –10
INPUT LEVEL (dBFS)
350
2-LANE, 1.75mA
20
1-LANE, 1.75mA
10
72
71
70
69
68
0
0
20
40
SAMPLE RATE (Msps)
60
67
0.6
0.7
90067814 G13
12
0.8
0.9
1
1.1
SENSE PIN (V)
1.2
1.3
90067814 G14
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
TYPICAL PERFORMANCE CHARACTERISTICS
LTM9007-14: Integral Nonlinearity
(INL) vs Output Code
LTM9007-14: Differential
Nonlinearity (DNL) vs Output Code
0.5
2.0
1.5
–20
0.3
0.5
0
–0.5
–1.0
0.2
AMPLITUDE (dBFS)
DNL ERROR (LSB)
1.0
0.1
0
–0.1
–0.2
–30
–40
–50
–60
–70
–80
–90
–0.3
–100
–1.5
–0.4
–110
–2.0
–0.5
–120
8192
4096
16384
12288
0
4096
OUTPUT CODE
12288
8192
OUTPUT CODE
90067814 G15
16384
0
10
5
15
20
FREQUENCY (MHz)
90067814 G17
90067814 G16
LTM9007-14: 64k Point FFT,
fIN = 70MHz, –1dBFS, SENSE = VDD
LTM9007-14: 64k Point FFT,
fIN = 30MHz, –1dBFS, SENSE = VDD
0
–10
0
–10
–20
–20
–30
–40
–30
–40
AMPLITUDE (dBFS)
AMPLITUDE (dBFS)
–50
–60
–70
–80
–50
–60
–70
–80
–90
–90
–100
–100
–110
–110
–120
–120
0
5
10
15
20
0
5
10
20
15
FREQUENCY (MHz)
FREQUENCY (MHz)
90067814 G19
90067814 G18
LTM9007-14: 64k Point 2-Tone FFT,
fIN = 28.5MHz and fIN = 31.5MHz,
–7dBFS per Tone, SENSE = VDD
LTM9007-14: Shorted Input
Histogram
0
–10
6000
–20
5000
–30
–40
4000
–50
COUNT
0
AMPLITUDE (dBFS)
INL ERROR (LSB)
0
–10
0.4
LTM9007-14: 64k Point FFT,
fIN = 5MHz, –1dBFS, SENSE = VDD
–60
–70
–80
3000
2000
–90
–100
1000
–110
–120
0
2
4
6 8 10 12 14 16 18 20
FREQUENCY (MHz)
0
8198
8200
90067814 G20
8202
8204
OUTPUT CODE
8206
90067814 G21
90067814fb
For more information www.linear.com/LTM9008-14
13
LTM9008-14/
LTM9007-14/LTM9006-14
TYPICAL PERFORMANCE CHARACTERISTICS
LTM9007-14: SNR vs Input
Frequency, –1dBFS, 2V Range,
40Msps
LTM9007-14: SFDR vs Input
Frequency, –1dBFS, 2V Range,
40Msps
LTM9007-14: SFDR vs Input Level,
fIN = 70MHz, 2V Range, 40Msps
95
74
110
100
73
90
70
69
SFDR (dBc AND dBFS)
SFDR (dBFS)
SNR (dBFS)
72
71
85
80
75
68
66
80
70
60
dBc
50
40
30
20
70
67
dBFS
90
10
0
50
100 150 200 250 300
INPUT FREQUENCY (MHz)
350
65
0
100 150 200 250 300
INPUT FREQUENCY (MHz)
50
350
0
–80 –70 –60 –50 –40 –30 –20 –10
INPUT LEVEL (dBFS)
90067814 G23
90067814 G22
LTM9007-14: IVDD vs Sample Rate,
5MHz Sine Wave Input, –1dBFS
0
90067814 G24
LTM9007-14: SNR vs SENSE,
fIN = 5MHz, –1dBFS
74
200
73
190
72
SNR (dBFS)
IVDD (mA)
180
170
160
71
70
69
68
150
140
67
0
10
20
30
SAMPLE RATE (Msps)
40
66
0.6
0.7
0.8
90067814 G25
14
0.9
1
1.1
SENSE PIN (V)
1.2
1.3
90067814 G26
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
TYPICAL PERFORMANCE CHARACTERISTICS
LTM9006-14: Integral Nonlinearity
(INL) vs Output Code
LTM9006-14: Differential
Nonlinearity (DNL) vs Output Code
0.5
2.0
0
–10
0.4
1.5
–20
0.3
0.5
0
–0.5
–1.0
0.2
AMPLITUDE (dBFS)
DNL ERROR (LSB)
1.0
0.1
0
–0.1
–0.2
–0.4
–2.0
–0.5
8192
4096
12288
16384
–60
–70
–80
–110
0
4096
12288
8192
OUTPUT CODE
90067814 G27
0
–10
–50
–100
OUTPUT CODE
–120
16384
0
2
8
10
4
6
FREQUENCY (MHz)
LTM9006-14: 64k Point FFT,
fIN = 30MHz, –1dBFS, SENSE = VDD
12
14
90067814 G29
90067814 G28
LTM9006-14: 64k Point FFT,
fIN = 70MHz, –1dBFS, SENSE = VDD
0
–10
–20
–20
–30
–40
–30
–40
AMPLITUDE (dBFS)
AMPLITUDE (dBFS)
–50
–60
–70
–80
–50
–60
–70
–80
–90
–90
–100
–100
–110
–110
–120
–120
0
2
8
10
4
6
FREQUENCY (MHz)
12
14
0
8
10
4
6
FREQUENCY (MHz)
2
90067814 G30
LTM9006-14: 64k Point 2-Tone FFT,
fIN = 28.5MHz and 31.5MHz, –7dBFS
per Tone, SENSE = VDD
6000
–20
5000
–30
–40
4000
–60
–70
–80
14
LTM9006-14: Shorted Input
Histogram
0
–10
–50
12
90067814 G31
COUNT
0
–30
–40
–90
–0.3
–1.5
AMPLITUDE (dBFS)
INL ERROR (LSB)
LTM9006-14: 64k Point FFT,
fIN = 5MHz, –1dBFS, SENSE = VDD
3000
2000
–90
–100
1000
–110
–120
0
2
8
10
4
6
FREQUENCY (MHz)
12
14
0
8198
8200
90067814 G32
8202
8204
OUTPUT CODE
8206
90067814 G33
90067814fb
For more information www.linear.com/LTM9008-14
15
LTM9008-14/
LTM9007-14/LTM9006-14
TYPICAL PERFORMANCE CHARACTERISTICS
LTM9006-14: SNR vs Input
Frequency, –1dBFS, 2V Range,
25Msps
LTM9006-14: SFDR vs Input
Frequency, –1dBFS, 2V Range,
25Msps
74
LTM9006-14: SFDR vs Input Level,
fIN = 70MHz, 2V Range, 25Msps
95
110
100
73
90
70
69
SFDR (dBc AND dBFS)
SFDR (dBFS)
SNR (dBFS)
72
71
85
80
75
68
66
0
100 150 200 250 300
INPUT FREQUENCY (MHz)
50
350
dBc
60
50
40
30
0
50
100 150 200 250 300
INPUT FREQUENCY (MHz)
DCO Cycle-Cycle Jitter vs Serial
Data Rate
74
350
73
300
PEAK-TO-PEAK JITTER (ps)
150
SNR (dBFS)
72
130
71
70
69
68
5
10
15
20
SAMPLE RATE (Msps)
25
90067814 G37
16
66
250
200
150
100
50
67
0
0
90067814 G36
LTM9006-14: SNR vs SENSE,
fIN = 5MHz, –1dBFS
160
140
0
–80 –70 –60 –50 –40 –30 –20 –10
INPUT LEVEL (dBFS)
350
90067814 G35
LTM9006-14: IVDD vs Sample Rate,
5MHz Sine Wave Input, –1dBFS
IVDD (mA)
70
10
65
90067814 G34
120
80
20
70
67
dBFS
90
0.6
0.7
0.8
0.9
1
1.1
SENSE PIN (V)
1.2
1.3
90067814 G38
0
0
200
400
600
800
SERIAL DATA RATE (Mbps)
1000
90067814 G39
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
PIN FUNCTIONS
AIN1+ (B2): Channel 1 Positive Differential Analog Input.
AIN8+ (N1): Channel 8 Positive Differential Analog Input.
AIN1– (B1): Channel 1 Negative Differential Analog Input.
AIN8– (N2): Channel 8 Negative Differential Analog Input
VCM14 (B3): Common Mode Bias Output, Nominally Equal
to VDD/2. VCM should be used to bias the common mode
of the analog inputs of channels 1 and 4. VCM is internally
bypassed to ground with a 0.1µF ceramic capacitor. No
external capacitance is required.
VDD (D3, D4, E3, E4, K3, K4, L3, L4): 1.8V Analog Power
Supply. VDD is internally bypassed to ground with 0.1μF
ceramic capacitors.
AIN2+ (C2): Channel 2 Positive Differential Analog Input.
AIN2– (C1): Channel 2 Negative Differential Analog Input.
AIN3+ (E2): Channel 3 Positive Differential Analog Input.
AIN3– (E1): Channel 3 Negative Differential Analog Input.
VCM23 (F3): Common Mode Bias Output, Nominally Equal
to VDD/2. VCM should be used to bias the common mode
of the analog inputs of channels 2 and 3. VCM is internally
bypassed to ground with a 0.1µF ceramic capacitor. No
external capacitance is required.
AIN4+ (G2): Channel 4 Positive Differential Analog Input.
AIN4– (G1): Channel 4 Negative Differential Analog Input.
AIN5+ (H1): Channel 5 Positive Differential Analog Input.
AIN5– (H2): Channel 5 Negative Differential Analog Input.
VCM67 (J3): Common Mode Bias Output, Nominally Equal
to VDD/2. VCM should be used to bias the common mode
of the analog inputs of channels 6 and 7. VCM is internally
bypassed to ground with a 0.1µF ceramic capacitor. No
external capacitance is required.
AIN6+ (K1): Channel 6 Positive Differential Analog Input.
AIN6– (K2): Channel 6 Negative Differential Analog Input.
AIN7+ (M1): Channel 7 Positive Differential Analog Input.
AIN7– (M2): Channel 7 Negative Differential Analog Input.
VCM58 (N3): Common Mode Bias Output, Nominally Equal
to VDD/2. VCM should be used to bias the common mode
of the analog inputs of channels 5 and 8. VCM is internally
bypassed to ground with a 0.1µF ceramic capacitor. No
external capacitance is required.
ENC+ (P5): Encode Input. Conversion starts on the rising
edge.
ENC– (P6): Encode Complement Input. Conversion starts
on the falling edge.
CSA (L5): In serial programming mode, (PAR/SER = 0V),
CSA is the serial interface chip select input for registers
controlling channels 1, 4, 5 and 8. When CS is low, SCK
is enabled for shifting data on SDI into the mode control
registers. In parallel programming mode (PAR/SER = VDD),
CS selects 2-lane or 1-lane output mode. CS can be driven
with 1.8V to 3.3V logic.
CSB (M5): In serial programming mode, (PAR/SER = 0V),
CSB is the serial interface chip select input for registers
controlling channels 2, 3, 6 and 7. When CS is low, SCK
is enabled for shifting data on SDI into the mode control
registers. In parallel programming mode (PAR/SER = VDD),
CS selects 2-lane or 1-lane output mode. CS can be driven
with 1.8V to 3.3V logic.
SCK (L6): In serial programming mode, (PAR/SER =
0V), SCK is the serial interface clock input. In parallel
programming mode (PAR/SER = VDD), SCK selects 3.5mA
or 1.75mA LVDS output currents. SCK can be driven with
1.8V to 3.3V logic.
SDI (M6): In serial programming mode, (PAR/SER = 0V),
SDI is the serial interface data Input. Data on SDI is clocked
into the mode control registers on the rising edge of SCK.
In parallel programming mode (PAR/SER = VDD), SDI can
be used to power down the part. SDI can be driven with
1.8V to 3.3V logic.
GND (See Pin Configuration Table): ADC Power Ground.
Use multiple vias close to pins.
90067814fb
For more information www.linear.com/LTM9008-14
17
LTM9008-14/
LTM9007-14/LTM9006-14
PIN FUNCTIONS
OVDD (G9, G10): Output Driver Supply. OVDD is internally
bypassed to ground with a 0.1µF ceramic capacitor.
SDOA (E6): In serial programming mode, (PAR/SER = 0V),
SDOA is the optional serial interface data output for
registers controlling channels 1, 4, 5 and 8. Data on SDO
is read back from the mode control registers and can be
latched on the falling edge of SCK. SDO is an open-drain
N-channel MOSFET output that requires an external 2k
pull-up resistor from 1.8V to 3.3V. If read back from the
mode control registers is not needed, the pull-up resistor is not necessary and SDO can be left unconnected. In
parallel programming mode (PAR/SER = VDD), SDOA is an
input that enables internal 100Ω termination resistors on
the digital outputs of channels 1, 4, 5 and 8. When used
as an input, SDO can be driven with 1.8V to 3.3V logic
through a 1k series resistor.
SDOB (D6): Serial Data Output Pin for Channels 2, 3, 6
and 7. See description for SDOA.
PAR/SER (A7): Programming Mode Selection Pin. Connect
to ground to enable the serial programming mode. CSA,
CSB, SCK, SDI, SDOA and SDOB become a serial interface
that control the A/D operating modes. Connect to VDD to
enable parallel programming mode where CSA, CSB, SCK,
SDI, SDOA and SDOB become parallel logic inputs that
control a reduced set of the A/D operating modes. PAR/
SER should be connected directly to ground or the VDD
of the part and not be driven by a logic signal.
VREF (B6): Reference Voltage Output. VREF is internally
bypassed to ground with a 1μF ceramic capacitor, nominally 1.25V.
SENSE (C5): Reference Programming Pin. Connecting
SENSE to VDD selects the internal reference and a ±1V
input range. Connecting SENSE to ground selects the
internal reference and a ±0.5V input range. An external
reference between 0.625V and 1.3V applied to SENSE
selects an input range of ±0.8 • VSENSE. SENSE is internally
bypassed to ground with a 0.1µF ceramic capacitor.
LVDS Outputs
All pins in this section are differential LVDS outputs.
The output current level is programmable. There is an
optional internal 100Ω termination resistor between the
pins of each LVDS output pair.
OUT1A–/OUT1A+, OUT1B–/OUT1B+ (E7/E8, C8/D8): Serial
Data Outputs for Channel 1. In 1-lane output mode only
OUT1A–/OUT1A+ are used.
OUT2A–/OUT2A+, OUT2B–/OUT2B+ (B8/A8, D7/C7): Serial
Data Outputs for Channel 2. In 1-lane output mode only
OUT2A–/OUT2A+ are used.
OUT3A–/OUT3A+, OUT3B–/OUT3B+ (D10/D9, E10/E9):
Serial Data Outputs for Channel 3. In 1-lane output mode
only OUT3A–/OUT3A+ are used.
OUT4A–/OUT4A+, OUT4B–/OUT4B+ (C9/C10, F7/F8): Serial
Data Outputs for Channel 4. In 1-lane output mode only
OUT4A–/OUT4A+ are used.
OUT5A–/OUT5A+, OUT5B–/OUT5B+ (J8/J7, K8/K7): Serial
Data Outputs for Channel 5. In 1-lane output mode only
OUT5A–/OUT5A+ are used.
OUT6A–/OUT6A+, OUT6B–/OUT6B+ (K9/K10, L9/L10):
Serial Data Outputs for Channel 6. In 1-lane output mode
only OUT6A–/OUT6A+ are used.
OUT7A–/OUT7A+, OUT7B–/OUT7B+ (M7/L7, P8/N8): Serial
Data Outputs for Channel 7. In 1-lane output mode only
OUT7A–/OUT7A+ are used.
OUT8A–/OUT8A+, OUT8B–/OUT8B+ (L8/M8, M10/M9):
Serial Data Outputs for Channel 8. In 1-lane output mode
only OUT8A–/OUT8A+ are used.
FRA–/FRA+ (H7/H8): Frame Start Outputs for Channels
1, 4, 5 and 8.
FRB–/FRB+ (J9/J10): Frame Start Outputs for Channels
2, 3, 6 and 7.
DCOA–/DCOA+ (G8/G7): Data Clock Outputs for Channels
1, 4, 5 and 8.
DCOB–/DCOB+ (F10, F9): Data Clock Outputs for Channels 2, 3, 6 and 7.
18
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
PIN CONFIGURATION TABLE
1
2
3
4
5
6
7
8
9
10
A
GND
GND
GND
GND
GND
GND
PAR/SER
OUT2A+
GND
GND
B
AIN1–
AIN1+
VCM14
GND
GND
VREF
GND
OUT2A–
GND
GND
C
AIN2
–
+
AIN2
GND
GND
SENSE
GND
OUT2B+
OUT1B–
OUT4A–
OUT4A+
D
GND
GND
VDD
VDD
GND
SDOB
OUT2B–
OUT1B+
OUT3A+
OUT3A–
E
AIN3–
AIN3+
VDD
VDD
GND
SDOA
OUT1A–
OUT1A+
OUT3B+
OUT3B–
F
GND
GND
VCM23
GND
GND
GND
OUT4B–
OUT4B+
DCOB+
DCOB–
G
AIN4–
AIN4+
GND
GND
GND
GND
DCOA+
DCOA–
OVDD
OVDD
H
+
–
GND
FRA–
FRA+
GND
GND
OUT5A–
FRB–
FRB+
AIN5
GND
GND
GND
J
GND
GND
VCM67
GND
GND
GND
OUT5A+
K
AIN6+
AIN6–
VDD
VDD
GND
GND
OUT5B+
OUT5B–
OUT6A–
OUT6A+
L
GND
GND
VDD
VDD
CSA
SCK
OUT7A+
OUT8A–
OUT6B–
OUT6B+
M
AIN7+
AIN7–
GND
GND
CSB
SDI
OUT7A–
OUT8A+
OUT8B+
OUT8B–
N
+
–
GND
OUT7B+
GND
GND
GND
OUT7B–
GND
GND
P
AIN5
AIN8
GND
AIN8
GND
VCM58
GND
GND
GND
GND
GND
ENC+
ENC–
Top View of BGA Package (Looking Through Component).
90067814fb
For more information www.linear.com/LTM9008-14
19
LTM9008-14/
LTM9007-14/LTM9006-14
FUNCTIONAL BLOCK DIAGRAM
VDD = 1.8V
OVDD = 1.8V
CH 1
ANALOG
INPUT
S/H
14-BIT
ADC CORE
OUT1A+
OUT1A–
OUT1B+
OUT1B–
CH 2
ANALOG
INPUT
S/H
14-BIT
ADC CORE
OUT2A+
OUT2A–
OUT2B+
OUT2B–
CH 3
ANALOG
INPUT
S/H
14-BIT
ADC CORE
OUT3A+
OUT3A–
OUT3B+
OUT3B–
CH 4
ANALOG
INPUT
S/H
14-BIT
ADC CORE
OUT4A+
OUT4A–
OUT4B+
OUT4B–
DATA
SERIALIZER
CH 5
ANALOG
INPUT
S/H
14-BIT
ADC CORE
OUT5A+
OUT5A–
OUT5B+
OUT5B–
CH 6
ANALOG
INPUT
S/H
14-BIT
ADC CORE
OUT6A+
OUT6A–
OUT6B+
OUT6B–
CH 7
ANALOG
INPUT
S/H
14-BIT
ADC CORE
OUT7A+
OUT7A–
OUT7B+
OUT7B–
CH 8
ANALOG
INPUT
S/H
14-BIT
ADC CORE
OUT8A+
OUT8A–
OUT8B+
OUT8B–
ENC+
DCOA±
DCOB±
FRA±
FRB±
PLL
ENC–
1.25V
REFERENCE
VREF
REFH
RANGE
SELECT
REFL
REF
BUFFER
SDOA
SDOB
SDI
SCK
CSA
CSB
PAR/SER
MODE
CONTROL
REGISTERS
VDD/2
DIFF
REF
AMP
GND
90067814 F01
SENSE
VCM14
Figure 1. Functional Block Diagram
20
For more information www.linear.com/LTM9008-14
VCM23
VCM67
VCM58
90067814fb
LTM9008-14/
LTM9007-14/LTM9006-14
APPLICATIONS INFORMATION
CONVERTER OPERATION
INPUT DRIVE CIRCUITS
The LTM9008-14/LTM9007-14/LTM9006-14 are low
power, 8-channel, 14-bit, 65Msps/40Msps/25Msps A/D
converters that are powered by a single 1.8V supply. The
analog inputs should be driven differentially. The encode
input can be driven differentially for optimal jitter performance, or single-ended for lower power consumption. The
digital outputs are serial LVDS to minimize the number
of data lines. Each channel outputs two bits at a time
(2-lane mode) or one bit at a time (1-lane mode). Many
additional features can be chosen by programming the
mode control registers through a serial SPI port.
Input Filtering
ANALOG INPUT
The analog inputs are differential CMOS sample-and-hold
circuits (Figure 2). The inputs should be driven differentially
around a common mode voltage set by the appropriate
VCM output pins, which are nominally VDD/2. For the 2V
input range, the inputs should swing from VCM – 0.5V
to VCM + 0.5V. There should be 180° phase difference
between the inputs.
The eight channels are simultaneously sampled by a shared
encode circuit (Figure 2).
If possible, there should be an RC low pass filter right at
the analog inputs. This lowpass filter isolates the drive
circuitry from the A/D sample-and-hold switching, and also
limits wideband noise from the drive circuitry. Figure 3
shows an example of an input RC filter. The RC component
values should be chosen based on the application’s input
frequency.
Transformer Coupled Circuits
Figure 3 shows the analog input being driven by an RF
transformer with a center-tapped secondary. The center
tap is biased with VCM, setting the A/D input at its optimal DC level. At higher input frequencies a transmission
line balun transformer (Figures 4 to 6) has better balance,
resulting in lower A/D distortion.
50Ω
VCM
0.1µF
0.1µF
ANALOG
INPUT
T1
1:1
25Ω
25Ω
AIN+
LTM9008-14
0.1µF
12pF
LTM9008-14
+
AIN
VDD
RON
25Ω
10Ω
CSAMPLE
3.5pF
CPARASITIC
1.8pF
VDD
AIN–
25Ω
RON
25Ω
10Ω
VDD
CSAMPLE
3.5pF
25Ω
T1: MA/COM MABAES0060
RESISTORS, CAPACITORS
ARE 0402 PACKAGE SIZE
AIN–
90067814 F03
Figure 3. Analog Input Circuit Using a Transformer.
Recommended for Input Frequencies from 5MHz to 70MHz
CPARASITIC
1.8pF
1.2V
10k
ENC+
ENC–
10k
1.2V
90067814 F02
Figure 2. Equivalent Input Circuit. Only One
of the Eight Analog Channels Is Shown
90067814fb
For more information www.linear.com/LTM9008-14
21
LTM9008-14/
LTM9007-14/LTM9006-14
APPLICATIONS INFORMATION
Amplifier Circuits
Figure 7 shows the analog input being driven by a high
speed differential amplifier. The output of the amplifier is
AC-coupled to the A/D so the amplifier’s output common
mode voltage can be optimally set to minimize distortion.
See back page for a DC-coupled example.
At very high frequencies an RF gain block will often have
lower distortion than a differential amplifier. If the gain
block is single-ended, then a transformer circuit (Figures 4
to 6) should convert the signal to differential before driving the A/D.
50Ω
VCM
0.1µF
0.1µF
ANALOG
INPUT
AIN+
T2
T1
25Ω
LTM9008-14
0.1µF
4.7pF
0.1µF
25Ω
AIN–
90067814 F04
T1: MA/COM MABA-007159-000000
T2: MA/COM MABAES0060
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE
Figure 4. Recommended Front End Circuit for Input
Frequencies from 70MHz to 170MHz
50Ω
VCM
0.1µF
0.1µF
ANALOG
INPUT
AIN+
T2
T1
25Ω
LTM9008-14
0.1µF
1.8pF
0.1µF
25Ω
AIN–
90067814 F05
T1: MA/COM MABA-007159-000000
T2: COILCRAFT WBC1-1LB
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE
Figure 5. Recommended Front End Circuit for Input
Frequencies from 170MHz to 300MHz
22
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
APPLICATIONS INFORMATION
50Ω
VCM
0.1µF
0.1µF
2.7nH
ANALOG
INPUT
25Ω
AIN+
LTM9008-14
0.1µF
T1
0.1µF
25Ω
2.7nH
AIN–
90067814 F06
T1: MA/COM ETC1-1-13
RESISTORS, CAPACITORS
ARE 0402 PACKAGE SIZE
Figure 6. Recommended Front End Circuit for Input
Frequencies Above 300MHz
VCM
HIGH SPEED
DIFFERENTIAL
0.1µF
AMPLIFIER
ANALOG
INPUT
+
+
–
–
200Ω
200Ω
25Ω
0.1µF
AIN+
LTM9008-14
12pF
0.1µF
25Ω
AIN–
90067814 F07
Figure 7. Front End Circuit Using a High Speed
Differential Amplifier
90067814fb
For more information www.linear.com/LTM9008-14
23
LTM9008-14/
LTM9007-14/LTM9006-14
APPLICATIONS INFORMATION
Reference
The input range can be adjusted by applying a voltage to
SENSE that is between 0.625V and 1.30V. The input range
will then be 1.6 • VSENSE. The reference is shared by all
eight ADC channels, so it is not possible to independently
adjust the input range of individual channels.
The LTM9008-14/LTM9007-14/LTM9006-14 has an internal 1.25V voltage reference. For a 2V input range using
the internal reference, connect SENSE to VDD. For a 1V
input range using the internal reference, connect SENSE
to ground. For a 2V input range with an external reference,
apply a 1.25V reference voltage to SENSE (Figure 9).
VREF
1.25V
The VREF , SENSE, REFH and REFL pins are internally
bypassed, as shown in Figure 8.
LTM9008-14
5Ω
1.25V BANDGAP
REFERENCE
1µF
0.625V
TIE TO VDD FOR 2V RANGE;
TIE TO GND FOR 1V RANGE;
RANGE = 1.6 • VSENSE FOR
0.65V < VSENSE < 1.300V
RANGE
DETECT
AND
CONTROL
SENSE
0.1µF
INTERNAL ADC
BUFFER
HIGH REFERENCE
0.1µF
2.2µF
0.1µF
0.8x
DIFF AMP
0.1µF
INTERNAL ADC
LOW REFERENCE
90067814 F08
Figure 8. Reference Circuit
1.25V
EXTERNAL
REFERENCE
LTM9008-14
SENSE
1µF
90067814 F09
Figure 9. Using an External 1.25V Reference
24
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
APPLICATIONS INFORMATION
Encode Input
The signal quality of the encode inputs strongly affects
the A/D noise performance. The encode inputs should
be treated as analog signals—do not route them next to
digital traces on the circuit board. There are two modes
of operation for the encode inputs: the differential encode
mode (Figure 10), and the single-ended encode mode
(Figure 11).
The differential encode mode is recommended for sinusoidal, PECL, or LVDS encode inputs (Figures 12 and 13).
LTM9008-14
The encode inputs are internally biased to 1.2V through
10k equivalent resistance. The encode inputs can be taken
above VDD (up to 3.6V), and the common mode range is
from 1.1V to 1.6V. In the differential encode mode, ENC–
should stay at least 200mV above ground to avoid falsely
triggering the single-ended encode mode. For good jitter
performance ENC+ should have fast rise and fall times.
The single-ended encode mode should be used with CMOS
encode inputs. To select this mode, ENC– is connected
to ground and ENC+ is driven with a square wave encode
VDD
DIFFERENTIAL
COMPARATOR
VDD
15k
ENC+
LTM9008-14
1.8V TO
3.3V
ENC–
0V
30k
ENC+
ENC–
30k
90067814 F11
90067814 F10
Figure 10. Equivalent Encode Input Circuit
for Differential Encode Mode
0.1µF
ENC+
T1
50Ω
0.1µF
CMOS LOGIC
BUFFER
Figure 11. Equivalent Encode Input Circuit for
Single-Ended Encode Mode
LTM9008-14
100Ω
0.1µF
50Ω
0.1µF
ENC–
90067814 F12
PECL OR
LVDS
CLOCK
T1 = MA/COM ETC1-1-13
RESISTORS AND CAPACITORS
ARE 0402 PACKAGE SIZE
ENC+
LTM9008-14
0.1µF
ENC–
90067814 F13
Figure 12. Sinusoidal Encode Drive
Figure 13. PECL or LVDS Encode Drive
90067814fb
For more information www.linear.com/LTM9008-14
25
LTM9008-14/
LTM9007-14/LTM9006-14
APPLICATIONS INFORMATION
input. ENC+ can be taken above VDD (up to 3.6V) so 1.8V
to 3.3V CMOS logic levels can be used. The ENC+ threshold
is 0.9V. For good jitter performance ENC+ should have fast
rise and fall times.
Clock PLL and Duty Cycle Stabilizer
The encode clock is multiplied by an internal phase-locked
loop (PLL) to generate the serial digital output data. If the
encode signal changes frequency or is turned off, the PLL
requires 25µs to lock onto the input clock.
A clock duty cycle stabilizer circuit allows the duty cycle
of the applied encode signal to vary from 30% to 70%.
In the serial programming mode it is possible to disable
the duty cycle stabilizer, but this is not recommended. In
the parallel programming mode the duty cycle stabilizer
is always enabled.
DIGITAL OUTPUTS
The digital outputs of the LTM9008-14/LTM9007-14/
LTM9006-14 are serialized LVDS signals. Each channel
outputs two bits at a time (2-lane mode) or one bit at a
time (1-lane mode). The data can be serialized with 16, 14,
or 12-bit serialization (see the Timing Diagrams section for
details). Note that with 12-bit serialization the two LSBs
are not available—this mode is included for compatibility
with 12-bit versions of these parts.
The output data should be latched on the rising and falling
edges of the data clock out (DCO). A data frame output
(FR) can be used to determine when the data from a new
conversion result begins. In the 2-lane, 14-bit serialization
mode, the frequency of the FR output is halved.
The maximum serial data rate for the data outputs is
1Gbps, so the maximum sample rate of the ADC will depend on the serialization mode as well as the speed grade
of the ADC (see Table 1). The minimum sample rate for
all serialization modes is 5Msps.
By default the outputs are standard LVDS levels: 3.5mA
output current and a 1.25V output common mode voltage. An external 100Ω differential termination resistor
is required for each LVDS output pair. The termination
resistors should be located as close as possible to the
LVDS receiver.
The outputs are powered by OVDD which is independent
from the A/D core power.
Table 1. Maximum Sampling Frequency for All Serialization Modes. Note That These Limits Are for the LTM9008-14.
The Sampling Frequency for the Slower Speed Grades Cannot Exceed 40MHz (LTM9007-14) or 25MHz (LTM9006-14)
SERIALIZATION MODE
MAXIMUM SAMPLING
FREQUENCY, fS (MHz)
DCO FREQUENCY
FR FREQUENCY
SERIAL DATA RATE
2-Lane
16-Bit Serialization
65
4 • fS
fS
8 • fS
2-Lane
14-Bit Serialization
65
3.5 • fS
0.5 • fS
7 • fS
2-Lane
12-Bit Serialization
65
3 • fS
fS
6 • fS
1-Lane
16-Bit Serialization
62.5
8 • fS
fS
16 • fS
1-Lane
14-Bit Serialization
65
7 • fS
fS
14 • fS
1-Lane
12-Bit Serialization
65
6 • fS
fS
12 • fS
26
90067814fb
For more information www.linear.com/LTM9008-14
LTM9008-14/
LTM9007-14/LTM9006-14
APPLICATIONS INFORMATION
Programmable LVDS Output Current
Table 2. Output Codes vs Input Voltage
The default output driver current is 3.5mA. This current
can be adjusted by control register A2 in the serial programming mode. Available current levels are 1.75mA,
2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA. In the
parallel programming mode, the SCK pin can select either
3.5mA or 1.75mA.
Optional LVDS Driver Internal Termination
In most cases, using just an external 100Ω termination resistor will give excellent LVDS signal integrity. In
addition, an optional internal 100Ω termination resistor
can be enabled by serially programming mode control register A2. The internal termination helps absorb
any reflections caused by imperfect termination at the
receiver. When the internal termination is enabled, the
output driver current is doubled to maintain the same
output voltage swing. In the parallel programming
mode the SDO pin enables internal termination. Internal
termination should only be used with 1.75mA, 2.1mA or
2.5mA LVDS output current modes.
DATA FORMAT
Table 2 shows the relationship between the analog input
voltage and the digital data output bits. By default the
output data format is offset binary. The 2’s complement
format can be selected by serially programming mode
control register A1.
AIN+ – AIN–
(2V RANGE)
D13-D0
(OFFSET BINARY)
D13-D0
(2’s COMPLEMENT)
>1.000000V
11 1111 1111 1111
01 1111 1111 1111
+0.999878V
11 1111 1111 1111
01 1111 1111 1111
+0.999756V
11 1111 1111 1110
01 1111 1111 1110
+0.000122V
10 0000 0000 0001
00 0000 0000 0001
+0.000000V
10 0000 0000 0000
00 0000 0000 0000
–0.000122V
01 1111 1111 1111
11 1111 1111 1111
–0.000244V
01 1111 1111 1110
11 1111 1111 1110
–0.999878V
00 0000 0000 0001
10 0000 0000 0001
–1.000000V
00 0000 0000 0000
10 0000 0000 0000