0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTM9008IY-14#PBF

LTM9008IY-14#PBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    BFBGA140

  • 描述:

    IC ADC 14BIT PIPELINED 140BGA

  • 数据手册
  • 价格&库存
LTM9008IY-14#PBF 数据手册
LTM9008-14/ LTM9007-14/LTM9006-14 14-Bit, 65Msps/40Msps/ 25Msps Low Power Octal ADCs FEATURES DESCRIPTION 8-Channel Simultaneous Sampling ADC n 73dB SNR n 90dB SFDR n Low Power: 88mW/59mW/46mW per Channel n Single 1.8V Supply n Serial LVDS Outputs: 1 or 2 Bits per Channel n Selectable Input Ranges: 1V P-P to 2VP-P n 800MHz Full Power Bandwidth S/H n Shutdown and Nap Modes n Serial SPI Port for Configuration n Internal Bypass Capacitance, No External Components n 140-Pin (11.25mm × 9mm) BGA Package The LTM®9008-14/LTM9007-14/LTM9006-14 are 8-channel, simultaneous sampling 14-bit A/D converters designed for digitizing high frequency, wide dynamic range signals. AC performance includes 73dB SNR and 90dB spurious free dynamic range (SFDR). Low power consumption per channel reduces heat in high channel count applications. Integrated bypass capacitance and flowthrough pinout reduces overall board space requirements. n DC specs include ±1LSB INL (typ), ±0.3LSB DNL (typ) and no missing codes over temperature. The transition noise is a low 1.2LSBRMS. The digital outputs are serial LVDS to minimize the number of data lines. Each channel outputs two bits at a time (2-lane mode). At lower sampling rates there is a one bit per channel option (1-lane mode). APPLICATIONS n n n n n n Communications Cellular Base Stations Software Defined Radios Portable Medical Imaging Multichannel Data Acquisition Nondestructive Testing The ENC+ and ENC– inputs may be driven differentially or single-ended with a sine wave, PECL, LVDS, TTL, or CMOS inputs. An internal clock duty cycle stabilizer allows high performance at full speed for a wide range of clock duty cycles. L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. TYPICAL APPLICATION 1.8V VDD 14-BIT ADC CORE OUT1A 0 OUT1B –10 S/H 14-BIT ADC CORE OUT2A –30 ENCODE INPUT S/H ••• SERIALIZED LVDS OUTPUTS OUT8A 14-BIT ADC CORE OUT8B DATA CLOCK OUT PLL FRAME 90067814 TA01 GND GND AMPLITUDE (dBFS) CHANNEL 8 ANALOG INPUT DATA SERIALIZER –20 OUT2B ••• ••• CHANNEL 2 ANALOG INPUT S/H ••• CHANNEL 1 ANALOG INPUT LTM9008-14, 65Msps, 2-Tone FFT, fIN = 70MHz and 75MHz 1.8V OVDD –40 –50 –60 –70 –80 –90 –100 –110 –120 0 20 10 FREQUENCY (MHz) 30 90067814 TA01b 90067814fb For more information www.linear.com/LTM9008-14 1 LTM9008-14/ LTM9007-14/LTM9006-14 ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION (Notes 1, 2) Supply Voltages VDD, OVDD................................................. –0.3V to 2V Analog Input Voltage (AIN+, AIN –, PAR/SER, SENSE) (Note 3)........... –0.3V to (VDD + 0.2V) Digital Input Voltage (ENC+, ENC–, CS, SDI, SCK) (Note 4)..................................... –0.3V to 3.9V SDO (Note 4).............................................. –0.3V to 3.9V Digital Output Voltage................. –0.3V to (OVDD + 0.3V) Operating Temperature Range LTM9008C, LTM9007C, LTM9006C......... 0°C to 70°C LTM9008I, LTM9007I, LTM9006I.........–40°C to 85°C Storage Temperature Range................... –55°C to 125°C TOP VIEW A B C D E F G H J K L M N P 2 1 3 4 5 6 7 8 9 10 BGA PACKAGE 140-LEAD (11.25mm × 9.00mm × 2.72mm) TJMAX = 150°C, θJA = 30°C/W, θJC = 25°C/W, θJB = 15°C/W, θJCbottom = 12°C/W ORDER INFORMATION LEAD FREE FINISH TRAY http://www.linear.com/product/LTM9008-14#orderinfo PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE LTM9008CY-14#PBF LTM9008CY-14#PBF LTM9008Y14 140-Lead (11.25mm × 9mm × 2.72mm) BGA 0°C to 70°C LTM9008IY-14#PBF LTM9008IY-14#PBF LTM9008Y14 140-Lead (11.25mm × 9mm × 2.72mm) BGA –40°C to 85°C LTM9007CY-14#PBF LTM9007CY-14#PBF LTM9007Y14 140-Lead (11.25mm × 9mm × 2.72mm) BGA 0°C to 70°C LTM9007IY-14#PBF LTM9007IY-14#PBF LTM9007Y14 140-Lead (11.25mm × 9mm × 2.72mm) BGA –40°C to 85°C LTM9006CY-14#PBF LTM9006CY-14#PBF LTM9006Y14 140-Lead (11.25mm × 9mm × 2.72mm) BGA 0°C to 70°C LTM9006IY-14#PBF LTM9006IY-14#PBF LTM9006Y14 140-Lead (11.25mm × 9mm × 2.72mm) BGA –40°C to 85°C Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix. 2 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5) PARAMETER LTM9008-14 MIN TYP MAX CONDITIONS Resolution (No Missing Codes) l LTM9007-14 MIN TYP MAX 14 LTM9006-14 MIN TYP MAX 14 UNITS 14 Bits Integral Linearity Error Differential Analog Input (Note 6) l –4.1 ±1.2 4.1 –2.75 ±1 2.75 –2.75 ±1 2.75 LSB Differential Linearity Error Differential Analog Input l –0.9 ±0.3 0.9 –0.8 ±0.3 0.8 –0.8 ±0.3 0.8 LSB Offset Error (Note 7) l –12 ±3 12 –12 ±3 12 –12 ±3 12 mV Gain Error Internal Reference External Reference –2.5 –1.3 –1.3 –2.5 –1.3 –1.3 –2.6 –1.3 –1.3 0.5 %FS %FS l Offset Drift 0.5 0.5 ±20 ±20 ±20 µV/°C Full-Scale Drift Internal Reference External Reference ±35 ±25 ±35 ±25 ±35 ±25 ppm/°C ppm/°C Gain Matching External Reference ±0.2 ±0.2 ±0.2 %FS ±3 ±3 ±3 mV External Reference 1.2 1.2 1.2 LSBRMS Offset Matching Transition Noise ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS VIN(CM) Analog Input Range (AIN+ – AIN–) Analog Input Common Mode (AIN+ + AIN–)/2 VSENSE External Voltage Reference Applied to SENSE External Reference Mode IINCM Analog Input Common Mode Current Per Pin, 65Msps Per Pin, 40Msps Per Pin, 25Msps IIN1 Analog Input Leakage Current 0 < AIN+, AIN– < VDD, No Encode l –1 1 µA IIN2 PAR/SER Input Leakage Current 0 < PAR/SER < VDD l –3 3 µA IIN3 SENSE Input Leakage Current 0.625 < SENSE < 1.3V l –6 6 µA tAP Sample-and-Hold Acquisition Delay Time 0 tJITTER Sample-and-Hold Acquisition Delay Jitter 0.15 CMRR Analog Input Common Mode Rejection Ratio BW-3B Full-Power Bandwidth VIN 1.7V < VDD < 1.9V l Differential Analog Input (Note 8) l VCM – 100mV 1 to 2 VCM VCM + 100mV VP-P V l 0.625 1.250 1.300 V 81 50 31 Figure 6 Test Circuit µA µA µA ns psRMS 80 dB 800 MHz 90067814fb For more information www.linear.com/LTM9008-14 3 LTM9008-14/ LTM9007-14/LTM9006-14 DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5) SYMBOL PARAMETER CONDITIONS LTM9008-14 MIN TYP MAX LTM9007-14 MIN TYP MAX LTM9006-14 MIN TYP MAX UNITS SNR Signal-to-Noise Ratio 5MHz Input 30MHz Input 70MHz Input 140MHz Input 73.7 73.7 73.5 73 73.5 73.4 73.4 72.8 72.9 72.9 72.8 72.3 dBFS dBFS dBFS dBFS 90 90 89 84 dBFS dBFS dBFS dBFS 90 90 90 90 dBFS dBFS dBFS dBFS 72.8 72.7 72.5 71.9 dBFS dBFS dBFS dBFS SFDR Spurious Free Dynamic Range 5MHz Input 2nd or 3rd Harmonic 30MHz Input 70MHz Input 140MHz Input Spurious Free Dynamic Range 5MHz Input 4th Harmonic or Higher 30MHz Input 70MHz Input 140MHz Input S/(N+D) l 71.8 l 74 l 84 l 71 69.6 90 90 89 84 76.8 90 90 90 90 84 73.6 73.5 73.2 72.5 90 90 89 84 69.6 76.8 90 90 90 90 84 73.3 73.2 73.1 72.3 Signal-to-Noise Plus Distortion Ratio 5MHz Input 30MHz Input 70MHz Input 140MHz Input Crosstalk, Near Channel 10MHz Input (Note 12) –90 –90 –90 dBc Crosstalk, Far Channel 10MHz Input (Note 12) –105 –105 –105 dBc 69.5 69.5 INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5) PARAMETER CONDITIONS VCM Output Voltage IOUT = 0 MIN TYP MAX 0.5 • VDD – 25mV 0.5 • VDD 0.5 • VDD + 25mV VCM Output Temperature Drift ±25 VCM Output Resistance –600µA < IOUT < 1mA VREF Output Voltage IOUT = 0 VREF Output Temperature Drift ±25 VREF Output Resistance –400µA < IOUT < 1mA VREF Line Regulation 1.7V < VDD < 1.9V 4 1.250 7 0.6 V ppm/°C 4 1.225 UNITS Ω 1.275 V ppm/°C Ω mV/V 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS ENCODE INPUTS (ENC+, ENC–  ) Differential Encode Mode (ENC– Not Tied to GND) VID Differential Input Voltage (Note 8) l 0.2 VICM Common Mode Input Voltage Internally Set Externally Set (Note 8) l 1.1 l 0.2 VIN Input Voltage Range ENC+, ENC– to GND RIN Input Resistance (See Figure 10) CIN Input Capacitance V 1.2 1.6 V V 3.6 V 10 kΩ 3.5 pF Single-Ended Encode Mode (ENC– Tied to GND) VIH High Level Input Voltage VDD = 1.8V 1.26 V VIL Low Level Input Voltage VDD = 1.8V 0.54 V VIN Input Voltage Range ENC+ to GND RIN Input Resistance (See Figure 11) CIN Input Capacitance 0 to 3.6 V 30 kΩ 3.5 pF DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode) VIH High Level Input Voltage VDD = 1.8V VIL Low Level Input Voltage VDD = 1.8V l IIN Input Current VIN = 0V to 3.6V l CIN Input Capacitance l 1.3 V –10 0.6 V 10 µA 3 pF 200 Ω SDO OUTPUT (Serial Programming Mode. Open-Drain Output. Requires 2kΩ Pull-Up Resistor if SDO Is Used) ROL Logic Low Output Resistance to GND VDD = 1.8V, SDO = 0V IOH Logic High Output Leakage Current SDO = 0V to 3.6V COUT Output Capacitance l –10 10 3 µA pF DIGITAL DATA OUTPUTS VOD Differential Output Voltage 100Ω Differential Load, 3.5mA Mode 100Ω Differential Load, 1.75mA Mode l l 247 125 350 175 454 250 VOS Common Mode Output Voltage 100Ω Differential Load, 3.5mA Mode 100Ω Differential Load, 1.75mA Mode l l 1.125 1.125 1.250 1.250 1.375 1.375 RTERM On-Chip Termination Resistance Termination Enabled, OVDD = 1.8V 100 mV mV V V Ω 90067814fb For more information www.linear.com/LTM9008-14 5 LTM9008-14/ LTM9007-14/LTM9006-14 POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 9) SYMBOL PARAMETER VDD Analog Supply Voltage OVDD IVDD IOVDD PDISS CONDITIONS LTM9008-14 MIN TYP MAX LTM9007-14 MIN TYP MAX LTM9006-14 MIN TYP MAX UNITS 1.9 1.7 1.9 1.7 1.7 1.7 (Note 10) l 1.7 Output Supply Voltage (Note 10) l 1.7 1.8 1.9 1.8 1.9 1.8 1.9 V Analog Supply Current Sine Wave Input l 357 400 232 275 175 250 mA Digital Supply Current 1-Lane Mode, 1.75mA Mode 1-Lane Mode, 3.5mA Mode 2-Lane Mode, 1.75mA Mode 2-Lane Mode, 3.5mA Mode l l 32 60 50 94 58 104 32 58 48 92 54 102 30 56 48 90 54 100 mA mA mA mA l l 700 751 733 812 824 907 475 522 504 583 592 679 369 416 401 477 547 630 mW mW mW mW Power Dissipation 1-Lane Mode, 1.75mA Mode 1-Lane Mode, 3.5mA Mode 2-Lane Mode, 1.75mA Mode 2-Lane Mode, 3.5mA Mode 1.8 1.8 1.8 1.9 V PSLEEP Sleep Mode Power 2 2 2 mW PNAP Nap Mode Power 170 170 170 mW PDIFFCLK Power Decrease With Single-Ended Encode Mode Enabled (No Decrease for Sleep Mode) 40 40 40 mW TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5) LTM9008-14 MIN TYP MAX LTM9007-14 MIN TYP MAX LTM9006-14 MIN TYP MAX SYMBOL PARAMETER CONDITIONS fS Sampling Frequency (Notes 10,11) l 5 65 5 40 5 25 MHz tENCL ENC Low Time (Note 8) Duty Cycle Stabilizer Off Duty Cycle Stabilizer On l l 7.3 2 7.69 7.69 100 100 11.88 2 12.5 12.5 100 100 19 2 20 20 100 100 ns ns tENCH ENC High Time (Note 8) Duty Cycle Stabilizer Off Duty Cycle Stabilizer On l l 7.3 2 7.69 7.69 100 100 11.88 2 12.5 12.5 100 100 19 2 20 20 100 100 ns ns tAP Sample-and-Hold Acquisition Delay Time SYMBOL PARAMETER 0 0 CONDITIONS MIN 0 TYP UNITS ns MAX UNITS Digital Data Outputs (RTERM = 100Ω Differential, CL = 2pF to GND on Each Output) 1/(8 • fS) 1/(7 • fS) 1/(6 • fS) 1/(16 • fS) 1/(14 • fS) 1/(12 • fS) s s s s s s tSER Serial Data Bit Period 2-Lanes, 16-Bit Serialization 2-Lanes, 14-Bit Serialization 2-Lanes, 12-Bit Serialization 1-Lane, 16-Bit Serialization 1-Lane, 14-Bit Serialization 1-Lane, 12-Bit Serialization tFRAME FR to DCO Delay (Note 8) l 0.35 • tSER 0.5 • tSER 0.65 • tSER s tDATA DATA to DCO Delay (Note 8) l 0.35 • tSER 0.5 • tSER 0.65 • tSER s tPD Propagation Delay (Note 8) l tR Output Rise Time tF 0.7n + 2 • tSER 1.1n + 2 • tSER 1.5n + 2 • tSER s Data, DCO, FR, 20% to 80% 0.17 ns Output Fall Time Data, DCO, FR, 20% to 80% 0.17 DCO Cycle-Cycle Jitter tSER = 1ns Pipeline Latency 6 ns 60 psP-P 6 Cycles 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS SPI Port Timing (Note 8) tSCK SCK Period tS Write Mode Read Back Mode, CSDO = 20pF, RPULLUP = 2k l l 40 250 ns ns CS to SCK Setup Time l 5 ns tH SCK to CS Setup Time l 5 ns tDS SDI Setup Time l 5 ns tDH SDI Hold Time l 5 ns tDO SCK Falling to SDO Valid Read Back Mode, CSDO = 20pF, RPULLUP = 2k Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: All voltage values are with respect to GND (unless otherwise noted). Note 3: When these pin voltages are taken below GND or above VDD, they will be clamped by internal diodes. This product can handle input currents of greater than 100mA below GND or above VDD without latchup. Note 4: When these pin voltages are taken below GND they will be clamped by internal diodes. When these pin voltages are taken above VDD they will not be clamped by internal diodes. This product can handle input currents of greater than 100mA below GND without latchup. Note 5: VDD = OVDD = 1.8V, fSAMPLE = 65MHz (LTM9008), 40MHz (LTM9007), or 25MHz (LTM9006), 2-lane output mode, differential ENC+/ ENC– = 2VP-P sine wave, input range = 2VP-P with differential drive, unless otherwise noted. Note 6: Integral nonlinearity is defined as the deviation of a code from a best fit straight line to the transfer curve. The deviation is measured from the center of the quantization band. l 125 ns Note 7: Offset error is the offset voltage measured from –0.5 LSB when the output code flickers between 00 0000 0000 0000 and 11 1111 1111 1111 in 2’s complement output mode. Note 8: Guaranteed by design, not subject to test. Note 9: VDD = OVDD = 1.8V, fSAMPLE = 65MHz (LTM9008), 40MHz (LTM9007), or 25MHz (LTM9006), 2-lane output mode, differential ENC+/ENC– = 2VP-P sine wave, input range = 2VP-P with differential drive, unless otherwise noted. The supply current and power dissipation specifications are totals for the entire device, not per channel. Note 10: Recommended operating conditions. Note 11: The maximum sampling frequency depends on the speed grade of the part and also which serialization mode is used. The maximum serial data rate is 1000Mbps so tSER must be greater than or equal to 1ns. Note 12: Near-channel crosstalk refers to Ch. 1 to Ch.2, and Ch.7 to Ch.8. Far-channel crosstalk refers to Ch.1 to Ch.7, Ch.1 to Ch.8, Ch.2 to Ch.7, and Ch.2 to Ch.8. 90067814fb For more information www.linear.com/LTM9008-14 7 LTM9008-14/ LTM9007-14/LTM9006-14 TIMING DIAGRAMS 2-Lane Output Mode, 16-Bit Serialization* tAP ANALOG INPUT N+1 N tENCH ENC– tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ tDATA tSER tPD OUT#A– OUT#A+ OUT#B– OUT#B+ tSER D5 D3 D1 0 D13 D11 D9 D7 D5 D3 D1 0 D13 D11 D9 D4 D2 D0 0 D12 D10 D8 D6 D4 D2 D0 0 D12 D10 D8 SAMPLE N-6 SAMPLE N-5 SAMPLE N-4 90067814 TD01 *SEE THE DIGITAL OUTPUTS SECTION 2-Lane Output Mode, 14-Bit Serialization tAP ANALOG INPUT N+2 N tENCH ENC– N+1 tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ OUT#A– OUT#A+ OUT#B– OUT#B+ tDATA tSER tPD tSER D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9 D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8 SAMPLE N-6 SAMPLE N-5 SAMPLE N-4 SAMPLE N-3 90067814 TD02 NOTE THAT IN THIS MODE FR+/FR– HAS TWO TIMES THE PERIOD OF ENC+/ENC– 8 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 TIMING DIAGRAMS 2-Lane Output Mode, 12-Bit Serialization tAP ANALOG INPUT N N+1 tENCH ENC– tENCL ENC+ tSER DCO– DCO+ FR+ tFRAME tDATA tPD tSER FR– OUT#A– OUT#A+ OUT#B– OUT#B+ tSER D9 D7 D5 D3 D13 D11 D9 D7 D5 D3 D13 D11 D9 D8 D6 D4 D2 D12 D10 D8 D6 D4 D2 D12 D10 D8 SAMPLE N-6 SAMPLE N-5 SAMPLE N-4 90067814 TD03 1-Lane Output Mode, 16-Bit Serialization tAP ANALOG INPUT N+1 N tENCH ENC– tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ OUT#A– OUT#A+ tDATA tSER tPD D1 D0 0 tSER 0 SAMPLE N-6 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 SAMPLE N-5 0 D13 D12 D11 D10 SAMPLE N-4 90067814 TD04 OUT#B+, OUT#B– ARE DISABLED 1-Lane Output Mode, 14-Bit Serialization tAP ANALOG INPUT N+1 N tENCH ENC– tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ OUT#A– OUT#A+ tDATA tSER tPD D3 D2 SAMPLE N-6 D1 tSER D0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 SAMPLE N-5 D1 D0 D13 D12 D11 D10 SAMPLE N-4 90067814 TD06 OUT#B+, OUT#B– ARE DISABLED 90067814fb For more information www.linear.com/LTM9008-14 9 LTM9008-14/ LTM9007-14/LTM9006-14 TIMING DIAGRAMS 1-Lane Output Mode, 12-Bit Serialization tAP ANALOG INPUT N+1 N tENCH ENC– tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ OUT#A– OUT#A+ tDATA tSER tPD D5 D4 D3 tSER D2 D13 D12 D11 D10 D9 SAMPLE N-6 D8 D7 D6 D5 D4 D3 D2 D13 D12 D11 SAMPLE N-5 SAMPLE N-4 90067814 TD07 OUT#B+, OUT#B– ARE DISABLED SPI Port Timing (Readback Mode) tDS tS tDH tSCK tH CS SCK tDO SDI SDO R/W A6 A5 A4 A3 A2 A1 A0 XX D7 HIGH IMPEDANCE XX D6 XX D5 XX D4 XX D3 XX D2 XX XX D1 D0 SPI Port Timing (Write Mode) CS SCK SDI SDO 10 R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 90067814 TD08 HIGH IMPEDANCE 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 TYPICAL PERFORMANCE CHARACTERISTICS LTM9008-14: Integral Nonlinearity (INL) vs Output Code LTM9008-14: Differential Nonlinearity (DNL) vs Output Code 2.0 1.5 0 0.4 –10 –20 0.3 0.5 0 –0.5 –1.0 –30 0.2 AMPLITUDE (dBFS) DNL ERROR (LSB) 1.0 0.1 0 –0.1 –0.2 –1.5 –0.4 –2.0 –0.5 8192 4096 12288 16384 0 4096 12288 8192 OUTPUT CODE –80 –120 16384 0 5 20 15 10 25 FREQUENCY (MHz) LTM9008-14: 64k Point FFT, fIN = 30MHz, –1dBFS, SENSE = VDD 0 –20 –20 –30 –30 AMPLITUDE (dBFS) –10 –40 –50 –60 –70 –80 –90 35 LTM9008-14: 64k Point FFT, fIN = 70MHz, –1dBFS, SENSE = VDD –40 –50 –60 –70 –80 –90 –100 –100 –110 –110 0 5 20 15 10 25 FREQUENCY (MHz) 30 –120 35 0 20 15 10 25 FREQUENCY (MHz) 5 90067814 G04 0 30 90067814 G03 90067814 G02 –10 –120 –70 –110 90067814 G01 0 –50 –60 –100 OUTPUT CODE AMPLITUDE (dBFS) 30 35 90067814 G05 LTM9008-14: 64k Point 2-Tone FFT, fIN = 28.5MHz and fIN = 31.5MHz, –7dBFS per Tone, SENSE = VDD LTM9008-14: Shorted Input Histogram 6000 –10 –20 5000 –30 –40 4000 –50 COUNT 0 –40 –90 –0.3 AMPLITUDE (dBFS) INL ERROR (LSB) 0.5 LTM9008-14: 64k Point FFT, fIN = 5MHz, –1dBFS, SENSE = VDD –60 –70 –80 3000 2000 –90 –100 1000 –110 –120 0 5 20 15 10 25 FREQUENCY (MHz) 30 35 0 8197 8199 90067814 G06 8201 8203 OUTPUT CODE 8205 90067814 G07 90067814fb For more information www.linear.com/LTM9008-14 11 LTM9008-14/ LTM9007-14/LTM9006-14 TYPICAL PERFORMANCE CHARACTERISTICS LTM9008-14: SNR vs Input Frequency, –1dBFS, 2V Range, 65Msps LTM9008-14: SFDR vs Input Frequency, –1dBFS, 2V Range, 65Msps 74 110 95 100 73 90 70 69 SFDR (dBc AND dBFS) SFDR (dBFS) SNR (dBFS) 71 85 80 75 68 80 70 60 dBc 50 40 30 20 70 67 dBFS 90 72 66 LTM9008-14: SFDR vs Input Level, fIN = 70MHz, 2V Range, 65Msps 10 0 50 100 150 200 250 300 INPUT FREQUENCY (MHz) 65 350 0 50 100 150 200 250 300 INPUT FREQUENCY (MHz) 90067814 G08 80 90067814 G09 LTM9008-14: SNR vs Input Level, fIN = 70MHz, 2V Range, 65Msps 320 dBFS 90067814 G11 LTM9008-14: IVDD vs Sample Rate, 5MHz Sine Wave Input, –1dBFS 300 60 290 dBc IVDD (mA) 50 40 30 280 270 260 250 20 240 10 230 0 –60 –50 –40 –30 –20 INPUT LEVEL (dBFS) –10 220 0 0 10 20 30 40 50 SAMPLE RATE (Msps) IOVDD vs Sample Rate, 5MHz Sine Wave Input, –1dBFS 50 75 LTM9008-14: SNR vs SENSE, fIN = 5MHz, –1dBFS 74 2-LANE, 3.5mA 40 60 90067814 G12 90067814 G11 73 1-LANE, 3.5mA 30 SNR (dBFS) IOVDD (mA) 0 310 70 SNR (dBc AND dBFS) 0 –80 –70 –60 –50 –40 –30 –20 –10 INPUT LEVEL (dBFS) 350 2-LANE, 1.75mA 20 1-LANE, 1.75mA 10 72 71 70 69 68 0 0 20 40 SAMPLE RATE (Msps) 60 67 0.6 0.7 90067814 G13 12 0.8 0.9 1 1.1 SENSE PIN (V) 1.2 1.3 90067814 G14 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 TYPICAL PERFORMANCE CHARACTERISTICS LTM9007-14: Integral Nonlinearity (INL) vs Output Code LTM9007-14: Differential Nonlinearity (DNL) vs Output Code 0.5 2.0 1.5 –20 0.3 0.5 0 –0.5 –1.0 0.2 AMPLITUDE (dBFS) DNL ERROR (LSB) 1.0 0.1 0 –0.1 –0.2 –30 –40 –50 –60 –70 –80 –90 –0.3 –100 –1.5 –0.4 –110 –2.0 –0.5 –120 8192 4096 16384 12288 0 4096 OUTPUT CODE 12288 8192 OUTPUT CODE 90067814 G15 16384 0 10 5 15 20 FREQUENCY (MHz) 90067814 G17 90067814 G16 LTM9007-14: 64k Point FFT, fIN = 70MHz, –1dBFS, SENSE = VDD LTM9007-14: 64k Point FFT, fIN = 30MHz, –1dBFS, SENSE = VDD 0 –10 0 –10 –20 –20 –30 –40 –30 –40 AMPLITUDE (dBFS) AMPLITUDE (dBFS) –50 –60 –70 –80 –50 –60 –70 –80 –90 –90 –100 –100 –110 –110 –120 –120 0 5 10 15 20 0 5 10 20 15 FREQUENCY (MHz) FREQUENCY (MHz) 90067814 G19 90067814 G18 LTM9007-14: 64k Point 2-Tone FFT, fIN = 28.5MHz and fIN = 31.5MHz, –7dBFS per Tone, SENSE = VDD LTM9007-14: Shorted Input Histogram 0 –10 6000 –20 5000 –30 –40 4000 –50 COUNT 0 AMPLITUDE (dBFS) INL ERROR (LSB) 0 –10 0.4 LTM9007-14: 64k Point FFT, fIN = 5MHz, –1dBFS, SENSE = VDD –60 –70 –80 3000 2000 –90 –100 1000 –110 –120 0 2 4 6 8 10 12 14 16 18 20 FREQUENCY (MHz) 0 8198 8200 90067814 G20 8202 8204 OUTPUT CODE 8206 90067814 G21 90067814fb For more information www.linear.com/LTM9008-14 13 LTM9008-14/ LTM9007-14/LTM9006-14 TYPICAL PERFORMANCE CHARACTERISTICS LTM9007-14: SNR vs Input Frequency, –1dBFS, 2V Range, 40Msps LTM9007-14: SFDR vs Input Frequency, –1dBFS, 2V Range, 40Msps LTM9007-14: SFDR vs Input Level, fIN = 70MHz, 2V Range, 40Msps 95 74 110 100 73 90 70 69 SFDR (dBc AND dBFS) SFDR (dBFS) SNR (dBFS) 72 71 85 80 75 68 66 80 70 60 dBc 50 40 30 20 70 67 dBFS 90 10 0 50 100 150 200 250 300 INPUT FREQUENCY (MHz) 350 65 0 100 150 200 250 300 INPUT FREQUENCY (MHz) 50 350 0 –80 –70 –60 –50 –40 –30 –20 –10 INPUT LEVEL (dBFS) 90067814 G23 90067814 G22 LTM9007-14: IVDD vs Sample Rate, 5MHz Sine Wave Input, –1dBFS 0 90067814 G24 LTM9007-14: SNR vs SENSE, fIN = 5MHz, –1dBFS 74 200 73 190 72 SNR (dBFS) IVDD (mA) 180 170 160 71 70 69 68 150 140 67 0 10 20 30 SAMPLE RATE (Msps) 40 66 0.6 0.7 0.8 90067814 G25 14 0.9 1 1.1 SENSE PIN (V) 1.2 1.3 90067814 G26 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 TYPICAL PERFORMANCE CHARACTERISTICS LTM9006-14: Integral Nonlinearity (INL) vs Output Code LTM9006-14: Differential Nonlinearity (DNL) vs Output Code 0.5 2.0 0 –10 0.4 1.5 –20 0.3 0.5 0 –0.5 –1.0 0.2 AMPLITUDE (dBFS) DNL ERROR (LSB) 1.0 0.1 0 –0.1 –0.2 –0.4 –2.0 –0.5 8192 4096 12288 16384 –60 –70 –80 –110 0 4096 12288 8192 OUTPUT CODE 90067814 G27 0 –10 –50 –100 OUTPUT CODE –120 16384 0 2 8 10 4 6 FREQUENCY (MHz) LTM9006-14: 64k Point FFT, fIN = 30MHz, –1dBFS, SENSE = VDD 12 14 90067814 G29 90067814 G28 LTM9006-14: 64k Point FFT, fIN = 70MHz, –1dBFS, SENSE = VDD 0 –10 –20 –20 –30 –40 –30 –40 AMPLITUDE (dBFS) AMPLITUDE (dBFS) –50 –60 –70 –80 –50 –60 –70 –80 –90 –90 –100 –100 –110 –110 –120 –120 0 2 8 10 4 6 FREQUENCY (MHz) 12 14 0 8 10 4 6 FREQUENCY (MHz) 2 90067814 G30 LTM9006-14: 64k Point 2-Tone FFT, fIN = 28.5MHz and 31.5MHz, –7dBFS per Tone, SENSE = VDD 6000 –20 5000 –30 –40 4000 –60 –70 –80 14 LTM9006-14: Shorted Input Histogram 0 –10 –50 12 90067814 G31 COUNT 0 –30 –40 –90 –0.3 –1.5 AMPLITUDE (dBFS) INL ERROR (LSB) LTM9006-14: 64k Point FFT, fIN = 5MHz, –1dBFS, SENSE = VDD 3000 2000 –90 –100 1000 –110 –120 0 2 8 10 4 6 FREQUENCY (MHz) 12 14 0 8198 8200 90067814 G32 8202 8204 OUTPUT CODE 8206 90067814 G33 90067814fb For more information www.linear.com/LTM9008-14 15 LTM9008-14/ LTM9007-14/LTM9006-14 TYPICAL PERFORMANCE CHARACTERISTICS LTM9006-14: SNR vs Input Frequency, –1dBFS, 2V Range, 25Msps LTM9006-14: SFDR vs Input Frequency, –1dBFS, 2V Range, 25Msps 74 LTM9006-14: SFDR vs Input Level, fIN = 70MHz, 2V Range, 25Msps 95 110 100 73 90 70 69 SFDR (dBc AND dBFS) SFDR (dBFS) SNR (dBFS) 72 71 85 80 75 68 66 0 100 150 200 250 300 INPUT FREQUENCY (MHz) 50 350 dBc 60 50 40 30 0 50 100 150 200 250 300 INPUT FREQUENCY (MHz) DCO Cycle-Cycle Jitter vs Serial Data Rate 74 350 73 300 PEAK-TO-PEAK JITTER (ps) 150 SNR (dBFS) 72 130 71 70 69 68 5 10 15 20 SAMPLE RATE (Msps) 25 90067814 G37 16 66 250 200 150 100 50 67 0 0 90067814 G36 LTM9006-14: SNR vs SENSE, fIN = 5MHz, –1dBFS 160 140 0 –80 –70 –60 –50 –40 –30 –20 –10 INPUT LEVEL (dBFS) 350 90067814 G35 LTM9006-14: IVDD vs Sample Rate, 5MHz Sine Wave Input, –1dBFS IVDD (mA) 70 10 65 90067814 G34 120 80 20 70 67 dBFS 90 0.6 0.7 0.8 0.9 1 1.1 SENSE PIN (V) 1.2 1.3 90067814 G38 0 0 200 400 600 800 SERIAL DATA RATE (Mbps) 1000 90067814 G39 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 PIN FUNCTIONS AIN1+ (B2): Channel 1 Positive Differential Analog Input. AIN8+ (N1): Channel 8 Positive Differential Analog Input. AIN1– (B1): Channel 1 Negative Differential Analog Input. AIN8– (N2): Channel 8 Negative Differential Analog Input VCM14 (B3): Common Mode Bias Output, Nominally Equal to VDD/2. VCM should be used to bias the common mode of the analog inputs of channels 1 and 4. VCM is internally bypassed to ground with a 0.1µF ceramic capacitor. No external capacitance is required. VDD (D3, D4, E3, E4, K3, K4, L3, L4): 1.8V Analog Power Supply. VDD is internally bypassed to ground with 0.1μF ceramic capacitors. AIN2+ (C2): Channel 2 Positive Differential Analog Input. AIN2– (C1): Channel 2 Negative Differential Analog Input. AIN3+ (E2): Channel 3 Positive Differential Analog Input. AIN3– (E1): Channel 3 Negative Differential Analog Input. VCM23 (F3): Common Mode Bias Output, Nominally Equal to VDD/2. VCM should be used to bias the common mode of the analog inputs of channels 2 and 3. VCM is internally bypassed to ground with a 0.1µF ceramic capacitor. No external capacitance is required. AIN4+ (G2): Channel 4 Positive Differential Analog Input. AIN4– (G1): Channel 4 Negative Differential Analog Input. AIN5+ (H1): Channel 5 Positive Differential Analog Input. AIN5– (H2): Channel 5 Negative Differential Analog Input. VCM67 (J3): Common Mode Bias Output, Nominally Equal to VDD/2. VCM should be used to bias the common mode of the analog inputs of channels 6 and 7. VCM is internally bypassed to ground with a 0.1µF ceramic capacitor. No external capacitance is required. AIN6+ (K1): Channel 6 Positive Differential Analog Input. AIN6– (K2): Channel 6 Negative Differential Analog Input. AIN7+ (M1): Channel 7 Positive Differential Analog Input. AIN7– (M2): Channel 7 Negative Differential Analog Input. VCM58 (N3): Common Mode Bias Output, Nominally Equal to VDD/2. VCM should be used to bias the common mode of the analog inputs of channels 5 and 8. VCM is internally bypassed to ground with a 0.1µF ceramic capacitor. No external capacitance is required. ENC+ (P5): Encode Input. Conversion starts on the rising edge. ENC– (P6): Encode Complement Input. Conversion starts on the falling edge. CSA (L5): In serial programming mode, (PAR/SER = 0V), CSA is the serial interface chip select input for registers controlling channels 1, 4, 5 and 8. When CS is low, SCK is enabled for shifting data on SDI into the mode control registers. In parallel programming mode (PAR/SER = VDD), CS selects 2-lane or 1-lane output mode. CS can be driven with 1.8V to 3.3V logic. CSB (M5): In serial programming mode, (PAR/SER = 0V), CSB is the serial interface chip select input for registers controlling channels 2, 3, 6 and 7. When CS is low, SCK is enabled for shifting data on SDI into the mode control registers. In parallel programming mode (PAR/SER = VDD), CS selects 2-lane or 1-lane output mode. CS can be driven with 1.8V to 3.3V logic. SCK (L6): In serial programming mode, (PAR/SER = 0V), SCK is the serial interface clock input. In parallel programming mode (PAR/SER = VDD), SCK selects 3.5mA or 1.75mA LVDS output currents. SCK can be driven with 1.8V to 3.3V logic. SDI (M6): In serial programming mode, (PAR/SER = 0V), SDI is the serial interface data Input. Data on SDI is clocked into the mode control registers on the rising edge of SCK. In parallel programming mode (PAR/SER = VDD), SDI can be used to power down the part. SDI can be driven with 1.8V to 3.3V logic. GND (See Pin Configuration Table): ADC Power Ground. Use multiple vias close to pins. 90067814fb For more information www.linear.com/LTM9008-14 17 LTM9008-14/ LTM9007-14/LTM9006-14 PIN FUNCTIONS OVDD (G9, G10): Output Driver Supply. OVDD is internally bypassed to ground with a 0.1µF ceramic capacitor. SDOA (E6): In serial programming mode, (PAR/SER = 0V), SDOA is the optional serial interface data output for registers controlling channels 1, 4, 5 and 8. Data on SDO is read back from the mode control registers and can be latched on the falling edge of SCK. SDO is an open-drain N-channel MOSFET output that requires an external 2k pull-up resistor from 1.8V to 3.3V. If read back from the mode control registers is not needed, the pull-up resistor is not necessary and SDO can be left unconnected. In parallel programming mode (PAR/SER = VDD), SDOA is an input that enables internal 100Ω termination resistors on the digital outputs of channels 1, 4, 5 and 8. When used as an input, SDO can be driven with 1.8V to 3.3V logic through a 1k series resistor. SDOB (D6): Serial Data Output Pin for Channels 2, 3, 6 and 7. See description for SDOA. PAR/SER (A7): Programming Mode Selection Pin. Connect to ground to enable the serial programming mode. CSA, CSB, SCK, SDI, SDOA and SDOB become a serial interface that control the A/D operating modes. Connect to VDD to enable parallel programming mode where CSA, CSB, SCK, SDI, SDOA and SDOB become parallel logic inputs that control a reduced set of the A/D operating modes. PAR/ SER should be connected directly to ground or the VDD of the part and not be driven by a logic signal. VREF (B6): Reference Voltage Output. VREF is internally bypassed to ground with a 1μF ceramic capacitor, nominally 1.25V. SENSE (C5): Reference Programming Pin. Connecting SENSE to VDD selects the internal reference and a ±1V input range. Connecting SENSE to ground selects the internal reference and a ±0.5V input range. An external reference between 0.625V and 1.3V applied to SENSE selects an input range of ±0.8 • VSENSE. SENSE is internally bypassed to ground with a 0.1µF ceramic capacitor. LVDS Outputs All pins in this section are differential LVDS outputs. The output current level is programmable. There is an optional internal 100Ω termination resistor between the pins of each LVDS output pair. OUT1A–/OUT1A+, OUT1B–/OUT1B+ (E7/E8, C8/D8): Serial Data Outputs for Channel 1. In 1-lane output mode only OUT1A–/OUT1A+ are used. OUT2A–/OUT2A+, OUT2B–/OUT2B+ (B8/A8, D7/C7): Serial Data Outputs for Channel 2. In 1-lane output mode only OUT2A–/OUT2A+ are used. OUT3A–/OUT3A+, OUT3B–/OUT3B+ (D10/D9, E10/E9): Serial Data Outputs for Channel 3. In 1-lane output mode only OUT3A–/OUT3A+ are used. OUT4A–/OUT4A+, OUT4B–/OUT4B+ (C9/C10, F7/F8): Serial Data Outputs for Channel 4. In 1-lane output mode only OUT4A–/OUT4A+ are used. OUT5A–/OUT5A+, OUT5B–/OUT5B+ (J8/J7, K8/K7): Serial Data Outputs for Channel 5. In 1-lane output mode only OUT5A–/OUT5A+ are used. OUT6A–/OUT6A+, OUT6B–/OUT6B+ (K9/K10, L9/L10): Serial Data Outputs for Channel 6. In 1-lane output mode only OUT6A–/OUT6A+ are used. OUT7A–/OUT7A+, OUT7B–/OUT7B+ (M7/L7, P8/N8): Serial Data Outputs for Channel 7. In 1-lane output mode only OUT7A–/OUT7A+ are used. OUT8A–/OUT8A+, OUT8B–/OUT8B+ (L8/M8, M10/M9): Serial Data Outputs for Channel 8. In 1-lane output mode only OUT8A–/OUT8A+ are used. FRA–/FRA+ (H7/H8): Frame Start Outputs for Channels 1, 4, 5 and 8. FRB–/FRB+ (J9/J10): Frame Start Outputs for Channels 2, 3, 6 and 7. DCOA–/DCOA+ (G8/G7): Data Clock Outputs for Channels 1, 4, 5 and 8. DCOB–/DCOB+ (F10, F9): Data Clock Outputs for Channels 2, 3, 6 and 7. 18 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 PIN CONFIGURATION TABLE 1 2 3 4 5 6 7 8 9 10 A GND GND GND GND GND GND PAR/SER OUT2A+ GND GND B AIN1– AIN1+ VCM14 GND GND VREF GND OUT2A– GND GND C AIN2 – + AIN2 GND GND SENSE GND OUT2B+ OUT1B– OUT4A– OUT4A+ D GND GND VDD VDD GND SDOB OUT2B– OUT1B+ OUT3A+ OUT3A– E AIN3– AIN3+ VDD VDD GND SDOA OUT1A– OUT1A+ OUT3B+ OUT3B– F GND GND VCM23 GND GND GND OUT4B– OUT4B+ DCOB+ DCOB– G AIN4– AIN4+ GND GND GND GND DCOA+ DCOA– OVDD OVDD H + – GND FRA– FRA+ GND GND OUT5A– FRB– FRB+ AIN5 GND GND GND J GND GND VCM67 GND GND GND OUT5A+ K AIN6+ AIN6– VDD VDD GND GND OUT5B+ OUT5B– OUT6A– OUT6A+ L GND GND VDD VDD CSA SCK OUT7A+ OUT8A– OUT6B– OUT6B+ M AIN7+ AIN7– GND GND CSB SDI OUT7A– OUT8A+ OUT8B+ OUT8B– N + – GND OUT7B+ GND GND GND OUT7B– GND GND P AIN5 AIN8 GND AIN8 GND VCM58 GND GND GND GND GND ENC+ ENC– Top View of BGA Package (Looking Through Component). 90067814fb For more information www.linear.com/LTM9008-14 19 LTM9008-14/ LTM9007-14/LTM9006-14 FUNCTIONAL BLOCK DIAGRAM VDD = 1.8V OVDD = 1.8V CH 1 ANALOG INPUT S/H 14-BIT ADC CORE OUT1A+ OUT1A– OUT1B+ OUT1B– CH 2 ANALOG INPUT S/H 14-BIT ADC CORE OUT2A+ OUT2A– OUT2B+ OUT2B– CH 3 ANALOG INPUT S/H 14-BIT ADC CORE OUT3A+ OUT3A– OUT3B+ OUT3B– CH 4 ANALOG INPUT S/H 14-BIT ADC CORE OUT4A+ OUT4A– OUT4B+ OUT4B– DATA SERIALIZER CH 5 ANALOG INPUT S/H 14-BIT ADC CORE OUT5A+ OUT5A– OUT5B+ OUT5B– CH 6 ANALOG INPUT S/H 14-BIT ADC CORE OUT6A+ OUT6A– OUT6B+ OUT6B– CH 7 ANALOG INPUT S/H 14-BIT ADC CORE OUT7A+ OUT7A– OUT7B+ OUT7B– CH 8 ANALOG INPUT S/H 14-BIT ADC CORE OUT8A+ OUT8A– OUT8B+ OUT8B– ENC+ DCOA± DCOB± FRA± FRB± PLL ENC– 1.25V REFERENCE VREF REFH RANGE SELECT REFL REF BUFFER SDOA SDOB SDI SCK CSA CSB PAR/SER MODE CONTROL REGISTERS VDD/2 DIFF REF AMP GND 90067814 F01 SENSE VCM14 Figure 1. Functional Block Diagram 20 For more information www.linear.com/LTM9008-14 VCM23 VCM67 VCM58 90067814fb LTM9008-14/ LTM9007-14/LTM9006-14 APPLICATIONS INFORMATION CONVERTER OPERATION INPUT DRIVE CIRCUITS The LTM9008-14/LTM9007-14/LTM9006-14 are low power, 8-channel, 14-bit, 65Msps/40Msps/25Msps A/D converters that are powered by a single 1.8V supply. The analog inputs should be driven differentially. The encode input can be driven differentially for optimal jitter performance, or single-ended for lower power consumption. The digital outputs are serial LVDS to minimize the number of data lines. Each channel outputs two bits at a time (2-lane mode) or one bit at a time (1-lane mode). Many additional features can be chosen by programming the mode control registers through a serial SPI port. Input Filtering ANALOG INPUT The analog inputs are differential CMOS sample-and-hold circuits (Figure 2). The inputs should be driven differentially around a common mode voltage set by the appropriate VCM output pins, which are nominally VDD/2. For the 2V input range, the inputs should swing from VCM – 0.5V to VCM + 0.5V. There should be 180° phase difference between the inputs. The eight channels are simultaneously sampled by a shared encode circuit (Figure 2). If possible, there should be an RC low pass filter right at the analog inputs. This lowpass filter isolates the drive circuitry from the A/D sample-and-hold switching, and also limits wideband noise from the drive circuitry. Figure 3 shows an example of an input RC filter. The RC component values should be chosen based on the application’s input frequency. Transformer Coupled Circuits Figure 3 shows the analog input being driven by an RF transformer with a center-tapped secondary. The center tap is biased with VCM, setting the A/D input at its optimal DC level. At higher input frequencies a transmission line balun transformer (Figures 4 to 6) has better balance, resulting in lower A/D distortion. 50Ω VCM 0.1µF 0.1µF ANALOG INPUT T1 1:1 25Ω 25Ω AIN+ LTM9008-14 0.1µF 12pF LTM9008-14 + AIN VDD RON 25Ω 10Ω CSAMPLE 3.5pF CPARASITIC 1.8pF VDD AIN– 25Ω RON 25Ω 10Ω VDD CSAMPLE 3.5pF 25Ω T1: MA/COM MABAES0060 RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE AIN– 90067814 F03 Figure 3. Analog Input Circuit Using a Transformer. Recommended for Input Frequencies from 5MHz to 70MHz CPARASITIC 1.8pF 1.2V 10k ENC+ ENC– 10k 1.2V 90067814 F02 Figure 2. Equivalent Input Circuit. Only One of the Eight Analog Channels Is Shown 90067814fb For more information www.linear.com/LTM9008-14 21 LTM9008-14/ LTM9007-14/LTM9006-14 APPLICATIONS INFORMATION Amplifier Circuits Figure 7 shows the analog input being driven by a high speed differential amplifier. The output of the amplifier is AC-coupled to the A/D so the amplifier’s output common mode voltage can be optimally set to minimize distortion. See back page for a DC-coupled example. At very high frequencies an RF gain block will often have lower distortion than a differential amplifier. If the gain block is single-ended, then a transformer circuit (Figures 4 to 6) should convert the signal to differential before driving the A/D. 50Ω VCM 0.1µF 0.1µF ANALOG INPUT AIN+ T2 T1 25Ω LTM9008-14 0.1µF 4.7pF 0.1µF 25Ω AIN– 90067814 F04 T1: MA/COM MABA-007159-000000 T2: MA/COM MABAES0060 RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE Figure 4. Recommended Front End Circuit for Input Frequencies from 70MHz to 170MHz 50Ω VCM 0.1µF 0.1µF ANALOG INPUT AIN+ T2 T1 25Ω LTM9008-14 0.1µF 1.8pF 0.1µF 25Ω AIN– 90067814 F05 T1: MA/COM MABA-007159-000000 T2: COILCRAFT WBC1-1LB RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE Figure 5. Recommended Front End Circuit for Input Frequencies from 170MHz to 300MHz 22 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 APPLICATIONS INFORMATION 50Ω VCM 0.1µF 0.1µF 2.7nH ANALOG INPUT 25Ω AIN+ LTM9008-14 0.1µF T1 0.1µF 25Ω 2.7nH AIN– 90067814 F06 T1: MA/COM ETC1-1-13 RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE Figure 6. Recommended Front End Circuit for Input Frequencies Above 300MHz VCM HIGH SPEED DIFFERENTIAL 0.1µF AMPLIFIER ANALOG INPUT + + – – 200Ω 200Ω 25Ω 0.1µF AIN+ LTM9008-14 12pF 0.1µF 25Ω AIN– 90067814 F07 Figure 7. Front End Circuit Using a High Speed Differential Amplifier 90067814fb For more information www.linear.com/LTM9008-14 23 LTM9008-14/ LTM9007-14/LTM9006-14 APPLICATIONS INFORMATION Reference The input range can be adjusted by applying a voltage to SENSE that is between 0.625V and 1.30V. The input range will then be 1.6 • VSENSE. The reference is shared by all eight ADC channels, so it is not possible to independently adjust the input range of individual channels. The LTM9008-14/LTM9007-14/LTM9006-14 has an internal 1.25V voltage reference. For a 2V input range using the internal reference, connect SENSE to VDD. For a 1V input range using the internal reference, connect SENSE to ground. For a 2V input range with an external reference, apply a 1.25V reference voltage to SENSE (Figure 9). VREF 1.25V The VREF , SENSE, REFH and REFL pins are internally bypassed, as shown in Figure 8. LTM9008-14 5Ω 1.25V BANDGAP REFERENCE 1µF 0.625V TIE TO VDD FOR 2V RANGE; TIE TO GND FOR 1V RANGE; RANGE = 1.6 • VSENSE FOR 0.65V < VSENSE < 1.300V RANGE DETECT AND CONTROL SENSE 0.1µF INTERNAL ADC BUFFER HIGH REFERENCE 0.1µF 2.2µF 0.1µF 0.8x DIFF AMP 0.1µF INTERNAL ADC LOW REFERENCE 90067814 F08 Figure 8. Reference Circuit 1.25V EXTERNAL REFERENCE LTM9008-14 SENSE 1µF 90067814 F09 Figure 9. Using an External 1.25V Reference 24 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 APPLICATIONS INFORMATION Encode Input The signal quality of the encode inputs strongly affects the A/D noise performance. The encode inputs should be treated as analog signals—do not route them next to digital traces on the circuit board. There are two modes of operation for the encode inputs: the differential encode mode (Figure 10), and the single-ended encode mode (Figure 11). The differential encode mode is recommended for sinusoidal, PECL, or LVDS encode inputs (Figures 12 and 13). LTM9008-14 The encode inputs are internally biased to 1.2V through 10k equivalent resistance. The encode inputs can be taken above VDD (up to 3.6V), and the common mode range is from 1.1V to 1.6V. In the differential encode mode, ENC– should stay at least 200mV above ground to avoid falsely triggering the single-ended encode mode. For good jitter performance ENC+ should have fast rise and fall times. The single-ended encode mode should be used with CMOS encode inputs. To select this mode, ENC– is connected to ground and ENC+ is driven with a square wave encode VDD DIFFERENTIAL COMPARATOR VDD 15k ENC+ LTM9008-14 1.8V TO 3.3V ENC– 0V 30k ENC+ ENC– 30k 90067814 F11 90067814 F10 Figure 10. Equivalent Encode Input Circuit for Differential Encode Mode 0.1µF ENC+ T1 50Ω 0.1µF CMOS LOGIC BUFFER Figure 11. Equivalent Encode Input Circuit for Single-Ended Encode Mode LTM9008-14 100Ω 0.1µF 50Ω 0.1µF ENC– 90067814 F12 PECL OR LVDS CLOCK T1 = MA/COM ETC1-1-13 RESISTORS AND CAPACITORS ARE 0402 PACKAGE SIZE ENC+ LTM9008-14 0.1µF ENC– 90067814 F13 Figure 12. Sinusoidal Encode Drive Figure 13. PECL or LVDS Encode Drive 90067814fb For more information www.linear.com/LTM9008-14 25 LTM9008-14/ LTM9007-14/LTM9006-14 APPLICATIONS INFORMATION input. ENC+ can be taken above VDD (up to 3.6V) so 1.8V to 3.3V CMOS logic levels can be used. The ENC+ threshold is 0.9V. For good jitter performance ENC+ should have fast rise and fall times. Clock PLL and Duty Cycle Stabilizer The encode clock is multiplied by an internal phase-locked loop (PLL) to generate the serial digital output data. If the encode signal changes frequency or is turned off, the PLL requires 25µs to lock onto the input clock. A clock duty cycle stabilizer circuit allows the duty cycle of the applied encode signal to vary from 30% to 70%. In the serial programming mode it is possible to disable the duty cycle stabilizer, but this is not recommended. In the parallel programming mode the duty cycle stabilizer is always enabled. DIGITAL OUTPUTS The digital outputs of the LTM9008-14/LTM9007-14/ LTM9006-14 are serialized LVDS signals. Each channel outputs two bits at a time (2-lane mode) or one bit at a time (1-lane mode). The data can be serialized with 16, 14, or 12-bit serialization (see the Timing Diagrams section for details). Note that with 12-bit serialization the two LSBs are not available—this mode is included for compatibility with 12-bit versions of these parts. The output data should be latched on the rising and falling edges of the data clock out (DCO). A data frame output (FR) can be used to determine when the data from a new conversion result begins. In the 2-lane, 14-bit serialization mode, the frequency of the FR output is halved. The maximum serial data rate for the data outputs is 1Gbps, so the maximum sample rate of the ADC will depend on the serialization mode as well as the speed grade of the ADC (see Table 1). The minimum sample rate for all serialization modes is 5Msps. By default the outputs are standard LVDS levels: 3.5mA output current and a 1.25V output common mode voltage. An external 100Ω differential termination resistor is required for each LVDS output pair. The termination resistors should be located as close as possible to the LVDS receiver. The outputs are powered by OVDD which is independent from the A/D core power. Table 1. Maximum Sampling Frequency for All Serialization Modes. Note That These Limits Are for the LTM9008-14. The Sampling Frequency for the Slower Speed Grades Cannot Exceed 40MHz (LTM9007-14) or 25MHz (LTM9006-14) SERIALIZATION MODE MAXIMUM SAMPLING FREQUENCY, fS (MHz) DCO FREQUENCY FR FREQUENCY SERIAL DATA RATE 2-Lane 16-Bit Serialization 65 4 • fS fS 8 • fS 2-Lane 14-Bit Serialization 65 3.5 • fS 0.5 • fS 7 • fS 2-Lane 12-Bit Serialization 65 3 • fS fS 6 • fS 1-Lane 16-Bit Serialization 62.5 8 • fS fS 16 • fS 1-Lane 14-Bit Serialization 65 7 • fS fS 14 • fS 1-Lane 12-Bit Serialization 65 6 • fS fS 12 • fS 26 90067814fb For more information www.linear.com/LTM9008-14 LTM9008-14/ LTM9007-14/LTM9006-14 APPLICATIONS INFORMATION Programmable LVDS Output Current Table 2. Output Codes vs Input Voltage The default output driver current is 3.5mA. This current can be adjusted by control register A2 in the serial programming mode. Available current levels are 1.75mA, 2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA. In the parallel programming mode, the SCK pin can select either 3.5mA or 1.75mA. Optional LVDS Driver Internal Termination In most cases, using just an external 100Ω termination resistor will give excellent LVDS signal integrity. In addition, an optional internal 100Ω termination resistor can be enabled by serially programming mode control register A2. The internal termination helps absorb any reflections caused by imperfect termination at the receiver. When the internal termination is enabled, the output driver current is doubled to maintain the same output voltage swing. In the parallel programming mode the SDO pin enables internal termination. Internal termination should only be used with 1.75mA, 2.1mA or 2.5mA LVDS output current modes. DATA FORMAT Table 2 shows the relationship between the analog input voltage and the digital data output bits. By default the output data format is offset binary. The 2’s complement format can be selected by serially programming mode control register A1. AIN+ – AIN– (2V RANGE) D13-D0 (OFFSET BINARY) D13-D0 (2’s COMPLEMENT) >1.000000V 11 1111 1111 1111 01 1111 1111 1111 +0.999878V 11 1111 1111 1111 01 1111 1111 1111 +0.999756V 11 1111 1111 1110 01 1111 1111 1110 +0.000122V 10 0000 0000 0001 00 0000 0000 0001 +0.000000V 10 0000 0000 0000 00 0000 0000 0000 –0.000122V 01 1111 1111 1111 11 1111 1111 1111 –0.000244V 01 1111 1111 1110 11 1111 1111 1110 –0.999878V 00 0000 0000 0001 10 0000 0000 0001 –1.000000V 00 0000 0000 0000 10 0000 0000 0000
LTM9008IY-14#PBF 价格&库存

很抱歉,暂时无法提供与“LTM9008IY-14#PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货