0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX12900ATJ+W

MAX12900ATJ+W

  • 厂商:

    AD(亚德诺)

  • 封装:

    32-VFQFN Exposed Pad

  • 描述:

    ULTRA-LOW PROFILE TRXR

  • 数据手册
  • 价格&库存
MAX12900ATJ+W 数据手册
EVALUATION KIT AVAILABLE MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter General Description The MAX12900 is an ultra-low-power, highly integrated 4-20mA sensor transmitter. The MAX12900 integrates ten building blocks in a small package: a wide input supply voltage LDO, two conditioner circuits for pulse-widthmodulated (PWM) inputs, two low-power, low-drift, generalpurpose operational amplifiers (op amp) one wide bandwidth, zero-offset drift operational amplifier; two diagnostic comparators, a power-up sequencer with power good output to allow for a smooth power-up, and a low-drift voltage reference. The MAX12900 converts PWM data from a microcontroller into current over a 4-20mA loop with two, three, or fourwire configurations. The equivalent to an ultra-low-power, high-resolution, digital-to-analog converter is realized with the combination of two-PWM signals received from a microcontroller, the two conditioner circuits, and an active filter built with the integrated low-power op amp. The outputs of the two conditioner circuits provide a stable PWM amplitude over voltage supply and temperature variation. The wide bandwidth amplifier, in combination with a discrete transistor, converts a voltage input into a current output and allows HART and Foundation Fieldbus H1 signal modulation. The zero-offset operational amplifier and the low-drift voltage reference provide negligible error over wide temperature. The low-power operational amplifier and comparators provide building blocks for enhanced diagnostic features. Supply rail monitoring, output current readback, open circuit and failure detection are a few examples of diagnostic features. All these features, as well as ultra-low-power and high accuracy make the MAX12900 ideal for loop-powered smart sensor transmitters for industrial application. The MAX12900 is available in 5mm x 5mm 32-pin TQFN package and operates over a wide industrial temperature range of -40°C to +125°C. 19-100086; Rev 2; 3/18 Benefits and Features ●● Wide Input Supply Range: 4.0V to 36V ●● Ultra-Low-Power Consumption: 170µA (typ) ●● High Linearity: 0.01% (Max Error) ●● High Resolution: Up to 16 Bit ●● Low Drift Voltage Reference: 10ppm/°C max ●● Wide Temperature Range: -40°C to +125°C ●● Small Package: 5mm x 5mm x 0.8mm 32-pin TQFN Applications ●● ●● ●● ●● Loop-Powered 4-20mA Current Transmitter Smart Sensors Remote Instrumentation Industrial Automation and Process Control Ordering Information appears at end of data sheet. MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Functional Block Diagram VCCI VCC 1.2V VREF LDOFB VCCI VCCID PWRGOOD VDD POWER-UP SEQUENCER LDO VDD VCCI COMP2N MAX12900 COMP2O COMP2P VDD VCCI COMP1N COMP1O COMP1P COMPARATORS VCCI OP1N OP1O OP1 OP1P VCCI OP2N OP2O OP2 OP2P VCCI OP3N OP3O OP3 OP3P OP-AMPS VCCI VCCI REFGND MAX12900 INTEGRATES 10 BUILDING BLOCKS: LDO POWER-UP SEQUENCER TWO COMPARATORS (COMP1, COMP2) TWO GENERAL PURPOSE OP AMPS (OP1, OP2) ONE LOW DRIFT OP AMP (OP3) 2.5V PRECISION REFERENCE TWO PWM RECEIVERS (PWMA, PWMB) REFO VREF REFBUF 2.5V VREF VCCI 1V PWMAO PWMAP SHDN VCCI REFBUF 1V PWMBO PWMBP SHDN www.maximintegrated.com PWM EP Maxim Integrated │  2 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Absolute Maximum Ratings VCC to GND...........................................................-0.3V to +40V VCC to VCCI..........................................................-0.3V to +40V VCCI and VCCID to GND........................................-0.3V to +6V VCCI to VCCID......................................................-0.3V to +0.3V VDD to GND.............................................................-0.3V to +6V PWRGOOD to GND................................... -0.3V to VCCI + 0.3V LDOFB to GND.......................................... -0.3V to VCCI + 0.3V I/C and REFGND to GND....................................-0.3V to + 0.3V SHDN to GND............................................ -0.3V to VCCI + 0.3V REFO to GND............................................ -0.3V to VCCI + 0.3V Op Amps OP1O, OP2O, OP3O to GND.................... -0.3V to VCCI + 0.3V OP1P, OP1N, OP2P, OP2N, OP3P, OP3N to GND.......................-0.3V to min [4.5V, VCCI + 0.3V] Current into OP1P, OP1N, OP2P, OP2N, OP3P, OP3N..................................................................±20mA Current into OP3O............................................................±30mA Output Short-Circuit Duration for OP1 and OP2 to VCCI or GND.............................................Continuous Comparators COMP1P, COMP1N, COMP2P, COMP2N to GND.................................................... -0.3V to VCCI + 0.3V COMP1O, COMP2O to GND...................... -0.3V to VDD + 0.3V Current into COMP1P, COMP1N, COMP2P, COMP2N......................................................±20mA Output Short-Circuit Duration to VDD or GND...........................................................Continuous PWM Conditioners PWMAP, PWMBP to GND.......................... -0.3V to VCCI + 0.3V PWMAO, PWMBO to GND........................ -0.3V to VCCI + 0.3V Current into PWMAP, PWMBP..........................................±20mA Output Short-Circuit Duration to VCCI or GND..........Continuous Continuous Power Dissipation (TA = +70°C, derate 35.7mW/°C above +70°C)............................2857.1mW Operating Temperature Range.......................... -40°C to +125°C Functional Temperature Range (Startup condition)......................................... -55°C to +125°C Maximum Junction Temperature......................................+150°C Storage Temperature Range............................. -65°C to +150°C Soldering Temperature (reflow)........................................+260°C Lead Temperature............................................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 32 TQFN PACKAGE CODE T3255 Outline Number 21-0140 Land Pattern Number 90-0015 Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 40.2°C/W Junction to Case (θJC) 2.0°C/W For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. www.maximintegrated.com Maxim Integrated │  3 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Electrical Characteristics Voltage Reference VCCI = +3.0V to +5.5V, VGND = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VCCI = +3.3V. (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 5.5 V 140 µV/V VOLTAGE REFERENCE 2.5V STATIC Supply Voltage VCCI Guaranteed by line regulation test 3.0 VCCI Line Regulation ∆VREF/ ∆VCCI 3.0V ≤ VCCI ≤ 5.5V 20 VCC Line Regulation ∆VREF/ ∆VCC 4.3V ≤ VCC ≤ 36V, VCCI = 3.3V 1.2 Output Voltage VOUT TA = +25°C 2.495 2.500 2.505 V 2 10 ppm/°C Output Voltage Temperature Coefficient TCVOUT CREF = 2nF (Note 2) Temperature Hysteresis ∆VREF/ Cycle CREF = 2nF -140 Load Regulation ∆VREF/ ∆IOUT Sourcing 0V ≤ IOUT ≤ 500 µA 0.14 Short-Circuit Current ISC Maximum Capacitive Load CREF Short to GND nV/V ppm 0.6 µV/µA 3 mA 2 nF DYNAMIC VCCI Ripple Rejection VREF/ VCCI VCCI = 3.3V, f = 120Hz 90 dB VCC Ripple Rejection VREF/ VCC VCC = 12V, VCCI = 3.3V, f = 120Hz 160 dB Turn-On Settling Time tR From 90% of VCCI to within 0.1% of VREF, CREF = 2nF 85 µs 0.1Hz to 10Hz 40 µVp-p 10Hz to 10kHz 125 µVRMS Noise Voltage www.maximintegrated.com eREF Maxim Integrated │  4 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Electrical Characteristics (continued) PWM Conditioners VCCI = +3.0V to +5.5V, VGND = 0V, outputs connected to 100kΩ in parallel with 10pF terminated to VREF/2, input pulses have 10ns rise and fall times, PWM period = 100µs, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VCCI = +3.3V. (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 5.5 V PWMA, PWMB STATIC Supply Voltage VCCI Supply Rejection Ratio of Input Threshold Voltage VCCI PSRRVTH VCC Supply Rejection Ratio of Input Threshold Voltage VCCI Supply Rejection Ratio of Output Voltage High PSRRVOH VCC Supply Rejection Ratio of Output Voltage High Guaranteed by PSRRVOH test 3.0 3.0V ≤ VCCI ≤ 5.5V 65 dB 4.3V ≤ VCC ≤ 36V, VCCI = 3.3V 150 dB 75 dB 160 dB 3.0V ≤ VCCI ≤ 5.5V, no load 59 4.3V ≤ VCC ≤ 36V, VCCI = 3.3V, no load Input Voltage Range 0 Input Voltage High VIH PWMAP, PWMBP, SHDN Input Voltage Low VIL PWMAP, PWMBP, SHDN PWMAP, PWMBP Input Threshold VTH VCCI 1.4 V 0.6 PWMAP, PWMBP Input Threshold Accuracy V V 1.0 V 1 mV PWMAP, PWMBP Hysteresis PWMHYS 5 mV SHDN Hysteresis SHDNHYS 50 mV -1 nA 2 pF Input Bias Current IB Input Capacitance CIN Output Voltage High VOH VREF - VOUT, ISOURCE = 100 µA Output Voltage Low VOL VOUT – VGND, ISINK = 100 µA Short Circuit Current ISC VPWMAP = VPWMBP = 0V 0.1 0.1 V V PWMAO or PWMBO short to VREF -12 mA PWMAO or PWMBO short to GND 6 mA Output High Level Voltage Matching Difference between the voltage of the two PWM outputs -2 +2 mV Output Low Level Voltage Matching Difference between the voltage of the two PWM outputs -2 +2 mV PWMAO, PWMBO Output Voltage High Drift Linearity www.maximintegrated.com 7 From code 10 to code 245 (Note 2), Figure 1 µV/°C 0.01 %FSR Maxim Integrated │  5 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Electrical Characteristics (continued) PWM Conditioners (continued) VCCI = +3.0V to +5.5V, VGND = 0V, outputs connected to 100kΩ in parallel with 10pF terminated to VREF/2, input pulses have 10ns rise and fall times, PWM period = 100µs, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VCCI = +3.3V. (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DYNAMIC Propagation Delay Active to Shut down tSHDN From 50% of SHDN to when PWM outputs are Hi-Z 10 µs Propagation Delay Shut down to Active tACT From 50% of SHDN to when PWM outputs are active 10 µs Minimum Input Pulse Width IPW Single high state, guaranteed by PWM timing tests Driver Rise Time for PWMAO and PWMBO RTA, RTB Driver Fall Time for PWMAO and PWMBO FTA, FTB 390 ns 7 ns 6 ns Single 390ns pulse, 10% to 90% PWMAO to PWMBO Rise Time Matching Single 390ns pulse -4 +4 ns PWMAO to PWMBO Fall Time Matching Single 390ns pulse -2 +2 ns PWMAO to PWMBO Delay Matching Single 390ns pulse, measured at 50% FSR of rising edges -30 +30 ns PWMAO and PWMBO Pulse Width Accuracy Single 390ns pulse, pulse width difference between input and output waveforms (measured at 50% points) -30 +30 ns PWMAO and PWMBO Pulse Width Variation vs. Temperature Single 390ns pulse PWMAO and PWMBO Pulse Width Matching Single 390ns pulse, difference between PWMAO and PWMBO pulse widths www.maximintegrated.com 25 -30 ps/°C +30 ns Maxim Integrated │  6 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Electrical Characteristics (continued) Op Amps VCCI = +3.0V to +5.5V, VGND = 0V, VCM = VOUT = VCCI/2, no resistive load, CL = 10pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VCCI = +3.3V. (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 5.5 V OP1, OP2 STATIC Supply Voltage VCCI Supply Rejection Ratio VCC Supply Rejection Ratio VCCI Guaranteed by PSRRVCCI test 3.0 PSRRVCCI 3.0V ≤ VCCI ≤ 5.5V 62 PSRRVCC 4.3V ≤ VCC ≤ 36V, VCCI = 3.3V Common Mode Input Voltage VCMR Common Mode Rejection Ratio CMRR Input Offset Voltage VOS Input Offset Voltage Drift ∆VOS Input Bias Current Input Offset Current Open-Loop Gain IB IOS AVOL 80 dB 165 dB Guaranteed by CMRR test VCCI ≤ 4.5V -0.1 VCCI 0.5 V Guaranteed by CMRR test 4.5V ≤ VCCI ≤ 5.5V -0.1 +4.0 V -0.1V ≤ VCM ≤ min (4.0V, VCCI - 0.5V) 56 dB 1 (Note 2) mV 15 µV/°C -40°C ≤ TA ≤ +85°C (Note 2) -15 +15 pA -40°C ≤ TA ≤ +125°C (Note 2) -125 +125 pA -40°C ≤ TA ≤ +85°C (Note 2) -15 +15 pA -40°C ≤ TA ≤ +125°C (Note 2) -80 +80 pA 150mV ≤ VOUT ≤ VCCI - 150mV, RL = 100kΩ connected to VCCI / 2, -40°C ≤ TA ≤ +85°C 78 -40°C ≤ TA ≤ +125°C 72 dB Output Voltage High VOH VCCI – VOUT, RL = 100kΩ connected to VCCI / 2 25 mV Output Voltage Low VOL VOUT - VGND, RL = 100kΩ connected to VCCI / 2 25 mV Output Short-Circuit Current IOUT(SC) www.maximintegrated.com ±3 mA Maxim Integrated │  7 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Electrical Characteristics (continued) Op Amps (continued) VCCI = +3.0V to +5.5V, VGND = 0V, VCM = VOUT = VCCI/2, no resistive load, CL = 10pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VCCI = +3.3V. (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DYNAMIC Input Voltage Noise Density eN f = 1kHz 150 nV/√Hz Input Current Noise Density iN f = 1kHz 40 fA/√Hz 200 kHz Gain Bandwith Product Slew Rate GBWP SR Settling Time Maximum Capacitive Load CL 0.1 V/ µs To 0.1%, VOUT = 2V step, AV = -1V/V 25 µs No sustained oscillations, AV = 1V/V 100 pF OP3 (RL = 100kΩ CONNECTED to VCCI/2, CL = 20pF) STATIC Supply Voltage VCCI Guaranteed by PSRRVCCI test 3.0 107 VCCI Supply Rejection Ratio PSRRVCCI 3.0V ≤ VCCI ≤ 5.5V VCC Supply Rejection Ratio PSRRVCC 4.3V ≤ VCC ≤ 36V, VCCI = 3.3V Common Mode Input Voltage VCMR Common Mode Rejection Ratio CMRR Input Offset Voltage VOS Input Offset Voltage Drift ∆VOS Input Bias Current IB 5.5 V dB 195 dB Guaranteed by CMRR test VCCI ≤ 4.3V -0.1 VCCI 0.3 V Guaranteed by CMRR test 4.3V ˂ VCCI ≤ 5.5V -0.1 +4.0 V -0.1V ≤ VCM ≤ min(4.0V, VCCI - 0.3V) 105 TA = 25°C, VCCI = 3.3V (Note 2) -10 (Note 2) dB 5 +10 µV 70 nV/°C -40°C ≤ TA ≤ +85°C (Note 2) -15 +15 pA -40°C ≤ TA ≤ +125°C (Note 2) -125 +125 pA Input Offset Current IOS -40 pA Input Capacitance CIN 2 pF 150 dB Open-Loop Gain AVOL 150mV ≤ VOUT ≤ VCCI-150mV, RL = 5kΩ connected to VCCI / 2 Output Voltage High VOH VCCI – VOUT, RL = 100kΩ connected to VCCI / 2 12 mV Output Voltage Low VOL VOUT - VGND, RL = 100kΩ connected to VCCI / 2 12 mV www.maximintegrated.com 123 Maxim Integrated │  8 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Electrical Characteristics (continued) Op Amps (continued) VCCI = +3.0V to +5.5V, VGND = 0V, VCM = VOUT = VCCI/2, no resistive load, CL = 10pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VCCI = +3.3V. (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DYNAMIC Input Voltage Noise Density f = 1kHz 35 nV/√Hz 0.1Hz ≤ f ≤ 10Hz 0.7 µVp-p f = 1kHz 80 fA/√Hz GBWP 2.2 MHz SR 0.7 V/µs 57 ° 300 pF eN Input Voltage Noise Input Current Noise Density Gain Bandwidth Product Slew Rate iN Phase Margin Maximum Capacitive Load CL No sustained oscillations, AV = 1V/V Electrical Characteristics (continued) Comparators VCCI = +3.0V to +5.5V, VDD = +1.8V to +3.6V, VGND = 0V, VCM = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VDD = VCCI = +3.3V. (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 3.0 5.5 V 1.8 3.6 V COMP1, COMP2 STATIC Supply Voltage VCCI Supply Voltage Output Stage VDD VCCI Supply Rejection Ratio PSRRVCCI 3.0V ≤ VCCI ≤ 5.5V VCC Supply Rejection Ratio PSRRVCC 4.3V ≤ VCC ≤ 36V, VCCI = 3.3V Common Mode Input Voltage VCMR Guaranteed by CMRR test 0 Common Mode Rejection Ratio CMRR 0V ≤ VCM ≤ VCCI – 1.3V 56 Input Offset Voltage VOS Hysteresis VHYS Input Bias Current Input Offset Current IB CIN Output Voltage High VOH 54 dB 160 VCM = 0V -10 dB VCCI 1.3 75 -10 IOS Input Capacitance www.maximintegrated.com Guaranteed by PSRRVCCI test dB +10 mV 15 mV -1 nA 1 nA 2 VDD - VOUT, ISOURCE = 100 µA V pF 0.4 V Maxim Integrated │  9 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Electrical Characteristics (continued) Comparators (continued) VCCI = +3.0V to +5.5V, VDD = +1.8V to +3.6V, VGND = 0V, VCM = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VDD = VCCI = +3.3V. (Note 1) PARAMETER SYMBOL Output Voltage Low VOL Short Circuit Current ISC CONDITIONS MIN TYP VOUT – VGND, ISINK = 100 µA MAX UNITS 0.4 V Short to GND 2 mA Short to VDD -2 mA 2 µs DYNAMIC Propagation Delay Low to High tPD+ CLOAD = 10pF, threshold set to VCCI -1.4V, input swings from 0V to VCCI -1.3V Propagation Delay High to Low tPD- CLOAD = 10pF, threshold set to 0.1V, input swings from VCCI -1.3V to 0V 0.5 µs Rise Time TR CLOAD= 10pF 50 ns Fall Time TF CLOAD= 10pF 50 ns LDO VCC = +4.0V to +36V, VGND = 0V, CLOAD = 0.32µF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VCC = +24V. (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 4.0 24 36 V LDO STATIC Supply Voltage VCC Guaranteed by line regulation test Dropout Voltage Guaranteed by line and load regulation tests VCC Line Regulation VCC from VCCI+1V to 36V, ILDO = 4mA, VCCI = 3.0V to 5.5V Output Voltage VCCI Output Voltage Accuracy Output Current Range VCCI Current Limit ILDO ICCI_Limit V 2 25 mV Guaranteed by block PSRRVCCI tests 3.0 5.5 V VCC = 24V, no load except for LDOFB resistor divider, VCCI = 3.3V -3.5 +3.5 % 4 mA Guaranteed by load regulation test 0 VCCI short to GND 12 VCC = VCCI+1V, ILDO from 0mA to 4mA, VCCI = 3.0V to 5.5V 1 CLOAD No resistive load except for LDOFB resistor divider 5 µF PSRR VCC = 12V, DC to 120Hz 70 dB Load Regulation Maximum Capacitive Load 1 mA 10 mV DYNAMIC VCC Supply Rejection Ratio www.maximintegrated.com Maxim Integrated │  10 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Electrical Characteristics (continued) Chip-Level Specifications VCC = +4.0V to +36V, VCCI = +3.0V to +5.5V, VDD = +1.8V to +3.6V, VGND = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C, VCC = +24V, VDD = VCCI = +3.3V. (Note 1) PARAMETER SYMBOL CONDITIONS ICC VCC = 24V, VCCI = 3.3V, SHDN = 3.3V, no load, -40°C ≤ TA ≤ +85°C MIN TYP MAX UNITS 170 250 µA 265 µA STATIC VCC Supply Current VCC Supply Current with PWM Conditioners Shutdown VDD Supply Current ICC_SHDN -40°C ≤ TA ≤ +125°C VCC = 24V, VCCI = 3.3V, SHDN = 0V, no load 142 IDD µA 1 µA PWRGOOD Turn-on Threshold 90 % of VCCI PWRGOOD Turn-off Threshold 80 % of VCCI PWRGOOD Voltage High VOH VCCI – VOUT, ISOURCE = 100 µA 0.4 V PWRGOOD Voltage Low VOL VOUT – VGND, ISINK = 100 µA 0.4 V PWRGOOD Short Circuit Current ISC Short to GND 2 mA Short to VCCI -2 mA From VCCI crossing turn-on threshold to PWRGOOD high 0.7 ms DYNAMIC PWRGOOD Turn-on Delay Note 1: Specifications are 100% tested at TA = +25°C (exceptions noted). All temperature limits are guaranteed by design. Note 2: Guaranteed by design, not production tested. 0.1ms PWMAP PWMBP 0.1ms/256 256 STEPS Figure 1. Typical PWM Timing Diagram www.maximintegrated.com Maxim Integrated │  11 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. TRANSFER CHARACTERISTICS LOOP CURRENT vs. PWM DUTY CYCLE toc01 30.0 15.0 10.0 20.0 15.0 10.0 5.0 0.0 0.010 0.005 0.000 -0.005 -0.010 -0.015 0.0 10 20 30 40 50 60 70 80 90 100 0 0.5 1 1.5 2 DUTY CYCLE (%) OP3 INPUT (V) 4-20mA LINEARITY vs. PWM DUTY CYCLE AND LOOP VOLTAGE VCC SUPPLY CURRENT (SYSTEM LEVEL) vs. TEMPERATURE 0.020 toc04 400 VLOOP = 24V RLOAD = 100Ω 0.015 VCC SUPPLY CURRENT (µA) 0.010 0.005 0.000 -0.005 -0.010 -0.015 16V 24V 32V 36V 0 toc05 350 300 300 250 200 150 100 12mA 0 20 40 60 toc07 VBACKUP 200 150 100 16 toc08 12mA 20mA 21 26 31 VCC SUPPLY REJECTION RATIO vs. FREQUENCY (SYSTEM LEVEL) 70 18 36 toc09 60 16 50 14 12 10 8 6 40 30 20 4 10 2 1 10 100 1k FREQUENCY (Hz) www.maximintegrated.com toc06 VCC VOLTAGE (V) 0 100ms/div 80 RLOAD = 100Ω 4mA PSRR (dB) 10mV/div LOOP CURRENT NOISE DENSITY (nA/√Hz) VINSIDE 60 250 20 35 50 65 80 95 110 125 4mA LOOP CURRENT NOISE DENSITY vs. FREQUENCY OVER 500Ω LOAD 20 VOUTN 40 VCC SUPPLY CURRENT vs. SUPPLY VOLTAGE TEMPERATURE (°C) PWM DUTY CYCLE (%) 4mA LOOP CURRENT NOISE DURING SILENCE OVER 500Ω LOAD 125°C 0 -40 -25 -10 5 80 85°C 50 20mA 0 -0.020 20 400 350 4mA 25°C PWM DUTY CYCLE (%) RLOAD = 100Ω 50 -40°C -0.020 2.5 VCC SUPPLY CURRENT (µA) 0 toc03 VLOOP = 24V RLOAD = 100Ω 0.015 LOOP CURRENT LINEARITY (%FS) LOOP CURRENT (mA) LOOP CURRENT (mA) 20.0 0.020 VLOOP = 24V RLOAD = 250Ω 25.0 5.0 LOOP CURRENT LINEARITY (%FS) toc02 30.0 VLOOP = 24V RLOAD = 250Ω 25.0 4-20mA LINEARITY vs. PWM DUTY CYCLE AND TEMPERATURE TRANSFER CHARACTERISTICS LOOP CURRENT vs. OP3 INPUT 10k 100k 0 10 100 1k 10k 100k 1M FREQUENCY (Hz) Maxim Integrated │  12 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. LOOP SUPPLY REJECTION RATIO vs. FREQUENCY (SYSTEM LEVEL) 70 20mASTEP TRANSIENT RESPONSE OVER 500Ω LOAD toc10 toc11 PSRR (dB) 60 50 VOUTN 40 VINSIDE 30 VBACKUP 2V/div 20 10 0 10 100 1k 10k 100k 1M 20ms/div FREQUENCY (Hz) ANALOG RATE OF CHANGE OVER 500Ω LOAD WITH DIGITAL FILTER HART COMMUNICATION toc12 toc13 VOUTN VOUTN VINSIDE VINSIDE 200mV/div 10x gain (AC COUPLED) VBACKUP 200mV/div (ACCOUPLED) VBACKUP 2ms/div 20ms/div 10kHZ SQUARE WAVE OVER 100Ω LOAD OP1/OP2 INPUT OFFSET VOLTAGE HISTOGRAM toc14 30 toc15 25 VINSIDE 100mV/div (ACCOUPLED) VBACKUP FREQUENCY (%) VOUTN 20 15 10 5 0 50µs/div -1800 -1200 -600 0 600 1200 1800 INPUT OFFSET VOLTAGE (µV) www.maximintegrated.com Maxim Integrated │  13 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. VCCI = 5.5V VCM = 2.75V TA = +25°C 30 FREQUENCY (%) 25 20 15 10 800 INPUT OFFSET VOLTAGE (µV) 35 OP1/OP2 INPUT OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE 400 200 0 -200 0 -600 -0.1 0.08 0.12 0.16 0.4 0.9 85°C 1.4 125°C 1.9 10 2.4 -40 -60 -80 -100 -40°C -140 0 2.9 3.297 3.296 3.295 0.5 25°C 1 85°C 1.5 125°C 2 2.5 3 INPUT COMMON-MODE VOLTAGE (V) toc20 GAIN 120 8 100 7 80 6 60 5 OP1/OP2 GAIN AND PHASE vs. FREQUENCY 140 RLOAD = 100kΩ 9 OUTPUT VOLTAGE (mV) OUTPUT VOLTAGE (V) 25°C OP1/OP2 OUTPUT VOLTAGE LOW vs. TEMPERATURE toc19 3.298 toc21 AV = 1V/V RLOAD = 100kΩ CLOAD = 10pF 225 180 135 90 45 PHASE 40 0 20 -45 3 0 -90 3.292 2 -20 -135 3.291 1 -40 -180 3.290 0 -60 3.294 3.293 -40 -25 -10 5 4 20 35 50 65 80 95 110 125 -40 -25 -10 5 TEMPERATURE (°C) -225 10m 100m 20 35 50 65 80 95 110 125 1 10000 toc22 VCCI = 3.3V VCM = 1.65V AV = 1V/V RLOAD = ∞ OP1/OP2 SMALL-SIGNAL PULSE RESPONSE 1.80 100 100 1k 10k 100k 1M 1.70 1.65 1.60 OP1/OP2 LARGE-SIGNAL PULSE RESPONSE 2.97 toc24 AV = 1V/V CLOAD = 15pF 2.64 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) UNSTABLE toc23 AV = 1V/V CLOAD = 15pF 1.75 1000 10 FREQUENCY (Hz) TEMPERATURE (°C) OP1/OP2 CAPACITIVE LOAD vs. ISOLATION RESISTOR CAPACITANCE (pF) 0 -20 INPUT COMMON-MODE VOLTAGE (V) RLOAD = 100kΩ 3.299 -40°C GAIN (dB) 3.300 20 -120 INPUT BIAS CURRENT (pA) OP1/OP2 OUTPUT VOLTAGE HIGH vs. TEMPERATURE toc18 40 -400 0.04 OP1/OP2 INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGE 60 600 5 0 toc17 PHASE (°) toc16 INPUT BIAS CURRENT (pA) OP1/OP2 INPUT BIAS CURRENT HISTOGRAM 2.31 1.98 1.65 1.32 0.99 1.55 0.66 1.50 10 0.1 1 10 100 ISOLATION RESISTOR (Ω) www.maximintegrated.com 1000 10000 0.33 0 10 20 30 40 50 60 TIME (µs) 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 TIME (µs) Maxim Integrated │  14 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. OP1/OP2 VCCI SUPPLY REJECTION RATIO vs. FREQUENCY toc26 90 AV = 4V/V 1000 PSRR (dB) 100 80 160 70 140 60 120 50 40 0.01 0.1 1 10 60 20 40 10 20 1 10 100 OP3 INPUT OFFSET VOLTAGE HISTOGRAM 25 1k 10k toc28 FREQUENCY (%) 15 10 15 10 5 5 0 0 -4.6 -4.0 -3.4 -2.8 -2.2 3 3.42 3.53 3.64 3.75 3.301 -40 -60 -80 -100 -120 toc32 0 0.5 25°C 1 1.5 85°C 2 -5 -7 2.5 -40°C 0.3 25°C 0.7 1.1 1.5 85°C 1.9 125°C 2.3 2.7 3.1 OP1/OP2 OUTPUT VOLTAGE LOW vs. TEMPERATURE toc33 RLOAD = 100kΩ 0.9 0.8 3.299 3.298 3.297 0.7 0.6 0.5 0.4 0.3 0.2 0.1 125°C INPUT COMMON-MODE VOLTAGE (V) www.maximintegrated.com -3 1 RLOAD = 100kΩ 3.296 -40°C 100k INPUT COMMON-MODE VOLTAGE (V) OUTPUT VOLTAGE (mV) OUTPUT VOLTAGE (V) -20 10k OP3 INPUT OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE toc30 -0.1 3.300 0 1k -1 3.86 OP3 OUTPUT VOLTAGE HIGH vs. TEMPERATURE 20 -160 100 1 INPUT BIAS CURRENT (pA) OP3 INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGE toc31 -140 10 -9 3.31 INPUT OFFSET VOLTAGE (µV) 40 toc29 VCCI = 5.5V VCM = 2.75V TA = +25°C 20 -5.2 1 FREQUENCY (Hz) OP3 INPUT BIAS CURRENT HISTOGRAM 25 20 -5.8 0 100k FREQUENCY (Hz) FREQUENCY (kHz) FREQUENCY (%) 80 30 100 OP1/OP2 VCC SUPPLY REJECTION RATIO vs. FREQUENCY toc27 100 0 10 INPUT BIAS CURRENT (pA) 180 INPUT OFFSET VOLTAGE (µV) INPUT VOLTAGE NOISE (nV/√Hz) 10000 toc25 PSRR (dB) OP1/OP2 INPUT VOLTAGE NOISE vs. FREQUENCY 3.295 3 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) Maxim Integrated │  15 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. 140 GAIN (dB) 120 270 180 135 80 90 45 PHASE 40 0 20 -45 0 -90 -20 VCCI = 3.3V VCM = 1.65V AV = 1V/V RLOAD = 100kΩ 225 100 60 10000 OP3 SMALL-SIGNAL PULSE RESPONSE 1.80 1.75 1000 UNSTABLE toc36 AV = 1V/V CLOAD = 15pF 1.70 1.65 1.60 1.55 -135 -40 -180 10m 100m 1 10 100 1k 1.50 100 10k 100k 1M 10M 0.1 1 FREQUENCY (Hz) 10 100 1000 0 10000 10 20 OP3 INPUT VOLTAGE NOISE vs. FREQUENCY toc37 30 40 50 60 70 80 90 100 TIME (µs) ISOLATION RESISTOR (Ω) OP3 LARGE-SIGNAL PULSE RESPONSE 2.97 OP3 0.1Hz TO 10Hz INPUT VOLTAGE NOISE toc38 10000 toc39 AV = 1V/V CLOAD = 15pF INPUT VOLTAGE NOISE (nV/√Hz) 2.64 OUTPUT VOLTAGE (V) toc35 OUTPUT VOLTAGE (V) AV = 1V/V RLOAD = 100kΩ CLOAD = 20pF GAIN OP3 CAPACITIVE LOAD vs. ISOLATION RESISTOR CAPACITANCE (pF) 160 toc34 PHASE (°) OP3 GAIN AND PHASE vs. FREQUENCY 2.31 1.98 1.65 1.32 0.99 1000 0.1µV/div 100 0.66 0.33 10 0 10 20 30 40 50 60 70 80 90 100 0.01 0.1 TIME (µs) OP3 VCCI SUPPLY REJECTION RATIO vs. FREQUENCY 120 toc40 10 1s/div 100 OP3 VCC SUPPLY REJECTION RATIO vs. FREQUENCY 200 110 toc41 VOLTAGE REFERENCE LINE REGULATION 2.5030 toc42 180 100 2.5025 OUTPUT VOLTAGE (V) 160 90 140 80 70 PSRR (dB) PSRR (dB) 1 FREQUENCY (kHz) 60 50 40 120 100 80 60 30 40 20 2.5020 2.5015 2.5010 2.5005 20 10 0 0 1 10 100 1k 10k FREQUENCY (Hz) www.maximintegrated.com 100k 1M 2.5000 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 3 -40°C 25°C 3.5 4 85°C 4.5 125°C 5 5.5 VCCI (V) Maxim Integrated │  16 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. 2.5020 2.5020 2.5015 2.5015 2.5010 2.5005 2.5000 2.4995 VOLTAGE REFERENCE LOAD REGULATION 2.5025 VCCI = 5.5V OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 2.5025 toc43 toc44 35 VCCI = 3.0V 25 2.5010 2.5005 2.5000 2.4990 -40°C 2.4985 0 25 25°C 100 200 85°C 300 400 25°C 85°C 125°C 2.4985 500 15 5 -40°C 125°C 20 10 2.4995 2.4990 VOLTAGE REFERENCE TEMPERATURE COEFFICIENT HISTOGRAM toc45 30 FREQUENCY (%) VOLTAGE REFERENCE LOAD REGULATION 0 100 200 300 400 ILOAD (µA) ILOAD (µA) VOLTAGE REFERENCE TEMPERATURE HYSTERESIS HISTOGRAM toc46 VOLTAGE REFERENCE LINE TRANSIENT RESPONSE 500 0 0.4 1.3 2.2 3.1 4.0 4.9 5.8 TEMPERATURE COEFFICIENT (ppm/°C) VOLTAGE REFERENCE LOAD TRANSIENT RESPONSE toc47 toc48 +20V VVCC 2V/div FREQUENCY (%) 20 +25µA ILOAD 25µA/div -25µA 15 +10V 10 VREFO 20mV/div VREFO 10mV/div 5 AC-COUPLED CLDO = 0.32µF AC-COUPLED 0 -278 -234 -190 -146 -102 -58 100µs/div -14 20µs/div TEMPERATURE HYSTERESIS (ppm) 100 VOLTAGE REFERENCE VCCI REJECTION RATIO vs. FREQUENCY toc49 180 90 toc51 160 80 140 70 120 60 PSRR (dB) PSRR (dB) VOLTAGE REFERENCE 0.1Hz TO 10Hz OUTPUT NOISE VOLTAGE REFERENCE VCC REJECTION RATIO vs. FREQUENCY toc50 50 40 100 10µV/div 80 60 30 20 40 10 20 0 1 10 100 1k 10k FREQUENCY (Hz) www.maximintegrated.com 100k 1M 0 1 10 100 1k 10k 100k 1M 1s/div FREQUENCY (Hz) Maxim Integrated │  17 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. toc52 10.0 1.0 PWMA/PWMB INPUT THRESHOLD VOLTAGE vs. TEMPERATURE 1.001 INPUT THRESHOLD VOLTAGE (V) VOLTAGE REFERENCE NOISE (µV/√Hz) 100.0 0.01 0.00 toc54 -0.05 1.000 0.999 0.998 0.1 1 10 -0.10 -0.15 -0.20 -0.25 -0.30 -0.40 0.997 100 -40 -25 -10 5 FREQUENCY (kHz) -40 -25 -10 5 20 35 50 65 80 95 110 125 PWMA/PWMB OUTPUT VOLTAGE HIGH vs. TEMPERATURE toc55 PWMA/PWMB OUTPUT VOLTAGE LOW vs. TEMPERATURE 2 RLOAD = 100kΩ 2.500 toc56 OUTPUT VOLTAGE (mV) 1.6 2.499 2.498 2.497 1.4 1.2 1 0.8 0.6 0.4 2.496 0.2 2.495 20 35 50 65 80 95 110 125 -40 -25 -10 5 TEMPERATURE (°C) -40°C -0.04 -0.06 -40 -25 -10 5 25°C 85°C toc59 OUTPUT VOLTAGE (mV) 0.02 0.00 -0.02 -0.04 8 6 4 -0.08 0 20 35 50 65 80 95 110 125 2.496 10 2 toc60 2.498 12 -0.06 20 35 50 65 80 95 110 125 PWMA/PWMB OUTPUT VOLTAGE HIGH vs. LOAD CURRENT 2.500 125°C 14 0.04 www.maximintegrated.com -0.02 TEMPERATURE (°C) PWMA/PWMB OUTPUT VOLTAGE LOW vs. LOAD CURRENT 16 RL = 100kΩ TEMPERATURE (°C) 0.00 TEMPERATURE (°C) PWMA-PWMB OUTPUT LOW LEVEL MATCHING vs. TEMPERATURE toc58 -40 -25 -10 5 0.02 20 35 50 65 80 95 110 125 OUTPUT VOLTAGE (V) 0.06 RLOAD = 100kΩ 0.04 -0.08 0 -40 -25 -10 5 PWMA-PWMB OUTPUT HIGH LEVEL MATCHING vs. TEMPERATURE toc57 0.06 RLOAD = 100kΩ 1.8 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) OUTPUT VOLTAGE MATCHING (mV) 2.501 OUTPUT VOLTAGE MATCHING (mV) PWMA/PWMB INPUT BIAS CURRENT vs. TEMPERATURE -0.35 0.1 OUTPUT VOLTAGE (V) toc53 INPUT BIAS CURRENT (nA) VOLTAGE REFERENCE NOISE vs. FREQUENCY 2.494 2.492 2.490 2.488 2.486 2.484 2.482 -200 -150 -100 ILOAD (µA) -50 0 -40°C 2.480 0 50 25°C 100 85°C 125°C 150 200 ILOAD (µA) Maxim Integrated │  18 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. -9.0 -9.5 6.0 -10.0 5.5 -10.5 5.0 -11.0 4.5 -11.5 4.0 -12.0 -40 -25 -10 5 SHORT TO VREF 2.0 2.0 1.5 1.0 INPUT -0.5 0 200 400 TEMPERATURE (°C) PWMA-PWMB PROPAGATION DELAY MATCHING vs. TEMPERATURE toc64 RLOAD = 100kΩ CLOAD = 10pF -0.5 -1.0 -1.5 -2.0 1.4 -2.5 1.2 0 1000 PWMA-PWMB RISE AND FALL TIME MATCHING vs. TEMPERATURE toc65 RISE TIME MATCHING 0.6 FALL TIME MATCHING 0.4 0.2 0.0 0.15 0.35 0.30 0.25 0.20 0.15 0.10 0.00 6 7 toc66 1.0 0.5 0.0 -0.5 5% DUTY CYCLE 50% DUTY CYCLE 95% DUTY CYCLE -1.5 -40 -25 -10 5 COMP1/COMP2 INPUT BIAS CURRENT vs. TEMPERATURE 20 35 50 65 80 95 110 125 TEMPERATURE (°C) toc68 COMP1/COMP2 OUTPUT VOLTAGE LOW vs. LOAD CURRENT toc69 350 -40°C 25°C 85°C 125°C 300 0.05 0.00 -0.05 -0.10 -0.15 250 200 150 100 50 -0.25 20 35 50 65 80 95 110 125 5 1.5 20 35 50 65 80 95 110 125 -0.20 0.05 www.maximintegrated.com 2.0 -1.0 OUTPUT VOLTAGE (mV) INPUT BIAS CURRENT (nA) 0.40 OUTPUT 4 RLOAD = 100kΩ CLOAD = 10pF PERIOD = 100µs TEMPERATURE (°C) toc67 3 2.5 0.10 TEMPERATURE (°C) 2 PWMA-PWMB PULSE WIDTH MATCHING vs. TEMPERATURE 3.0 RLOAD = 100kΩ CLOAD = 10pF -40 -25 -10 5 0.45 -40 -25 -10 5 1 TIME (µs) 0.8 20 35 50 65 80 95 110 125 COMP1/COMP2 INPUT OFFSET VOLTAGE vs. TEMPERATURE INPUT -0.5 800 1.0 TEMPERATURE (°C) INPUT OFFSET VOLTAGE (mV) 600 -0.2 -40 -25 -10 5 0.50 OUTPUT TIME (ns) RISE AND FALL TIME MATCHING (ns) PROPAGATION DELAY MATCHING (ns) 0.0 1.0 0.0 0.0 -13.0 1.5 0.5 0.5 20 35 50 65 80 95 110 125 toc63 CODE = 10 CLOAD = 10pF 2.5 PULSE WIDTH MATCHING (ns) 3.0 SHORT TO GND PWMA/PWMB INPUT/OUTPUT WAVEFORMS 3.0 CODE = 1 CLOAD = 10pF 2.5 -12.5 3.5 toc62 VOLTAGE (V) 6.5 PWMA/PWMB INPUT/OUTPUT WAVEFORMS 3.0 VOLTAGE (V) toc61 CURRENT FROM VREF (mA) CURRENT TO GND (mA) 7.0 PWMA/PWMB SHORT-CIRCUIT CURRENT vs. TEMPERATURE 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) -200 -150 -100 -50 0 ILOAD (µA) Maxim Integrated │  19 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. 2.12 3.30 CURRENT TO GND (mA) 3.20 3.15 3.10 3.00 -40°C 2.95 0 25°C 50 85°C 100 125°C 2.08 -2.02 2.06 -2.04 2.04 -2.06 2.02 -2.08 2.00 -2.10 SHORT TO GND 1.98 150 -40 -25 -10 5 200 COMP1/COMP2 INPUT/OUTPUT WAVEFORMS (TPD-) 3.5 NEGATIVE INPUT OUTPUT 2.0 1.5 1.0 0.5 1 1.25 toc74 LOW TO HIGH HIGH TO LOW 1000 0.5 1 1.5 3.325 3.315 3.310 3.305 -40°C 3.290 4 8 25°C 12 16 3.310 3.305 3.300 20 85°C 24 125°C 28 32 36 VCC (V) LDO LOAD REGULATION toc77 3.318 LDO OUTPUT VOLTAGE vs. TEMPERATURE toc78 3.316 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.315 toc75 3.320 20 35 50 65 80 95 110 125 3.320 3.320 3 3.295 3.324 ILDO = 4mA 2.5 3.300 -40 -25 -10 5 toc76 2 ILDO = 0.1mA TEMPERATURE (°C) LDO LINE REGULATION 1.5 LDO LINE REGULATION 3.330 800 TIME (µs) 3.330 0 3.325 1200 400 0.75 -0.5 TIME (µs) 1400 600 0.5 0.0 -2.12 1600 0.0 0.25 1.5 0.5 1800 -0.5 0 OUTPUT 2.0 1.0 CLOAD = 10pF 2000 POSITIVE INPUT 2.5 NEGATIVE INPUT 2.5 20 35 50 65 80 95 110 125 COMP1/COMP2 PROPAGATION DELAY vs. TEMPERATURE 2200 PROPAGATION DELAY (ns) VOLTAGE (V) toc73 CLOAD = 10pF 3.0 POSITIVE INPUT 3.0 TEMPERATURE (°C) ILOAD (µA) 4.0 SHORT TO VDD toc72 CLOAD = 10pF 3.5 -2.00 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.25 COMP1/COMP2 INPUT/OUTPUT WAVEFORMS (TPD+) 4.0 -1.98 2.10 3.05 OUTPUT VOLTAGE (V) toc71 VOLTAGE (V) 3.35 COMP1/COMP2 SHORT-CIRCUIT CURRENT vs. TEMPERATURE CURRENT FROM VDD (mA) COMP1/COMP2 OUTPUT VOLTAGE HIGH vs. LOAD CURRENT toc70 3.316 3.312 3.308 3.304 3.314 3.312 3.310 3.308 3.306 3.304 3.300 3.295 -40°C 3.290 4 8 12 25°C 16 20 VCC (V) www.maximintegrated.com 85°C 24 -40°C 125°C 28 32 25°C 85°C 3.296 36 0.1mA LOAD 3.302 125°C 4mA LOAD 3.300 0 0.5 1 1.5 2 ILDO (mA) 2.5 3 3.5 4 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) Maxim Integrated │  20 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Typical Operating Characteristics (continued) VCC = +24V, VDD = VCCID = VCCI = +3.3V, GND = 0V, op amp VCM = VOUT = VCCI/2, op amp CL = 15pF, comparator and PWM CL = 10pF, LDO CLOAD = 0.32µF, no resistive load on any output, TA = +25°C, unless otherwise noted. LDO LINE TRANSIENT RESPONSE LDO LOAD TRANSIENT RESPONSE toc79 toc80 +15V +4.0mA ILDO 2mA/div 80 +0.4mA +9V LOAD CURRENT VCCI VVCCI 20mV/div toc81 CLOAD = 0.32µF R1 = 510kΩ R2 = 300kΩ 90 70 PSRR (dB) VVCC 2V/div LDO VCC SUPPLY REJECTION RATIO vs. FREQUENCY 100 VVCCI 20mV/div 60 50 40 30 20 VCC AC-COUPLED CLOAD = 0.32µF VCCI AC-COUPLED CLOAD = 0.32µF 10 0 100µs/div 1 40µs/div 10 100 1k 10k 100k 1M FREQUENCY (Hz) QUIESCENT CURRENT vs. VCC VOLTAGE 195 185 200 175 190 180 170 160 165 155 145 135 8 12 16 20 85°C 24 125°C 28 32 4 36 0 13 12 VCCI 11 10 REFO 9 PWRGOOD 8 VCC 7 6 5 4 3 2 1 0 -1 100 200 300 400 500 600 700 800 900 1000 TIME (µs) www.maximintegrated.com OUTPUT VOLTAGE (V) toc85 VCC (V) POWER-UP WAVEFORMS (VCC, VCCI, REFO, PWRGOOD) 190 180 170 160 8 12 25°C 16 20 85°C 24 125°C 28 32 140 36 -40 -25 -10 5 VCC (V) VCC (V) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 200 150 -40°C 105 POWER-UP WAVEFORMS (VCC, VCCI, OP1O, OP2O, OP3O) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 0 toc86 13 12 VCCI 11 OPAMP AV = 1V/V OP1O 10 VOP1P = 2.5V OP2O VOP2P = 1.5V 9 OP3O VOP3P = 1.65V 8 VCC 7 6 5 4 3 2 1 0 -1 100 200 300 400 500 600 700 800 900 1000 TIME (µs) 20 35 50 65 80 95 110 125 TEMPERATURE (°C) OUTPUT VOLTAGE (V) 4 25°C VCC (V) -40°C 130 toc84 210 115 140 QUIESCENT CURRENT vs. TEMPERATURE 220 PWM CONDITIONERS SHUT DOWN 125 150 OUTPUT VOLTAGE (V) toc83 POWER-UP WAVEFORMS (VCC, VCCI, PWMAO, COMP1O) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 0 toc87 13 12 VCCI 11 PWMAO 10 9 COMP1O 8 VCC 7 6 5 4 3 2 1 0 -1 100 200 300 400 500 600 700 800 900 1000 TIME (µs) Maxim Integrated │  21 VCC (V) 210 SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) 220 toc82 SUPPLY CURRENT (µA) QUIESCENT CURRENT vs. VCC VOLTAGE MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter OP3O OP3N OP3P 18 17 OP2O 23 22 21 20 19 OP2N 24 OP2P PWRGOOD TOP VIEW OP1P Pin Configuration OP1N 25 16 I/C OP1O 26 15 I/C 14 I/C COMP2N 32 11 VCCI 10 VCCID EP + 9 N/C 1 2 3 4 5 6 7 8 LDOFB PWMBP 31 VCC 30 12 REFGND VDD PWMAP 13 REFO MAX12900 COMP1O 29 COMP1P PWMBO COMP2O 28 COMP1N 27 COMP2P SHDN PWMAO Pin Description PIN # NAME DESCRIPTION 1 COMP2P Comparator 2 noninverting input 2 COMP1N Comparator 1 inverting input 3 COMP1P Comparator 1 noninverting input 4 COMP2O Comparator 2 output 5 COMP1O Comparator 1 output 6 VDD Comparator Output Supply Voltage. Add a 0.1µF bypass cap from VDD to GND. 7 VCC Positive Supply Voltage at Internal LDO Input. Add a 1µF bypass cap from VCC to GND. 8 LDOFB 9 N/C 10 VCCID LDO feedback voltage. Connect to resistor divider between VCCI and GND. Not connected Digital power input. Connect this pin to VCCI. 11 VCCI 12 REFGND 13 REFO 14 I/C Internally connected pin. Connect this pin to GND. 15 I/C Internally connected pin. Connect this pin to GND. 16 I/C Internally connected pin. Connect this pin to GND. 17 OP3P Op Amp 3 noninverting input 18 OP3N Op Amp 3 inverting input 19 OP3O Op Amp 3 output 20 OP2O Op Amp 2 output www.maximintegrated.com LDO output. Add a 0.22µF bypass cap from VCCI to GND. Internal reference ground. Connect to GND. Internal reference output. Maxim Integrated │  22 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Pin Description (continued) PIN # NAME DESCRIPTION 21 OP2N Op Amp 2 inverting input 22 OP2P Op Amp 2 noninverting input 23 PWRGOOD 24 OP1P Op Amp 1 non-inverting input 25 OP1N Op Amp 1 inverting input 26 OP1O Op Amp1 output 27 SHDN Active-Low, Shutdown Input for PWM Conditioners. PWM circuitry powers down and outputs go to Hi-Z state when this pin is low. 28 PWMAO PWM conditioner output A 29 PWMBO PWM conditioner output B 30 PWMAP PWM conditioner input A 31 PWMBP PWM conditioner input B 32 COMP2N Comparator 2 inverting input EP GND Active-high output signal that indicates when the MAX12900 is ready. Exposed pad, chip ground. Detailed Description The MAX12900 is an ultra-low-power, highly integrated 4-20mA transmitter. The MAX12900 integrates ten building blocks in a small package: a wide supply voltage range LDO, two comparators for PWM conditioning (PWMA and PWMB), two low-drift, general purpose op amps (OP1 and OP2), one zero-drift, wide-bandwidth op amp (OP3), two diagnostic comparators (COMP1 and COMP2), a power-up sequencer with power good output, and a lowdrift voltage reference. There are many ways that one can connect these building blocks to optimize overall functionality and performance of the MAX12900 for a specific application. Power-Up Sequencer The power-up sequencer keeps all op amp and PWM outputs at Hi-Z, and outputs of the comparators low during power-up until VCCI reaches 90% of its final value. After that, the PWRGOOD signal is asserted and all outputs become controlled by their inputs. The PWRGOOD signal is delayed by 0.7ms (typ) after VCCI reaches 90% of its final value, thus allowing for external loops controlled by the MAX12900 to stabilize before signaling that the part is ready. www.maximintegrated.com Note that external components, such as a sensor or microcontroller, should not draw load current from VCCI until the PWRGOOD signal has been asserted. PWM Conditioners The PWM conditioners generate ground level when the input is below the threshold voltage, and generate VREF when the input is above the threshold voltage. The PWM conditioners can be powered down by setting the SHDN pin low. The PWM outputs are Hi-Z during shutdown. General Purpose Op Amps (OP1, OP2) The general purpose op amps, OP1 and OP2, feature a low operating supply voltage, low input bias current, railto-rail outputs, and a maximized ratio of Gain Bandwidth Product (GBWP) to supply current. These CMOS devices feature ultra-low input bias current up to 15pA at 85°C. They are unity-gain stable with a 200kHz GBWP, driving capacitive loads up to 100pF. The input common mode voltage range can extend 100mV below ground with excellent common-mode rejection. The OP1 and OP2 op amps can drive the output to within 25mV of both supply rails with a 100kΩ load. Op amp settling time depends primarily on the output voltage and is slew-rate limited. The general-purpose op amps can be used as PWM filters, linear filters/amplifiers, or as linear or shunt regulator controllers, refer to the Application Information section. Maxim Integrated │  23 MAX12900 Ultra-Low-Power 4-20mA Sensor Transmitter Zero-Drift High Bandwidth Op Amp (OP3) The zero-drift, wide bandwidth op amp OP3 uses an innovative auto-zero technique that allows precision and low noise with a minimum amount of power. The ultralow input offset voltage, offset drift, and 1/f noise allow for building a highly accurate current transmitter. The high GBWP allows for noise suppression over a wider frequency band. The OP3 amplifier achieves rail-to-rail performance at the output. Driving large capacitive loads can cause instability in many op amps. The OP3 amplifier is stable with capacitive loads up to 300pF. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op amp output. Low-Drift 2.5V Voltage Reference The precision bandgap reference uses a proprietary curvature-correction circuit and laser-trimmed thin-film resistors, resulting in a low temperature coefficient of
MAX12900ATJ+W 价格&库存

很抱歉,暂时无法提供与“MAX12900ATJ+W”相匹配的价格&库存,您可以联系我们找货

免费人工找货