0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX17009EVKIT+

MAX17009EVKIT+

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    EVALUATION KIT

  • 数据手册
  • 价格&库存
MAX17009EVKIT+ 数据手册
19-0823; Rev 0; 5/07 MAX17009 Evaluation Kit Features The MAX17009 evaluation kit (EV kit) demonstrates the high-power, dynamically adjustable, dual-phase notebook CPU application circuit for AMD® mobile serial VID interface (SVI) CPU core supplies. This DC-DC converter steps down high-voltage batteries and/or AC adapters, generating a precision, low-voltage CPU core. The MAX17009 EV kit meets the AMD mobile SVI CPU’s transient voltage specification, power-good signaling, voltage-regulator thermal monitoring (VRHOT), and power-good output (PWRGD). The MAX17009 EV kit consists of the MAX17009 dualphase, interleaved fixed-frequency step-down controller, configured for separate mode operation, and a reference buffer. The switching regulators (SMPSs) provide power to two independent CPU cores, while the reference buffer output (NBV_BUF) sets the voltage regulation level for a north bridge (NB) regulator, completing the total CPU cores and NB power requirements. ♦ Dual Output, Fast-Response Interleaved Fixed Frequency Output voltages are dynamically changed through a 2-wire serial interface, allowing the SMPS and the NBV_BUF to be individually programmed to different voltages. A programmable slew-rate controller enables controlled upward transitions between VID codes for the switching regulators, while the slew rate for the reference buffer is set by an external capacitor. Soft-start limits the inrush current, and soft-shutdown brings the output voltage back down to zero without any negative ring. The MAX17009 EV kit includes active voltage positioning with adjustable gain, reducing power dissipation and bulk output capacitance requirements. The MAX17009 includes latched output undervoltage fault, overvoltage fault protection, and thermaloverload protection. It also includes a voltage-regulator power-good (PWRGD) output. This fully assembled and tested printed circuit board (PCB) provides a digitally adjustable 0 to 1.550V output voltage range (7-bit on-board DAC) from a 7V to 24V battery input range. Each phase delivers up to 18A output current for a total of 36A. The EV kit operates at 300kHz switching frequency (per phase) and has superior lineand load-transient response. The EV kit also includes Windows® 2000/XP-compatible software, which provides a simple graphical user interface (GUI) for exercising the features of the MAX17009. ♦ 0 to 1.550V Output-Voltage Range (7-Bit On-Board DAC) ♦ AMD Mobile SVI-Compliant Serial Interface ♦ Separate or Combinable Outputs Detected at Power-Up ♦ Reference Buffer Output ♦ Dynamic Phase Selection Optimizes Active/Sleep Efficiency ♦ Transient Phase Repeat Reduces Output Capacitance ♦ Active Voltage Positioning with Adjustable Gain ♦ High Speed, Accuracy, and Efficiency ♦ Low-Bulk Output Capacitor Count ♦ 7V to 24V Input-Voltage Range ♦ 36A Load-Current Capability (18A Each Phase) ♦ Accurate Current Balance and Current Limit ♦ 300kHz Switching Frequency (per Phase) ♦ Power-Good (PWRGD) and Thermal-Fault (VRHOT) Output Indicators ♦ System Power-OK (PGD_IN) Input ♦ Output Overvoltage and Undervoltage Fault Protection ♦ 40-Pin Thin QFN Package (5mm x 5mm) ♦ Fully Assembled and Tested Ordering Information PART TYPE MAX17009EVKIT+ EV Kit +Denotes lead-free and RoHS-compliant. AMD is a registered trademark of Advanced Micro Devices, Inc. Windows is a registered trademark of Microsoft Corp. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluates: MAX17009 General Description Evaluates: MAX17009 MAX17009 Evaluation Kit Component List DESIGNATION QTY C1–C4 C5–C8 C9, C44–C48, C58 C10, C19, C49, C50 C11 C12, C13, C14 C15, C21, C22, C59, C60 C16, C17, C18, C20, C23 C24, C25 C26–C37 C38, C39, C41, C42, C43, C53 2 DESCRIPTION 4 10µF ±20%, 25V X5R ceramic capacitors (1210) TDK C3225X7R1E106M AVX 12103D106M Taiyo Yuden TMK325BJ106MM 4 470µF ±20%, 2V 6mΩ low-ESR polymer capacitors (D-case) NEC/Tokin PSGD0E477M6 or Panasonic EEFUD0D471L6 7 0.1µF ±10%, 25V X7R ceramic capacitors (0603) TDK C1608X7R1E104K or Murata GRM188R71E104K 4 1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C105K AVX 0603YD105MAT 1 2.2µF ±20%, 10V X5R ceramic capacitor (0603) TDK C1608X5R1A225M or Murata GRM188R61A225M or AVX 0603ZD225MAT 3 0.22µF ±20%, 10V X7R ceramic capacitors (0603) Taiyo Yuden LMK107BJ224MA TDK C1608X7R1C224M AVX 06033D224KAT 5 5 2 12 0 1000pF ±10%, 50V X7R ceramic capacitors (0603) TDK C1608X7R1H102K or Murata GRM188R71H102K or equivalent 4700pF ±10%, 50V X7R ceramic capacitors (0603) TDK C1608X7R1H472K or Murata GRM188R71H472K or equivalent 2200pF ±10%, 50V X7R ceramic capacitors (0603) TDK C1608X7R1H222K or Murata GRM188R71H222K or equivalent 22µF ±20%, 6.3V X5R ceramic capacitors (0805) TDK C2012X5R0J226MT Taiyo Yuden JMK212BJ226MG Not installed, ceramic capacitors (0603) DESIGNATION QTY DESCRIPTION 1 3300pF ±10%, 50V X7R ceramic capacitor (0603) TDK C1608X7R1H332K Taiyo Yuden UMK107B332MZ C51, C52 2 10µF ±20%, 6.3V X5R ceramic capacitors (0805) TDK C2012X5R0J106M or Taiyo Yuden AMK212BJ106MG AVX 08056D106MAT C54, C55 2 C56, C57 2 D1, D2 2 D3, D4 2 LEDs, green clear SMD (0805) J1 1 USB series B right-angle PC-mount receptacle J2 0 Not installed C40 22pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H220J 10pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H100J 30V, 3A Schottky diodes Nihon EC31QS03L Central Semiconductor CMSH3-40M J4, J5 2 Scope probe jacks JU1, JU3–JU6 5 3-pin headers JU2 1 4-pin header JU7 1 2-pin header 2 0.45µH, 30A 1.1mΩ power inductors TOKO FDUE1040D-R45M or NEC-Tokin MPC1040LR45 2 n-channel MOSFETs (PowerPAK 8-pin SO) Fairchild FDS6298 (8-pin SO) Siliconix (Vishay): SI7634DP N3–N6 4 n-channel MOSFETs (PowerPAK 8-pin SO) Fairchild FDS8670 (8-pin SO) Siliconix (Vishay): SI7336ADP N7, N8 0 Not installed, n-channel MOSFETs (DPAK) R1, R2 2 0.001Ω ±1%, 1W resistors (2512) Panasonic ERJM1WTF1M0U R3 1 120kΩ ±1% resistor (0603) R4 1 100kΩ ±1% resistor (0603) R5 1 40.2kΩ ±1% resistor (0603) R6 0 Not installed, resistor—short PC trace (0603) L1, L2 N1, N2 _______________________________________________________________________________________ MAX17009 Evaluation Kit DESIGNATION QTY R7 R8 DESCRIPTION DESIGNATION QTY DESCRIPTION 1 13kΩ ±1% resistor (0603) R49 1 R50 1 470Ω ±5% resistor (0603) 1 100kΩ ±5% NTC thermistor, B = 4250 (0603) Murata NCP18WF104J03RB TDK NTCG163JF104J (0402) or Panasonic ERT-J1VR104J R61–R65 0 Not installed, resistors—short PC trace (0603) SW1–SW4 4 Pushbutton switches U1 1 Dual-phase fixed-frequency controller (40-pin thin QFN, 5mm x 5mm) Maxim MAX17009GTL+ U2 1 Microcontroller (68-pin QFN-EP*) Maxim MAXQ2000-RAX+ R9, R38, R39 3 100kΩ ±5% resistors (0603) R10 1 143kΩ ±1% resistor (0603) R11, R51, R53, R54, R55, R56 6 1kΩ ±5% resistors (0603) R12, R19 2 1.1kΩ ±1% resistors (0603) R13, R14, R15, R20, R21 5 100Ω ±5% resistors (0603) R16, R36 2 51Ω ±5% resistors (0603) R17, R18 2 1.5kΩ ±1% resistors (0603) R22, R23 2 75Ω ±5% resistors (0603) R24, R25, R37 3 10Ω ±5% resistors (0603) R26, R27, R57 3 0Ω resistors (0603) R28, R35 0 Not installed, 1W resistors (2512) R29–R34, R40, R41 0 R42, R43, R45, R46 4 R44, R47, R52 3 1.5kΩ ±5% resistors (0603) R48 1 2.2kΩ ±5% resistor (0603) 10kΩ ±5% resistor (0603) 93C46 type 3-wire EEPROM (8-pin SO), 16-bit architecture Atmel AT93C46A-10SU-2.7 Digi-Key AT93C46A-10SU-2.7 UART-to-USB converter (32-pin TQFP, 7mm x 7mm) FTDI FT232BL LDO regulator (5-pin SC70) Maxim MAX8511EXK33+T (Top Mark: AEI) LDO regulator (5-pin SC70) Maxim MAX8511EXK25+T (Top Mark: ADV) U3 1 U4 1 U5 1 Not installed, resistors (0603) U6 1 27Ω ±5% resistors (0603) Y1 1 16MHz crystal Y2 1 6MHz crystal — 1 PCB: MAX17009 Evaluation Kit+ *EP = Exposed pad. Component Suppliers SUPPLIER PHONE WEBSITE AVX Corp. 360-699-8714 www.avx.com Central Semiconductor 631-435-1110 www.centralsemi.com Fairchild Semiconductor 888-522-5372 www.fairchildsemi.com Murata Mfg. Co., Ltd. 770-436-1300 www.murata.com NEC TOKIN America, Inc. 510-324-4110 www.nec-tokinamerica.com Nihon Inter Electronics Corp. 847-843-7500 www.niec.co.jp Panasonic Corp. 714-373-7939 www.panasonic.com SANYO North America Corp. 619-661-6835 www.sanyodevice.com Taiyo Yuden 800-348-2496 www.t-yuden.com TDK Corp. 847-803-6100 www.component.tdk.com TOKO America, Inc. 408-432-8281 www.tokoam.com Vishay/Siliconix 402-564-3131 www.vishay.com Würth Electronik GmbH & Co. KG 201-785-8800 www.we-online.com Note: Indicate that you are using the MAX17009 when contacting these component suppliers. _______________________________________________________________________________________ 3 Evaluates: MAX17009 Component List (continued) Evaluates: MAX17009 MAX17009 Evaluation Kit MAX17009 EV Kit Files FILE INSTALL.EXE DESCRIPTION Installs the EV kit files on your computer MAX17009.EXE Application program FTD2XX.INF USB device driver file UNINST.INI Uninstalls the EV kit software TROUBLESHOOTING_USB.PDF USB driver installation help file Quick Start Recommended Equipment • 7V to 24V, >100W power supply, battery, or notebook AC adapter • DC bias power supply, 5V at 1A • Two dummy loads capable of sinking 18A each • Digital multimeter (DMM) • 100MHz dual-trace oscilloscope • A user-supplied Windows 2000/XP PC with a spare USB port Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows 2000/XP operating system. Procedure The MAX17009 EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supply until all connections are completed. 1) Visit the Maxim website (www.maxim-ic.com/evkitsoftware) to download the latest version of the EV kit software, 17009xx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file. 2) Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows Start | Programs menu. 3) Ensure that the circuit is connected correctly to the supplies and dummy load prior to applying any power. 4) Verify that there are shunts across pins 1-2 of JU2 (OPTION = high) and pins 2-3 of JU3 (PRO = low). 5) Verify that there is a shunt across pins 1-2 of JU1 (PGD_IN), pins 1-2 of JU4 (SHDN), pins 1-2 of JU5 (SVD), and pins 1-2 of JU6 (SVC), allowing U2 to control the MAX17009. 4 6) Turn on the battery power before turning on the 5V bias power. 7) Connect the USB cable from the PC to the EV kit board. A Building Driver Database window pops up in addition to a New Hardware Found message when installing the USB driver for the first time. If you do not see a window that is similar to the one described above after 30s, remove the USB cable from the board and reconnect it. Administrator privileges are required to install the USB device driver on Windows 2000 and XP. Refer to the TROUBLESHOOTING_USB.PDF document included with the software if you have any problems during this step. 8) Follow the directions of the Add New Hardware Wizard to install the USB device driver. Choose the Search for the best driver for your device option. Specify the location of the device driver to be C:\Program Files\MAX17009 (default installation directory) using the Browse button. 9) Start the EV kit software by opening its icon in the Start | Programs menu. The EV kit software main window should appear, as shown in Figure 1. 10) Check the Core 0, Core 1, and North Bridge checkboxes. Move any slider to adjust the voltage to 1.2V and press the Send Data button. 11) Observe the 1.2000V output voltage on the SMPS and NBV_BUF outputs with the DMM and/or oscilloscope. Look at the LX switching nodes and MOSFET gate-drive signals while varying the load current. Detailed Description of Software The main window of the evaluation software (Figure 1) displays Address to Send, Data to Send, Last Address Sent, and Last Data Sent status. In addition, the GUI allows the user to select Core 0, Core 1, and/or North Bridge outputs. The sliders to the right of each output checkbox correspond with the output voltage setting for that core. The Send Data button must be pressed to write the new output voltage setting(s) to the MAX17009. The Last _______________________________________________________________________________________ MAX17009 Evaluation Kit Evaluates: MAX17009 Figure 1. MAX17009 EV Kit Software Main Window Address Sent and Last Data Sent status helps the user keep track of the last transmission. Saving Power Unchecking the Power-Saving Off checkbox puts the MAX17009 in power-saving mode. The MAX17009 is in normal operation while the Power-Saving Off checkbox is checked. In power-saving mode, NB_SKP is forced low, and the SMPS offset, if enabled, is removed. Resetting the GUI (RESET GUI) The software main window will need to be synchronized to the MAX17009 EV kit hardware after the following events: • Pressing any of the on-board switches (SW1–SW4) • Recycling 5V power to the MAX17009 EV kit Press the RESET GUI button after any of the above events in order to use the software main window again. I2C Low-Level Commands Press the Options | 2-wire low level menu item at the top of the GUI to execute low-level I2C interface commands. Once the new window opens, go to the 2-wire Interface tab | General Commands | SMBusSendByte(addr,cmd) to write hex data manually into the registers of the MAX17009. _______________________________________________________________________________________ 5 Evaluates: MAX17009 MAX17009 Evaluation Kit Detailed Description of Firmware The on-board switches (SW1–SW4) allow the user to perform four different predetermined high-speed I2C tests. Detailed descriptions of each dynamic output test are given below. The sequence for the dynamic output test assigned to SW1 is shown in Table 1. Table 1. SW1 Dynamic Output Test with High-Speed I2C Interface STEP ADDRESS DATA 1 0xC4 0xCC 2 N/A N/A 3 0xC8 0xCC 4 N/A N/A 5 0xC2 0xCC DESCRIPTION Table 3. SW3 Dynamic Output Test with High-Speed I2C Interface STEP ADDRESS DATA 1 0xC4 0xCC 2 N/A N/A 3 0xC8 0xCC DESCRIPTION Set all DACs to 0V (Core 0, Core 1, and NB) Wait 1ms Set all DACs to 1.55V (CORE 0, CORE 1, and NB) Set DAC1 to 0.6V (Core 0) Wait 100µs Set DAC2 to 0.6V (Core 1) Wait 100µs Set DAC3 to 0.6V (NB) 6 N/A N/A Wait 100µs 7 0xC4 0x94 Set DAC1 to 1.3V (Core 0) 8 N/A N/A Wait 100µs 9 0xC8 0x94 Set DAC2 to 1.3V (Core 1) 10 N/A N/A Wait 100µs 11 0xC2 0x94 Set DAC3 to 1.3V (NB) The sequence for the dynamic output test assigned to SW2 is shown in Table 2. Table 2. SW2 Dynamic Output Test with High-Speed I2C Interface STEP ADDRESS DATA 1 0xC4 0xFF Set DAC1 to 0V (Core 0) 2 N/A N/A Wait 100µs 3 0xC8 0xFF Set DAC2 to 0V (Core 1) 6 The sequence for the dynamic output test assigned to SW3 is shown in Table 3. DESCRIPTION 4 N/A N/A Wait 100µs 5 0xC2 0xFF Set DAC3 to 0V (NB) 6 N/A N/A Wait 100µs 7 0xC4 0x80 Set DAC1 to 1.55V (Core 0) 8 N/A N/A Wait 100µs 9 0xC8 0x80 Set DAC2 to 1.55V (Core 1) 10 N/A N/A Wait 100µs 11 0xC2 0x80 Set DAC3 to 1.55V (NB) The sequence for the dynamic output test assigned to SW4 is shown in Table 4. Table 4. SW4 Dynamic Output Test with High-Speed I2C Interface STEP ADDRESS DATA DESCRIPTION 1 N/A N/A Set SHDN and PGD_IN to logic-low 2 N/A N/A Wait 10ms 3 N/A N/A Set SCL to logic-high and SDA to logic-low 4 N/A N/A Set SHDN to logic-high 5 N/A N/A Wait 2ms 6 N/A N/A Set PGD_IN to logic-high 7 N/A N/A Wait 10µs 8 0xCE 0x9C Set all DACs to 1.2V (Core 0, Core 1, and NB) Detailed Description of Hardware This 36A dual-phase buck-regulator design is optimized for a 300kHz switching frequency (per phase) and output voltage settings around 1.200V. At VOUT = 1.200V and VIN = 12V, the inductor ripple is approximately 30% (LIR = 0.3). The MAX17009 controller interleaves both phases, resulting in out-of-phase operation that minimizes the input and output filtering requirements. The dual-phase controller shares the current between two phases that operate 180° out-ofphase, supplying up to 18A per phase. Table 5 lists the boot-voltage codes. _______________________________________________________________________________________ MAX17009 Evaluation Kit 7-Bit DAC Inside the MAX17009 are three 7-bit digital-to-analog converters (DACs). Each DAC can be individually programmed to different voltage levels through the serialinterface bus. The DAC sets the target for the output voltage for the SMPSs and the NB buffer output (NBV_BUF). The available DAC codes, and resulting output voltages, are compatible with the AMD SVI specifications (Table 6). 2-Wire Serial Interface (SVC, SVD) The MAX17009 supports the 2-wire, write-only serialinterface bus, as defined by the AMD serial VID interface specification. The serial interface is similar to the high-speed 3.4MHz I2C bus, but without the mastermode sequence. The bus consists of a clock line (SVC) and a data line (SVD). The CPU is the bus master, and the MAX17009 is the slave. The MAX17009 serial interface works from 100kHz to 3.4MHz. In the AMD mobile application, the bus runs at 3.4MHz. In the MAX17009 EV kit, the serial interface operates at 400kHz when commands are sent through the EV kit software. When using the preprogrammed SW switches, the serial interface operates at 1.7MHz. The serial interface is active only after PGD_IN goes high in the startup sequence. The CPU sets the VID voltage of the three internal DACs and the PSI_L bit through the serial interface. During the startup sequence, the SVC and SVD inputs serve an alternate function to set the 2-bit boot VID for all three DACs while PWRGD is low. In debug mode, the SVC and SVD inputs function in the 2-bit VID mode when PGD_IN is low, and in the serial-interface mode when PGD_IN is high. By default, the MAX17009 serial interface is controlled by U2 through the jumper settings on JU5 (pins 1-2) and JU6 (pins 1-2). To directly control the MAX17009 with an external I2C serial interface, connect the external controller to the SDA and SCL pads, and move the shunts on JU5 and JU6 across pins 2-3. Boot Voltage On startup, the MAX17009 slews the target for all three DACs from ground to the boot voltage set by the SVC and SVD pin voltage levels. While the output is still below regulation, the SVC and SVD levels may be changed and the MAX17009 will set the DACs to the new boot voltage. Once the programmed boot voltage is reached, and PWRGD goes high, the MAX17009 stores the boot VID. Changes in the SVC and SVD settings will not change the output voltage once the boot Table 5. Boot-Voltage Codes SVC SVD BOOT VOLTAGE (VBOOT) (PRO = VDD OR GND) BOOT VOLTAGE (VBOOT) (PRO = OPEN) 0 0 1.1 1.4 0 1 1.0 1.2 1 0 0.9 1.0 1 1 0.8 0.8 VID is stored. When PGD_IN goes high, the MAX17009 exits boot mode, and the three DACs can be independently set to any voltage in the VID table through the serial interface. If PGD_IN goes from high to low any time after the boot VID is stored, the MAX17009 sets all three DACs back to the voltage of the stored boot VID. When in debug mode (PRO = open), the MAX17009 uses a different boot-voltage code set. Keeping PGD_IN low allows the SVC and SVD inputs to set the three DACs to different voltages in the boot-voltage code table. When PGD_IN is subsequently set high, the three DACs can be independently set to any voltage in the VID table through the serial interface. Reduced Power-Dissipation Voltage Positioning The MAX17009 EV kit uses voltage positioning to decrease the size of the output capacitor and to reduce power dissipation at heavy loads. The MAX17009 includes two transconductance amplifiers for adding gain to the voltage-positioning sense path for each output. The amplifier’s input is generated by summing the currentsense inputs, which differentially sense the voltage across the current-sense resistors (R1 = R2 = 1mΩ). The transconductance amplifier’s output connects to the voltage-positioned feedback input (FBDC1), so the resistance between FBDC1 and VCORE0 (R19) determines the voltage-positioning gain. Similarly, the other transconductance amplifier’s output connects to the voltage-positioned feedback input (FBDC2), so the resistance between FBDC2 and VCORE1 (R12) determines the voltage-positioning gain. Resistors R12 and R19 provide a -1.3mV/A voltage-positioning slope at the outputs. Remote output and ground sensing eliminate any additional PCB voltage drops. Load-Transient Experiment One interesting experiment is to subject the output to large, fast-load transients and observe the output with an oscilloscope. Accurate measurement of output ripple and load-transient response invariably requires that _______________________________________________________________________________________ 7 Evaluates: MAX17009 Setting the Output Voltage Evaluates: MAX17009 MAX17009 Evaluation Kit Table 6. Output Voltage VID DAC Codes SVID[6:0] OUTPUT VOLTAGE (V) SVID[6:0] OUTPUT VOLTAGE (V) SVID[6:0] OUTPUT VOLTAGE (V) SVID[6:0] OUTPUT VOLTAGE (V) 000_0000 1.5500 010_0000 1.1500 100_0000 0.7500 110_0000 0.3500 000_0001 1.5375 010_0001 1.1375 100_0001 0.7375 110_0001 0.3375 000_0010 1.5250 010_0010 1.1250 100_0010 0.7250 110_0010 0.3250 000_0011 1.5125 010_0011 1.1125 100_0011 0.7125 110_0011 0.3125 000_0100 1.5000 010_0100 1.1000 100_0100 0.7000 110_0100 0.3000 000_0101 1.4875 010_0101 1.0875 100_0101 0.6875 110_0101 0.2875 000_0110 1.4750 010_0110 1.0750 100_0110 0.6750 110_0110 0.2750 000_0111 1.4625 010_0111 1.0625 100_0111 0.6625 110_0111 0.2625 000_1000 1.4500 010_1000 1.0500 100_1000 0.6500 110_1000 0.2500 000_1001 1.4375 010_1001 1.0375 100_1001 0.6375 110_1001 0.2375 000_1010 1.4250 010_1010 1.0250 100_1010 0.6250 110_1010 0.2250 000_1011 1.4125 010_1011 1.0125 100_1011 0.6125 110_1011 0.2125 000_1100 1.4000 010_1100 1.0000 100_1100 0.6000 110_1100 0.2000 000_1101 1.3875 010_1101 0.9875 100_1101 0.5875 110_1101 0.1875 000_1110 1.3750 010_1110 0.9750 100_1110 0.5750 110_1110 0.1750 000_1111 1.3625 010_1111 0.9625 100_1111 0.5625 110_1111 0.1625 001_0000 1.3500 011_0000 0.9500 101_0000 0.5500 111_0000 0.1500 001_0001 1.3375 011_0001 0.9375 101_0001 0.5375 111_0001 0.1375 001_0010 1.3250 011_0010 0.9250 101_0010 0.5250 111_0010 0.1250 001_0011 1.3125 011_0011 0.9125 101_0011 0.5125 111_0011 0.1125 001_0100 1.3000 011_0100 0.9000 101_0100 0.5000 111_0100 0.1000 001_0101 1.2875 011_0101 0.8875 101_0101 0.4875 111_0101 0.0875 001_0110 1.2750 011_0110 0.8750 101_0110 0.4750 111_0110 0.0750 001_0111 1.2625 011_0111 0.8625 101_0111 0.4625 111_0111 0.0625 001_1000 1.2500 011_1000 0.8500 101_1000 0.4500 111_1000 0.0500 001_1001 1.2375 011_1001 0.8375 101_1001 0.4375 111_1001 0.0375 001_1010 1.2250 011_1010 0.8250 101_1010 0.4250 111_1010 0.0250 001_1011 1.2125 011_1011 0.8125 101_1011 0.4125 111_1011 0.0125 001_1100 1.2000 011_1100 0.8000 101_1100 0.4000 111_1100 0 001_1101 1.1875 011_1101 0.7875 101_1101 0.3875 111_1101 0 001_1110 1.1750 011_1110 0.7750 101_1110 0.3750 111_1110 0 001_1111 1.1625 011_1111 0.7625 101_1111 0.3625 111_1111 0 ground clip leads be completely avoided and that the probe must be removed to expose the GND shield, so the probe can be directly grounded with as short a wire as possible to the board. Otherwise, EMI and noise pickup corrupt the waveforms. Most benchtop electronic loads intended for powersupply testing lack the ability to subject the DC-DC 8 converter to ultra-fast-load transients. Emulating the supply current (di/dt) at the CPU VCORE pins requires at least 500A/µs load transients. One easy method for generating such an abusive load transient is to install a power MOSFET at the N7 location and install resistor R35 between 5mΩ and 10mΩ to monitor the transient current. Then drive its gate (TP5) with a strong pulse generator at a low duty cycle (< 5%) to minimize heat _______________________________________________________________________________________ MAX17009 Evaluation Kit To determine the load current, you might expect to insert a meter in the load path, but this method is prohibited here by the need for low resistance and inductance in the path of the dummy-load MOSFET. To determine how much load current a particular pulse-generator amplitude is causing, observe the current through inductor L1 by looking across R1 with a differential probe. In the buck topology, the load current is approximately equal to the average value of the inductor current. Table 7. Jumper JU4 Function (SHDN) SHUNT POSITION SHDN PIN 1-2 Connected to U2 pin 58 — 2-3 Connected to GND Shutdown mode, SMPS output voltages disabled. VCORE0 = 0V VCORE1 = 0V Not installed Connected to VDD through 100kΩ resistor R9 SMPS output voltages enabled. VCORE0, VCORE1, and NBV_BUF voltages are set by SVC and SVD inputs. NBV_BUF Operation Controlling the North Bridge (NB) Regulator The reference buffer (NBV_BUF) sets the output voltage of any regulator with an analog reference input (REFIN) function. This regulator can be an LDO (e.g., MAX1510 or MAX8794), a single-switching regulator (e.g., MAX8792), or a dual-switching regulator (e.g., MAX8775). Connect the NBV_BUF output to the REFIN pin of the NB regulator and the GNDS_NB input to the NB regulator ground. Connect the required supply voltages and control signals to the selected NB regulator. The MAX17009 SHDN input may be connected to the enable input of the NB regulator so that both regulators start up and shut down at the same time. Use the SW1–SW4 switches or the EV kit software to control the output of the NB regulator. Monitor the NB regulator output voltage with a DMM to measure the final voltage, or with an oscilloscope to observe the transitions. Reference Buffer Output (NBV_BUF) When the MAX17009 EV kit is not connected to an NB regulator, the GNDS_NB input must be grounded back to the MAX17009 EV kit ground using jumper wires. Leaving the GNDS_NB floating can result in false readings of the NBV_BUF voltage. Use the SW1–SW4 switches or the EV kit software to control the output of the NBV_BUF. Monitor the NBV_BUF output voltage with a DMM to measure the final voltage, or with an oscilloscope to observe the transitions. Jumper Settings Shutdown (SHDN) When SHDN goes low (JU4 = GND), the MAX17009 enters the low-power shutdown mode. PWRGD is pulled low immediately and the SMPS output voltages ramp down at 1mV/µs. See Table 7. MAX17009 OUTPUT The MAX17009 shuts down completely—the drivers are disabled, the reference turns off, and the supply currents drop to about 1µA (max)—20µs after the controller reaches the 0V target. When a fault condition (overvoltage or undervoltage) occurs on one SMPS, the other SMPS and the NBV_BUF immediately go through the soft-shutdown sequence. To clear the fault latch and reactivate the controller, toggle SHDN or cycle VCC power. Soft-shutdown for the NB regulator is determined by the particular NB regulator’s shutdown behavior. In the typical application, the NB regulator’s SHDN pin or enable pin is toggled at the same time as the MAX17009’s SHDN pin. System Power-Good Input (PGD_IN) After the SMPS outputs reach the boot voltage, the MAX17009 switches over to the serial-interface mode when PGD_IN goes high. Any time during normal operation, a high-to-low transition on PGD_IN causes the MAX17009 to slew all three internal DACs back to the stored boot VIDs. PWRGD goes low for a minimum of 20µs when PGD_IN goes low, and stays low until 20µs after both SMPS internal DACs reach the boot VID. The SVC and SVD inputs are disabled during this time that PGD_IN is low. The serial interface is reenabled when PGD_IN goes high again. See Table 8. Offset and Transient-Phase Repeat (OPTION) The 12.5mV offset and the transient-phase repeat features of the MAX17009 can be selectively enabled and disabled by the OPTION pin setting. Table 9 shows the OPTION pin voltage levels and the features that are enabled. Refer to the Offset and the Transient-Phase Repeat sections in the MAX17009 data sheet for a detailed description of the respective features. _______________________________________________________________________________________ 9 Evaluates: MAX17009 stress in the MOSFET. Vary the high-level output voltage of the pulse generator to vary the load current. Evaluates: MAX17009 MAX17009 Evaluation Kit Table 8. Jumper JU1 Function (PGD_IN) SHUNT POSITION PGD_IN PIN 1-2 Connected to U2 pin 59 — 2-3 Connected to GND The SVC and SVD inputs are disabled during the time PGD_IN is low. Connected to 2.5V through 100kΩ resistor R39 The serial interface is reenabled when PGD_IN goes high again. The MAX17009 switches over to the serial-interface mode when PGD_IN goes high. Not installed MAX17009 OUTPUT Selectable Overvoltage Protection and Debug Mode (PRO) The MAX17009 features a tri-level PRO pin that enables the overvoltage protection (OVP) feature, or puts the MAX17009 in debug mode. Table 10 shows the PRO Table 9. Jumper JU2 Function (OPTION) SHUNT POSITION OPTION PIN OFFSET ENABLED TRANSIENTPHASE REPEAT ENABLED 1-2 Connected to VDD 0 0 Not installed Open 0 1 1-3 Connected to REF 1 0 1-4 Connected to GND 1 1 10 selectable options. Debug mode is intended for applications where the serial interface is not properly functioning and the output voltage needs to be adjusted to different levels. The DAC voltage settings in debug mode further depend on the PGD_IN level to switch between the 2-bit VID setting or serial-interface operation. Table 10. Jumper JU3 Function (PRO) SHUNT POSITION PRO PIN MAX17009 OUTPUT 1-2 Connected to VDD OVP disabled 2-3 Connected to GND OVP enabled Not installed Open Debug mode, OVP disabled Combined-Mode Operation To configure the MAX17009 for combined-mode operation, remove R13 and connect the GNDS2 input to the 2.5V, 3.3V, or 5V supply using a wire. Connect a copper strap (e.g., solder wick) between the output capacitors of each phase. The SW1–SW4 switches and the EV kit software still control the combined SMPS and NBV_BUF outputs in combined mode, but in combined mode, the MAX17009 SMPS only responds to core 0 commands. Core 1 commands are ignored. In combined mode, unchecking the Power-Saving Off checkbox in the software sets the MAX17009 SMPS into single-phase operation, removes the offset, if enabled, and sets NB_SKP low. Checking the Power-Saving Off checkbox in the software sets the MAX17009 SMPS into dual-phase operation. ______________________________________________________________________________________ 3 1 2 NBV_BUF NB_SKP GNDS_NB VDD SVD SVC R38 100kΩ 1 VDD 4 2 VDD D3 PWRGD R8 100kΩ 3 1 2 VDD C15 1000pF 36 14 5 VDD ______________________________________________________________________________________ OPTION SHDN PGD_IN 41 EP NBV_BUF NB_SKP GNDS_NB PWRGD SVD SVC VRHOT THRM PRO DH1 GNDS2 FBDC2 FBAC2 FBDC1 FBAC1 GNDS1 CSN2 CSP2 GND2 DL2 LX2 DH2 BST2 CSN1 CSP1 GND1 DL1 11 12 13 39 38 40 16 17 25 24 21 20 22 35 34 26 27 30 31 (BACKSIDE CONNECTED TO GND) 2 19 15 1 9 8 32 10 33 37 3 U1 MAX17009 LX1 VDDIO ILIM OSC 4 REF 6 R9 100kΩ SHDN VDD JU3 3 C18 4700pF R15 100Ω R11 1kΩ R7 13kΩ 1% JU4 1 2 C9 0.1μF R37 10Ω 18 28 23 VCC VDD1 VDD2 7 TIME 29 BST1 R5 40.2kΩ 1% +2.5V REF R3 120kΩ 1% R6 SHORT (PC TRACE) R4 100kΩ 1% R10 143kΩ 1% U2-58 VDDIO R39 100kΩ +2.5V PGD_IN JU2 3 VRHOT REF JU1 U2-59 C12 0.22μF C11 2.2μF 10V VCC 2 1 2 R17 1.5kΩ 1% 4 N5 C60 1000pF C16 4700pF 1 5 5 C14 0.22μF 4 R12 1.1kΩ 1% C20 4700pF C21 1000pF C24 2200pF C39 OPEN C22 1000pF C25 2200pF C38 OPEN N4 C13 0.22μF C10 C19 1μF 1μF 16V 16V R18 1.5kΩ 1% R27 0Ω R26 0Ω R57 OΩ 1 2 1 2 5 5 5 R13 100Ω C59 1000pF R19 1.1kΩ 1% R21 100Ω 3 3 4 3 3 4 5 1 2 1 3 4 N6 4 N3 N2 2 3 N1 +5V C17 4700pF C23 4700pF D2 C3 10μF 25V R29 OPEN R14 100Ω R20 100Ω R32 OPEN C4 10μF 25V VCORE1 R25 10Ω R34 OPEN L2 0.45μH R24 10Ω R31 OPEN L1 0.45μH GND VBATT CORE1SENSE_L CORE1SENSE_H CORE0SENSE_H CORE0SENSE_L R22 75Ω R33 OPEN R23 75Ω R30 OPEN VCORE0 TP4 TP2 VBATT C2 10μF 25V VBATT D1 C1 10μF 25V GND VBIAS TP5 1 R2 0.001Ω 1% R1 0.001Ω 1% R36 51Ω TP3 TP1 4 R35 OPEN N7 3 OPEN VCORE0 C7 470μF 2V GND VCORE0 C26 22μF 6.3V VCORE0 R16 51Ω TP6 C8 470μF 2V 1 4 R28 OPEN N8 3 OPEN VCORE1 GND VCORE1 C32 22μF 6.3V VCORE1 NOTE: C5, C6, C7, C8 • USE 470μF FOR ±50mV AC REQUIREMENTS. • USE 330μF FOR ±125mV AC REQUIREMENTS. C6 470μF 2V VCORE1 C5 470μF 2V VCORE0 C33 22μF 6.3V C27 22μF 6.3V C34 22μF 6.3V C28 22μF 6.3V C35 22μF 6.3V C29 22μF 6.3V C36 22μF 6.3V C30 22μF 6.3V C37 22μF 6.3V C31 22μF 6.3V J5 J4 Evaluates: MAX17009 VDIG MAX17009 Evaluation Kit Figure 2a. MAX17009 EV Kit Schematic (Sheet 1 of 2) 11 C44 0.1μF VDIG SVD C50 1μF VDIG C55 22pF U5 GND OUT JU5 3 2 1 SDA R49 10kΩ 2 5 Y2 6MHz C54 22pF R47 1.5kΩ C40 3300pF R48 VDIG 2.2kΩ R46 27Ω MAX8511 +2.5V SHDN IN 4 3 1 2 R45 27Ω R40 OPEN 3 1 8 VCC CS 6 ORG U3 SK AT93C46A 7 N.C. D1 5 D0 GND J1-4 J1-3 J1-2 J1-1 J1 USB SDA XTOUT XTIN RESET 2 31 EEDATA C52 10μF TEST U4 FT232BL SVC C49 1μF VDIG 3 1 19 20 21 22 23 24 +2.5V R41 OPEN 10 15 3 2 1 SCL GND OUT JU6 MAX8511 U6 SLEEP PWREN SHDN IN DCD DSR DTR CTS RTS RXD TXD 25 18 RI 16 TXDEN 12 TXLED 11 RXLED 14 PWRCTL AGND GND GND 29 9 17 RSTOUT USBDP USBDM 3V3OUT 32 EECS 1 EESK 28 27 4 5 +3.3V VDIG 7 8 6 2 5 R51 1kΩ RI SCL C51 10μF D4 +3.3V C46 0.1μF +2.5V DCD DSR DTR P65 RTS P70 P71 +2.5V 42 28 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 49 GND GND C43 OPEN SW3 SEG27/P3.3 SEG26/P3.2 SEG25/P3.1 SEG24/P3.0 SEG23/P2.7 SEG22/P2.6 SEG21/P2.5 SEG20/P2.4 SEG19/P2.3 SEG18/P2.2 SEG17/P2.1 SEG16/P2.0 SEG15/P1.7 SEG14/P1.6 SEG13/P1.5 SEG12/P1.4 SEG11/P1.3 VDD 67 66 1 3 18 SEG9/P1.1 68 SEG10/P1.2 13 65 64 63 62 61 60 1 3 C42 OPEN U2 59 58 57 U2-59 U2-58 56 MAXQ2000 (BACKSIDE CONNECTED TO GND) C53 OPEN SW4 21 22 23 24 25 26 R55 R56 1kΩ 1kΩ 19 20 SEG29/P3.5/INT5 26 SEG8/P1.0 SEG28/P3.4/INT4 3 SEG7/P0.7/INT3 SEG30/P3.6/INT6 VCC VCC VCCIO SEG6/P0.6/INT2 SEG31/P3.7/INT7 AVCC SEG33/COM3 30 SEG5/P0.5/INT1 SEG32 R54 1kΩ SEG3/P0.3 SEG34/COM2 R53 1kΩ SEG35/COM1 C41 OPEN COM0 R50 +3.3V 470Ω C48 VDIG VDIG 0.1μF 29 P4.0/TCK/INT8 C45 0.1μF SEG2/P0.2 1 SEG1/P0.1 SW1 SEG0/P0.0 3 30 31 55 32 +3.3V 54 C58 0.1μF P4.3/TDO 3 35 VLCD SW2 VLCD1 RESET 1 VADJ P4.1/TDI/INT9 53 52 HFXIN VDDIO TCK TDI TMS TDO RESET 32KOUT 32KIN P5.2/RX1/INT10 P5.5/TX1/INT11 P5.4/SS P5.5/MOSI P5.6/SCLK P5.7/MISO P6.0/T1B/INT12 P6.1/T1/INT13 P6.2/T2B/OW_OUT P6.3/T2/OW_IN P6.4/TOB/WKOUT0 P6.5/TO/WKOUT1 HFXOUT P71 P70 P7.0/TXO/INT14 VDIG VLCD2 P4.2/TMS P7.1/RXO/INT15 12 SEG4/P0.4/INT0 J2-1 J2-10 J2-9 J2-2 J2-5 J2-8 J2-3 J2-7 J2-6 J2-4 C47 0.1μF R42 27Ω +3.3V RTS DTR +2.5V JU7 C57 10pF C56 Y1 16MHz 10pF R52 1.5kΩ J2 JTAG 35 34 36 37 38 39 40 41 43 44 45 46 47 48 50 51 27 +2.5V TCK TDI TMS TDO RESET SDA DSR P65 R61 SHORT (PC TRACE) R62 SHORT (PC TRACE) R63 SHORT (PC TRACE) R64 SHORT (PC TRACE) R65 SHORT (PC TRACE) R43 27Ω R44 1.5kΩ +2.5V DSR DCD RTS RI DTR SCL Evaluates: MAX17009 MAX17009 Evaluation Kit Figure 2b. MAX17009 EV Kit Schematic (Sheet 2 of 2) ______________________________________________________________________________________ MAX17009 Evaluation Kit Evaluates: MAX17009 Figure 3. MAX17009 EV Kit Component Placement Guide—Component Side ______________________________________________________________________________________ 13 Evaluates: MAX17009 MAX17009 Evaluation Kit Figure 4. MAX17009 EV Kit PCB Layout—Component Side 14 ______________________________________________________________________________________ MAX17009 Evaluation Kit Evaluates: MAX17009 Figure 5. MAX17009 EV Kit PCB Layout—Internal Layer 2 ______________________________________________________________________________________ 15 Evaluates: MAX17009 MAX17009 Evaluation Kit Figure 6. MAX17009 EV Kit PCB Layout—Internal Layer 3 16 ______________________________________________________________________________________ MAX17009 Evaluation Kit Evaluates: MAX17009 Figure 7. MAX17009 EV Kit PCB Layout—Internal Layer 4 ______________________________________________________________________________________ 17 Evaluates: MAX17009 MAX17009 Evaluation Kit Figure 8. MAX17009 EV Kit PCB Layout —Internal Layer 5 18 ______________________________________________________________________________________ MAX17009 Evaluation Kit Evaluates: MAX17009 Figure 9. MAX17009 EV Kit PCB Layout—Solder Side ______________________________________________________________________________________ 19 Evaluates: MAX17009 MAX17009 Evaluation Kit Figure 10. MAX17009 EV Kit Component Placement Guide—Solder Side Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 20 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
MAX17009EVKIT+ 价格&库存

很抱歉,暂时无法提供与“MAX17009EVKIT+”相匹配的价格&库存,您可以联系我们找货

免费人工找货