EVALUATION KIT AVAILABLE
Click here to ask an associate for production status of specific part numbers.
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection
and SHA-256 Authentication
General Description
Benefits and Features
The MAX17300-MAX17303/ MAX17310-MAX17313 is a
24μA IQ stand-alone pack-side fuel gauge IC with protector, optional battery internal self-discharge detection and
optional SHA-256 authentication for 1-cell lithium-ion/polymer batteries.
● Battery Health + Programmable Safety/Protection
• Overvoltage (Temperature Dependent)
• Overcharge Current
• Over/Undertemperature
• Battery Internal Self-Discharge Detection
(MAX17300/10 Only)
• Ideal Diode Discharge During Charge Fault
• Charging Prescriptions (JEITA)
• Zero-Volt Charging Option
• Undervoltage + SmartEmpty
• Overdischarge/Short-Circuit
To prevent battery pack cloning, the IC integrates
SHA-256 authentication with a 160-bit secret key. Each IC
incorporates a unique 64-bit ID.
The fuel gauge uses ModelGauge m5 algorithm that combines the short-term accuracy and linearity of a coulomb
counter with the long-term stability of a voltage-based fuel
gauge to provide industry-leading fuel-gauge accuracy.
The IC automatically compensates for cell aging, temperature, and discharge rate, and provides accurate state-ofcharge (SOC) in milliampere-hours (mAh) or percentage
(%) over a wide range of operating conditions.
Dynamic power functionality provides the instantaneous
maximum battery output power which can be delivered
to the system without violating the minimum system input
voltage.
● Low Quiescent Current
• FETs Enabled: 24µA Active, 18µA Hibernate
• FETs Disabled: 5µA Ship, 0.5µA/0.02µA DeepShip
● Parallel Battery Management (MAX17300/10 Only)
● Pushbutton Wakeup—Eliminates System
Consumption Until Button Press
● ModelGauge m5 EZ Algorithm
• Percent, Capacity,Time-to-Empty/Full, Age
• Cycle+™ Age Forecast
● Dynamic Power—Estimates Power Capability
● Precision Measurement Without Calibration
• Current, Voltage, Power, Time, Cycles
• Die Temperature/Thermistor
Simple Fuel Gauge with Protector
Circuit Diagram
Applications
●
●
●
●
●
●
●
●
Smartphones, Tablets, and 2-in-1 Laptops
Smartwatches and Wearables
Medical Devices, Health and Fitness Monitors
Digital Still, Video, and Action Cameras
Handheld Computers and Terminals
Handheld Radios
Home and Building Automation, Sensors
Smart Batteries
BATTERY PACK
10Ω
0.1µF
CP
SYSTEM
N
A Maxim 1-Wire® or 2-wire I2C interface provides access
to data and control registers. The IC is available in a
lead-free, 3mm x 3mm 14-pin TDFN and 1.7mm x 2.5mm
15-bump 0.5mm pitch WLP packages.
● Nonvolatile Memory for Stand-Alone Operation
• History Logging, User Data (122 Bytes)
N
The IC monitors the voltage, current, temperature, and
state of the battery to provide against over/undervoltage,
overcurrent, short-circuit, over/undertemperature, overcharge, and internal self-discharge conditions using external high-side N-FETs, and provides charging prescription
to ensure that the lithium-ion/polymer battery operates under safe conditions prolonging the life of the battery.
CHG
DIS
ZVC
BATT
0.1µF
OPTIONAL
OPTIONAL
NTC THERMISTOR
PK+
MAX1730x
MAX
MAX1731x
1731x
PFAIL
(MAX173x1 ONLY)
1kΩ
PCKP
ALRT/PIO
SDA/DQ
SCL/OD
(TDFN)
(WLP)
CSN
EP
GND CSP
TH
REG
0.1µF
HOST
µP
0.47µF
SENSE
RESISTOR
Secondary
Protector
PK-
ModelGauge and Cycle+ are trademarks of Maxim Integrated Products, Inc.
1-Wire is a registered trademark of Maxim Integrated Products, Inc.
Ordering Information appears at end of data sheet.
19-100463; Rev 9; 6/23
© 2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2023 Analog Devices, Inc. All rights reserved.
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Simple Fuel Gauge with Protector Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
14 TDFN-EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
15 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
TDFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Protector Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Voltage Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Ideal Diode Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Current Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Fast Overcurrent Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Overcurrent Comparator Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Slow Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Temperature Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Other Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Battery Internal Self-Discharge Detection (ISD) (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . 39
Permanent Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Disabling FETs by Pin-Control or I2C Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Charging Prescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Step Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Zero-Volt Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Parallel Battery Management (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ModelGauge m5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Wakeup/Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Power Mode Transition State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
www.analog.com
Analog Devices | 2
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS (CONTINUED)
Pushbutton Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Register Description Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Standard Register Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Nonvolatile Backup and Initial Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Register Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Voltage Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
nVPrtTh1 Register (1D0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
nVPrtTh2 Register (1D4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
nJEITAV Register (1D9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
nJEITACfg Register (1DAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Current Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
nODSCTh Register (1DDh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
nODSCCfg Register (1DEh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
nIPrtTh1 Register (1D3h)—Overcurrent Protection Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
nJEITAC Register (1D8h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Temperature Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
nTPrtTh1 Register (1D1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
nTPrtTh2 Register (1D5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
nTPrtTh3 Register (1D2h) (beyond JEITA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Fault Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
nDelayCfg Register (1DCh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Battery Internal Self-Discharge Detection Registers (MAX17300/MAX1310 Only). . . . . . . . . . . . . . . . . . . . . . . . 58
Status/Configuration Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
nProtCfg Register (1D7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
nBattStatus Register (1A8h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ProtStatus Register (0D9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ProtAlrt Register (0AFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
HConfig2 Register (0F5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Other Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
nProtMiscTh Register (1D6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Charging Prescription Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ChargingCurrent Register (028h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ChargingVoltage Register (02Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
nStepChg Register (1DBh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ModelGauge m5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ModelGauge m5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ModelGauge m5 Algorithm Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
www.analog.com
Analog Devices | 3
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS (CONTINUED)
RepCap Register (005h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
RepSOC Register (006h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
FullCapRep Register (010h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TTE Register (011h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TTF Register (020h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Age Register (007h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Cycles Register (017h) and nCycles (1A4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TimerH Register (0BEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
FullCap Register (010h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
nFullCapNom Register (1A5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
RCell Register (014h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
VRipple Register (0B2h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
nVoltTemp Register (1AAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
SOCHold Register (0D0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ModelGauge m5 EZ Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
OCV Estimation and Coulomb Count Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Empty Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
End-of-Charge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Smart-Full (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Fuel Gauge Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Converge-To-Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Determining Fuel-Gauge Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Initial Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Cycle+ Age Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
nAgeFcCfg Register (1E2h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
AgeForecast Register (0B9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Age Forecasting Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Enabling Age Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Battery Life Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Life Logging Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Determining Number of Valid Logging Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Reading History Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
History Data Reading Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ModelGauge m5 Algorithm Input Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
nXTable0 (180h) to nXTable11 (18Bh) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
nOCVTable0 (190h) to nOCVTable11 (19Bh) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
nQRTable00 (1A0h) to nQRTable30 (1A3h) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
nFullSOCThr Register (1C6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
nVEmpty Register (19Eh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
www.analog.com
Analog Devices | 4
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS (CONTINUED)
nDesignCap Register(1B3h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
nRFast Register (1E5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
nIChgTerm Register (19Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
nRComp0 Register (1A6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
nTempCo Register (1A7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ModelGauge m5 Algorithm Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
nFilterCfg Register (19Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
nRelaxCfg Register (1B6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
nTTFCfg Register (1C7h)/CV_MixCap (0B6h) and CV_HalfTime (0B7h) Registers . . . . . . . . . . . . . . . . . . . . 86
nConvgCfg Register (1B7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
nRippleCfg Register (1B1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ModelGauge m5 Algorithm Additional Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Timer Register (03Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
dQAcc Register (045h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
dPAcc Register (046h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
QResidual Register (00Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
VFSOC Register (0FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
VFOCV Register (0FBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
QH Register (4Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
AvCap Register (01Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
AvSOC Register (00Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
MixSOC Register (00Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
MixCap Register (02Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
VFRemCap Register (04Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
FStat Register (03Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
ModelGauge m5 Memory Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Nonvolatile Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Nonvolatile Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
100 Record Life Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
nNVCfg0 Register (1B8h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
nNVCfg1 Register (1B9h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
nNVCfg2 Register (1BAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Enabling and Freeing Nonvolatile vs. Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Shadow RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Shadow RAM and Nonvolatile Memory Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Nonvolatile Memory Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
COPY NV BLOCK [E904h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
NV RECALL [E001h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
www.analog.com
Analog Devices | 5
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS (CONTINUED)
HISTORY RECALL [E2XXh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Nonvolatile Block Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Determining Number of Remaining Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
nLearnCfg Register (19Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
nMiscCfg Register (1B2h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
nConfig Register (1B0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
nPackCfg Register (1B5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
nMiscCfg2 Register (1E4h) (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
nDesignVoltage Register (1E3h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Memory Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
NV LOCK [6AXXh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Locking Memory Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Reading Lock State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Analog Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
VCell Register (01Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
VCellRep Register (012h) (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
AvgVCell Register (019h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
MaxMinVolt Register (0008h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
MinVolt Register (0ADh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Cell1 Register (0D8h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
AvgCell1 Register (0D4h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Batt Register (0D7h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Current Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Current Measurement Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Current Register (01Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
CurrRep Register (022h) (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
AvgCurrent Register (01Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
MaxMinCurr Register (00Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
MinCurr Register (0AEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
nCGain Register (1C8h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
CGTempCo (0B8h)/nCGTempCo (0x1C9) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Copper Trace Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Temperature Measurement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Temp Register (01Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
AvgTA Register (016h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
MaxMinTemp Register (009h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
nTCurve Register (1C9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
www.analog.com
Analog Devices | 6
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS (CONTINUED)
nTGain (1CAh) Register/nTOff (1CBh) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
nThermCfg (1CAh) (MAX17300/MAX17310 Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
DieTemp (034h) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
AvgDieTemp (040h) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Status and Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
DevName Register (021h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
nROMID0 (1BCh)/nROMID1 (1BDh)/nROMID2 (1BEh)/nROMID3 (1BFh) Registers . . . . . . . . . . . . . . . . . . . . 119
nRSense Register (1CFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Status Register (000h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Status2 Register (0B0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
nHibCfg Register (1BBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
CommStat Register (061h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
At-Rate Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
AtRate Register (004h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
AtQResidual Register (0DCh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
AtTTE Register (0DDh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
AtAvSOC Register (0CEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
AtAvCap Register (0DFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Alert Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
nVAlrtTh Register (18Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
nTAlrtTh Register (18Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
nSAlrtTh Register (18Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
nIAlrtTh Register (0ACh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Smart Battery Compliant Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
SBS Compliant Memory Space (MAX17301-MAX17303 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
sRemCapAlarm/sRemTimeAlarm Registers (101h/102h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
At-Rate Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
sAtRate Register (104h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
sAtTTF Register (105h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
sAtTTE Register (105h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
sAtRateOK Register (107h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
sTemperature Register (108h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
sPackVoltage Register (109h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
sChargingCurrent Register (114h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
sDesignVolt Register (119h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
sSpecInfo Register (11Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
sSerialNumber Register (11Ch to 11Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
sManfctrName Register (120h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
www.analog.com
Analog Devices | 7
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS (CONTINUED)
sDeviceName Register (121h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
sDevChemistry Register (122h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
sManfctData Registers (123h to 12Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
sFirstUsed Register (136h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
sCell1 Register (13Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
sAvgCell1 Register (14Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
sAvCap Register (167h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
sMixCap Register (168h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
sManfctInfo Register (170h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Nonvolatile SBS Register Back-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
nSBSCfg Register (1B4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
nCGain and Sense Resistor Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Dynamic Battery Power Technology (DBPT) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
MaxPeakPower Register (0A4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
SusPeakPower Register (0A5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
sPackResistance (0A6h) and nPackResistance (1C5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
SysResistance (0A7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
sMPPCurrent (0A9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
SPPCurrent (0AAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
nDPLimit Register (1E0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
SHA-256 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Authentication Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Procedure to Verify a Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Alternate Authentication Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Battery Authentication without a Host Side Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Secret Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Single Step Secret Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Single Step Secret Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Multistep Secret Generation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Multistep Secret Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2-Stage MKDF Authentication Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Create a Unique Intermediate Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Procedure for 2-Stage MKDF Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Determining Number of Remaining Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Authentication Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
COMPUTE MAC WITHOUT ROM ID [3600h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
COMPUTE MAC WITH ROM ID [3500h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
COMPUTE NEXT SECRET WITHOUT ROM ID [3000h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
COMPUTE NEXT SECRET WITH ROM ID [3300h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
www.analog.com
Analog Devices | 8
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS (CONTINUED)
CLEAR SECRET [5A00h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
LOCK SECRET [6000h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
COPY INTERMEDIATE SECRET FROM NVM [3800] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
COMPUTE NEXT INTERMEDIATE SECRET WITH ROMID [3900] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
COMPUTE NEXT INTERMEDIATE SECRET WITHOUT ROMID [3A00] . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
COMPUTE MAC FROM INTERMEDIATE SECRET WITHOUT ROMID [3C00] . . . . . . . . . . . . . . . . . . . . . . 141
COMPUTE MAC FROM INTERMEDIATE SECRET WITH ROMID [3D00] . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Reset Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
HARDWARE RESET [000Fh to address 060h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
FUEL GAUGE RESET [8000h to address 0ABh]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2-Wire Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2-Wire Bus Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
I/O Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Bus Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Acknowledge Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Data Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Read/Write Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2-Wire Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
I2C Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
I2C Write Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
I2C Read Data Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
SBS Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
SBS Write Word Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Example SBS Write Word Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
SBS Read Word Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Example SBS Read Word Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
SBS Write Block Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
SBS Read Block Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Example SBS Read Block Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Valid SBS Read Block Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Packet Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
PEC CRC Generation Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
www.analog.com
Analog Devices | 9
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TABLE OF CONTENTS (CONTINUED)
1-Wire Bus System (MAX17310-MAX17313 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
1-Wire Bus Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
64-Bit Net Address (ROM ID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
I/O Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Reset Time Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
1-Wire Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Write Time Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Read Time Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
1-Wire Write and Read Time Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Transaction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Net Address Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Read Net Address [33h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Match Net Address [55h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Skip Net Address [CCh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Search Net Address [F0h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
1-Wire Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Read Data [69h, LL, HH] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Write Data [6Ch, LL, HH]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Example 1-Wire Communication Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Summary of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Appendix A: Reading History Data Pseudo-Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Typical Application with a Secondary Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Typical Application with a Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Pushbutton Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
www.analog.com
Analog Devices | 10
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
LIST OF FIGURES
Figure 1. Simplified Protector State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 2. Programmable Voltage Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 3. Programmable Current Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 4. Fast, Medium, and Slow Overdischarge Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 5. Overcurrent Comparator Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 6. Example of Internal Self-Discharge with Temperature Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 7. Step-Charging State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 8. Zero-Volt Recovery Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 9. Zero-Volt Charging Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 10. Merger of Coulomb Counter and Voltage Based Fuel Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 11. ModelGauge m5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 12. Power Mode Transition State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 13. ModelGauge m5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 14. Voltage and Coulomb Count Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 15. ModelGauge m5 Typical Accuracy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 16. Handling Changes in Empty Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 17. False End-of-Charge Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 18. FullCapRep Learning at End-of-Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 19. Smart-Full Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 20. FullCapNom Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 21. Converge-To-Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 22. Benefits of Age Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 23. Sample Life Logging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 24. Write Flag Register and Valid Flag Register Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 25. Cell Relaxation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 26. Shadow RAM and Nonvolatile Memory Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 27. Noiseless Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 28. Procedure to Verify a Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 29. Battery Authentication without a Host Side Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 30. Single Step Secret Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 31. Multistep Secret Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 32. Create a Unique Intermediate Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 33. Procedure for 2-Stage MKDF Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 34. 2-Wire Bus Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 35. 2-Wire Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 36. Example I2C Write Data Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 37. Example I2C Read Data Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 38. Example SBS Write Word Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 39. Example SBS Read Word Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
www.analog.com
Analog Devices | 11
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
LIST OF FIGURES (CONTINUED)
Figure 40. Example SBS Read Block Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 41. PEC CRC Generation Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 42. 1-Wire Bus Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 43. 1-Wire Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 44. 1-Wire Write and Read Time Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 45. Example 1-Wire Communication Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
www.analog.com
Analog Devices | 12
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
LIST OF TABLES
Table 1. Summary of Protector Registers by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 2. Voltage Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 3. AvgCurrDet Threshold When Using 10mΩ and Default nProtMiscTh.CurrDet = 7.5mA . . . . . . . . . . . . . . . . . . 36
Table 4. Current Threshold Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 5. Other Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 6. Parallel Control Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 7. Typical Quiescent Current Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 8. Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 9. Low Power Modes Entry and Exit Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 10. Recommended nHibCfg Settings and the Impact on IQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 11. ModelGauge Register Standard Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 12. nVPrtTh1 Register (1D0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 13. nVPrtTh2 Register (1D4h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 14. nJEITAV Register (1D9h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 15. nJEITACfg Register (1DAh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 16. nODSCTh Register (1DDh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 17. OCTH, SCTh, and ODTH Sample Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 18. nODSCCfg Register (1DEh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 19. nIPrtTh1 Register (1D3h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 20. nJEITAC Register (1D8h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 21. nTPrtTh1 Register (1D1h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 22. nTPrtTh2 (1D5h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 23. nTPrtTh3 Register (1D2h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 24. nDelayCfg (1DCh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 25. UVPTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 26. TempTimer Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 27. TempTrans Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 28. PermFailTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 29. OverCurrTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 30. OVPTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 31. FullTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 32. ChgWDT Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 33. nCheckSum Register (1DFh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 34. Alert and Fault Mode Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 35. LeakCurrRep Register (0x16F) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 36. nProtCfg Register (1D7h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 37. nBattStatus Register (1A8h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 38. ProtStatus Register (0D9h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 39. ProtAlrt Register (0AFh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
www.analog.com
Analog Devices | 13
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
LIST OF TABLES (CONTINUED)
Table 40. HConfig2 (0F5h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 41. nProtMiscTh Register (1D6h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 42. nStepChg Register (1DBh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 43. Cycles Register (017h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 44. nCycles Register (1A4h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 45. nNVCfg2.FibScl Setting Determines LSb of nNVCfg2.CyclesCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 46. nVoltTemp Register (1AAh) Format when nNVCfg2.enVT = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 47. SOCHold (0D0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 48. nAgeFcCfg Register (1E2h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 49. Minimum and Maximum Cell Sizes for Age Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 50. Life Logging Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 51. Reading History Page Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 52. Decoding History Page Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 53. Reading History Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 54. nFullSOCThr (1C6h)/FullSOCThr (013h) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 55. VEmpty (03Ah)/nVEmpty (19Eh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 56. nRFast Register (1E5h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 57. FilterCfg (029h)/nFilterCfg (19Dh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 58. RelaxCfg (0A0h)/nRelaxCfg (1B6h) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 59. nTTFCfg Register (1C7h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 60. nConvgCfg Register (1B7h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 61. nRippleCfg Register (1B1h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 62. FStat Register (03Dh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 63. Top Level Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 64. Individual Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 65. ModelGauge m5 Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 66. Nonvolatile Register Memory Map (Slave address 0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 67. Fibonacci Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 68. Eventual Matured Update Interval (in battery cycles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 69. Saving Schedule Example With the Most Preferred Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 70. nNVCfg0 Register (1B8h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 71. nNVCfg1 Register (1B9h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 72. nNVCfg2 Register (1BAh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 73. Making Nonvolatile Memory Available for User Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 74. Nonvolatile Memory Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 75. History Recall Command Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 76. Number of Remaining Config Memory Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 77. LearnCfg (0A1h)/nLearnCfg (19Fh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 78. MiscCfg (00Fh)/nMiscCfg (1B2h) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
www.analog.com
Analog Devices | 14
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
LIST OF TABLES (CONTINUED)
Table 79. nConfig Register (1B0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 80. Config Register (00Bh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 81. Config2 Register (0ABh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 82. nPackCfg Register (1B5h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 83. nMiscCfg2 Register (0x1E4h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 84. nDesignVoltage Register (1E3h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 85. Format of LOCK Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 86. Format of Lock Register (07Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 87. MaxMinVolt (008h)/nMaxMinVolt (1ACh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 88. Current Measurement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 89. Current Measurement Range and Resolution vs. Sense Resistor Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 90. MaxMinCurr (00Ah)/nMaxMinCurr (1ABh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 91. nCGain Register (1C8h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 92. Copper Trace Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 93. Temperature Measurement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 94. MaxMinTemp (009h)/nMaxMinTemp (1ADh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 95. Register Settings for Common Thermistor Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 96. Register Settings for Common Thermistor Types with New Thermistor Calculations . . . . . . . . . . . . . . . . . . 117
Table 97. DevName Register (021h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 98. DevName For Each Part Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 99. nPReserved0-3 Settings Based on DevName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 100. nROMID Registers (1BCh to 1BFh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 101. Recommended nRSense Register Values for Common Sense Resistors . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 102. Status Register (000h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 103. Status2 Register (0B0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 104. nHibCfg Register (1BBh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 105. CommStat Register (061h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 106. VAlrtTh (001h)/nVAlrtTh (18Ch) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 107. TAlrtTh (002h)/nTAlrtTh (18Dh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 108. SAlrtTh (003h)/nSAlrtTh (18Fh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 109. IAlrtTh (0ACh)/nIAlrtTh (18Eh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 110. SBS Register Space Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 111. SpecInfo (11Ah) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 112. SBS to Nonvolatile Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 113. nSBSCfg Register (1B4h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 114. nCGain Register Settings to Meet SBS Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 115. nDPLimit (1E0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 116. Number of Remaining Secret Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 117. 2-Wire Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
www.analog.com
Analog Devices | 15
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
LIST OF TABLES (CONTINUED)
Table 118. Valid SBS Read Block Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 119. 1-Wire Net Address Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 120. All Function Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
www.analog.com
Analog Devices | 16
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Absolute Maximum Ratings
CP to BATT ................................................... -0.3V to BATT + 6V
CHG to BATT ................................................. -0.3V to CP + 0.3V
Continuous Sink Current for BATT ...................................... 50mA
Continuous Sink Current for DQ/SDA, ALRT, PFAIL .......... 20mA
Continuous Source Current for PFAIL ................................. 20mA
Operating Temperature Range ............................ -40°C to +85°C
Storage Temperature Range .............................. -55°C to +125°C
Soldering Temperature (reflow) ........................................ +260°C
Lead Temperature (soldering 10s) ................................... +300°C
TDFN
BATT to CSP ........................................................ -0.3V to +6V
ALRT to CSP ...................................................... -0.3V to +17V
TH, PFAIL to CSP ................................. -0.3 V to BATT + 0.3 V
DQ/SDA, OD/SCL, ZVC to CSP ........................... -0.3V to +6V
REG to CSP ....................................................... -0.3V to +2.2V
CSN to CSP ............................................................. -2V to +2V
DIS to CSP .................................................. -0.3V to CP + 0.3V
PCKP to CSP ........................................................ -0.3V to 18V
WLP
BATT to GND ........................................................ -0.3V to +6V
ALRT to GND ...................................................... -0.3V to +17V
TH, PFAIL to GND .................................-0.3 V to BATT + 0.3 V
DQ/SDA, OD/SCL, ZVC to GND ........................... -0.3V to +6V
REG to GND....................................................... -0.3V to +2.2V
CSN to CSP ............................................................. -2V to +2V
CSP to GND ....................................................... -0.3V to +0.3V
DIS to GND ................................................. -0.3V to CP + 0.3V
PCKP to GND........................................................ -0.3V to 18V
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Package Information
14 TDFN-EP
Package Code
T1433+2C
Outline Number
21-0137
Land Pattern Number
90-0063
Thermal Resistance, Single-Layer Board:
Junction to Ambient (θJA)
54°C/W
Junction to Case (θJC)
8°C/W
Thermal Resistance, Four-Layer Board:
Junction to Ambient (θJA)
41°C/W
Junction to Case (θJC)
8°C/W
15 WLP
Package Code
W151H2+1
Outline Number
21-100256
Land Pattern Number
Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:
Junction to Ambient (θJA)
62°C/W
Junction to Case (θJC)
N/A
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal
considerations, refer to www.maximintegrated.com/thermal-tutorial.
www.analog.com
Analog Devices | 17
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Electrical Characteristics
(VBATT = 2.3V to 4.9V (2.16V to 4.9V for MAX17300/MAX17310), typical value at 3.6V, TA = -40°C to +85°C, typical values are TA =
+25°C, see schematic in the Functional Diagram. Limits are 100% tested at TA = +25°C. Limits over the operating temperature range
and relevant supply voltage range are guaranteed by design and characterization.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
POWER SUPPLY
Supply Voltage
(MAX17300/MAX17310)
VBATT
(Note 1)
2.16
4.9
V
Supply Voltage
(MAX17301-03/11-13)
VBATT
(Note 1)
2.3
4.9
V
DeepShip2 Supply
Current
IDD0
Undervoltage shutdown
0.02
0.1
μA
DeepShip Supply
Current
IDD1
TA ≤ +50°C, typical at +25°C
0.5
1.1
μA
10
20
Ship Supply Current
IDD2
DpShpEn = 0, TA ≤
+50°C, typical at
+25°C, protection
FETs off
Hibernate Supply
Current
IDD3
TA ≤ +50°C, typical at +25°C, average
current, CHG and DIS on, 1.4s updates
8
18
36
μA
Active Supply Current
IDD4
TA ≤ +50°C, typical at +25°C, average
current, not including thermistor
measurement current
13
24
50
μA
Regulation Voltage
VREG
1.4s updates
7
5.625s updates
μA
7
1.8
V
PCKP Startup Voltage
(MAX17300/MAX17310)
VPCKPSU
VBATT ≥ 2.16V
1.9
2.6
V
PCKP Startup Voltage
(MAX17301-03/11-13)
VPCKPSU
VBATT ≥ 2.3V
1.9
2.6
V
2x
VBATT 0.4
2x
VBATT 0.2
2x
VBATT
V
10
15
20
ms
PROTECTION FET DRIVERS
CP Output Voltage
VCP
ICHG + IDIS = 1μA
CP Startup Time
tSCP
FETS Off, CCP = 0.1μF, 1-tau settling
CHG, DIS Output High
VCP 0.4
VOHC, VOHD
IOH = -100μA
V
CHG Output Low
VOLC
IOL = 100μA
BATT +
0.1
V
DIS Output Low
VOLD
IOL = 100μA
0.1
V
ANALOG-TO-DIGITAL CONVERSION
TA = +25°C
-7.5
+7.5
-40ºC ≤ TA ≤ +85ºC
-20
+20
Voltage Measurement
Error
VGERR
Voltage Measurement
Resolution
VLSB
Voltage Measurement
Range (MAX17300/
MAX17310)
VFS
2.16
4.9
V
Voltage Measurement
Range (MAX17301-03/
11-13)
VFS
2.3
4.9
V
www.analog.com
78.125
mV
μV
Analog Devices | 18
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Electrical Characteristics (continued)
(VBATT = 2.3V to 4.9V (2.16V to 4.9V for MAX17300/MAX17310), typical value at 3.6V, TA = -40°C to +85°C, typical values are TA =
+25°C, see schematic in the Functional Diagram. Limits are 100% tested at TA = +25°C. Limits over the operating temperature range
and relevant supply voltage range are guaranteed by design and characterization.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Current Measurement
Offset Error
IOERR
CSN = 0V, long-term average (Note 2)
Current Measurement
Gain Error
IGERR
CSP between -50mV and +50mV
Current Measurement
Resolution
ILSB
1.5625
μV
Current Measurement
Range
IFS
±51.2
mV
Internal Temperature
Measurement Error
TIGERR
±1
ºC
Internal Temperature
Measurement
Resolution
TILSB
0.00391
ºC
±1.5
-1
TH (Note 1)
μV
+1
% of
Reading
INPUT/OUTPUT
Output Drive Low,
ALRT, SDA/DQ, PFAIL
VOL
IOL = 4mA, VBATT = 2.3V
0.01
Output Drive High,
PFAIL
VOH
IOH = -1mA, VBATT = 2.3V
VBATT 0.1
V
Input Logic High, SCL/
OD, SDA/DQ, PIO
VIH
1.5
V
Input Logic Low, SCL/
OD, SDA/DQ, PIO
VIL
PIO Wake Debounce
PIO_WD
Sleep mode
100
External Thermistance
Resistance
REXT10
nPackCfg.R100 = 0
10
REXT100
nPackCfg.R100 = 1
100
0.4
0.5
V
V
ms
kΩ
COMPARATORS
Overcurrent Threshold
Offset Error
ODOCOE
Short-Circuit Threshold
Offset Error
SCOE
Overcurrent Threshold
Gain Error
ODOCSCGE
Overcurrent Comparator
Delay
OCDLY
OC, OD comparator for WLP package
-1.2
+1.2
OC, OD comparator for TDFN package
-2
+2
SC comparator
-2.5
+2.5
mV
OC, OD, or SC comparator
-5.0
+5.0
% of
Threshold
6
μs
+1
μA
0.2
0.5
μA
0.44
0.9
μA
+1.5
%
OD or SC comparator, 20mV minimum
input overdrive, delay configured to
minimum
2
mV
RESISTANCE AND LEAKAGE
Leakage Current, CSN,
ALRT, TH
ILEAK
Input Pulldown Current
IPD
PCKP Current
Consumption
PCKP_IDD
VALRT < 15V
-1
SDA, SCL pin = 0.4V
BATT = PCKP
TA < 50°C, typical
at TA = +25°C
0.02
TIMING
Time-Base Accuracy
www.analog.com
tERR
TA = +25°C
-1.5
Analog Devices | 19
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Electrical Characteristics (continued)
(VBATT = 2.3V to 4.9V (2.16V to 4.9V for MAX17300/MAX17310), typical value at 3.6V, TA = -40°C to +85°C, typical values are TA =
+25°C, see schematic in the Functional Diagram. Limits are 100% tested at TA = +25°C. Limits over the operating temperature range
and relevant supply voltage range are guaranteed by design and characterization.)
PARAMETER
SYMBOL
SHA Calculation Time
tSHA
TH Precharge Time
tPRE
Task Period
CONDITIONS
Time between turning on the TH bias and
analog-to-digital conversions
MIN
TYP
MAX
UNITS
4.5
10
ms
8.48
tTP
ms
351.5
ms
NONVOLATILE MEMORY
Nonvolatile Access
Voltage
VNVM
For block programming and recalling,
applied on BATT
3.0
Programming Supply
Current
IPROG
Current from BATT at 2.9V for block
programming
2
Block Programming
Time
tBLOCK
Page Programming
Time
tUPDATE
Nonvolatile Memory
Recall Time
tRECALL
Write Capacity,
Configuration Memory
nCONFIG
(Notes 2, 3, 4)
7
writes
Write Capacity, SHA
Secret
nSECRET
(Notes 2, 3, 4)
5
writes
Write Capacity, Learned
Parameters
nLEARNED
(Notes 2, 3, 4)
99
writes
Data Retention
tNV
SHA secret update or learned parameters
update
(Note 2)
V
5.5
10
mA
368
7360
ms
64
1280
ms
5
ms
10
years
1-WIRE INTERFACE, REGULAR SPEED
Time Slot
tSLOT_STD
60
Recovery Time
tREC_STD
1
120
μs
Write-0 Low Time
tLOW0_STD
60
120
μs
Write-1 Low Time
tLOW1_STD
1
15
μs
15
μs
μs
Read-Data Valid
tRDV_STD
Reset-Time High
tRSTH_STD
480
Reset-Time Low
tRSTL_STD
480
960
μs
Presence-Detect High
tPDH_STD
15
60
μs
Presence-Detect Low
tPDL_STD
60
240
μs
tSLOT_OVD
6
16
μs
μs
1-WIRE INTERFACE, OVERDRIVE SPEED
Time Slot
Recovery Time
tREC_OVD
1
Write-0 Low Time
tLOW0_OVD
6
16
μs
Write-1 Low Time
tLOW1_OVD
1
2
us
2
μs
Read-Data Valid
tRDV_OVD
Reset-Time High
tRSTH_OVD
48
Reset-Time Low
tRSTL_OVD
48
www.analog.com
μs
μs
80
μs
Analog Devices | 20
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Electrical Characteristics (continued)
(VBATT = 2.3V to 4.9V (2.16V to 4.9V for MAX17300/MAX17310), typical value at 3.6V, TA = -40°C to +85°C, typical values are TA =
+25°C, see schematic in the Functional Diagram. Limits are 100% tested at TA = +25°C. Limits over the operating temperature range
and relevant supply voltage range are guaranteed by design and characterization.)
MAX
UNITS
Presence-Detect High
PARAMETER
tPDH_OVD
SYMBOL
CONDITIONS
MIN
2
TYP
6
μs
Presence-Detect Low
tPDL_OVD
8
24
μs
0
400
kHz
2-WIRE INTERFACE
SCL Clock Frequency
fSCL
Bus Free Time Between
a STOP and START
Condition
tBUF
Hold Time (Repeated)
START Condition
tHD:STA
(Note 5)
(Note 6)
1.3
μs
0.6
μs
Low Period of SCL
Clock
tLOW
1.3
μs
High Period of SCL
Clock
tHIGH
0.6
μs
Setup Time for a
Repeated START
Condition
tSU:STA
0.6
μs
Data Hold Time
tHD:DAT
(Notes 7, 8)
Data Setup Time
tSU:DAT
(Note 7)
0
0.9
100
μs
ns
Rise Time of Both SDA
and SCL Signals
tR
5
300
ns
Fall Time of Both SDA
and SCL Signals
tF
5
300
ns
Setup Time for STOP
Condition
tSU:STO
0.6
Spike Pulse Width
Suppressed by Input
Filter
tSP
Capacitive Load for
Each Bus Line
CB
SCL, SDA Input
Capacitance
CBIN
μs
(Note 9)
6
50
ns
400
pF
pF
Note 1: All voltages are referenced to CSP in the TDFN package. All voltages are referenced to GND in the WLP package.
Note 2: Specification is guaranteed by design (GBD) and not production tested.
Note 3: Write capacity numbers shown have one write subtracted for the initial write performed during manufacturing test to set
nonvolatile memory to a known value.
Note 4: Due to the nature of one-time programmable memory, write endurance cannot be production tested. Follow the nonvolatile
memory and SHA secret update procedures detailed in the data sheet.
Note 5: Timing must be fast enough to prevent the IC from entering shutdown mode due to bus low for a period greater than the
shutdown timer setting.
Note 6: fSCL must meet the minimum clock low time plus the rise/fall times.
Note 7: The maximum tHD:DAT has only to be met if the device does not stretch the low period (tLOW) of the SCL signal.
Note 8: This device internally provides a hold time of at least 100ns for the SDA signal (referred to the minimum VIH of the SCL signal)
to bridge the undefined region of the falling edge of SCL.
Note 9: Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.
www.analog.com
Analog Devices | 21
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
www.analog.com
Analog Devices | 22
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
www.analog.com
Analog Devices | 23
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
Pin Configurations
WLP
TOP VIEW (BUMP SIDE DOWN)
3x5 WLP, 0.5mm PITCH
www.analog.com
Analog Devices | 24
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TDFN
TOP VIEW
(PAD SIDE DOWN)
TH
1
14
CHG
CP
2
13
ZVC
BATT
3
12
DIS
PFAIL
4
11
PCKP
CSP
5
10
ALRT/PIO
CSN
6
9
SCL/OD
REG
7
8
SDA/DQ
MAX1730x
MAX
MAX1731x
1731x
EP*
3mm x 3mm
14 TDFN-EP
*EP = EXPOSED PAD
Pin Description
PIN
NAME
FUNCTION
WLP
TDFN
A1
1
TH
Thermistor Connection. Connect an external 10kΩ or 100kΩ thermistor between
TH and GND (CSP for TDFN) to measure the battery temperature. Leave
disconnected or connect to BATT if not used.
B1
2
CP
Charge Pump Output. CP provides the voltage for driving external charge and
discharge protection N-FETs. Connect a bypass 0.1μF capacitor between CP and
BATT.
C1
3
BATT
Battery Connection. The MAX1730x/MAX1731x receives power from BATT and
also measures and fuel gauges based on the voltage at BATT. Connect BATT to
positive terminal of the battery with a 10Ω resistor and bypass with a 0.1μF
capacitor to GND.
B2
4
PFAIL
Permanent Failure Indicator (Optional). MAX17300/01/10/11 Only. Connect to
secondary protector (2-Level) to take action in case of primary FET failure
detection. Disconnect if not used.
All other devices connect to GND with a 1kΩ resistor.
A3
5
CSP
Current-Sense-Resistor Positive Input. Kelvin-connect to the Batt-side of an
external sense resistor. CSP is IC GND for TDFN. Keep this trace short, wide, and
low impedance.
A4
6
CSN
Current-Sense Negative Input. Kelvin connect to the pack-side of the sense
resistor.
www.analog.com
Analog Devices | 25
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Pin Description (continued)
PIN
NAME
FUNCTION
WLP
TDFN
A5
7
REG
C5
8
SDA/DQ
Serial Data Input/Output for both 1-Wire and I2C Communication Modes. Opendrain output driver. Connect to the DATA terminal of the battery pack. DQ/SDA
has an internal pulldown (IPD) for sensing pack disconnection.
SCL/OD
Serial Clock Input for I2C Communication or Speed Selection for 1-Wire
Communication. Input only. For I2C communication, connect to the clock terminal
of the battery pack. Connect to CSN for standard speed 1-wire communication.
Connect to REG pin for overdrive 1-wire communication. OD/SCL has an internal
pulldown (IPD) for sensing pack disconnection.
B5
9
1.8V Regulator. REG provides a 1.8V supply for the IC. Bypass with a 0.47μF
capacitor between REG and GND.
Alert Output. ALRT is open-drain and active-low. Connect an external pullup
resistor to indicate alerts. See the Alerts section for more details.
B4
10
ALRT/PIO
C4
11
PCKP
Pack Positive Terminal. PCKP is the exposed terminal of the pack for charger
detection and over-current fault removal detection.
C3
12
DIS
Discharge FET Control. DIS enables/disables battery discharge by driving an
external N-FET between CP and GND.
B3
13
ZVC
Zero-Volt Charge Recovery Enable. Connect to GND to enable zero-volt charge
recovery. Disconnect or connect 1MΩ to GND to disable function.
C2
14
CHG
Charge FET Control. CHG blocks/allows battery charge by controlling an external
N-FET between CP and BATT.
A2
—
GND
IC GND. Connect to CSP side of sense resistor.
—
EP
Exposed Pad
www.analog.com
Pushbutton Wakeup. Connect to the host-system's power button to GND without
any external pullup since the IC has an internal pullup. The IC wakes up from
shutdown mode when the button is pressed.
Connect to CSP for normal operation.
Analog Devices | 26
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Functional Diagram
CP
CHG
CHARGE
PUMP
10Ω
PACK+
N
N
BATTERY PACK
DIS
ZVC
PCKP
CP
GND
BATT
CHARGE
DETECT
ZERO-VOLT
CHARGING
BATT
PFAIL
(MAX173x1
ONLY)
ALRT/PIO
MODELGAUGE m5
MUX
(TDFN)
GND CSP
MAX1730x
MAX1731x
I C/ 1-WIRE
INTERFACE
ADC
REGULATOR
SHA-256
PROTECTOR CONTROL
REG
OUT IN
SDA/DQ
SCL/OD
2
1.8V
INTERNAL
TEMPERATURE
SENSOR
TH BIAS
GENERATOR
TH
CSN
(WLP)
PACK-
www.analog.com
Analog Devices | 27
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Detailed Description
General Description
The MAX1730x/MAX1731x is a family of 24μA IQ stand-alone pack-side fuel gauge ICs with protector and SHA-256
authentication for 1-cell lithium-ion/polymer batteries which implements Maxim's ModelGauge m5 algorithm without
requiring host interaction for configuration. This makes the MAX1730x/MAX1731x an excellent pack-side fuel gauge.
The MAX1730x/MAX1731x monitors the voltage, current, temperature, and state of the battery to ensure that the lithiumion/polymer battery is operating under safe conditions to prolong the life of the battery. Voltage of the battery pack is
measured at the BATT connection. Current is measured with an external sense resistor placed between the CSP and
CSN pins. Power and average power are also reported. An external NTC thermistor connection allows the IC to measure
temperature of the battery pack by monitoring the TH pin. The TH pin provides an internal pull-up for the thermistor that
is disabled internally when temperature is not being measured. Internal die temperature of the IC is also measured and
can be a proxy for the protection FET temperature if they are located close by the IC.
The MAX1730x/MAX1731x provides programmable discharge protection for overdischarge currents (fast, medium,
and slow protection), overtemperature, and undervoltage. The IC also provides programmable charge protection for
overvoltage, over/undertemperature, overcharge currents (fast and slow), charge done, charger communication timeout,
and overcharge capacity fault. The IC provides ideal diode discharge behavior even while a charge fault persists. The
IC provides programmable charging current/voltage prescription following JEITA temperature regions as well as stepcharging. The MAX17300/MAX17301/MAX17310/MAX17311 provides additional protection to permanently disable the
battery by overriding a secondary protector or blowing a fuse in severe fault conditions. This is useful when the IC has
detected FET failure and is unable to block charge/discharge any other way. Additional functionality is described in the
Protector section.
The IC supports three low-power modes: deepship2 (IQDS2), deepship (IQDS), and ship (IQS). The IC can enter these
low-power modes by command, communication collapsed (if enabled), or undervoltage shutdown. The IC can wake up
from these low-power modes by communication, charger detection, or pushbutton wakeup (if enabled and installed).
Pushbutton wakeup allows a pack to completely disconnect from a system during shipping, yet wakeup immediately upon
the user pressing the button, not needing the user to plug in a charger.
The ModelGauge m5 algorithm combines the short-term accuracy and linearity of a coulomb counter with the longterm stability of a voltage-based fuel gauge, along with temperature compensation to provide industry-leading fuelgauge accuracy. Additionally, the algorithm does not suffer from abrupt corrections that normally occur in coulombcounter algorithms, since tiny continual corrections are distributed over time. The MAX1730x/MAX1731x automatically
compensates for aging, temperature, and discharge rate and provides accurate state of charge (SOC) in milliamperehours (mAh) or percentage (%) over a wide range of operating conditions. Fuel gauge error always converges to 0%
as the cell approaches empty. Dynamic power functionality provides the instantaneous maximum battery output power
which can be delivered to the system without violating the minimum system input voltage. The IC provides accurate
estimation of time-to-empty and time-to-full and provides three methods for reporting the age of the battery: reduction in
capacity, increase in battery resistance, and cycle odometer. In addition, age forecasting allows the user to estimate the
expected lifespan of the cell.
To prevent battery clones, the IC integrates SHA-256 authentication with a 160-bit secret key (MAX17300/01/02/10/11/
12 Only). Every IC also incorporates a 64-bit unique identification number (ROM ID). Additionally, up to 122 bytes of user
memory (NVM) can be made available to store custom information.
Communication to the host occurs over a Maxim 1-Wire (MAX17310-MAX17313) or standard I2C interface
(MAX17300-MAX17303). OD/SCL is an input from the host, and DQ/SDA is an open-drain I/O pin that requires an
external pullup. The ALRT1 pin is an output that can be used as an external interrupt to the host processor if certain
application conditions are detected.
For additional reference material, refer to the following Application Notes:
Application Note 6807: MAX1730x/MAX1731x Host Software Implementation Guide
Application Note 6954: MAX1730x/MAX1731x Battery Pack Implementation Guide
www.analog.com
Analog Devices | 28
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Protector
Lithium-ion/polymer batteries are very common in a wide variety of portable electronic devices because they have very
high energy density, minimal memory effect and low self-discharge. However, care must be taken to avoid overheating
or overcharging these batteries to prevent damage to the batteries potentially resulting in dangerous outcomes/explosive
results. By operating in safe temperature ranges, at safe voltages and under safe current levels, the overall safety of the
lithium-ion/polymer batteries can be assured throughout the life of the battery.
Simple protection schemes are available to protect a battery from exceeding the safe levels. These schemes include
protection for overdischarge current, short-circuit current, over-charge current, undervoltage and overvoltage. The
next level of protection offers smart protection schemes which include protection for long overdischarge current,
overtemperature limits for charge and discharge, undertemperature charge limits, and charge-done protection. The
MAX1730x/MAX1731x provides all of these simple and smart protection schemes with programmable thresholds and
programmable timer delays for each fault.
The MAX1730x/MAX1731x provides additional protection functionality beyond these schemes including:
Discharging Protection Functionality
● Overcurrent: (see nODSCCfg and nODSCTh)
• Fast Short-Circuit (70μs to 985μs): The short-circuit comparator is programmable from 5mV to 155mV with delay
programmable from 70μs to 985μs.
• Medium (1ms to 15ms): The overdischarge current comparator is programmable from 2.5mV to 77.5mV with delay
programmable from 1ms to 15ms.
• Slow (351ms to 23s): Slow overdischarge protection is programmable from 0mV to 51.2mV in 0.2mV steps with
delay programmable from 351ms to 23s (see nDelayCfg).
● Overtemperature:
• Hot (OTPD—Overtemperature Discharge): Discharge overtemperature (OTPD, see nProtMiscTh) is separately
programmable from charge overtemperature (OTPC). OTPD is typically a higher temperature than OTPC, since
charging while hot is more hazardous than discharging. OTPD is programmable in 1°C steps, with a programmable
timer (see nDelayCfg).
• Die-Hot: The MAX1730x/MAX1731x measures die temperature as well as a thermistor's temperature. Since the
IC is generally located close to the external FETs, the die temperature can indicate when the FETs are overheating.
This separately programmable threshold (see nProtMiscTh) blocks both charging and discharging.
• Permanent-Fail-Hot: When a severe overtemperature is detected, the fault is recorded into NVM and permanently
disables the charge and discharge FETs (see nTPrtTh3).
● Undervoltage: Undervoltage is protected by three thresholds: UVP (undervoltage protect), UVShdn (undervoltage
shutdown), and UOCVP (under OCV protect—SmartEmpty). UOCVP provides a deep-discharge-state protection that
is immune from load and cell impedance/resistance variations.
Charging Protection Functionality:
● Overvoltage Protection (OVP): Overvoltage protection is programmable with 10mV resolution (see nJEITACfg).
Temperature-region dependent OVP protection is also provided for cold/room/warm and hot temperature regions
(see nJEITAV). OVP detection is debounced with a programmable timer (see nDelayCfg). An additional, higher OVP
permanent failure threshold is programmable, which records any excessive OVP into NVM and permanently blocks
charging.
● Charge Temperature Protection: Temperature protection thresholds are debounced with a programmable timer (see
nDelayCfg).
• Hot (OTPC): Charging temperature protection is programmable with 1°C resolution (see nTPrtTh1) and 2°C
hysteresis.
• Cold (UTP): Charging is blocked at cold, programmable with 1°C resolution (see nTPrtTh1) and 2°C hysteresis.
● Overcharge-Current Protection:
• Fast: Overcharge current is detected by a programmable hardware comparator and debounce timer between 0 to
38.75mV and 1ms to 15ms thresholds.
• Slow: A lower and slower overcharge current protection ensures that more moderate high currents do not persist
www.analog.com
Analog Devices | 29
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
for a long time. With a 10mΩ sense resistor, this is programmable up to 5.12A in 40mA steps, with an additional
delay programmable between 0.35s and 22.5s. Additionally, with nNVCfg1.enJP = 1, this overcurrent protection
threshold is modulated according to temperature region (see nJEITAC).
● Charger-Communication Timeout: If enabled, during charging the IC turns off the charge FET if the host has
stopped communicating beyond a timeout configurable from 11s to 3 minutes. In systems which consult the battery for
prescribing the charge current or charge voltage, especially to apply JEITA thresholds or step-charging, this feature
is useful to protect against operating system crash or shutdown.
● Overcharge-Capacity Fault: If any charge session delivers more charge (coulombs) to the battery than the expected
full design capacity, charging is blocked, if the feature is enabled. This threshold is programmable as a percentage
(see nProtMiscTh.QOvflwTh) beyond the design capacity.
Other Faults:
● Nonvolatile CheckSum Failure: If enabled (nNVCfg1.enProtChkSm), the MAX1730x/MAX1731x blocks charge
and discharge when startup checksum of protector NVM does not match the value stored in nCheckSum.
Other Protection Functionality:
● Zero-Volt Charging: The IC is able to begin charging when the cell has depleted to 1.8V (ZVC disabled) or even
0.0V (ZVC enabled). See the Zero-Volt Charging section for more details.
● Overdischarge-Removal Detection: Following any overdischarge current fault, after the IC turns off the discharge
FET, it tests the load to detect the removal/disconnection of the offending load by sourcing 30μA into PCKP. Load
removal is detected when PCKP exceeds 1V. This low threshold is intentionally below the startup voltage of most
ICs in order to allow active loads by external ICs while rejecting passive loads by resistors (short-circuit, failed
components, etc.).
● Battery Internal Self-Discharge Detection: The IC (MAX17300/MAX17310 only) measures the internal selfdischarge of the battery that might indicate health or safety problems. The IC alerts the system or turns off the charge
and discharge FETs when a leakage is detected above the configurable threshold. See the Battery Internal SelfDischarge Detection (ISD) (MAX17300/MAX17310 Only) section for more details.
● Charger Removal Detection: Following any charge fault, after the IC turns off the charge FET, it tests PCKP to
detect the removal of the offending charger by connecting 40kΩ from PCKP to GND. Charger removal is detected
when PCKP falls below BATT + 0.1V or whenever discharge current is detected.
● Ideal-Diode Control: During any charge fault, the charge FET turns on when a discharge current is detected, with up
to 350ms delay. The discharge FET behaves the same way during discharge faults to block discharging, yet turns on
during charging. This ideal diode behavior reduces the heat and voltage drop associated with the body diode during
protection faults.
Protection Fault Reporting:
● Protection Fault Status: Each charge and discharge fault state is latched in the ProtStatus register. When the fault
is cleared, the corresponding bit is cleared.
● Protection Fault Alerts: The ProtAlrt register latches the status of any previous faults detected by the device. Once
a fault is detected, the corresponding bit remains set until it is cleared by the host. Additionally, the Status.ProtAlrt bit
is set when any ProtAlrt bit is set.
● Protection Fault Logging: The nFaultLog register indicates which protection events happened during each history
log period.
www.analog.com
Analog Devices | 30
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Charging Prescription Registers: The ChargingVoltage and ChargingCurrent registers can guide the charger
according to recommended charging profile. This can include the following knowledge which generally is associated with
a particular battery and may be stored in the battery with the MAX1730x/MAX1731x:
● Factory Recommended Charging Current and Voltage: This is useful when a system involves multiple battery
vendors, swappable batteries, or legacy system support.
● Charging Modifications According to Battery Temperature: Significantly above and below room temperature,
most cell manufacturers recommend to charge at reduced current and lower termination voltage to assure safety and
improve lifespan. The MAX1730x/MAX1731x can be configured to modulate its guidance according to TooCold/Cold/
Room/Warm/Hot/TooHot programmable temperature regions (see nTPrtTh1/2/3). Both charging current and voltage
are modulated at Cold/Warm/Hot, generally targeting lower than Room (see nJEITAV and nJEITAC).
● Step-Charging: A common practice to balance lifespan and charge speed is to apply step-charging profiles (see the
Step-Charging section). The MAX1730x/MAX1731x supports three programmable steps with programmable charge
currents and voltages.
At a high level, the MAX1730x/MAX1731x protector has state-machine as shown in Figure 1. Each charge and discharge
fault state is latched in the ProtStatus register, where each fault obeys a separate instance of the state machine shown
in Figure 1.
CHARGE FAULT (OR’D)
BLOCK CHARGE
CHARGEGOOD = 0
ALLOW CHARGE
CHARGEGOOD = 1
CHARGE FET ENABLED IF
(NO CHARGE FAULTS OR DISCHARGING)
CHARGE FAULTS RELEASED (AND’D)
DISCHARGE FAULT (OR’D)
ALLOW DISCHARGE
DISGOOD = 1
BLOCK DISCHARGE
DISGOOD = 0
DISCHARGE FET ENABLED IF
(NO DISCHARGE FAULTS OR CHARGING)
DISCHARGE FAULTS RELEASED (AND’D)
Figure 1. Simplified Protector State Machine
www.analog.com
Analog Devices | 31
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Note: Due to the highly configurable protection thresholds, the MAX1730x/MAX1731x must be locked when deployed
into the field to prevent accidental overwrites or intentional tampering that may result in hazardous conditions. See the
Memory Locks section for more details.
The protector registers are summarized by their protection function in Table 1 and are graphically shown across the
various temperature ranges in Figure 2 and Figure 3.
Table 1. Summary of Protector Registers by Function
FUNCTION
REGISTER
Voltage Thresholds
Permanent Fail Overvoltage Protection
Overvoltage Protection
Overvoltage Protection Release
nVPrtTh2
nJEITAV, nJEITACfg
nJEITACfg
UnderOCV Protection
nVPrtTh1
Undervoltage Protection
nVPrtTh1
Undervoltage Shutdown
nVPrtTh1
Current Thresholds
Fast Overcharge Protection
nODSCTh, nODSCCfg
Slow Overcharge Protection
nIPrtTh1
Slow Overdischarge Protection
nIPrtTh1
Fast Overdischarge Protection
nODSCTh, nODSCCfg
Short Circuit Protection
nODSCTh, nODSCCfg
Charging Detected
nProtMiscTh
Discharging Detected
nProtMiscTh
Temperature Thresholds
Fault Timers
nTPrtTh1, nTPrtTh2, nTPrtTh3, nProtMiscTh
nDelayCfg
Charging Prescription
Charging Voltage
nJEITAV
Charging Current
nJeitaC
Precharge Current
nJEITACfg
Step Charging
nStepChg
Protection Status/Configuration
www.analog.com
nProtCfg, ProtStatus, nBattStatus
Analog Devices | 32
OVP RELEASE
4.2V
CHARGING
VOLTAGE
TOO COLD
COLD
-10
ROOM
10
TEMPERATURE
WARM
35
HOT
45
STEP-CHARGING
JEITA CHARGE VOLTAGE
STEPDV1
4.25V
STEPDV0
TOO HOT DISCHARGE
OVERVOLTAGE
PROTECTION
PERM FAIL OTP
T4 (TOO HOT)
T3 (HOT)
4.4V
PERM FAIL OVP
4.35V
TWARM
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
DIE TEMP HOT
CELL VOLTAGE
T2 (COLD)
T1 (TOO COLD)
MAX17300-MAX17303/
MAX17310-MAX17313
STEPV2
STEPV1
STEPV0
TOO HOT
60
70
75
80
3.7V
DESIGN VOLTAGE
3.0V
VEMPTY
2.9V
UOCV PROTECTION
2.8V
UV PROTECTION
2.7V
UV SHUTDOWN
2.3V (2.16V for MAX17300/MAX17310)
MINIMUM OPERATING VOLTAGE
Figure 2. Programmable Voltage Thresholds
www.analog.com
Analog Devices | 33
CHARGING CURRENT
T3 (HOT)
TWARM
3500mA
FAST OVERCHARGE PROTECTION
T4 (TOO HOT)
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
T2 (COLD)
T1 (TOO COLD)
MAX17300-MAX17303/
MAX17310-MAX17313
DIE TEMP HOT
TOO HOT DISCHARGE
2000mA
CHARGING CURRENT
PERM FAIL OTP
3000mA
SLOW OVERCHARGE
PROTECTION
STEP-CHARGING
CHARGING CURRENT
STEPCURR1
STEPCURR2
TOO
COLD
COLD
ROOM
WARM
HOT
TOO HOT
100mA
PRECHARGE
DISCHARGING CURRENT
10mA CURRDET
-10
10
TEMPERATURE
35
45
60
70
75
80
-3000mA
SLOW OVERDISCHARGE PROTECTION
-4000mA
FAST OVERDISCHARGE PROTECTION
-5000mA
SHORT CIRCUIT PROTECTION
Figure 3. Programmable Current Thresholds
Protector Thresholds
The MAX1730x/MAX1731x provides for a variety of programmable protector thresholds that are stored in nonvolatile
memory. These thresholds include voltage, current, temperature, and timer delays.
Voltage Thresholds
All voltage thresholds of the MAX1730x/MAX1731x are shown graphically in Figure 2 and in table form with details of
which bits and registers create the various thresholds in Table 2. The description of each register provides additional
guidance for selection of the register value.
www.analog.com
Analog Devices | 34
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 2. Voltage Thresholds
NAME
DESCRIPTION
Permanent Fail Overvoltage
CONFIGURATION
REGISTERS
EXAMPLE
nVPrtTh2.OVP_PermFail
4.4V
ChargeVoltage[temp] +
nJEITACfg.dOVP
{4.1V/4.20V/4.18/
4.15V}
+50mV
Overvoltage JEITACfg.dOVPR
{4.15V/4.25V/
4.23V/4.2V}
-10mV
nJEITAV.Room
4.20V
Overvoltage
(with 4xJEITA)
Programmable overvoltage at each JEITA band.
Programmable 10mV resolution from 3.9V to 4.88V.
Programmable delay.
Overvoltage Release
Programmable release hysteresis. Release fault
when voltage drops below this threshold and
discharging is detected.
ChargeVoltage-Room
ChargingVoltage() output
ChargeVoltage-Hot
ChargingVoltage() output
nJEITAV.Hot
4.15V
ChargeVoltage-Warm
ChargingVoltage() output
nJEITAV.Warm
4.18V
ChargeVoltage-Cold
ChargingVoltage() output
nJEITAV.Cold
4.10V
DesignVoltage
Just for information, no action
nDesignVolt
3.7V
EmptyVoltage
For fuel gauge only (not related to protection)
nVEmpty
3.0V
Undervoltage Release
Charger applied
Under OCV Protection
(SmartEmpty)
Programmable under-OCV 40mV steps UVP to
UVP + 1.28V.
nVPrtTh1.UOCVP
3.2V
Undervoltage Protection
Programmable undervoltage 20mV steps 2.2V to
3.4V. Gauging and communications work until
undervoltage-shutdown
nVPrtTh1.UVP
2.7V
Undervoltage Shutdown
Gauging and communications work until
undervoltage-shutdown
nVPrtTh1.UVShdn
2.5V
Undervoltage Lockout
2.11V typ, 2.16V
max (MAX17300/
MAX17310)
2.1V typ, 2.3V max
Low-Voltage Charging
1.8V
Zero-Voltage Charging
0.0V
Ideal Diode Behavior
The IC uses several methods to detect charge and discharge to provide the following "Ideal Diode" discharge control
without forgetting a possible charge fault state such as OVP, OTP, or UTP (overcharge current is fully released during a
discharge condition).
1. Fast On. When discharge is detected, the CHG FET quickly turns on regardless of any charge fault condition. This
limits the heat and voltage drop associated with the 0.6V CHG FET body diode.
1. Current < -CurrDet. nProtMiscTh.CurrDet is normally configured to 2 to provide a clear threshold relative to ADC
noise. With a 10mΩ sense resistor, this corresponding to 7.5mA, provides sufficient sensitivity for most active
loads.
2. PCKP < BATT +0.1V (falling only). Additionally, a comparator detects charger removal to support better
discharging detection even during small standby currents.
2. Fast Off. When discharge to charge transition is detected while a charge fault (such as OTP/OVP/UTP) remains
latched, the CHG FET quickly turns off to prevent charging. Since the charge fault remains remembered (not released
by the discharging), the response happens quickly without waiting for double-confirmation by the fault timer.
3. Slow On. Smaller standby currents require the sensitivity provided by the filter of the AvgCurrent register.
1. AvgCurrent < -AvgCurrDet. For default configuration and with 10mΩ, AvgCurrDet is sensitive to 1.4mA
discharge. The AvgCurrDet threshold follows the filter configuration nFilterCfg.Curr as well as the hibernate state
and configuration according Table 3 when using default nProtMiscTh.CurrDet = 7.5mA.
www.analog.com
Analog Devices | 35
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 3. AvgCurrDet Threshold When Using 10mΩ and Default nProtMiscTh.CurrDet
= 7.5mA
AVGCURRENT FILTER CONFIGURATION (nFilterCfg.Curr)
1 (0.7s)
2 (1.4s)
3 (2.8s)
4 (5.6s)
5 (11.25s)
6 (22.5s)
7 (45s)
8 (90s)
Active (0.351s)
4.22mA
2.34mA
2.34mA
1.41mA
1.41mA
0.94mA
0.94mA
0.7mA
Hibernate (1.4s)
7.5mA
4.2mA
4.2mA
2.3mA
2.3mA
1.4mA
1.4mA
0.94mA
Hibernate (2.8s)
7.5mA
7.5mA
7.5mA
4.2mA
4.2mA
2.3mA
2.3mA
1.4mA
4. Slow Off. AvgCurrent > -0.3mA. While the Charge Fault remains, the CHG FET turns off whenever AvgCurrent
fails to exceed the more sensitive -0.3mA discharge threshold.
The fast responses in Table 3 correspond with the 0.351s ADC update rate. The more accurate slow responses
correspond with the AvgCurrent filter delay configuration.
Current Thresholds
All of the current thresholds of the MAX1730x/MAX1731x are shown graphically in Figure 3 and in table form with details
of each threshold in Table 4. The description of each register provides additional guidance for selection of the register
value.
Table 4. Current Threshold Summary
CURRENT
ACTION
RELEASE
DETAILS
Overcharge
Current (fast)
CHG off
Overcharge
Current
(slow with
4xJEITA)
CHG off
Overdischarge
Current (fast)
DIS off
Overdischarge
Current (slow)
DIS off
Short-Circuit
Current
DIS off
Charging
Detected
Normal
Current > CurrDet or AvgCurrent > AvgCurrDet or PCKP > BATT + 0.15V to release
overdischarge protection.
Normal
Current < -CurrDet or AvgCurrent < -AvgCurrDet or PCKP < BATT + 0.15V (falling-edge)
indicates discharging. When discharging is detected, overcharge current faults release.
Other charge faults such as OVP, OTP, UTP remain set, however, the CHG FET turns on
to prevent the heat and voltage drop associated with the 0.6V CHG FET body diode. See
the Ideal Diode Behavior section for more details. An OVP fault remains remembered
(unreleased) until voltage falls and discharging is also detected.
Discharging
Detected
Discharging
or charger
removal
detection
Charging or
load
removal
detection
Threshold 5-bit, 1.25mV steps to 38.75mV.
Delay programmable 4-bit, 1ms to 15ms in 0.9ms steps.
Programmable 0.4mV steps to 51.2mV. Delay programmable 351ms to 45s. Separate
thresholds for 4 out of 6 JEITA segments.
5-Bit, 2.5mV steps to 77.5mV.
Delay programmable 4-bit, 1ms to 15ms in 0.9ms steps.
Programmable 0.4mV steps to 51.2mV. Delay programmable 351ms to 45s.
5-Bit, 5mV steps to 155mV.
Delay programmable 4-bit, 70μs steps to 985μs.
Overcurrent Protection
The MAX1730x/MAX1731x provides three levels of protection for overdischarge current events: fast, medium, and slow
as shown in Figure 4. The MAX1730x/MAX1731x also provides fast and slow levels of protection for overcharge current
protection. The fast and medium levels of protection are provided by comparators and the slow levels are based on the
ADC readings.
The MAX1730x/MAX1731x maintains the protection until the source of the fault has been removed. Overcharge
protection fault releases when pack voltage falls below BATT + 0.1V (edge, not level) while the IC tests charger removal
by applying a 40kΩ pull down from PCKP to GND (during any charger fault). Overdischarge current (fast or slow) or
short-circuit current protection faults release when PCKP rises above 1V, while the IC applies 30μA source current test
to PCKP.
www.analog.com
Analog Devices | 36
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
SHORT-CIRCUIT THRESHOLD
FAST
MEDIUM
SLOW
(MICROSECONDS)
(MILLISECONDS)
(SECONDS, WITH 1% ACCURACY)
OVERDISCHARGE THRESHOLD
NODSCTH.ODTH (0-77.5mV)
ADC OVERDISCHARGE THRESHOLD
NDELAYCFG.OVERCURRTIMER
(0.351s to 22.5s)
OVERDISCHARGE DELAY
NODSCCFG.ODDLY (1.05ms - 14.66ms)
ADC OVERCURRENT DELAY
NIPRTTH1.ODCP (0-51.2mV)
SHORT-CIRCUIT DELAY
NODSCCFG.SCDLY (131µs TO 985µs)
DISCHARGE CURRENT
NODSCTH.SCTH (0-155mV)
DEBOUNCE TIME
Figure 4. Fast, Medium, and Slow Overdischarge Protection
Fast Overcurrent Comparators
The MAX1730x/MAX1731x contains three programmable fast overcurrent comparators called Overdischarge (OD),
Short-Circuit (SC), and Overcharge (OC) that allow control protection for overdischarge current, short-circuit current, and
overcharge current. These comparators have programmable threshold levels and programmable debounced delays. See
Figure 5.
The OD comparator threshold can be programmed from 0mV to -77.5mV with 2.5mV resolution (0 to -7.75A with 0.25A
resolution using 10mΩ sense resistor). The OC comparator threshold can be programmed from 0mV to 38.75mV with
1.25mV resolution (0 to 3.875A with 0.125A resolution using 10mΩ sense resistor). The OD and OC comparators have a
programmable delay from 1.05ms to 14.6ms with 0.97ms resolution. The SC comparator threshold can be programmed
from 0mV to -155mV with 5mV resolution (0 to -15.5A with 0.5A resolution using 10mΩ sense resistor), and has a
programmable delay from 70μs to 985μs with a 61μs resolution.
The nODSCTh register sets the threshold levels where each comparator trips. The nODSCCfg register enables each
comparator and sets their debounce delays. The nODSCCfg register also maintains indicator flags of which comparator
has been tripped. These register settings are maintained in nonvolatile memory if the nNVCfg1.enODSC bit is set.
www.analog.com
Analog Devices | 37
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Overcurrent Comparator Diagram
+
SCTH
-
OCTH
+
SCDLY
-
OCDLY
OCi
SCi
ODSCCfg
+
ODTH
OCDLY
-
ODi
CSN
CSP
RSENSE
Figure 5. Overcurrent Comparator Diagram
Slow Overcurrent Protection
The MAX1730x/MAX1731x provides programmable thresholds for the slow overdischarge current protection (ODCP)
and overcharge current protection (OCCP). ODCP and OCCP can be configured to provide different levels of protection
across the six temperature zones as shown in Figure 3.
Temperature Thresholds
The six temperature zones shown in Figure 2 and Figure 3 can be configured in the nTPrtTh1, nTPrtTh2, and nTPrtTh3
registers.
Other Thresholds
Table 5. Other Thresholds
THRESHOLD
ACTION
CONDITIONS
Charge Suspend
CHG off
ChgWDT Fault—if enabled (nProtCfg.ChgWDTEn) and communications timeout.
Charge-Suspend
Release
Normal
FullDet Release—Discharge or charger removal detected. ChgWDT
Release—Communications or discharge or charger removal detected.
Charge FET Failure
Blow
fuse
CHG off yet charge-current persists (programmable).
Discharge FET Failure
Blow
fuse
DIS off yet discharge-current persists (programmable).
Charge Voltage/Current
"Prescription"
www.analog.com
Six-zone JEITA (four charge currents and voltages).
Analog Devices | 38
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Battery Internal Self-Discharge Detection (ISD) (MAX17300/MAX17310 Only)
A healthy lithium-ion/polymer battery has a very high coulombic-efficiency, typically greater than 99.9% (defined as
discharge mAh vs. charge mAh). Some portion of the charge capacity can be lost by internal self-discharge. This includes
natural aging, which is exacerbated if the battery stays at a high temperature and/or high state for long periods of time.
However, in a damaged battery, additional capacity can be lost (unavailable for discharge), and some portion of this
reflects permanent capacity loss. Unusual self-discharge in a lithium-ion/polymer battery might indicate health or safety
problems.
The MAX17300/MAX17310 internal self-discharge (ISD) detection feature measures battery leakage and provides the
following functions:
● Leakage Measurement. The LeakCurrRep register outputs the milliampere leakage measured across many days
and multiple charge termination events.
• Accurate leakage detection
• Low ppm false-positive rate at a 3mA threshold
• Detection during normal use
• No discharge depth or duration constraints
• Requires at least four full events, each separated by 20 hours or more
● Leakage Log. Leakage measurements are recorded in the battery-life-logging data. This reveals leakage vs. time for
any returned battery or for managing deployed packs.
● Leakage Alert. If enabled, when LeakCurrRep exceeds the programmable alert threshold, an LDET alert (see
ProtAlrt) is asserted.
● Leakage Fault. If enabled, when LeakCurrRep exceeds the programmable fault threshold, the protector disconnects
the battery.
Example of Internal Self-Discharge Detection
Figure 6 shows the current leakage the MAX17300/MAX17310 detect as a result of placing a 909Ω resistor across a cell
to emulate a battery with internal self-discharge over various temperatures.
www.analog.com
Analog Devices | 39
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Figure 6. Example of Internal Self-Discharge with Temperature Variation
Configuring ISD
Contact Maxim for configuring the ISD feature. See the Battery Internal Self-Discharge Registers section for configuration
details.
Permanent Failure
The MAX1730x/MAX1731x supports several types of faults which result in a permanent failure. When any enabled
permanent failure is detected, both FETs turn off and remain off regardless of power-cycling. When any permanent failure
fault is detected, the nBattStatus.PermFail bit and the specific fault bit (also in nBattStatus) are set and both FET drivers
are put in the off state. Furthermore, the PFAIL output drives high to either drive an external fuse or latch a secondary
protector. This action is useful when FET failure is detected because charge and discharge cannot be blocked in any
other way.
The following permanent failure faults are supported whenever permanent failures are enabled (nProtCfg.PFEn = 1) and
the condition persists longer than the Permanent Fail debounce timer (nDelayCfg.PermFailTimer):
● FET Failures: Enable/disable this feature by configuring nProtCfg.FetPFEn.
• DIS FET Shorted: If discharging is detected during the discharge fault, nBattStatus.DFETFs is set and written to
NVM.
• CHG FET Shorted: If charging is detected during the charge fault, nBattStatus.CFETFs is set and written to NVM.
www.analog.com
Analog Devices | 40
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
• FET Open Failure: If either FET is detected open by the following detection methods:
• Detected By Discharge Fail: If DIS = On, VPCKP < 1.5V, and discharge current is not detected,
nBattStatus.FETFo is set and written to NVM.
• Detected By Charge Fail: If CHG = On, DIS = On, VPCKP > VBATT + ChgDet, and charge current is not detected,
nBattStatus.FETFo is set and written to NVM.
● Severe Overvoltage Failure: If any cell voltage exceeds nOVPrtTh.OVPPermFail, nBattStatus.OVPF is set and written
to NVM. Disable by configuring nOVPrtTh.OVPPermFail to the maximum value of 5.12V (FF__h).
● Severe Overtemperature Failure: If temperature exceeds nTPrtTh3.TpermFailHot, nBattStatus.OTPF is set and
written to NVM. Disable by configuring OTPPermFail to the maximum value of 127°C (7F__h).
● Nonvolatile Protector Checksum Failure: If enabled (nNVCfg1.enProtChkSum), during startup, a checksum of the
protector configuration is calculated and compared against the nChkSum register. If the value mismatches,
nBattStatus.ChkSumF is set.
Disabling FETs by Pin-Control or I2C Command
The IC provides FET override control by either I2C command or pin-command to the ALRT pin. This functionality can be
useful for various types of applications:
● Factory Testing. Disconnecting the battery is useful for testing with a controlled external power supply.
● Battery Selection. In a multiple battery system, one battery can be disconnected and another connected by operating
the FETs.
When allowed by nonvolatile configuration, both FETs can be turned off by pin control or either FET can be individually
turned off by I2C command. The control operates as follows:
● ALRT Pin Override. Set nProtCfg.OvrdEn = 1 and drive ALRT low to force both FETs into the off state. Releasing
the ALRT line recovers the FETs according to the protector's fault state machine.
● I2C Command Override. Set nProtCfg.CmOvrdEn = 1 and write CommStat.CHGOff or CommStat.DISOff to
independently disable either the charge or discharge FET. Clearing CHGOff and DISOff recovers the FETs according
to the protector's fault state machine.
These features may be disabled and locked by nonvolatile memory to prevent malicious code from blocking the FETs.
Although disabling FETs does not produce any safety issue, it can be a nuisance if malicious system-side software denies
power to the system.
Charging Prescription
The MAX1730x/MAX1731x can guide a charger with recommended charging voltage and charging current to safely
charge the battery depending on the state of the battery and the temperature. The ChargingVoltage and ChargingCurrent
registers provide the information according to the recommended charging based on knowledge that is installed in the
battery under the principle that the battery maker knows the requirements best. This information can be stored in the
MAX1730x/MAX1731x to provide the factory recommended charging current and voltage. This is useful when a system
involves multiple battery vendors, swappable batteries, aftermarket batteries, or legacy system support.
As the temperature of the battery changes significantly above and below room temperature, most cell manufacturers
recommend to charge at reduced current and lower termination voltage to assure safety and improve lifespan. The
MAX1730x/MAX1731x can be configured to change its guidance according to TooCold/Cold/Room/Warm/Hot/TooHot
programmable temperature regions (see nTPrtTh1/2/3). Both charging current and voltage are updated at Cold/Warm/
Hot (see nJEITAV and nJEITAC). See Figure 2 and Figure 3.
Additionally, the IC provides step-charging to improve lifespan of the battery and charge speed by applying a stepcharging profile (see the Step-Charging section) as shown in Figure 7.
www.analog.com
Analog Devices | 41
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Step Charging
A step-charging profile sets three charge voltages, three corresponding charge currents, and manages a state-machine
to trace through the stages as shown in Figure 7.
FULL VOLTAGE
TH1 = FULL VOLTAGE - STEPDV1
TH0 = FULL VOLTAGE – STEPDV0
VCELL
90%
SOC 50%
VC
E
LL
30%
SOC
HIGHEST CURRENT,
LOWEST VOLTAGE
PROTTMRSTAT.CHARGESTEP
0
REDUCED CURRENT UNTIL FULL
MEDIUM CURRENT
VCELL > TH0
1
VCELL > TH1
2
NOT CHARGING/DISCHARGING
NOT CHARGING/DISCHARGING
Figure 7. Step-Charging State Machine
This breaks charging into three regions:
Region 0: Highest current, lowest voltage. ChargingCurrent comes from nJEITAC until VCell > StepVolt0. After VCell >
StepVolt0, ChargingCurrent becomes defined by Region 1.
Region 1: Medium current. ChargingCurrent comes from nJEITAC x (StepCurr1 + 1)/16, which is a ratio from 1/16 to 16/
16 until VCell > StepVolt1. When VCell > StepVolt1, ChargingCurrent becomes defined by Region 2.
Region 2: Reduced current until full. ChargingCurrent comes from nJEITAC x (StepCurr2 + 1)/16, which is a ratio from 1/
16 to 16/16 until full.
For example, a charge may start with a ChargingCurrent of 2000mA until the cell voltage reaches 4.12V. At that point,
the ChargingCurrent is reduced to 1000mA until the cell voltage reaches 4.16V. Then, the ChargingCurrent is further
reduced to 500mA where it remains until the current begins to taper off naturally to the termination current.
Zero-Volt Charging
When in undervoltage protection, the MAX1730x/MAX1731x turns both FETs off and then enters a low quiescent state.
After a long time in the undervoltage state, it is possible for the battery voltage to fall below the minimum 2.3V (2.16V
for MAX17300/MAX17310) operating voltage, making it unable to wakeup by communications or pushbutton. In this
situation, an external charge voltage must be applied to PCKP in order to wake up the IC. The IC supports two options
to recover an overdischarged battery according to the ZVC pin voltage:
1. Zero-Volt Charge Recovery. In this configuration (connect ZVC to GND), even a battery at zero volts can be charged
by applying a charger at PCKP. If a secondary protector is used, zero-volt charge recovery must be enabled.
www.analog.com
Analog Devices | 42
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
There are three phases for 0V recovery charge as shown in Figure 8.
● Phase 1. VBATT ≤ max(1.8V, VGS). Low battery recovery charge phase. CHG is shorted to PCKP. PCKP voltage
is clamped to VGS_CHG + VBATT.
● Phase 2. max(1.8V, VGS) ≤ VBATT. Charge pump recovery charge phase. CHG is powered by the charge pump
and CHG driver. This phase begins when VBATT exceeds the FET's Vt threshold. The IC detects that the pump
voltage is sufficient to drive the gate.
● Phase 3. VBATT > 2.1V. The IC wakes up, begins ADC readings, and resumes normal protection functionality.
CHARGE PUMP ON
NORMAL PROTECTOR
OPERATION
VPCKP
2.16V
1.8V
VtCHG
VBATT
0V
BODY-DIODE DROP
OF DIS FET
VPCKP = VBATT + VtCHG
PHASE 1
PHASE 2
PHASE 3
Figure 8. Zero-Volt Recovery Charge
2. 1.8V Charge Recovery. In this configuration, a battery below 1.8V permanently rejects charge. This has some safety
benefit for some Lithium batteries, since very low voltage can cause copper-deposition creating an unsafe state in the
battery. If the cell is above 1.8V, then charge recovery begins in Phase 2 whenever a charger is applied at PCKP.
If the cell voltage is less than 1.8V, then the MAX1730x/MAX1731x connects PCKP to CHG as shown in Figure 9. VPCKP
becomes VBATT + VTCHG. This connection persists until the CP charge pump is enabled at approximately 1.8V. VPCKP
voltage varies based on the VGS of the external CHG FET. At this time, PCKP disconnects from CHG and the device
resumes normal protection operation.
Note: To ensure that a pack can be recovered from low voltage, the Vt of the CHG FET must be less than Charger's
Voltage/2.
www.analog.com
Analog Devices | 43
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
VDIODE
N
PCKP
N
BATT
S
VG
CHG
CP
DIS
PCKP
ZERO-VOLT CHARGE
CONNECTION
MAX1730X
MAX1731X
Figure 9. Zero-Volt Charging Diagram
Parallel Battery Management (MAX17300/MAX17310 Only)
The MAX17300/MAX17310 support automation to manage parallel charging or discharging of multiple batteries and
prevent one battery from charging the other (cross-charging) with the following features and benefits:
● Converge cell voltages faster with independent control
• Priority to charge the emptiest battery first
• Priority to discharge the fullest battery first
• Charge and discharge in parallel once cell voltages converge
● Prevent cross-charge to optimize heat and dropout
• Break-Before-Make Control
• Charger Insertion: Discharge blocking applies before charge enabling
• Charger Removal: Charge blocking applies before discharge enabling
Set nPackCfg.ParEn = 1 to enable the Parallel Battery Management functionality. When enabled, a timeout automatically
sequences charge/discharge blocking and enabling. The automatic charge blocking allows the host to determine which
battery must be charged first and allows charging only the battery that is commanded to charge. Automatic discharge
blocking prevents batteries at higher state from charging batteries at lower state. To block discharging while allowing
charging, set Config2.BlockDisEn = 1. Status.AllowChgB is internally set every 351ms.
Host Responsibility for Parallel Battery Management
● Declare the presence of charge source. Only the host has this knowledge. Repeatedly write STATUS =
0xFFDF (AllowChgB = 0). The IC automatically blocks charging if AllowChgB is not cleared repeatedly within
nDelayCfg.CHGWDT time (default 11.25s to 22.5s). After this timeout, all packs revert to allow-discharge and
block-charge state.
● Configure and manage to prevent cross-charging. If cell voltages differ by more than 400mV, configure the
higher voltage packs to block discharging. Note that the higher voltage pack resumes discharge after host stops
declaring charger-presence. The nDelayCfg.CHGWDT should be set to 0 to minimize delay which can be up to
11.25s.
• Determine if emptiest cell can support system load (3.3V, for example). If the lowest cell cannot
support the system load, clear Config2.BlockDis = 0 until the empty battery is sufficiently charged to
support the system. This prevents risk of system crash while higher-voltage packs are denied discharge
support. Cross-charging should be allowed during the limited time associated with VCell < 3.3V.
• Block discharge on packs identified as cross-charging risk. Set Config2.BlockDis = 1.
www.analog.com
Analog Devices | 44
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 6. Parallel Control Modes
NAME
nPackCfg.ParEn
Config2.BlockDis
Status.AllowChgB
CHG FET
DIS FET
No Parallel Management
0
x
x
NORMAL
NORMAL
Parallel Charging
1
0
0
NORMAL
NORMAL
Parallel Discharging
1
0
1 (+timeout)
BLOCK READY
NORMAL
Block Discharge
1
1
0
NORMAL
BLOCK READY
Parallel Discharging
1
1
1 (+timeout)
BLOCK READY
NORMAL
In the BLOCK READY state, the CHG or DIS FET is ready to block and is turned off if charging or discharging current is
observed. In the NORMAL case, the CHG/DIS FET is controlled by standard protection.
ModelGauge m5 Algorithm
Classical coulomb-counter-based fuel gauges have excellent linearity and short-term performance. However, they suffer
from drift due to the accumulation of the offset error in the current-sense measurement. Although the offset error is
often very small, it cannot be eliminated, causes the reported capacity error to increase over time, and requires periodic
corrections. Corrections are usually performed at full or empty. Some other systems also use the relaxed battery voltage
to perform corrections. These systems determine the true state-of-charge (SOC) based on the battery voltage after a
long time of no current flow. Both have the same limitation; if the correction condition is not observed over time in the
actual application, the error in the system is boundless. The performance of classic coulomb counters is dominated by
the accuracy of such corrections. Voltage measurement based SOC estimation has accuracy limitations due to imperfect
cell modeling, but does not accumulate offset error over time.
The IC includes an advanced voltage fuel gauge (VFG), which estimates OCV, even during current flow, and simulates
the nonlinear internal dynamics of a Li+ battery to determine the SOC with improved accuracy. The model considers
the time effects of a battery caused by the chemical reactions and impedance in the battery to determine SOC. This
SOC estimation does not accumulate offset error over time. The IC performs a smart empty compensation algorithm
that automatically compensates for the effect of temperature condition and load condition to provide accurate state-ofcharge information. The converge-to-empty function eliminates error toward empty state. The IC learns battery capacity
over time automatically to improve long-term performance. The age information of the battery is available in the output
registers.
www.analog.com
Analog Devices | 45
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
The ModelGauge m5 algorithm combines a high-accuracy coulomb counter with a VFG. See Figure 10. The
complementary combined result eliminates the weaknesses of both the coulomb counter and the VFG while providing
the strengths of both. A mixing algorithm weighs and combines the VFG capacity with the coulomb counter and weighs
each result so that both are used optimally to determine the battery state. In this way, the VFG capacity result is used to
continuously make small adjustments to the battery state, canceling the coulomb-counter drift.
MODELGAUGE
Δ% SOC
COULOMB COUNTER
VERY SLOW
INFLUENCE
ΔQ
MICROCORRECTIONS
CAPACITY
FULL, EMPTY, AND STANDBY
STATE DETECTION
UNNECESSARY
Figure 10. Merger of Coulomb Counter and Voltage Based Fuel Gauge
The ModelGauge m5 algorithm uses this battery state information and accounts for temperature, battery current, age,
and application parameters to determine the remaining capacity available to the system. As the battery approaches the
critical region near empty, the ModelGauge m5 algorithm invokes a special error correction mechanism that eliminates
any error.
The ModelGauge m5 algorithm continually adapts to the cell and application through independent learning routines. As
the cell ages, its change in capacity is monitored and updated and the voltage-fuel-gauge dynamics adapt based on cellvoltage behavior in the application.
www.analog.com
Analog Devices | 46
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
VOLTAGE
OCV
TEMPERATURE
COMPENSATION
LEARN
RELAXED
CELL
DETECTION
OCV
CALCULATION
OCV OUTPUT
OCV TABLE
LOOKUP
COULOMB
COUNTER
% REMAINING
OUTPUT
mAh OUTPUT
CURRENT
TIME
×
CAPACITY LEARN
mAh PER PERCENT
EMPTY DETECTION
MIXING ALGORITHM
mAh OUTPUT
MIXCAP REGISTER
MIXSOC REGISTER
EMPTY
COMPENSATION
LEARNING
APPLICATION
EMPTY
COMPENSATION
BASED ON APPLICATION
TEMPERATURE AND
DISCHARGE RATE
+
- +
END-OF-CHARGE
DETECTION
APPLICATION
OUTPUTS:
REPSOC REGISTER
REPCAP REGISTER
AVSOC REGISTER
AVCAP REGISTER
TTE / AtTTE / TTF REGISTERS
FULLCAP REGISTER
CELL CHEMISTRY
OUTPUTS:
VFOCV REGISTER
CYCLES REGISTER
RFAST REGISTER
FULLCAPNOM REGISTER
AGE REGISTER
Figure 11. ModelGauge m5 Block Diagram
www.analog.com
Analog Devices | 47
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Wakeup/Shutdown
Modes of Operation
The MAX1730x/MAX1731x support six power modes (three active modes and three shutdown modes) with the typical
current consumption of each mode for the different device types and configurations as shown in Table 7. Table 8 and
Table 9 provide descriptions of the features available in each mode, and the method to enter and exit each mode.
Table 7. Typical Quiescent Current Values
SYMBOL
MAX17300/MAX17310
(μA)
MAX17301–MAX17303/
MAX17311–MAX17313
(μA)
Active
IQA
24
24
Hibernate
IQH
18
18
Protect
IQP
10
10
MODE
Ship
IQS
7
7
DeepShip
IQDS
0.5
0.5
DeepShip2
IQDS2
0.02
0.05 (UVShdn Only)
Table 8. Modes of Operation
MODE
SYMBOL
DESCRIPTION
IQA
Full Functionality. Protection FETs, charge pump, and ADC are on. Firmware tasks execute every
351ms.
Hibernate
(optional)
IQH
FETs, charge pump, and ADC are on. Firmware tasks execute every 1.4s. If enabled, the device
automatically enters and exits this mode depending on current measurements. Entering hibernate mode
requires a low-enough current for a long-enough duration. Exiting requires just one high-enough current
event. For specific details regarding the thresholds, see nHibCfg register definition.
Protect
IQP
ADC is on. FETs and charge pump are disabled due to a protection event, disconnecting the battery from
the system. RAM is preserved and the gauge continues to monitor the battery until the fault is removed.
Firmware remains awake and ready to communicate. Firmware tasks execute every 1.4s.
IQP
Similar state as "Protected and Awake" except the firmware is responsive to wakeup events such as:
charger-connection, communications-wakeup, or pushbutton wakeup (depending on which wakeups are
enabled by configuration). Firmware tasks execute every 1.4s.
IQS
Similar state as "Protected and Awake" except the firmware is responsive to wakeup events such as:
charger-connection, communications-wakeup, or pushbutton wakeup (depending on which wakeups are
enabled by configuration). Firmware tasks execute every 5.625s.
Active
Ship*
DeepShip*
IQDS
FETs, charge pumps, ADC, and firmware are all placed into a shutdown state. The only activity alive
relates to analog circuits that monitor for wakeup conditions (charger-detection, communications, or
pushbutton, depending on which are enabled).
DeepShip2*
IQDS2
FETs, charge pumps, ADC, firmware, and most wakeup circuits are powered down. Only the chargerdetection wakeup circuit remains powered in this mode to best conserve the small remaining battery
capacity and prevent deep discharge.
*On I2C shutdown command (setting Config.SHDN = 1) or when I2C SCL/SDA lines collapse (and depending on
whether COMMSH is enabled), the MAX1730x/MAX1731x either enter Ship (if nProtCfg.DeepShpEn = 0), DeepShip (if
nProtCfg.DeepShpEn = 1) or enter DeepShip2 if nProtCfg.DeepShp2En = 1 (MAX17300/MAX17310 only).
www.analog.com
Analog Devices | 48
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 9. Low Power Modes Entry and Exit Conditions
MODE
Ship (IQA)
DeepShip
(IQDS)
DeepShip2
(IQDS2)
DeepShip2
(IQDS2)
ENTER
WAKEUP
Config.SHDN
I2C, Pushbutton, or
Charge Source
or
SDAcollapse
FUNCTIONALITY
nProtCfg.
DeepShipEn
nProtCfg.
DeepShip2En
1.4s/5.6s Measurements/
Updates
0
0
1
0
1
1
X
X
No Updates
Charge Source Only
VCell <
UVShdn
The MAX1730x/MAX1731x can be awoken with a variety of methods depending on the configuration. If pushbutton
wakeup is enabled (nConfig.PBen = 1), then consistently pulling the ALRT/PIO pin low, either by pushbutton or system
configuration will wakeup the device. A high to low transition on any of the communication lines will wake up the device.
A consistent connection to a charger will wake up the device.
The MAX1730x/MAX1731x prevents accidental wakeup when the system is boxed and shipped. When awoken by any
source, it debounces all wakeup sources (button, communications, and charger-detection) to ensure that the wakeup is
valid. If no valid wakeup is discovered, the device returns to Ship, DeepShip, or DeepShip2.
The IQ in the active, hibernate, and ship modes are impacted by the configuration of the IC. Table 10 shows the
recommended configuration settings for the nConfig register and the impact those settings have on the IQ of each
mode. Note that when in hibernate mode, the protection for overtemperature and overvoltage are delayed by the
nHibCfg.HibScalar value. It is not recommended to have hibernation enabled with the nHibCfg.HibScalar set to more
than 1.4 seconds.
Table 10. Recommended nHibCfg Settings and the Impact on IQ
FETSOFF
FETS-ON
MODES
nHibCfg
SHIP
IQ
(μA)
ACTIVE/
HIBERNATE
IQ (μA)
ACTIVE
(s)
SHIP
(s)
1.4s Ship
0x0909
IQP
IQA/NA
0.351
1.4
1.4s Ship + Hibernate
0x8909
IQP
IQA/IQH
0.351
1.4
5.625s Ship
0x090B
IQS
IQA/NA
0.351
5.625
AVAILABLE LOW
POWER
CONFIGURATION
UPDATE RATE
NOTES
Overtemperature and overvoltage detection is
delayed by 1.4s when in hibernate mode.
Power Mode Transition State Diagram
Figure 12 illustrates how the device transitions in and out of all of the possible power modes of operation of the device.
See Table 7 for the IQ values for each mode and the different device types and configurations.
www.analog.com
Analog Devices | 49
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
POWER
GOOD
STARTUP
C
OR HGD
BU ET
TTO OR
N ( COM
IF E
NA MS
BLE
D)
WAKEVERIFY
WakeVerify: Any of the following confirm legitimate
wakeup:
1) ALRT/PIO consistantly low (if feature enabled)
2) Communications (high+low detected)
3) Charger consistently detected
NO W
AKEU
PS VE
RIFIE
D
WAKEUP VERIFIED
CH
OR B GDET O
UTT
R CO
ON
(IF E MMS
NAB
LED
)
CH
GD
ET
HW
STARTUP
ACTIVE
(IQA) OR
HIBERNATE
(IQH)
EITHER
FET ON
IF (FETS OFF)
PROTECT
(IQS)
SHIP
(IQS)
ANY SHUTDOWN
CONDITION > TMR/2
0
NPROTCFG.
DEEPSHIPEN
DEEPSHIP
(IQDS)
N
DE PRO
EP TC
SH FG
IP .
2E
N
1
0
1
UV
DEEPSHIP2
(IQDS2)
SHDN
COMMITTED
FETS OFF,
PKSINK
=1
TIMER &
PCKPOK
Shutdown Conditions:
Command, Comms-drop, or UV
SHDNTimer counts upon condition, aborts
(clears) upon absence of conditions.
At half timer, the timer pauses unless
charger is clearly absent (PckpOK = 0)
Figure 12. Power Mode Transition State Diagram
www.analog.com
Analog Devices | 50
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Pushbutton Wakeup
The ALRT/PIO pin can be used to wake up the device by enabling the pushbutton wakeup function by setting the
nConfig.PBen. The pushbutton can be implemented in the system to wakeup the device and the system as shown in the
Pushbutton Schematic.
Register Description Conventions
The following sections define standard conventions used throughout the data sheet to describe register functions and
device behavior. Any register that does not match one of the following data formats is described as a special register.
Standard Register Formats
Unless otherwise stated during a given register's description, all IC registers follow the same format depending on the
type of register. Refer to Table 11 for the resolution and range of any register described hereafter. Note that current and
capacity values are displayed as a voltage and must be divided by the sense resistor to determine amps or amp-hours. It
is strongly recommended to use the nRSense (1CFh) register to store the sense resistor value for use by host software.
Table 11. ModelGauge Register Standard Resolutions
REGISTER
TYPE
Capacity
Percentage
LSB SIZE
MINIMUM
VALUE
MAXIMUM
VALUE
5.0μVh/
RSENSE
0.0μVh
327.675mVh/
RSENSE
NOTES
Equivalent to 0.5mAh with a 0.010Ω sense resistor.
1/256%
0.0%
255.9961%
Voltage
0.078125mV
0.0V
5.11992V
Current
1.5625μV/
RSENSE
-51.2mV/
RSENSE
51.1984mV/
RSENSE
Signed 2's complement format. Equivalent to 156.25μA with a
0.010Ω sense resistor.
Temperature
1/256°C
-128.0°C
127.996°C
Signed 2's complement format. 1°C LSb when reading only the
upper byte.
Resistance
1/4096Ω
0.0Ω
15.99976Ω
5.625s
0.0s
102.3984hr
Time
Special
1% LSb when reading only the upper byte.
Format details are included with the register description.
Device Reset
Device reset refers to any condition that would cause the IC to recall nonvolatile memory into RAM locations and restart
operation of the fuel gauge. Device reset refers to initial power up of the IC, temporary power loss, or reset through the
software power-on-reset command.
Nonvolatile Backup and Initial Value
All configuration register locations have nonvolatile memory backup that can be enabled with control bits in the nNVCfg0,
nNVCfg1, and nNVCfg2 registers. If enabled, these registers are initialized to their corresponding nonvolatile register
value after device reset. If nonvolatile backup is disabled, the register restores to an alternate initial value instead. See
each register description for details.
Register Naming Conventions
Register addresses are described throughout the document as 9-bit internal values from 000h to 1FFh. These addresses
must be translated to 16-bit external values for the MAX17300-MAX17303 (I2C) or 8-bit values for the
MAX17310-MAX17313 (1-Wire). See the Memory section for details.
Register names that start with a lower case 'n', such as nPackCfg for example, indicate the register is a nonvolatile
memory location. Register names that start with a lower case 's' indicate the register is part of the SBS compliant register
block.
www.analog.com
Analog Devices | 51
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Protection Registers
Voltage Protection Registers
nVPrtTh1 Register (1D0h)
Register Type: Special
The nVPrtTh1 register shown in Table 12 sets undervoltage protection, deep-discharge-state protection, and
undervoltage-shutdown thresholds. Prior to updating the nVPrtTh1 Register (Address 1D0h), the nVPrtTh1Bak Register
(Address 0D6h) must first be written with the desired value.
Table 12. nVPrtTh1 Register (1D0h) Format
D15
D14
D13
D12
D11
D10
UVP
D9
D8
D7
DisUVP
D6
D5
D4
D3
UOCVP
D2
D1
D0
UVShdn
UVP: Undervoltage Protection Threshold. The MAX1730x/MAX1731x opens the discharge FET when VCell < UVP. UVP
can be configured from 2.2V to 3.46V in 20mV steps. UVP is unsigned.
DisUVP: Disable UVP. Set DisUVP = 1 to disable undervoltage protection threshold only. UOCVP and UVShdn still
function normally. The DisUVP feature allows the application to continue to run down to the 2.16V minimum voltage of
the IC. (MAX17300/MAX17310 only)
UOCVP: Under Open Circuit Voltage Protection Threshold (also referred to as SmartEmpty). The MAX1730x/MAX1731x
opens the discharge FET when VFOCV < UOCVP. UOCVP is relative to UVP and can be configured from UVP to UVP
+ 1.28V in 40mV steps.
UVShdn: Undervoltage Shutdown Threshold. The MAX1730x/MAX1731x shutdowns when VCell < UVShdn. UVShdn
is relative to UVP and can be configured from UVP - 0.32V to UVP + 0.28V in 40mV steps. Note that this is a
signed value and UVShdn should be configured as a 2's compliment negative value so that UVShdn < UVP for
MAX17301–MAX17303/MAX17311–MAX17313. This results in the IC protecting at the UVP threshold and continuing to
operate and communicate until VCell < UVShd.
The MAX17300/MA17310 support two UVP/UVShdn cases:
● Case 1: Protect + Shutdown simultaneously. Set UVShdn > UVProtect. For example, UVShdn = 2.8V with UVProtect
= 2.7V results in the MAX17300/MAX17310 simultaneously shutting down and protecting when VCell < 2.7V.
● Case 2: Continue operating/communicating after shutdown. Set UVShdn < UVProtect. For example, UVShdn =
2.6V with UVProtect = 2.7V results in the MAX17300/MAX17310 protecting at 2.7V and continuing to operate and
communicate until VCell < 2.6V.
nVPrtTh2 Register (1D4h)
Register Type: Special
The nVPrtTh2 register shown in Table 13 sets permanent-failure-overvoltage-protection and prequalification voltage
thresholds. Threshold limits are configurable with 20mV resolution over the full operating range of the VCell register.
Table 13. nVPrtTh2 Register (1D4h) Format
D15
D14
D13
D12
D11
OVP_PermFail
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
OVP_PermFail: Permanent Failure OVP (overvoltage protection) threshold. Permanent Failure Overvoltage protection
occurs when VCell register reading exceeds this value.
nJEITAV Register (1D9h)
nJEITAV Register, shown in Table 14, sets the JEITA charge voltage configuration for the MAX1730x/MAX1731x. The
JEITA charge voltage can be read from a charger to set the appropriate charge voltage based on the temperature. Also,
this value is used to determine the overvoltage-protection threshold.
Each charge voltage register is a signed offset with 5 or 20mV resolution. The RoomChargeV offset is defined relative
www.analog.com
Analog Devices | 52
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
to a normal standard charge setting of 4.2V. The additional charge voltages are relative to RoomChargeV based on the
temperature. To disable the temperature dependence and create a flat charging voltage across the temperature range,
set dWarmChargeV, dColdChargeV, and dHotChargeV to a value of 0x00.
Table 14. nJEITAV Register (1D9h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
RoomChargeV
D6
D5
dWarmChargeV
D4
D3
D2
dColdChargeV
D1
D0
dHotChargeV
RoomChargeV: RoomChargeV defines the charge voltage between temperatures T2 and Twarm, relative to a standard
4.2V setting, providing a range of 3.56V to 4.835V in 5mV steps. RoomChargeV is a signed configuration. Set to 0x00 to
configure for standard 4.2V.
dColdChargeV: ColdChargeV defines the delta charge voltage (relative to room) between temperatures T1 and T2,
relative to the room setting, providing a range of RoomChargeV to RoomChargeV-140mV in -20mV steps. dColdChargeV
configuration is unsigned.
dWarmChargeV: WarmChargeV defines the delta charge voltage (relative to room) between temperatures TWarm
and T3, relative to the room setting, providing a range of RoomChargeV to RoomChargeV-60mV in -20mV steps.
dWarmChargeV configuration is unsigned.
dHotChargeV: HotChargeV defines the delta charge voltage (relative to warm) between temperatures T3 and T4,
relative to the warm setting, providing a range of WarmChargeV to WarmChargeV-140mV in -20mV steps. dHotChargeV
configuration is unsigned.
nJEITACfg Register (1DAh)
The nJEITACfg register shown in Table 15 sets precharging current, the overvoltage protection threshold, and the overvoltage protection release threshold. dOVP and dOVP are relative to the Charge Voltage that is set in the nJEITAV
register and have a 10mV resolution.
Table 15. nJEITACfg Register (1DAh) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
PreChg
D6
D5
D4
D3
dOVP
D2
D1
D0
dOVPR
PreChg: Sets the precharging current for the ChargingCurrent register. Do not set PreChg = 0. Precharge current is
calculated as:
PreChargeCurrent = nJEITAC.RoomChargingCurrent/(2 x PreChg)
dOVP: Sets JEITA overvoltage protection relative to ChargeVoltage (see nJEITAV). This is a positive number with 10mV
resolution and 150mV range. Overvoltage protection is calculated as:
OVP = ChargeVoltage + dOVP x 10mV
dOVPR: Sets overvoltage-protection release relative to the overvoltage protection setting. This is a positive number with
10mV resolution and is translated to a negative offset relative to OVP. Overvoltage-protection release is calculated as:
OVPR = OVP - dOVPR x 10mV
Current Protection Registers
nODSCTh Register (1DDh)
Register Type: Special
Nonvolatile Restore: Enabled if nNVCfg1.enODSC is set.
The nODSCTh register sets the current thresholds for each overcurrent alert. The format of the registers is shown in
Table 16.
Table 16. nODSCTh Register (1DDh) Format
D15
D14
X
www.analog.com
D13
D12
OCTH
D11
D10
D9
D8
D7
SCTH
D6
D5
D4
D3
D2
D1
D0
ODTH
Analog Devices | 53
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
X: Don't Care.
SCTH: Short-Circuit Threshold Setting. Sets the short-circuit threshold to a value between 0mV and -155mV with a step
size of -5mV. The SCTH bits are stored such that 0x1F = 0mV and 0x00 = -155mV. Short-circuit threshold is calculated
as -155mV + (SCTH x 5mV).
ODTH: Overdischarge Threshold Setting. Sets the overdischarge threshold to a value between 0mV and -77.5mV with
a step size of -2.5mV. The ODTH bits are stored such that 0x1F = 0mV and 0x00 = -77.5mV. Overdischarge threshold is
calculated as -77.5mV + (ODTH x 2.5mV).
OCTH: Overcharge Threshold Setting. Sets the overcharge threshold to a value between 0mV and 38.75mV with a
step size of 1.25mV. The OCTH bits are stored such that 0x1F = 0mV and 0x00 = 38.75mV. Overcharge threshold is
calculated as 38.75mV - (OCTH x 1.25mV).
Table 17 shows sample values of calculated mV thresholds for OCTH, SCTh, and ODTH. Equivalent current thresholds
are shown assuming a 0.010Ω sense resistor.
Table 17. OCTH, SCTh, and ODTH Sample Values
OCTH
SCTH
ODTH
0x00
38.75mV
3.875A
-155mV
-15.50A
-77.5mV
-7.75A
0x01
37.50mV
3.750A
-150mV
-15.00A
-75.0mV
-7.50A
0x02
36.25mV
3.625A
-145mV
-14.50A
-72.5mV
-7.25A
0x04
33.75mV
3.375A
-135mV
-13.50A
-67.5mV
-6.75A
0x08
28.75mV
2.875A
-115mV
-11.50A
-57.5mV
-5.75A
0x10
18.75mV
1.875A
-75mV
-7.50A
-37.5mV
-3.75A
0x14
13.75mV
1.375A
-55mV
-5.50A
-27.5mV
-2.75A
0x18
8.75mV
0.875A
-35mV
-3.50A
-17.5mV
-1.75A
0x1E
1.25mV
0.125A
-5mV
-0.50A
-2.5mV
0.25A
0x1F
0.00mV
0.000A
0mV
0.00A
0.0mV
0.00A
nODSCCfg Register (1DEh)
Register Type: Special
Nonvolatile Restore: Operates if nNVCfg1.enODSC is set.
The nODSCCfg register configures the delay behavior for the short-circuit, over-discharge-current, and over-chargecurrent comparators. The format of the register is shown in Table 18.
Table 18. nODSCCfg Register (1DEh) Format
D15
D14
D13
D12
X
1
X
X
D11
D10
SCDLY
D9
D8
D7
D6
D5
D4
X
1
X
1
D3
D2
D1
D0
OCDLY
X: Don't Care.
SCDLY: Short-Circuit Delay. Configure from 0x0 to 0xF to set short circuit detection debouncing delay between 70μs
and 985μs (70μs + 61μs x SCDLY). There may be up to 31μs of additional delay before the short-circuit's alert effects
the discharge FET.
OCDLY: Overdischarge and Overcharge Current Delay. Configure from 0x1 to 0xF to set overdischarge/overcharge
detection debouncing delay between 70μs and 14.66ms (70μs + 977μs x OCDLY).
nIPrtTh1 Register (1D3h)—Overcurrent Protection Thresholds
Register Type: Special
The nIPrtTh1 register shown in Table 19 sets upper and lower limits overcurrent protection when current exceeds the
configuration. The upper 8-bits set the overcharge current protection threshold and the lower 8-bits set the overdischarge
current protection threshold. Protection threshold limits are configurable with 400μV resolution over the full operating
range of the current register.
www.analog.com
Analog Devices | 54
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 19. nIPrtTh1 Register (1D3h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
OCCP
D4
D3
D2
D1
D0
ODCP
OCCP: Overcharge current-protection threshold in room temperature. Overcharge current-protection occurs when
current register reading exceeds this value. This field is signed 2's complement with 400μV LSb resolution to match the
upper byte of the current register. HotCOEF, WarmCOEF, and ColdCOEF rescales nIPrtTh1.OCCP in hot, warm, and
cold regions.
For example, in warm regions, overcharge current protection threshold updates to OCCP x WarmCOEF.
See nJEITAC register for HotCOEF, WarmCOEF, and ColdCOEF definition and nTPrtTh2 and nTPrtTh3 registers for
temperature region definition.
ODCP: Overdischarge current-protection threshold. Overdischarge current-protection occurs when current register
reading exceeds this value. This field is signed 2's complement with 400μV LSb resolution to match the upper byte of the
current register.
The fault delay for OCCP and ODCP is configured in nDelayCfg.OverCurrTimer.
nJEITAC Register (1D8h)
The nJEITAC register shown in Table 20 sets the nominal room temperature charging current and the coefficients to
scale the charging current across the temperature zones shown in Figure 3. The WarmCOEF, ColdCOEF, and HotCOEF
coefficients impact the charging current as well as OCCP and ODCP (See nIPrtTh1).
To disable the temperature dependence and create a flat charging current across the temperature range, set the lower
byte of nJEITAC to a value of 0xFF.
Table 20. nJEITAC Register (1D8h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
RoomChargingCurrent
D6
D5
WarmCOEF
D4
D3
D2
ColdCOEF
D1
D0
HotCOEF
RoomChargingCurrent: Sets the nominal room-temperature charging current. The LSB is 200μV.
HotCOEF: Coefficient 12.5% to 100% relative to RoomChargingCurrent for controlling the charge current at hot.
HotCOEF has a 12.5% LSB resolution. The resulting HotChargingCurrent is controlled by the following equation:
HotChargingCurrent = RoomChargingCurrent x (HotCOEF+1)/8
WarmCOEF: Coefficient 62.5% to 100% relative to RoomChargingCurrent for controlling the charge current at warm.
WarmCOEF has a 12.5% LSB resolution. The resulting WarmChargingCurrent is controlled by the following equation:
WarmChargingCurrent = RoomChargingCurrent x (WarmCOEF+5)/8
ColdCOEF: Coefficient 12.5% to 100% relative to RoomChargingCurrent for controlling the charge current at cold.
ColdCOEF has a 12.5% LSB resolution. The resulting ColdChargingCurrent is controlled by the following equation:
ColdChargingCurrent = RoomChargingCurrent x (ColdCOEF+1)/8
HotCOEF, WarmCOEF, and ColdCOEF also rescale nIPrtTh1.OCCP.
Temperature Protection Registers
nTPrtTh1 Register (1D1h)
Register Type: Special
The nTPrtTh1 register shown in Table 21 sets T1 "Too-Cold" and T4 "Too-Hot" thresholds which control JEITA and
provide charging (Too-Hot or Too-Cold) protection. nProtMiscTh.TooHotDischarge provides discharging (Too-Hot only)
protection. Threshold limits are signed and configurable with 1°C resolution over the full operating range Temp register.
Table 21. nTPrtTh1 Register (1D1h) Format
D15
D14
www.analog.com
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Analog Devices | 55
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 21. nTPrtTh1 Register (1D1h) Format (continued)
T4 ("Too-Hot")
T1 ("Too-Cold")
T1-T4 follow JEITA's naming convention for temperature ranges.
T1: JEITA "Too-Cold" temperature threshold. When Temp < T1, charging is considered unsafe and unhealthy, and the
MAX1730x/MAX1731x blocks charging.
T4: JEITA "Too-Hot" temperature threshold. When Temp > T4, charging is blocked by the MAX1730x/MAX1731x.
nTPrtTh2 Register (1D5h)
Register Type: Special
The nTPrtTh2 register shown in Table 22 sets T2 "Cold" and T3 "Hot" thresholds which control JEITA and modulate
charging (Hot or Cold) guidance and protection. Threshold limits are signed and configurable with 1°C resolution over the
full operating range Temp register.
Table 22. nTPrtTh2 (1D5h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
T3 ("Hot")
D3
D2
D1
D0
T2 ("Cold")
T1-T4 follow JEITA's naming convention for temperature ranges.
T2: JEITA "Cold" temperature threshold. When Temp < T2, charging current/voltage should be reduced, and the chargeprotection thresholds are adjusted accordingly.
T3: JEITA "Hot" temperature threshold. When Temp > T3, charging current/voltage should be reduced and the chargeprotection thresholds are adjusted accordingly.
nTPrtTh3 Register (1D2h) (beyond JEITA)
Register Type: Special
The nTPrtTh3 register shown in Table 23 sets Twarm and TpermFailHot thresholds which control JEITA and modulate
charging (Warm) guidance and protection. Threshold limits are signed and configurable with 1°C resolution over the full
operating range Temp register.
Table 23. nTPrtTh3 Register (1D2h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
TpermFailHot
D3
D2
D1
D0
Twarm
nTPrtTh3 defines protection thresholds beyond standard JEITA definition.
Twarm: Warm temperature threshold (between 'normal' and THot), giving an extra temperature region for changing
charging current and charging voltage control.
TpermFailHot: The IC goes into permanent failure mode (if enabled on the MAX17300-301/MAX17310-311 only), and
permanently disables the charge FET as well as trips the secondary protector (if installed) or blows the fuse (if installed).
Fault Timer Registers
nDelayCfg Register (1DCh)
Set nDelayCfg to configure debounce timers for various protection faults. A fault state is concluded only if the condition
persists throughout the duration of the timer.
Table 24. nDelayCfg (1DCh) Format
D15
D14
CHGWDT
D13
D12
FullTimer
D11
D10
D9
OVPTimer
D8
D7
D6
OverCurrTimer
D5
D4
PermFailTimer
D3
D2
TempTimer
D1
D0
UVPTimer
UVPTimer: Set UVPTimer to configure the Undervoltage-Protection timer.
Shutdown Timer: Set UVPTimer to configure the Shutdown timer. (DevName >= 0x4070 only)
www.analog.com
Analog Devices | 56
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 25. UVPTimer Settings
UVPTIMER SETTING
0
1
2
3
UVPTimer Configuration
0 to 351ms
351ms to 0.7s
0.7s to 1.4s
1.4s to 2.8s
Shutdown Timer Configuration
22.5s to 45s
45s to 90s
90s to 180s
3min to 6min
TempTimer: Set TempTimer to configure the fault-timing for the following faults: Too-Cold-Charging (TooColdC), TooHot-Charging (TooHotC), Die-Hot (DieHot), and Too-Hot-Discharging (TooHotD).
Table 26. TempTimer Setting
TEMPTIMER SETTING
0
1
2
3
Configuration
0 to 351ms
351ms to 0.7s
0.7s to 1.4s
1.4s to 2.8s
The TempTimer setting also controls the temperature transition delay which means if the MAX1730x/MAX1731x detects
a change in temperature region that results in the OVP level being reduced to a lower level due to the JEITA
configuration, there is a delay equal to the TempTrans configuration before the new lower OVP threshold goes into effect.
Table 27. TempTrans Configuration Settings
TEMPTIMER SETTING
0
1
2
3
TempTrans Configuration
3.151s to 4.55s
5.951s to 8.75s
11.55s to 17.15s
23.351s to 34.851
PermFailTimer: Set PermFailTimer to configure the fault timing for permanent failure detection. Generally, larger
configurations are preferred to prevent permanent failure unless some severe condition persists.
Table 28. PermFailTimer Settings
PERMFAILTIMER SETTING
0 (NOT RECOMMENDED)
1
2
3
Configuration
0 to 351ms
351ms to 0.7s
0.7s to 1.4s
1.4s to 2.8s
OverCurrTimer: Set OverCurrTimer to configure the slower overcurrent protection (the additional fast hardware
protection thresholds are described in nODSCCfg and nODSCTh). OverCurrTimer configures the fault timing for the slow
overcharge-current detection (OCCP) as well as overdischarge current detection (ODCP).
Table 29. OverCurrTimer Settings
OVERCURRTIMER
SETTING
0
1
2
3
4
5
6
7
Configuration
0-351ms
0.351s to
0.7s
0.7s to
1.4s
1.4sto
2.8s
2.8s to
5.6s
5.6s to
11.25s
11.25s to
22.5s
22.5s to
45s
OVPTimer: Set OVPTimer to configure the fault timing for overvoltage protection.
Table 30. OVPTimer Settings
OVPTIMER SETTING
0
1
2
3
Configuration
0 to 351ms
351ms to 0.7s
0.7s to 1.4s
1.4s to 2.8s
FullTimer: Set FullTimer to configure the timing for full detection. When charge-termination conditions are detected and
after the timeout, the CHG FET turns off (if feature is enabled).
Table 31. FullTimer Settings
FULLTIMER
SETTING
0
1
2
3
4
5
6
7
Configuration
22s to
33s
45s to
67s
1.5min to
2.25min
3min to
4.5min
6min to
9min
12min to
18min
24min to
36min
72min to
1.6hr
CHGWDT: Set CHGWDT to configure the charger communication watchdog timer. If enabled, the MAX173xx chargeprotects whenever the host has stopped communicating longer than this timeout.
www.analog.com
Analog Devices | 57
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 32. ChgWDT Settings
CHGWDT SETTING
0
1
2
3
Configuration
11.2s to 22.5s
22.5s to 45s
45s to 90s
90s to 3min
Battery Internal Self-Discharge Detection Registers (MAX17300/MAX1310 Only)
Factory Default nCheckSum Value: 10F0h
To enable the ISD feature using the coulombic-efficiency (CE) method, configure LeakFaultCfg, LeakCurrTh, and CEEn
as shown in [[nCheckSum Register (1DFh) Format]]. Choose the alert and fault mode with LeakFaultCfg and configure
the thresholds with LeakCurrTh, as shown in Table 34. When the ISD alerts are enabled, any leakage current detected
beyond the threshold is indicated by the ProtAlrt.LDET bit and Status.PA bit (if nConfig.ProtAlrtEn = 1). If the ALRT pin
is enabled for alerts (nConfig.Aen = 1 and nConfig.ProtAlrtEn = 1), then the pin indicates the ISD alert. To service the
alert, first clear the ProtAlrt register and then clear Status.PA. The event is also indicated in nBattStatus.LDET, which is
recorded in the permanent lifelog.
The reported leakage-current measurement can be read from two different different registers:
● LeakCurrRep = 15-bit unsigned left-justified value with an LSB of 1.5625μV/16 (or 0.15625mA/16 with 10mΩ sense
resistor)
● nBattStatus.LeakCurr = 8-bit unsigned value with an LSB of 3.125μV (or 0.3125mA with 10mΩ sense resistor)
Contact Maxim for configuring the ISD feature.
Table 33. nCheckSum Register (1DFh) Format
D15
D14
D13
LeakFaultCfg
D12
D11
CEEn
D10
D9
D8
D7
D6
LeakCurrTh
D5
D4
D3
D2
D1
D0
CheckSum
Table 34. Alert and Fault Mode Settings
LEAKFAULTCFG
SETTING
DESCRIPTION
LEAKCURRTH RESOLUTION
ALERT RANGE
FAULT RANGE
Note: Leakage current above LeakCurrTh triggers an alert/fault. Currents refer to
the 10mΩ RSENSE.
000
Disabled
001
Alert Only
010
Fault = Alert +
2.5mA
0.3125mA
0.3125mA
to 5mA
2.8125mA to 7.5mA
011
Fault = Alert + 5mA
5.3125mA to 10mA
100
Fault Only (+2.5mA
offset)
3.125mA to 12.5mA
101
Alert Only
110
Fault = Alert +
2.5mA
111
Fault = Alert + 10mA
0.625mA
0.625mA
to 10mA
3.125mA to 12.5mA
10.625mA to 20mA
X: Don't Care
CEEn: Coulombic-Efficiency (CE) Method Enable. Set to 1 to enable self-discharge detection.
LeakFaultCfg: Leakage Fault Configuration. Set LeakFaultCfg to configure the alert and fault behavior as shown in Table
34.
LeakCurrTh: Leakage Current Threshold is an unsigned 4-bit threshold for leakage current alert and fault generation.
The LSB resolution is either 0.3125mA or 0.625mA based on the LeakFaultCfg setting as shown in Table 34. When alerts
and faults are both enabled, the fault threshold is either 2.5mA, 5mA, or 10mA above the alert threshold as shown in the
Description column of Table 34.
CheckSum: Protector NVM CheckSum. CheckSum is the checksum value of the protection registers for validating NVM
www.analog.com
Analog Devices | 58
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
at startup when nNVCfg1.enProtChksm = 1.
LeakCurrRep Register (0x16F)
The LeakCurrRep register contains the reported leakage current when it is enabled with nCheckSum.CEEn as shown in
Table 35.
Table 35. LeakCurrRep Register (0x16F) Format
D15
D14
D13
D12
D11
D10
D9
0
D8
D7
D6
D5
D4
D3
D2
D1
D0
Reported LeakCurrent
Reported LeakCurrent: Reported Leak Current is an unsigned 15-bit leakage current. This register stores the reported
leakage current with an LSB of 1.5625μV/16 (or 0.15625mA/16 with a 10mΩ sense resistor). The range is 0mA to
319.99mA.
Status/Configuration Protection Registers
nProtCfg Register (1D7h)
The Protection Configuration register contains enable bits for various protection functions.
Table 36. nProtCfg Register (1D7h) Format
D15
D14
D13
ChgWDTEn
0
0
D12
D11
SCTest
D10
D9
D8
CmOvrdEn
1
Reserved
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
PFEn
DeepShpEn
OvrdEn
UVRdy
FetPFEn
BlockDisCEn
DeepShp2En
PFEn: PermFail Enable (MAX17300-301/MAX17310-311). Set PFEn = 1 to enable the detection of a permanent failure
to permanently turn the FETs off. All types of permanent failures operate only if PFEn = 1 and are all disabled if PFEn =
0.
FetPFEn: FET PermFail Enable (MAX17300-301/MAX17310-311). Set to 1 to enable Charge FET failure detection and
Discharge FET failure detection, which registers a permanent failure and permanently turns the FETs off.
UVRdy: Undervoltage Ready. In the undervoltage protected state (but higher than undervoltage shutdown), this bit
chooses whether or not the CHG FET remains enabled. Configure UVRdy = 0 to keep the CHG FET and corresponding
pumps powered during undervoltage protection. In this state, the pack is quickly responsive to charger connection, but
the quiescent consumption remains at the full-active rate (see Table 8). Configure UVRdy = 1 to disable the CHG FET
and corresponding charge pumps during undervoltage protection. In this state, the consumption drops to the protected
and awake rate, but there is a hibernate latency (set by nHibCfg.HibScalar) between when the charger is applied and
when the battery begins charging.
OvrdEn: Override Enable. Set OvrdEn = 1 to enable the Alert pin to be an input to disable the protection FETs.
DeepShpEn: Set DeepShpEn = 1 and DeepShp2En = 0 to associate shutdown actions (I2C shutdown command or
communication removal) with deep ship mode (IQDS). All registers power down in this mode. Set DeepShpEn = 0 to
continue full calculations but with protector disabled (CHGEn = 0, DISEn = 0, pump off), operating at the Ship mode
consumption rate (IQS).
DeepShp2En: Set DeepShp2En = 1 to associate shutdown actions (I2C shutdown command or communication
removal) with DeepShip2 mode (IQDS2). (MAX17300/MAX17310 only)
CmOvrdEn: Comm Override Enable. This bit when set to 1 allows the CHGOff and DISOff bits in CommStat to be set
by I2C/1-Wire communication to turn off the protection FETs.
SCTest: Set SCTest = 01 to source 30μA from BATT to PCKP for testing the presence/removal of any overload/shortcircuit at PCKP. SCTest is only used during special circumstances when DIS = off. Particularly if an overdischarge current
fault has been tripped. Firmware sets SCTest to push 30μA into PCKP. If PCKP rises above the SCDet (Short-Circuit
Detection) threshold (1V), then the overload is considered "removed" and safe to reconnect the DIS FET.
ChgWDEn: Charger WatchDog Enable. If the charger watchdog feature is enabled, the protector disallows charging
if communication has not been detected for more than the Charger WatchDog delay that is configured in
www.analog.com
Analog Devices | 59
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
nDelayCfg.ChgWdg.
BlockDisCEn: Block Discharge at TooCold Enable. If the block discharge at cold is enabled, the protector also disallows
discharging when the temperature is below the TooCold Threshold (nTPrtTh1). (MAX17300/MAX17310 only)
nBattStatus Register (1A8h)
Battery Status Nonvolatile Register
The Battery Status register contains the permanent battery status information. If nProtCfg.PFen = 1, then a permanent
fail results in permanently turning the FETs off to ensure the safety of the battery.
Table 37. nBattStatus Register (1A8h) Format
D15
D14
D13
D12
D11
D10
D9
D8
PermFail
OVPF
OTPF
CFETFs
DFETFs
FETFo
LDet
ChksumF
D7
D6
D5
D4
D3
D2
D1
D0
LeakCurr
PermFail: Permanent Failure. This bit is set if any permanent failure is detected.
CFETFs: ChargeFET Failure-Short Detected. If the MAX1730x/MAX1731x detects that the charge FET is shorted and
cannot be opened, it sets the CFETFs bit and the PermFail bit. This function is enabled with nProtCfg.FetPFEn.
DFETFs: DischargeFET Failure-Short Detected. If the MAX1730x/MAX1731x detects that the discharge FET is shorted
and cannot be opened, it sets the DFETFs and the PermFail bit. This function is enabled with nProtCfg.FetPFEn.
FETFo: FET Failure Open. If the MAX1730x/MAX1731x detects an open FET failure, it sets FETFo. In this case, it is not
possible to distinguish which FET is broken. This function is enabled with nProtCfg.FetPFEn.
LDet: Leakage Detection Fault. This bit is set when a leakage detection fault has been detected.
ChksumF: Checksum Failure. ChksumF protection related NVM configuration registers checksum failure. In the case of
a checksum failure, the device sets the PermFail bit but does not write it to NVM in order to prevent using an additional
NVM write. This allows the PermFail bit to be cleared by the host so that the INI file can be reloaded.
LeakCurr: Leakage Current. Leakage current is an unsigned 8-bit result of leakage current from self-discharge in a cell.
This field saves the leakage current from the LeakCurrRep register. The LSB for this field is 3.125μV (or 0.625mA with a
5mΩ RSENSE with a range of 0mA to 159.375mA).
ProtStatus Register (0D9h)
The Protection Status register contains the Fault States of the Protection State Machine.
Table 38. ProtStatus Register (0D9h) Format
D15
D14
D13
D12
D11
D10
D9
D8
ChgWDT/BlockChg
TooHotC
Full
TooColdC
OVP
OCCP
Qovflw
0
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
PermFail
DieHot
TooHotD
UVP
ODCP
TooColdD
Shdn
Shdn: A flag to indicate the Shutdown Event status to Protector module for further action on Charging/Discharging FETs,
Charge Pump and PkSink.
PermFail: Permanent Failure Detected. See nBatteryStatus for details of the Permanent Failure.
Discharging Faults:
ODCP—Overdischarge current protection
UVP—Undervoltage Protection
VPreQual—PreQual Voltage
TooHotD—Overtemperature for Discharging
TooColdD—Undertemperature for Discharging (If enabled with nProtCfg.BlockDisCEn = 1) (MAX17300/
www.analog.com
Analog Devices | 60
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
MAX17310 only)
DieHot—Overtemperature for die temperature
Charging Faults:
TooHotC—Overtemperature for Charging
OVP—Overvoltage
OCCP—Overcharge Current Protection
Qovrflw—Q Overflow
TooColdC—Undertemperature
Full—Full Detection
ChgWDT—Charge Watch Dog Timer
BlockChg—Block Charge by Parallel Charging Management (MAX17300/MAX17310 only)
DieHot—Overtemperature for Die Temperature
ProtAlrt Register (0AFh)
The Protection Alerts register (MAX17300/MAX17310 only) contains a history of any protection events that have been
logged by the device and is formatted as shown in Table 39. If any bit of ProtAlrt is 1, then the Status.PA bit is also 1 if
Config.ProtAlrtEn = 1. Once a bit is set, it remains set until cleared by the host. The Alert pin is driven low if Config.AEn
= 1 and Config.ProtAlrtEn = 1. The bits in ProtAlrt mirror the bits in ProtStatus with the exception of the RegionChange
and LDET bits.
Table 39. ProtAlrt Register (0AFh) Format
D15
D14
D13
D12
D11
D10
D9
D8
ChgWDT
TooHotC
Full
TooColdC
OVP
OCCP
Qovflw
Reserved
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
RegionChange
DieHot
TooHotD
UVP
ODCP
TooColdD
LDet
HConfig2 Register (0F5h)
Register Type: Special
Nonvolatile Backup: None
The status of the discharge FET and charge FET can be monitored in the HConfig2 register as shown in Table 40.
Table 40. HConfig2 (0F5h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
x
x
x
x
x
x
x
x
DISs
CHGs
x
x
x
x
x
x
DISs: Discharge FET Status. DISs = 1 indicates the discharge FET is on and allows discharge current. DISs = 0
indicates the discharge FET is off and blocks discharge current.
CHGs: Charge FET Status. CHGs = 1 indicates the charge FET is on and allows charge current. CHGs = 0 indicates
the charge FET is off and blocks charge current.
X: Reserved.
Other Protection Registers
nProtMiscTh Register (1D6h)
Register Type: Special
The nProtMiscTh register is shown in Table 41 and sets a few miscellaneous protection thresholds.
www.analog.com
Analog Devices | 61
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 41. nProtMiscTh Register (1D6h) Format
D15
D14
D13
D12
D11
QovflwTh
D10
D9
D8
D7
TooHotDischarge
D6
D5
D4
D3
CurrDet
D2
D1
D0
DieTempTh
DieTempTh: Sets the dietemp overtemperature protection threshold relative to 50°C and has an LSB of 5°C. DieTempTh
defines the delta between 50°C and the dietemp protection threshold. The range is 50°C and 125°C.
CurrDet: CurrDet is configurable from 25μV/RSENSE to 400μV/RSENSE in 25μV/RSENSE steps (equivalent to 2.5mA to
40mA in 2.5mA steps with a 0.010Ω sense resistor). It is a threshold to detect discharging and charging event from the
device perspective. If (current > CurrDet) charging; if (current < -CurrDet) discharging.
TooHotDischarge: Sets the over-temperature protection threshold associated with discharge. TooHotDischarge has
2°C LSB's and defines the delta between Over-Temp-Charge (nTPrtTh1.T4) and Over-Temp-Discharge. The range is
nTPrtTh1.T4(TooHot) to nTPrtTh1.T4(TooHot) + 30°C.
QovflwTh: QovflwTh sets the coefficient for the Qoverflow protection threshold. Qoverflow protection threshold =
designCap x coefficient. The MAX1730x/MAX1731x monitors the delta Q between the Q at the start of charge and
the current Q. If the delta Q exceeds the Qoverflow protection threshold, indicating that the charger has charged more
than the expected capacity of the battery, then a ProtStatus.Qovrflw fault is generated. The coefficient is calculated as:
coefficient = 1.0625 + (QovflwTh x 0.0625).
Charging Prescription Registers
ChargingCurrent Register (028h)
Register Type: Current
Nonvolatile Backup: None
The ChargingCurrent register reports the prescribed charging current.
ChargingVoltage Register (02Ah)
Register Type: Voltage
Nonvolatile Backup: None
The ChargingVoltage register reports the prescribed charging voltage.
nStepChg Register (1DBh)
The nStepChg register defines the step-charging prescription as shown in Figure 7.
Note: This only effects the ChargingCurrent output register which prescribes a charge current from the external charger.
To disable step-charging, set nStepChg = 0xFF00.
Table 42. nStepChg Register (1DBh) Format
D15
D14
D13
D12
StepCurr1
D11
D10
D9
StepCurr2
D8
D7
D6
D5
StepdV0
D4
D3
D2
D1
D0
StepdV1
StepCurr1 and StepCurr2: Both of these register bit-fields scale the JEITA charge current down by a 4-bit ratio from 1/
16 to 16/16.
StepdV0 and StepdV1: These register bit-fields configure StepVolt0 and StepVolt1 relative to the JEITA charge voltage.
Both registers are negative offsets relative to JEITA ChargeVoltage, and both registers support 10mV LSB.
ModelGauge m5 Algorithm
ModelGauge m5 Registers
For accurate results, ModelGauge m5 uses information about the cell and the application as well as the real-time
information measured by the IC. Figure 13 shows inputs and outputs to the algorithm grouped by category. Analog
input registers are the real-time measurements of voltage, temperature, and current performed by the IC. Applicationspecific registers are programmed by the customer to reflect the operation of the application. The Cell Characterization
www.analog.com
Analog Devices | 62
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
AVCAP / AVSOC
CURRENT
REPCAP / REPSOC
TEMPERATURE
MIXCAP / MIXSOC
AVGVCELL
FULLCAP
AVGCURRENT
FULLCAPREP
AVGTEMPERATURE
FULLCAPNOM
TTE / TTF / AtTTE
NDESIGNVOLT
VFOCV / VFSOC
NDESIGNCAP
VRIPPLE
NICHGTERM
Characterization
Table
CHARACTERIZATION
Characterization
Table
TABLES
NQRTABLES00,10,20,30
NFULLSOCTHR
NRCOMP0
NFULLCAPNOM
NVEMPTY
NTEMPCO
MODELGAUGE m5
ALGORITHM
AGE
AGEFORECAST
CYCLES
NRIPPLECFG
NCONVGCFG
NCVCFG
NAGEFCCFC
NLEARNCFG
NFLITERCFG
NRELAXCFG
NMISCCFG
NIAVGEMPTY
ATRATE
FULLCAPNOM
ALGORITHM
CONFIGURATION
CELL CHARACTERIZATION
INFORMATION
APPLICATION
SPECIFIC
RSLOW
MODELGAUGE
ALGORITHM OUTPUTS
VCELL
CYCLES
TIMERH
NQRTABLES00,10,20,30
NIAVGEMPTY
RCOMP0
TEMPCO
FULLCAPREP
LEARNED INFORMATION
ANALOG INPUTS
Information registers hold characterization data that models the behavior of the cell over the operating range of the
application. The Algorithm Configuration registers allow the host to adjust performance of the IC for its application. The
Learned Information registers allow an application to maintain accuracy of the fuel gauge as the cell ages. The register
description sections describe each register function in detail.
Figure 13. ModelGauge m5 Registers
ModelGauge m5 Algorithm Output Registers
The following registers are outputs from the ModelGauge m5 algorithm. The values in these registers become valid
480ms after the IC is reset.
RepCap Register (005h)
Register Type: Capacity
Nonvolatile Backup: None
RepCap or Reported Capacity is a filtered version of the AvCap register that prevents large jumps in the reported value
caused by changes in the application such as abrupt changes in temperature or load current. See the Fuel-Gauge Empty
Compensation section for details.
www.analog.com
Analog Devices | 63
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
RepSOC Register (006h)
Register Type: Percentage
Nonvolatile Backup: None
RepSOC is a filtered version of the AvSOC register that prevents large jumps in the reported value caused by changes
in the application such as abrupt changes in load current. RepSOC corresponds to RepCap and FullCapRep. RepSOC
is intended to be the final state of charge percentage output for use by the application. See the Fuel-Gauge Empty
Compensation section for details.
FullCapRep Register (010h)
Register Type: Capacity
Nonvolatile Backup and Restore: nFullCapRep (1A9h) or nFullCapNom (1A5h)
This register reports the full capacity that goes with RepCap, generally used for reporting to the user. A new full-capacity
value is calculated at the end of every charge cycle in the application.
TTE Register (011h)
Register Type: Time
Nonvolatile Backup: None
The TTE register holds the estimated time-to-empty for the application under present temperature and load conditions.
The TTE value is determined by dividing the AvCap register by the AvgCurrent register. The corresponding AvgCurrent
filtering gives a delay in TTE empty, but provides more stable results.
TTF Register (020h)
Register Type: Time
Nonvolatile Backup: None
The TTF register holds the estimated time to full for the application under present conditions. The TTF value is
determined by learning the constant current and constant voltage portions of the charge cycle based on experience of
prior charge cycles. Time-to-full is then estimated by comparing present charge current to the charge termination current.
Operation of the TTF register assumes all charge profiles are consistent in the application. See the Typical Operating
Characteristics for sample performance.
Age Register (007h)
Register Type: Percentage
Nonvolatile Backup: None
The Age register contains a calculated percentage value of the application’s present cell capacity compared to its
expected capacity. The result can be used by the host to gauge the battery pack health as compared to a new pack of
the same type. The equation for the register output is:
Age Register = 100% x (FullCapNom register/DesignCap register)
Cycles Register (017h) and nCycles (1A4h)
Register Type: Special
Nonvolatile Backup and Restore: nCycles (1A4h)
The Cycles register maintains a total count of the number of charge/discharge cycles of the cell that have occurred. The
result is stored as a percentage of a full cycle. For example, a full charge/discharge cycle results in the Cycles register
incrementing by 100%. The Cycles register has a full range of 0 to 16383 cycles with a 25.0% LSb. Cycles is periodically
saved to nCycles to provide a long term nonvolatile cycle count.
Table 43. Cycles Register (017h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
CycleCount (LSb 25%)
www.analog.com
Analog Devices | 64
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 44. nCycles Register (1A4h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
CycleCount (LSb 25%, 50%, 100%, or 200%)
D1
D0
nFib
The LSb of Cycles register is 25%.
The LSb of nCycles.CycleCount depends on the setting of nNVCfg2.fibScl as shown in Table 45.
Configure nFib = 0 for any new pack. nFib is a reset counter which controls Fibonacci-saving reset accelleration (see 100
Record Life Logging section). Each reset followed by any nonvolatile save increases by 1. Maximum value is 7 without
overflow.
Table 45. nNVCfg2.FibScl Setting Determines LSb of nNVCfg2.CyclesCount
NNVCFG2.FIBSCL
NCYCLES.CYCLECOUNT LSB
00b
25%
01b
50%
10b
100%
11b
200%
TimerH Register (0BEh)
Register Type: Special
Nonvolatile Backup and Restore: nTimerH (1AFh) if nNVCfg2.enT is set
Alternate Initial Value: 0x0000
This register allows the IC to track the age of the cell. An LSb of 3.2 hours gives a full scale range for the register of up
to 23.94 years. If enabled, this register is periodically backed up to nonvolatile memory as part of the learning function.
FullCap Register (010h)
Register Type: Capacity
Nonvolatile Restore: Derived from nFullCapNom (1A5h)
This register holds the calculated full capacity of the cell based on all inputs from the ModelGauge m5 algorithm including
empty compensation. A new full-capacity value is calculated continuously as application conditions change.
nFullCapNom Register (1A5h)
Register Type: Capacity
Nonvolatile Backup and Restore: FullCapNom (023h)
This register holds the calculated full capacity of the cell, not including temperature and empty compensation. A new fullcapacity nominal value is calculated each time a cell relaxation event is detected. This register is used to calculate other
outputs of the ModelGauge m5 algorithm.
RCell Register (014h)
Register Type: Resistance
Nonvolatile Backup: None
Initial Value: 0x0290
The RCell register displays the calculated internal resistance of the cell, or average internal resistance of each cell in the
cell stack. RCell is determined by comparing open-circuit voltage (VFOCV) against measured voltage (VCell) over a long
time period while under load current.
VRipple Register (0B2h)
Register Type: Special
Nonvolatile Backup: None
www.analog.com
Analog Devices | 65
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Initial Value: 0x0000
The VRipple register holds the slow average RMS value of VCell register reading variation compared to the AvgVCell
register. The default filter time is 22.5s. See nRippleCfg register description. VRipple has an LSb weight of 1.25mV/128.
nVoltTemp Register (1AAh)
Register Type: Special
Nonvolatile Backup: AvgVCell and AvgTA registers if nNVCfg2.enVT = 1
This register has dual functionality depending on configuration settings. If nNVCfg2.enVT = 1, this register provides
nonvolatile back up of the AvgVCell and AvgTA registers as shown in Table 46.
Table 46. nVoltTemp Register (1AAh) Format when nNVCfg2.enVT = 1
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
AvgVCell Upper 9 Bits
D3
D2
D1
D0
AvgTA Upper 7 Bits
Alternatively, if nNVCfg0.enAF = 1, this register stores an accumulated age slope value to be used with the Age
Forecasting algorithm. Regardless of which option is enabled, this register is periodically saved to nonvolatile memory as
part of the learning function. If neither option is enabled, this register can be used as general purpose user memory.
SOCHold Register (0D0h)
Register Type: Special
The SOCHold register configures operation of the hold before empty feature and also the enable bit for 99% hold during
charge. The default value for SOCHold is 0x1002. Table 47 shows the SOCHold register format.
Table 47. SOCHold (0D0h) Format
D15
D14
D13
D12
0
0
0
99%HoldEn
D11
D10
D9
D8
D7
EmptyVoltHold
D6
D5
D4
D3
D2
D1
D0
EmptySocHold
EmptyVoltHold: The positive voltage offset that is added to VEmpty. At VCell = VEmpty + EmptyVoltHold point, the
empty detection/learning is occured. EmptyVoltHold has an LSb of 10mV giving a range of 0 to 1270mV.
EmptySocHold: It is the RepSOC at which RepSOC is held constant. After empty detection/learning occurs, RepSOC
update continues as expected. EmptySocHold has an LSb of 0.5%, giving it a full range of 0 to 15.5%.
99%HoldEn: Enable bit for 99% hold feature during charging. When enabled, RepSOC holds a maximum value of 99%
until Full Qualified is reached.
ModelGauge m5 EZ Performance
ModelGauge m5 EZ performance provides plug-and-play operation of the IC. While the MAX1730x/MAX1731x can be
custom tuned to the applications battery through a characterization process for ideal performance, the IC has the ability
to provide reasonable performance for most applications with no custom characterization required.
While EZ performance provides reasonable performance for most cell types, some chemistries such as lithium-ironphosphate (LiFePO4) and Panasonic NCR/NCA series cells require custom characterization for best performance.
EZ performance targets 3.3V as the empty voltage for the application. Contact Maxim for details of the custom
characterization procedure.
www.analog.com
Analog Devices | 66
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
OCV Estimation and Coulomb Count Mixing
The core of the ModelGauge m5 algorithm is a mixing algorithm that combines the OCV state estimation with the coulomb
counter. After power-on reset of the IC, coulomb-count accuracy is unknown. The OCV state estimation is weighted
heavily compared to the coulomb count output. As the cell progresses through cycles in the application, coulomb-counter
accuracy improves and the mixing algorithm alters the weighting so that the coulomb-counter result is dominant. From
this point forward, the IC switches to servo mixing. Servo mixing provides a fixed magnitude continuous error correction to
the coulomb count, up or down, based on the direction of error from the OCV estimation. This allows differences between
the coulomb count and OCV estimation to be corrected quickly. See Figure 14.
The resulting output from the mixing algorithm does not suffer accumulation drift from current measurement offset
error and is more stable than a stand-alone OCV estimation algorithm. See Figure 15. Initial accuracy depends on the
relaxation state of the cell. The highest initial accuracy is achieved with a fully relaxed cell.
OCV AND COULOMB
COUNT MIXING RATIO
100%
COULOMB COUNT
INFLUENCE
SERVO MIXING
OCV INFLUENCE
0%
0
0.50
1.00
1.50
2.00
CELL CYCLES
Figure 14. Voltage and Coulomb Count Mixing
www.analog.com
Analog Devices | 67
STATE OF CHARGE ERROR (%)
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
MAXIMUM COULOMB COUNTER ERROR
(±0.1% PER HOUR IN THIS EXAMPLE)
TYPICAL OCV ESTIMATION
ERROR AS CELL IS CYCLED
(SHADED AREA)
MODELGAUGE OCV + COULOMB COUNT
MIXING MAXIMUM ERROR RANGE
TIME
Figure 15. ModelGauge m5 Typical Accuracy Example
Empty Compensation
As the temperature and discharge rate of an application changes, the amount of charge available to the application also
changes. The ModelGauge m5 algorithm distinguishes between remaining capacity of the cell, remaining capacity of the
application, and reports both results to the user.
The MixCap output register tracks the charge state of the cell. This is the theoretical mAh of charge that can be removed
from the cell under ideal conditions—extremely low discharge current and independent of cell voltage. This result is not
affected by application conditions such as cell impedance or minimum operating voltage of the application. ModelGauge
m5 continually tracks the expected empty point of the application in mAh. This is the amount of charge that cannot be
removed from the cell by the application because of minimum voltage requirements and internal losses of the cell. The
IC subtracts the amount of charge not available to the application from the MixCap register and reports the result in the
AvCap register.
Since available remaining capacity is highly dependent on discharge rate, the AvCap register can be subject to large
instantaneous changes as the application load current changes. The result can increase, even while discharging, if the
load current suddenly drops. This result, although correct, can be very counter-intuitive to the host software or end
user. The RepCap output register contains a filtered version of AvCap that removes any abrupt changes in remaining
capacity. RepCap converges with AvCap over time to correctly predict the application empty point while discharging or
the application full point while charging. Figure 16 shows the relationship of these registers.
www.analog.com
Analog Devices | 68
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
LOAD INCREASES
CAPACITY (mAh)
MIXCAP REGISTER
ABSOLUTE mAh STATE OF BATTERY NOT
CONSIDERING TEMPERATURE AND DISCHARGE
RATE
(I.E. CAPACITY AVAILABLE IF VERY LIGHT LOAD)
INCREASE IN AVAILABLE CAPACITY WHEN
UNDER LOAD IS COUNTERINTUITIVE TO
USERS AND OPERATING SYSTEMS
AVCAP REGISTER
AVAILABLE CAPACITY OF THE
CELL UNDER PRESENT
CONDITIONS
REPCAP REGISTER
REPORTED CAPCITY WITH NO SUDDENT
JUMPS AND CORRECT FORECAST OF
EMPTY
EMPTY
TIME (h)
Figure 16. Handling Changes in Empty Calculation
End-of-Charge Detection
The IC detects the end of a charge cycle when the application current falls into the band set by the IChgTerm register
value while the VFSOC value is above the FullSOCThr register value. By monitoring both the Current and AvgCurrent
registers, the device can reject false end-of-charge events such as application load spikes or early charge-source
removal. See the End-of-Charge Detection graph in the Typical Operating Characteristics and Figure 17. When a proper
end-of-charge event is detected, the device learns a new FullCapRep register value based on the RepCap register
output. If the old FullCapRep value was too high, it is adjusted on a downward slope near the end-of-charge as defined
by the MiscCfg.FUS setting until it reaches RepCap. If the old FullCapRep was too low, it is adjusted upward to match
RepCap. This prevents the calculated state-of-charge from ever reporting a value greater than 100%. See Figure 18.
Charge termination is detected by the IC when the following conditions are met:
• VFSOC register > FullSOCThr register
• AND IChgTerm x 0.125 < Current register < IChgTerm x 1.25
• AND IChgTerm x 0.125 < AvgCurrent register < IChgTerm x 1.25
www.analog.com
Analog Devices | 69
CHARGING
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
AVGCURRENT
CURRENT
1.25 x ICHGTERM
0.125 x ICHGTERM
CHARGING
DISCHARGING
0mA
HIGH CURRENT LOAD SPIKES DO NOT GENERATE
END-OF-CHARGE DETECTION BECAUSE CURRENT
AND AVERAGE CURRENT READINGS DO NOT FALL
INTO THE DETECTION AREA AT THE SAME TIME.
AVGCURRENT
CURRENT
1.25 x ICHGTERM
0.125 x ICHGTERM
DISCHARGING
0mA
EARLY CHARGER REMOVAL DOES NOT GENERATE
END-OF-CHARGE DETECTION BECAUSE CURRENT
AND AVERAGE CURRENT READINGS DO NOT FALL
INTO THE DETECTION AREA AT THE SAME TIME.
Figure 17. False End-of-Charge Events
www.analog.com
Analog Devices | 70
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
CHARGING
MAX17300-MAX17303/
MAX17310-MAX17313
AVGCURRENT
CURRENT
1.25 x ICHGTERM
0.125 x ICHGTERM
DISCHARGING
0mA
CORRECT
END-OF-CHARGE
DETECTION AREA
CASE 1: OLD FULLCAPREP TOO HIGH
NEW FULLCAPREP
CASE 2: OLD FULLCAPREP TOO LOW
REPCAP
Figure 18. FullCapRep Learning at End-of-Charge
Smart-Full (MAX17300/MAX17310 Only)
Smart-full charge termination declares an end-of-charge based on the true state of the battery as determined by the
open-circuit-voltage (OCV) of the cell. Typical end-of-charge detection is highly variable with temperature and state of
the battery. Relying on the OCV of the cell for charge termination is highly reliable as shown in Figure 19.
www.analog.com
Analog Devices | 71
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
4.15V CHARGER
TERMINATED
4.1V CHARGER
TERMINATED
4.15V
4.1V
CELLS RELAX TO SAME OCV STATE
4.05V
0mA
Figure 19. Smart-Full Example
Smart-full enables:
● Lifespan extension combined with faster charging. Smart-full is an alternative to reduced charging voltage (for
example 4.1V charging) to extend the life of a battery. Smart-full offers an alternative strategy allowing conventional
charge voltage (example 4.15V). Smart-full controls termination to the same battery state as the reduced charger
voltage approach.
● Faster charging to normal state by charging to higher cell voltage. Smart-full allows a higher charging voltage to
be used, but prevents the OCV of the cell from exceeding the user-defined smart-full threshold.
● Better normal charge termination. Better control of charge termination even for normal 4.2V charging. Smart-full is
more accurate than the traditional charge current termination approach. It is especially robust against:
•
•
•
•
Adapter current limit interaction
Recharging near full
Charge control at hot and cold
Aged battery
The MAX17300/MAX17310 support smart-full charge termination and open the CHG FET when the VFOCV (estimated
open-circuit voltage) is greater than the smart-full threshold and the nDelayCfg.FullTimer expires. See nMiscCfg2 for
details.
www.analog.com
Analog Devices | 72
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Fuel Gauge Learning
The IC periodically makes internal adjustments to cell characterization and application information to remove initial error
and maintain accuracy as the cell ages. These adjustments always occur as small under-corrections to prevent instability
of the system and prevent any noticeable jumps in the fuel-gauge outputs. Learning occurs automatically without any
input from the host. In addition to estimating the battery’s state-of-charge, the IC observes the battery’s relaxation
response and adjusts the dynamics of the voltage fuel gauge. Registers used by the algorithm include:
• Application Capacity (FullCapRep Register). This is the total capacity available to the application at full, set through
the IChgTerm and FullSOCThr registers as described in the End-of-Charge Detection section. See the FullCapRep
register description.
• Cell Capacity (FullCapNom Register). This is the total cell capacity at full, according to the voltage fuel gauge. This
includes some capacity that is not available to the application at high loads and/or low temperature. The IC periodically
compares percent change based on an open circuit voltage measurement vs. coulomb-count change as the cell charges
and discharges, maintaining an accurate estimation of the pack capacity in mAh as the pack ages. See Figure 20.
• Voltage Fuel-Gauge Adaptation. The IC observes the battery’s relaxation response and adjusts the dynamics of the
voltage fuel gauge. This adaptation adjusts the RComp0 register during qualified cell relaxation events.
• Empty Compensation. The IC updates internal data whenever cell empty is detected (VCell < VEmpty) to account for
cell age or other cell deviations from the characterization information.
www.analog.com
Analog Devices | 73
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
RELAXATION EVENTS
100%
90%
VFSOC (%)
80%
70%
60%
50%
D%4
D%1
D%5
OBSERVED SIZE OF BATTERY:
D%2
40%
30%
20%
10%
FULLCAPNOM =
COULOMB COUNT (mAh)
1200mAh
1100mAh
1000mAh
900mAh
800mAh
700mAh
600mAh
500mAh
400mAh
300mAh
200mAh
100mAh
DPACC
x 100%
WHERE:
D%3
0%
DQACC
DQACC=|DQ1|+|DQ2| +|DQ3| ...
DPACC=|D%1|+|D%2| +|D%3| ...
DQ4
DQ1
DQ5
DQ2
DQ3
0mAh
Figure 20. FullCapNom Learning
Converge-To-Empty
The MAX1730x/MAX1731x includes a feature that guarantees the fuel gauge output converges to 0% as the cell voltage
approaches the empty voltage. As the cell's voltage approaches the expected empty voltage (AvgVCell approaches
VEmpty) the IC smoothly adjusts the rate of change of RepSOC so that the fuel gauge reports 0% at the exact time the
cell's voltage reaches empty. This prevents minor over or under-shoots in the fuel gauge output. See Figure 21.
www.analog.com
Analog Devices | 74
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
AVGVCELL
MAX17300-MAX17303/
MAX17310-MAX17313
VEMPTY
REPSOC
REPSOC
ESTIMATION TOO HIGH
IDEAL
REPSOC
REPSOC
ESTIMATION TOO LOW
RESOC RATE OF
CHANGE ADJUSTED SO
THAT IT REACHES 0%
AS THE CELL’S
VOLTAGE REACHES
VEMPTY
0%
Figure 21. Converge-To-Empty
Determining Fuel-Gauge Accuracy
To determine the true accuracy of a fuel gauge, as experienced by end users, the battery should be exercised in a
dynamic manner. The end-user accuracy cannot be understood with only simple cycles. To challenge a correctionbased fuel gauge, such as a coulomb counter, test the battery with partial loading sessions. For example, a typical user
may operate the device for 10 minutes and then stop use for an hour or more. A robust test method includes these
kinds of sessions many times at various loads, temperatures, and duration. Refer to the Application Note 4799: Cell
Characterization Procedure for a ModelGauge m3/ModelGauge m5 Fuel Gauge.
Initial Accuracy
The IC uses the first voltage reading after power-up or after cell is connected to the IC to determine the starting output of
the fuel gauge. It is assumed that the cell is fully relaxed prior to this reading; however, this is not always the case. If there
is a load or charge current at this time, the initial reading is compensated using the characterized internal impedance of
the cell (RFast register) to estimate the cell's relaxed voltage. If the cell was recently charged or discharged, the voltage
measured by the IC may not represent the true state-of-charge of the cell, resulting in initial error in the fuel gauge
outputs. In most cases, this error is minor and is quickly removed by the fuel gauge algorithm during the first hour of
normal operation.
www.analog.com
Analog Devices | 75
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Cycle+ Age Forecasting
A special feature of the ModelGauge m5 algorithm is the ability to forecast the number of cycles a user is able to get out
of the cell during its lifetime. This allows an application to adjust a cell's charge profile over time to meet the cycle life
requirements of the cell. See Figure 22. The algorithm monitors the change in cell capacity over time and calculates the
number of cycles it takes for the cell’s capacity to drop to a predefined threshold of 85% of original. Remaining cycles
below 85% of the original capacity are unpredictable and not managed by age forecasting.
100%
ADDITIONAL DATA
CAPACITY
NEW AGE FORECAST SHOWS
THAT APPLICATION
REQUIREMENTS SHOULD BE MET
MINIMUM CYCLES
REQUIRED BY THE
APPLICATION
INITIAL DATA
CHARGE PROFILE
CHANGED
Initial Age Forecast shows
that application requirements
may not be met
100 CYCLES
MINIMUM CELL CAPACITY
REQUIRED BY THE
APPLICATION
CYCLES
Figure 22. Benefits of Age Forecasting
nAgeFcCfg Register (1E2h)
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register.
The nAgeFcCfg register is used to configure age forecasting functionality. Register data is nonvolatile and is typically
configured only once during pack assembly. Table 48 shows the register format.
Table 48. nAgeFcCfg Register (1E2h) Format
D15
D14
D13
DeadTargetRatio
D12
D11
D10
D9
D8
CycleStart
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
1
DeadTargetRatio: Sets the remaining percentage of initial cell capacity where the cell is considered fully aged.
DeadTargetRatio can be adjusted between 75% and 86.72% with an LSb of 0.7813%. For example, if age forecasting
was configured to estimate the number of cycles until the cell’s capacity dropped to 85.1574% of when it was new,
DeadTargetRatio should be programmed to 1101b.
CycleStart: Sets the number of cell cycles before age forecasting calculations begin. CycleStart has a range of 0.00
www.analog.com
Analog Devices | 76
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
to 81.92 cycles with an LSb of 0.64 cycles. Since age forecasting estimation becomes more accurate over time, most
applications use a default value of 30 cycles.
0: Always write this location 0.
1: Always write this location 1.
AgeForecast Register (0B9h)
Register Type: Special
Nonvolatile Backup: None
The AgeForecast register displays the estimated cycle life of the application cell. The AgeForecast value should be
compared against the Cycles (017h) register to determine the estimated number of remaining cell cycles. This is
accomplished by accumulating the capacity loss per cycle as the cell ages. The result becomes more accurate with each
cycle measured. The AgeForecast register has a full range of 0 cycles to 16383 cycles with a 25% LSb. This register is
recalculated from learned information at power-up.
Age Forecasting Requirements
There are several requirements for proper operation of the age forecasting feature as follows:
1. There is a minimum and maximum cell size that the age forecasting algorithm can handle. Table 49 shows the
allowable range of cell sizes that can be accurately age forecasted depending on the size of the sense resistor used in
the application. Note this range is different from the current and capacity measurement range for a given sense resistor.
See the Current Measurement section for details.
2. Age forecasting requires a minimum of 100 cycles before achieving reasonable predictions. Ignore the age forecasting
output until then.
3. Age forecasting requires a custom characterized battery model to be used by the IC. Age forecasting is not valid when
using the default model.
Table 49. Minimum and Maximum Cell Sizes for Age Forecasting
SENSE RESISTOR
(Ω)
MINIMUM CELL SIZE FOR FORECASTING
(mAh)
MAXIMUM CELL SIZE FOR FORECASTING
(mAh)
0.005
1600
5000
0.010
800
2500
0.020
400
1250
Enabling Age Forecasting
The following steps are required to enable the Age Forecasting feature:
1. Set nNVCfg2.enVT = 0. This function conflicts with age forecasting and must be disabled.
2. Set nFullCapFlt to the value of nFullCapNom.
3. Set nVoltTemp to 0x0001.
4. Set nNVCfg0.enAF = 1 to begin operation.
www.analog.com
Analog Devices | 77
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Battery Life Logging
The MAX1730x/MAX1731x has the ability to log learned battery information providing the host with a history of conditions
experienced by the cell pack over its life time. The IC can store up to 100 snapshots of page 1Ah in nonvolatile memory.
Individual registers from page 1Ah are summarized in Table 50. Their nonvolatile backup must be enabled and LOCK1
must be unlocked in order for logging to occur. See each register's detailed description in other sections of this data
sheet. The logging rate follows the "Fibonacci Saving" interval to provide recurring log-saving according to the expected
battery lifespan and is configured by nNVCFG2.FibMax and nNVCFG2.FibScl. See the 100 Record Life Logging section
for more details.
Table 50. Life Logging Register Summary
REGISTER
ADDRESS
REGISTER
NAME
1A0h
nQRTable00
1A1h
nQRTable10
1A2h
nQRTable20
1A3h
nQRTable30
1A4h
nCycles
1A5h
nFullCapNom
1A6h
nRComp0
1A7h
nTempCo
1A8h
nBattStatus
1A9h
nFullCapRep
1AAh
nVoltTemp
1ABh
nMaxMinCurr
1ACh
nMaxMinVolt
1ADh
nMaxMinTemp
1AEh
nFullCapFlt
1AFh
nTimerH
FUNCTION
Learned characterization information used to determine when the cell pack is empty under
application conditions.
Total number of equivalent full cycles seen by the cell since assembly.
Calculated capacity of the cell independent of application conditions.
Learned characterization information related to the voltage fuel gauge.
Contains the permanent battery status information.
Calculated capacity of the cell under present application conditions.
The average voltage and temperature seen by the IC at the instance of learned data backup. If
Age Forecasting is enabled, this register contains different information.
Maximum and minimum current, voltage, and temperature seen by the IC during this logging
window.
If Age Forecasting is enabled, this register contains a highly filtered nFullCapNom.
Total elapsed time since cell pack assembly not including time spent in shutdown mode.
Life Logging Data Example
Figure 23 shows a graphical representation of sample history data read from an IC. Analysis of this data can provide
information of cell performance over its lifetime as well as detect any application anomalies that may have affected
performance.
www.analog.com
Analog Devices | 78
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
TIME
6m
0
TIME VS. CYCLES AND MAXIMUM / MINIUMUM
VOLTAGE GIVES AN INDICATION OF THE USAGE PROFILE
VOLTAGE
4.2V
3.0V
TEMPERATURE
85C
-40C
MAXIMUM / MINUMUM TEMPERATURE AND CURRENT
CAN INDICATE IF THE CELL HAS BEEN ABUSED
CURRENT
2.0A
-5.0A
FULLCAPNOM
100%
CAPACITY
FULLCAPREP
QRESIDUAL
0%
CYCLES
Figure 23. Sample Life Logging Data
www.analog.com
Analog Devices | 79
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Determining Number of Valid Logging Entries
While logging data, the IC begins on history page 1 and continues until all history memory has been used at page 100.
Prior to reading history information out of the IC, the host must determine which history pages has been written and
which, if any, had write errors and should be ignored. Each page of history information has two associated write flags
that indicate if the page has been written and two associated valid flags which indicate if the write was successful. The
HISTORY RECALL command [0xE2XX] is used to load the history flags into page 1Fh of IC memory where the host can
then read their state. Table 51 shows which command and which page 1Fh address has the flag information for a given
history page. For example, to see the write flag information of history pages 1-8, send the 0xE29C command then read
address 1F2h. To see the valid flag information of pages 1-8, send the 0xE29C command and then read address 1FFh.
Table 51. Reading History Page Flags
ASSOCIATED
HISTORY PAGES
COMMAND TO RECALL
WRITE FLAGS
WRITE FLAG
ADDRESS
COMMAND TO RECALL
VALID FLAGS
VALID FLAG
ADDRESS
0xE29C
1FFh
1-8
1F2h
9-16
1F3h
1F0h
17-24
1F4h
1F1h
25-32
1F5h
1F2h
33-40
1F6h
1F3h
41-48
1F7h
1F4h
49-56
0xE29C
1F8h
0xE29D
1F5h
57-64
1F9h
65-72
1FAh
1F6h
1F7h
73-80
1FBh
1F8h
81-88
1FCh
1F9h
89-96
1FDh
1FAh
97-100
1FEh
1FBh
Once the write flag and valid flag information is read from the IC, it must be decoded. Each register holds two flags for
a given history page. Figure 24 shows the register format. The flags for a given history page are always spaced 8-bits
apart from one another. For example, history page 1 flags are always located at bit positions D0 and D8, history page 84
flags are at locations D3 and D11, etc. Note that the last flag register contains information for only 3 pages, in this case
the upper 5-bits of each byte should be ignored.
www.analog.com
Analog Devices | 80
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
HISTORY PAGE N
WRITE INDICATOR 2
HISTORY PAGE N+7
WRITE INDICATOR 2
HISTORY PAGE N+1
WRITE INDICATOR 2
D15 D14 D13 D12 D11 D10
D9
HISTORY PAGE N
WRITE INDICATOR 1
HISTORY PAGE N+7
WRITE INDICATOR 1
D8
D7
D6
D5
HISTORY PAGE N+1
WRITE INDICATOR 1
D4
D3
D2
D1
D0
WRITE FLAG REGISTER FORMAT
HISTORY PAGE N
VALID INDICATOR 2
HISTORY PAGE N+7
VALID INDICATOR 2
HISTORY PAGE N+1
VALID INDICATOR 2
D15 D14 D13 D12 D11 D10
D9
HISTORY PAGE N
VALID INDICATOR 1
HISTORY PAGE N+7
VALID INDICATOR 1
D8
D7
D6
D5
HISTORY PAGE N+1
VALID INDICATOR 1
D4
D3
D2
D1
D0
VALID FLAG REGISTER FORMAT
Figure 24. Write Flag Register and Valid Flag Register Formats
Once all four flags for a given history page are known, the host can determine if the history page contains valid data. If
either write flag is set then data has been written to that page by the IC. If both write flags are clear, the page has not yet
been written. Due to application conditions, the write may not have been successful. Next check the valid flags. If either
valid flag is set, the data should be considered good. If both valid flags are clear then the data should be considered bad
and the host should ignore it. Table 52 shows how to decode the flags.
Table 52. Decoding History Page Flags
WRITE INDICATOR
1
WRITE INDICATOR
2
VALID INDICATOR
1
VALID INDICATOR
2
0
0
X
X
Page empty.
0
0
Write failure. Page has invalid
data.
1
X
www.analog.com
X
1
1
X
X
1
0
0
1
X
X
1
PAGE STATUS
Write success. Page has valid
data.
Write failure. Page has invalid
data.
Write success. Page has valid
data.
Analog Devices | 81
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Reading History Data
Once all pages of valid history data have been identified, they can be read from the IC using the HISTORY RECALL
command. Table 53 shows the command and history page relationship. After sending the command, wait tRECALL, then
read the history data from IC page 1Fh. Each page of history data has the same format as page 1Ah. For example,
nCycles is found at address 1A4h and nCycles history are at 1F4h, nTimerH is located at address 1AFh and nTimerH
history is located at address 1FFh, etc.
Table 53. Reading History Data
COMMAND
HISTORY PAGE RECALLED TO PAGE 1EH
0xE22E
Page 1
0xE22F
Page 2
...
...
0xE291
Page 100
History Data Reading Example
The host would like to read the life logging data from a given IC. The host must first determine how many history pages
have been written and if there are any errors. To start checking history page 1, the host sends 0xE29C to the command
register, wait tRECALL, then read location 1F2h. If either the D0 or the D8 bit in the read data word is a logic 1, the host
knows that history page 1 contains history data. The host can then check page 2 (bits D1 and D9) up to page 7 (bits D7
and D15). The host continues on to pages 8 to 16 by reading location 1F3h, and then repeating individual bit testing. This
process is repeated for each command and address listed in Table 51 until the host finds a history page where both write
flags read logic 0. This is the first unwritten page. All previous pages contain data, all following pages are empty.
The host must now determine which, if any, of the history pages have bad data and must be ignored. The above process
is repeated for every location looking at the valid flags instead of the write flags. Any history page where both valid flags
read logic 0 is considered bad due to a write failure and that page should be ignored. Once the host has a complete list
of valid written history pages, commands 0xE22E to 0xE291 can be used to read the history information from page 1Fh
for processing.
Note that this example was simplified in order to describe the procedure. A more efficient method would be for the host
to send a history command once and then read all associated registers. For example, the host could send the 0xE29C
command once and then read the entire memory space of 1F0h to 1FFh which would contain all write flags for pages 1
to 100 (1F2h to 1FEh) and all valid flags for pages 1 to 8 (1FFh). This applies for all 0xE2XX history commands.
See Appendix A: Reading History Data Pseudo-Code Example section for a psuedo-code example of reading history
data.
ModelGauge m5 Algorithm Input Registers
The following registers are inputs to the ModelGauge algorithm and store characterization information for the application
cells as well as important application specific specifications. They are described only briefly here. Contact Maxim for
information regarding cell characterization.
nXTable0 (180h) to nXTable11 (18Bh) Registers
Register Type: Special
Nonvolatile Restore: There are no associated restore locations for these registers.
Cell characterization information used by the ModelGauge algorithm to determine capacity versus operating conditions.
This table comes from battery characterization data. These are nonvolatile memory locations.
nOCVTable0 (190h) to nOCVTable11 (19Bh) Registers
Register Type: Special
Nonvolatile Restore: There are no associated restore locations for these registers.
Cell characterization information used by the ModelGauge algorithm to determine capacity versus operating conditions.
www.analog.com
Analog Devices | 82
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
This table comes from battery characterization data. These are nonvolatile memory locations.
nQRTable00 (1A0h) to nQRTable30 (1A3h) Registers
Register Type: Special
Nonvolatile Backup and Restore: QRTable00 to QRTable30 (012h, 022h, 032h, 042h)
The nQRTable00 to nQRTable30 register locations contain characterization information regarding cell capacity that is not
available under certain application conditions.
nFullSOCThr Register (1C6h)
Register Type: Percentage
Nonvolatile Restore: FullSOCThr (013h) if nNVCfg1.enFT is set.
Alternate Initial Value: 80%
The nFullSOCThr register gates detection of end-of-charge. VFSOC must be larger than the nFullSOCThr value before
nIChgTerm is compared to the AvgCurrent register value. The recommended nFullSOCThr register setting for most
custom characterized applications is 95% . For EZ performance applications, the recommendation is 80% (0x5005). See
the nIChgTerm register description and End-of-Charge Detection section for details. Table 54 shows the register format.
Table 54. nFullSOCThr (1C6h)/FullSOCThr (013h) Register Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
nFullSOCThr
D2
D1
D0
1
0
1
nVEmpty Register (19Eh)
Register Type: Special
Nonvolatile Restore: VEmpty (03Ah) if nNVCfg0.enVE is set
Alternate Initial Value: 0xA561
The nVempty register sets thresholds related to empty detection during operation. Table 55 shows the register format.
Table 55. VEmpty (03Ah)/nVEmpty (19Eh) Register Format
D15
D14
D13
D12
D11
D10
D9
D8
VE
D7
D6
D5
D4
D3
D2
D1
D0
VR
VE: Empty Voltage. Sets the voltage level for detecting empty. A 10mV resolution gives a 0 to 5.11V range. This value is
written to 3.3V after reset if nonvolatile backup is disabled.
VR: Recovery Voltage. Sets the voltage level for clearing empty detection. Once the cell voltage rises above this point,
empty voltage detection is re-enabled. A 40mV resolution gives a 0 to 5.08V range. This value is written to 3.88V after
reset if nonvolatile backup is disabled.
nDesignCap Register(1B3h)
Register Type: Capacity
Nonvolatile Restore: DesignCap (018h) if nNVCfg0.enDC is set
Alternate Initial Value: FullCapRep register value
The nDesignCap register holds the expected capacity of the cell. This value is used to determine age and health of the
cell by comparing against the measured present cell capacity.
nRFast Register (1E5h)
Register Type: Special
Nonvolatile Restore: RFast (015h) if nNVCfg1.enRF is set
Alternate Initial Value: RFast defaults 0x0148(80mΩ)
When enabled, the nRFast register is used to configure the initial values for the RFast register. If nNVCfg1.enRF is clear,
www.analog.com
Analog Devices | 83
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
nRFast can be used for general purpose data storage. Table 56 shows the format.
Table 56. nRFast Register (1E5h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
nRFast
nRFast: Restores to the RFast register using the following equation:
RFast = (nRFast AND 0xFF00) >> 4
The RFast register value is used by the ModelGauge m5 algorithm to compensate an initial open-circuit voltage starting
point if the IC is powered up or reset while the cell stack is under load and not relaxed. RFast is a unit-less scalar with
an LSb of (100 x RSENSE)/4096 . The initial value of 0x0148 gives a default RFast value of 80mΩ with a 10mΩ sense
resistor.
nIChgTerm Register (19Ch)
Register Type: Current
Nonvolatile Restore: IChgTerm (01Eh) if nNVCfg0.enICT is set
Alternate Initial Value: 1/3rd the value of the nFullCapNom register (corresponds to C/9.6)
The nIChgTerm register allows the device to detect when a charge cycle of the cell has completed. nIChgTerm should
be programmed to the exact charge termination current used in the application.The device detects end-of-charge if all
the following conditions are met:
• VFSOC Register > FullSOCThr Register
• AND IChgTerm x 0.125 < Current Register < IChgTerm x 1.25
• AND IChgTerm x 0.125 < AvgCurrent Register < IChgTerm x 1.25
See the End-of-Charge Detection section for more details.
nRComp0 Register (1A6h)
Register Type: Special
Nonvolatile Restore: RComp0 (038h)
The nRComp0 register holds characterization information critical to computing the open circuit voltage of a cell under
loaded conditions.
nRComp0 on MAX1730x/MAX1731x is redimensioned and not directly compatible with values from previous
ModelGauge m5 ICs (MAX17201-15, MAX17055, MAX17260-3). Please consult Maxim for translation of any prior
characterizations.
nTempCo Register (1A7h)
Register Type: Special
Nonvolatile Restore: TempCo (039h)
The nTempCo register holds temperature compensation information for the nRComp0 register value.
ModelGauge m5 Algorithm Configuration Registers
The following registers allow operation of the ModelGauge m5 algorithm to be adjusted for the application. It is
recommended that the default values for these registers be used.
nFilterCfg Register (19Dh)
Register Type: Special
Nonvolatile Restore: FilterCfg (029h) if nNVCfg0.enFCfg is set.
Alternate Initial Value: 0x0EA4
The nFilterCfg register sets the averaging time period for all A/D readings, for mixing OCV results, and coulomb count
www.analog.com
Analog Devices | 84
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
results. It is recommended that these values are not changed unless absolutely required by the application. Table 57
shows the nFilterCfg register format.
Table 57. FilterCfg (029h)/nFilterCfg (19Dh) Register Format
D15
D14
0
0
D13
D12
D11
D10
TEMP
D9
D8
D7
D6
MIX
D5
D4
D3
VOLT
D2
D1
D0
CURR
CURR: Sets the time constant for the AvgCurrent register. The default POR value of 0100b gives a time constant of
5.625s. The equation setting the period is:
AvgCurrent time constant = 45s x 2(CURR-7)
VOLT: Sets the time constant for the AvgVCell register. The default POR value of 010b gives a time constant of 45.0s.
The equation setting the period is:
AvgVCell time constant = 45s x 2(VOLT-2)
MIX: Sets the time constant for the mixing algorithm. The default POR value of 1101b gives a time constant of 12.8
hours. The equation setting the period is:
Mixing Period = 45s x 2(MIX-3)
TEMP: Sets the time constant for the AvgTA register. The default POR value of 0001b gives a time constant of 1.5
minutes. The equation setting the period is:
AvgTA time constant = 45s x 2TEMP
0: Write these bits to 0.
nRelaxCfg Register (1B6h)
Register Type: Special
Nonvolatile Restore: RelaxCfg (0A0h) if nNVCfg0.enRCfg is set.
Alternate Initial Value: 0x2039
The nRelaxCfg register defines how the IC detects if the cell is in a relaxed state. See Figure 25. For a cell to be
considered relaxed, current flow through the cell must be kept at a minimum while the change in the cell’s voltage over
time, dV/dt, shows little or no change. If AvgCurrent remains below the LOAD threshold while VCell changes less than the
dV threshold over two consecutive periods of dt, the cell is considered relaxed. Table 58 shows the nRelaxCfg register
format.
Table 58. RelaxCfg (0A0h)/nRelaxCfg (1B6h) Register Format
D15
D14
D13
D12
LOAD
D11
D10
D9
D8
D7
D6
dV
D5
D4
D3
D2
D1
D0
dt
LOAD: Sets the threshold, which the AvgCurrent register is compared against. The AvgCurrent register must remain
below this threshold value for the cell to be considered unloaded. Load is an unsigned 7-bit value where 1 LSb = 50μV.
The default value is 800μV.
dV: Sets the threshold, which VCell is compared against. If the cell’s voltage changes by less than dV over two
consecutive periods set by dt, the cell is considered relaxed; dV has a range of 0 to 40mV where 1 LSb = 1.25mV. The
default value is 3.75mV.
dt: Sets the time period over which change in VCell is compared against dV. If the cell’s voltage changes by less than dV
over two consecutive periods set by dt, the cell is considered relaxed. The default value is 1.5 minutes. The comparison
period is calculated as:
Relaxation period = 2(dt-8) x 45s
www.analog.com
Analog Devices | 85
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
0
CURRENT
dV 4
CELL
VOLTAGE
dV 6
dV 5
FSTAT.RELDT2 BIT SET
(RELAXATION BEGINS)
LONG
RELAXATION
CELL UNLOADED
FSTAT.RELDT BIT SET
DISCHARGING
CELL IS RELAXED
RELAXATION LOAD THRESHOLD
dV 3
dV 2
dt 2
dt 3
dt 4
dt 5
48-96
MINUTES
dt 6
FI
R
S
dV T R
/d E
t T AD
H IN
R G
ES
SE
H BE
C
O LO
O
LD W
dV ND
/d R
T E
TH AD
R IN
ES G
H BE
O
LD LO
W
dt 1
Figure 25. Cell Relaxation Detection
nTTFCfg Register (1C7h)/CV_MixCap (0B6h) and CV_HalfTime (0B7h) Registers
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register.
Alternate Initial Value: CV_HalfTime = 0xA00 (30 minutes) and CV_MixCap = 75% x FullCapNom.
The nTTFCfg register configures parameters related to the time-to-full (TTF) calculation. There is no associated RAM
register location that this register is recalled into after device reset. These parameters can be tuned for best TTF
performance during characterization by Maxim. Table 59 shows the register format.
Table 59. nTTFCfg Register (1C7h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
nCV_HalfTime
D5
D4
D3
D2
D1
D0
nCV_MixCapRatio
nCV_HalfTime: Sets the HalfTime value with an LSb of 45 seconds giving a full scale range of 0 seconds to 192 minutes.
nCV_MixCapRatio: Sets the MixCapRatio with an LSb of 1/256 giving a full scale range of 0 to 0.9961.
nConvgCfg Register (1B7h)
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register.
The nConvgCfg register configures operation of the converge-to-empty feature. The recommended value for nConvgCfg
is 0x2241. Table 60 shows the nConvgCfg register format. The nNVCfg1.CTE bit must be set to enable converge-toempty functionality. If nNVCfg1.CTE is clear this register can be used as general purpose data storage.
www.analog.com
Analog Devices | 86
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 60. nConvgCfg Register (1B7h) Format
D15
D14
D13
D12
D11
RepLow
D10
D9
D8
D7
D6
D5
VoltLowOff
D4
D3
D2
MinSlopeX
D1
D0
RepL_per_stage
RepL_per_stage: Adjusts the RepLow threshold setting depending on the present learn stage using the following
equation. This allows the RepLow threshold to be at higher levels for earlier learn states. RepL_per_stage has an LSb of
1% giving a range of 0% to 7%.
RepLow Threshold = RepLow Field Setting + RemainingStages x RepL_per_stage
MinSlopeX: Sets the amount of slope-shallowing which occurs when RepSOC falls below RepLow. MinSlopeX LSb
corresponds to a ratio of 1/16 giving a full range of 0 to 15/16.
VoltLowOff: When the AvgVCell register value drops below the VoltLow threshold, RepCap begins to bend downwards
by a ratio defined by the following equation. VoltLowOff has an LSb of 20mV giving a range of 0 to 620mV.
(AvgVCell - VEmpty)/VoltLowOff
RepLow: Sets the threshold below which RepCap begins to bend upwards. The RepLow field LSb is 2% giving a full
scale range from 0% to 30%.
nRippleCfg Register (1B1h)
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register.
The nRippleCfg register configures ripple measurement and ripple compensation. The recommended value for this
register is 0x0204. Table 61 shows the register format.
Table 61. nRippleCfg Register (1B1h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
kDV
D3
D2
D1
D0
NR
NR: Sets the filter magnitude for ripple observation as defined by the following equation giving a range of 1.4 seconds to
180 seconds.
Ripple Time Range = 1.4 seconds x 2NR
kDV: Sets the corresponding amount of capacity to compensate proportional to the ripple.
ModelGauge m5 Algorithm Additional Registers
The following registers contain intermediate ModelGauge m5 data which may be useful for debugging or performance
analysis. The values in these registers become value 480ms after the IC is reset.
Timer Register (03Eh)
Register Type: Special
Nonvolatile Backup: None
Initial Value: 0x0000
This register holds timing information for the fuel gauge. It is available to the user for debug purposes. The Timer register
LSb is equal to 175.8ms giving a full scale range of 0 to 3.2 hours.
dQAcc Register (045h)
Register Type: Capacity (2mAh/LSB)
Nonvolatile Backup: Translated from nFullCapNom
Alternate Initial Value: 0x0017 (368mAh)
This register tracks change in battery charge between relaxation points. It is available to the user for debug purposes.
www.analog.com
Analog Devices | 87
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
dPAcc Register (046h)
Register Type: Percentage (1/16% per LSB)
Nonvolatile Backup: None
Initial Value: 0x0190 (25%)
This register tracks change in battery state-of-charge between relaxation points. It is available to the user for debug
purposes.
QResidual Register (00Ch)
Register Type: Capacity
Nonvolatile Backup: None
The QResidual register displays the calculated amount of charge in mAh that is presently inside of, but cannot be
removed from the cell under present application conditions. This value is subtracted from the MixCap value to determine
capacity available to the user under present conditions (AvCap).
VFSOC Register (0FFh)
Register Type: Percentage
Nonvolatile Backup: None
The VFSOC register holds the calculated present state-of-charge of the battery according to the voltage fuel gauge.
VFOCV Register (0FBh)
Register Type: Voltage
Nonvolatile Backup: None
The VFOCV register contains the calculated open-circuit voltage of the cell as determined by the voltage fuel gauge. This
value is used in other internal calculations.
QH Register (4Dh)
Register Type: Capacity
Nonvolatile Backup: None
Alternate Initial Value: 0x0000
The QH register displays the raw coulomb count generated by the device. This register is used internally as an input to
the mixing algorithm. Monitoring changes in QH over time can be useful for debugging device operation.
AvCap Register (01Fh)
Register Type: Capacity
Nonvolatile Backup: None
The AvCap register holds the calculated available capacity of the cell pack based on all inputs from the ModelGauge m5
algorithm including empty compensation. The register value is an unfiltered calculation. Jumps in the reported value can
be caused by changes in the application such as abrupt changes in load current or temperature. See the Fuel-Gauge
Empty Compensation section for details.
AvSOC Register (00Eh)
Register Type: Percentage
Nonvolatile Backup: None
The AvSOC register holds the calculated available state of charge of the cell based on all inputs from the ModelGauge
m5 algorithm including empty compensation. The AvSOC percentage corresponds with AvCap and FullCapNom. The
AvSOC register value is an unfiltered calculation. Jumps in the reported value can be caused by changes in the
application such as abrupt changes in load current or temperature. See the Fuel-Gauge Empty Compensation section for
details.
www.analog.com
Analog Devices | 88
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
MixSOC Register (00Dh)
Register Type: Percentage
Nonvolatile Backup: None
The MixSOC register holds the calculated present state-of-charge of the cell before any empty compensation
adjustments are performed. MixSOC corresponds with MixCap and FullCapNom. See the Fuel-Gauge Empty
Compensation section for details.
MixCap Register (02Bh)
Register Type: Capacity
Nonvolatile Backup: None
The MixCap register holds the calculated remaining capacity of the cell before any empty compensation adjustments are
performed. See the Fuel-Gauge Empty Compensation section for details.
VFRemCap Register (04Ah)
Register Type: Capacity
Nonvolatile Backup: None
The VFRemCap register holds the remaining capacity of the cell as determined by the voltage fuel gauge before any
empty compensation adjustments are performed. See the Fuel-Gauge Empty Compensation section for details.
FStat Register (03Dh)
Register Type: Special
Nonvolatile Backup: None
The FStat register is a read-only register that monitors the status of the ModelGauge algorithm. Do not write to this
register location. Table 62 is the FStat register format.
Table 62. FStat Register (03Dh) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
X
X
X
X
X
X
RelDt
EDet
FQ
RelDt2
X
X
X
X
X
DNR
DNR: Data Not Ready. This bit is set to 1 at cell insertion and remains set until the output registers have been updated.
Afterwards, the IC clears this bit indicating the fuel gauge calculations are now up to date. This takes between 445ms
and 1.845s depending on whether the IC was in a powered state prior to the cell-insertion event.
RelDt2: Long Relaxation. This bit is set to 1 whenever the ModelGauge m5 algorithm detects that the cell has been
relaxed for a period of 48 to 96 minutes or longer. This bit is cleared to 0 whenever the cell is no longer in a relaxed state.
See Figure 29.
FQ: Full Qualified. This bit is set when all charge termination conditions have been met. See the End-of-Charge Detection
section for details.
www.analog.com
Analog Devices | 89
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
EDet: Empty Detection. This bit is set to 1 when the IC detects that the cell empty point has been reached. This bit is
reset to 0 when the cell voltage rises above the recovery threshold. See the VEmpty register for details.
RelDt: Relaxed cell detection. This bit is set to a 1 whenever the ModelGauge m5 algorithm detects that the cell is in a
fully relaxed state. This bit is cleared to 0 whenever a current greater than the load threshold is detected. See Figure 29.
X: Don’t Care. This bit is undefined and can be logic 0 or 1.
Memory
The memory space of the MAX1730x/MAX1731x is divided into 32 pages each containing 16 registers where each
register is 16-bits wide. Registers are addressed using an internal 9-bit range of 000h to 1FFh. Externally, registers
are accessed with an 8-bit address for 2-wire communication or 16-bit address for 1-wire communication. Registers are
grouped by functional block. See the functional descriptions for details of each register's functionality. Certain memory
blocks can be permanently locked to prevent accidental overwrite. See the Locking Memory Blocks section for details.
Table 63 shows the full memory map of the IC. Note that some individual user registers are located on RESERVED
memory pages. These locations can be accessed normally while the remainder of the page is considered RESERVED.
Memory locations listed as RESERVED should never be written to. Data read from RESERVED locations is not defined.
Table 63. Top Level Memory Map
MAX1730x
REGISTER
PAGE
LOCK
00h
01h-04h
LOCK2
05h-0Ah
MAX1731x
DESCRIPTION
2-WIRE
SLAVE
ADDRESS
2-WIRE
PROTOCOL
2-WIRE
EXTERNAL
ADDRESS
RANGE
1-WIRE
EXTERNAL
ADDRESS
RANGE
MODELGAUGE m5 DATA BLOCK
6Ch
I 2C
00h-4Fh
0000h-004Fh
MODELGAUGE m5 DATA BLOCK
(continued)
6Ch
I 2C
B0h-BFh
00B0h-00BFh
SHA MEMORY
6Ch
I 2C
C0h-CFh
00C0h-00CFh
MODELGAUGE m5 DATA BLOCK
(continued)
6Ch
I 2C
D0h-DFh
00D0h-00DFh
16h
SBS
00h-7Fh
16h
I 2C
80h-EFh
0180h-01EFh
16h
I 2C
F0h-FFh
01F0h-01FFh
RESERVED
0Bh
LOCK2
0Ch
SHA
0Dh
LOCK2
0Eh-0Fh
RESERVED
10h-17h
SBS DATA BLOCK
18h-19h
LOCK3
MODELGAUGE m5
NONVOLATILE MEMORY BLOCK
1Ah-1Bh
LOCK1
LIFE LOGGING and
CONFIGURATION NONVOLATILE
MEMORY BLOCK
1Ch
LOCK4
CONFIGURATION NONVOLATILE
MEMORY BLOCK
1Dh
LOCK5
PROTECTION NONVOLATILE
MEMORY BLOCK
1Eh
LOCK1
USER and SBS NONVOLATILE
MEMORY BLOCK
1Fh
www.analog.com
NONVOLATILE HISTORY
Analog Devices | 90
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 64. Individual Registers
MAX1730x
REGISTER
ADDRESS
LOCK
DESCRIPTION
MAX1731x
2-WIRE SLAVE
ADDRESS
2-WIRE
PROTOCOL
2-WIRE EXTERNAL
ADDRESS RANGE
1-WIRE EXTERNAL
ADDRESS RANGE
060h
Command
REGISTER
6Ch
I 2C
60h
0060h
061h
CommStat
REGISTER
6Ch
I 2C
61h
0061h
07Fh
Lock
REGISTER
6Ch
I 2C
7Fh
007Fh
ModelGauge m5 Memory Space
Registers that relate to functionality of the ModelGauge m5 fuel gauge are located on pages 00h-04h and are continued
on pages 0Bh and 0Dh. See the ModelGauge m5 Algorithm section for details of specific register operation. These
locations (other than page 00h) can be permanently locked by setting LOCK2. Register locations shown in gray are
reserved locations and should not be written to. See Table 65.
Table 65. ModelGauge m5 Register Memory Map
PAGE/
00xH
01xH
0h
Status
1h
VAlrtTh
2h
3h
WORD
02xH
03xH
04xH
0AxH
0BxH
FullCapRep
TTF
Reserved
TTE
DevName
Reserved
TAlrtTh
QRTable00/
VCellRep
QRTable10/
CurrRep
SAlrtTh
FullSocThr
0DxH
AvgDieTemp
RelaxCfg
Status2
SOCHold
Reserved
LearnCfg
Power
Reserved
QRTable20
QRTable30
Reserved
VRipple
Reserved
FullCapNom
Reserved
Reserved
Reserved
AvgPower
Reserved
4h
AtRate
RCell
Reserved
DieTemp
Reserved
MaxPeakPower
Reserved
AvgCell1
5h
RepCap
RFast
Reserved
FullCap
dQAcc
SusPeakPower
TTFCfg
Reserved
6h
RepSOC
AvgTA
Reserved
IAvgEmpty
dPAcc
PackResistance
CVMixCap
nVPrtTh1Bak
7h
Age
Cycles
AIN0
Reserved
Reserved
SysResistance
CVHalfTime
Batt
Reserved
Reserved
MinSysVoltage
CGTempCo
Cell1
8h
MaxMinVolt
DesignCap
Charging
Current
9h
MaxMinTemp
AvgVCell
FilterCfg
FStat2
ProtTmrStat
MPPCurrent
AgeForecast
ProtStatus
Ah
MaxMinCurr
VCell
Charging
Voltage
VEmpty
VFRemCap
SPPCurrent
Reserved
Reserved
Bh
Config
Temp
MixCap
Reserved
Reserved
Config2
FStat3
ModelCfg
Ch
QResidual
Current
Reserved
Reserved
Reserved
IAlrtTh
Reserved
AtQResidual
Dh
MixSOC
AvgCurrent
Reserved
FStat
QH
MinVolt
Reserved
AtTTE
Eh
AvSOC
IChgTerm
Reserved
Timer
Reserved
MinCurr
TimerH
AtAvSOC
Fh
MiscCfg
AvCap
Reserved
ShdnTimer
Reserved
Reserved
Reserved
AtAvCap
www.analog.com
Analog Devices | 91
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Nonvolatile Memory
Nonvolatile Memory Map
Certain ModelGauge m5 and device configuration values are stored in nonvolatile memory to prevent data loss if the
IC loses power. The MAX1730x/MAX1731x internally updates page 1Ah values over time based on actual performance
of the ModelGauge m5 algorithm. The host system does not need to access this memory space during operation.
Nonvolatile data from other accessible register locations is internally mirrored into the nonvolatile memory block
automatically. Note that non-volatile memory has a limited number of writes. User accessible configuration memory
is limited to 7 writes. Internal and external updates to page 1Ah as the fuel gauge algorithm learns are limited to
100 writes. Do not exceed these write limits. Table 66 shows the nonvolatile memory register map.
Table 66. Nonvolatile Register Memory Map (Slave address 0x16)
PAGE/
18xH
19xH
1AxH1
1BxH
1CxH
1DxH
1ExH
0h
nXTable0
nOCVTable0
nQRTable00
nConfig
nPReserved0
nVPrtTh1
nDPLimit
1h
nXTable1
nOCVTable1
nQRTable10
nRippleCfg
nPReserved1
nTPrtTh1
nScOcvLim
2h
nXTable2
nOCVTable2
nQRTable20
nMiscCfg
nPReserved2
nTPrtTh3
nAgeFcCfg
3h
nXTable3
nOCVTable3
nQRTable30
nDesignCap
nPReserved3
nIPrtTh1
nDesignVoltage
4h
nXTable4
nOCVTable4
nCycles
nSBSCfg
nRGain
nVPrtTh2
Reserved
5h
nXTable5
nOCVTable5
nFullCapNom
nPackCfg
nPackResistance
nTPrtTh2
nRFast
6h
nXTable6
nOCVTable6
nRComp0
nRelaxCfg
nFullSOCThr
nProtMiscTh
nManfctrDate
7h
nXTable7
nOCVTable7
nTempCo
nConvgCfg
nTTFCfg
nProtCfg
nFirstUsed
8h
nXTable8
nOCVTable8
nBattStatus
nNVCfg0
nCGain
nJEITAC
nSerialNumber0
9h
nXTable9
nOCVTable9
nFullCapRep
nNVCfg1
nTCurve/ nCGTempCo
nJEITAV
nSerialNumber1
Ah
nXTable10
nOCVTable10
nVoltTemp
nNVCfg2
nTGain
nJEITACfg
nSerialNumber2
Bh
nXTable11
nOCVTable11
nMaxMinCurr
nHibCfg
nTOff
nStepChg
nDeviceName0
Ch
nVAlrtTh
nIChgTerm
nMaxMinVolt
nROMID02
nManfctrName0
nDelayCfg
nDeviceName1
WORD
Dh
nTAlrtTh
nFilterCfg
nMaxMinTemp
nROMID12
nManfctrName1
nODSCTh
nDeviceName2
Eh
nIAlrtTh
nVEmpty
nFullCapFlt
nROMID22
nManfctrName2
nODSCCfg
nDeviceName3
Fh
nSAlrtTh
nLearnCfg
nTimerH
nROMID32
nRSense
nCheckSum
nDeviceName4
1. Locations 1A0h to 1AFh are updated automatically by the IC each time it learns.
2. The ROM ID is unique to each IC and cannot be changed by the user.
www.analog.com
Analog Devices | 92
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
100 Record Life Logging
Addresses 0x1A0 to 0x1AF support 100 burn entries of learned battery characteristic and other life logging if LOCK1 is
unlocked. The save interval is managed automatically using a Fibonacci algorithm which provides the following benefits:
1. Lifespan autopsy/debug data to support analysis of any aged or returned battery.
a. Battery Characteristic Learning/Adaptation. FullCap (nFullCapRep, nFullCapNom), empty-compensation
(nQRTable00-30), resistance (nRComp0 and nTempCo)
b. Permanent Failure Information (nBattStatus)
c. Battery Charge/Discharge Fractional Cycle Counter (nCycles)
d. 23 year Timer (nTimerH)
e. Log-Interval Max/Min Voltage/Current/Temperature (nMaxMinCurr, nMaxMinVolt, nMaxMinTemp)
f. Voltage/Temperature at logging moment (nVoltTemp)
2. Intelligently managed save-intervals:
a. Frequent When New. When the battery is new the updates occur more frequently, since early information learned
about the battery, such as full-capacity, is more critical for overall performance.
b. Slower With Age. As the battery matures the update interval slows down, since changes in learned information
also progresses slower.
c. Faster Updates Following Power-Loss. This limits the loss of information associated with power-loss. Each
time the power is lost and this learned information is restored, the rate of the next save is accelerated as shown
in Table 69. This is limited to seven reset accelerations. The reset counter is also recorded (see also nCycles
register). Most battery applications can proceed for longer than 1 year without interruption in power.
d. Limitation on Slowest Interval. Beyond a certain cycle life, the update interval remains constant.
Configure this behavior according to your expected battery lifespan using the FibMax and FibScl parameters in nNVCfg2
as follows:
Table 67. Fibonacci Configuration Settings
FIBONACCI SCALAR—NNVCFG2.FIBSCL
Setting
00
1st and 2nd Interval
Battery
Cycles
Record
Limit
01
10
11
0.25
0.5
1
2
FibMax = 0
193
386
772
1544
FibMax = 1
310.5
621
1242
2484
FibMax = 2
496.5
993
1986
3972
FibMax = 3
795.5
1591
3182
6364
FibMax = 4
1273.25
2546.5
5093
10186
FibMax = 5
2038.75
4077.5
8155
16310
FibMax = 6
3262
6524
13048
26096
FibMax = 7
5220
10440
20880
41760
The bold settings in Table 67 are the generally recommended choices, depending on preference for update interval,
slowest update rates, and lifespan.
Table 68 shows the slowest update intervals associated with each configuration.
Table 68. Eventual Matured Update Interval (in battery cycles)
FIBONACCI SCALAR—NNVCFG2.FIBSCL
Setting
1st and 2nd Interval
Slowest
Update
Interval
www.analog.com
00
01
10
11
0.25
0.5
1
2
FibMax = 0
2
4
8
16
FibMax = 1
3.25
6.5
13
26
FibMax = 2
5.25
10.5
21
42
Analog Devices | 93
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 68. Eventual Matured Update Interval (in battery cycles) (continued)
FibMax = 3
8.5
17
34
68
FibMax = 4
13.75
27.5
55
110
FibMax = 5
22.25
44.5
89
178
FibMax = 6
36
72
144
288
FibMax = 7
58.25
116.5
233
466
Table 69 illustrates the saving schedule with the most preferred configurations.
Table 69. Saving Schedule Example With the Most Preferred Configurations
EXAMPLE
CYCLE
LIFE
FIB
MAX
FIB
SCL
SLOWEST
UPDATE
1ST
2ND 3RD
4TH
5TH
6TH
7TH
8TH
9TH
10TH
11TH
1
310.5
1
0
3.25
0.25
0.25
0.75
1.25
2
3.25
3.25
3.25
—
—
2
386
0
1
4
0.5
0.5
1
1.5
2.5
4
4
4
—
—
—
3
496.5
2
0
5.25
0.25
0.25
0.5
0.75
1.25
2
3.25
5.25
5.25
5.25
—
4
621
1
1
6.5
0.5
0.5
1
1.5
2.5
4
6.5
6.5
6.5
—
—
5
772
0
2
8
1
1
2
3
5
8
8
8
—
—
—
6
795.5
3
0
8.5
0.25
0.25
0.5
0.75
1.25
2
3.25
5.25
8.5
8.5
—
7
993
2
1
10.5
0.5
0.5
1
1.5
2.5
4
6.5
10.5
10.5
10.5
—
8
1242
1
2
13
1
1
2
3
5
8
13
13
13
—
—
9
1273.25
4
0
13.75
0.25
0.25
0.5
0.75
1.25
2
3.25
5.25
8.5
13.75
13.75
0.5
As an example for all subsequent startups, for the configuration of example 9 from Table 69:
1st startup [0.25, 0.25, 0.5, 0.75, 1.25, 2, 3.25, 5.25, 8.5, 13.75, ...]
2nd startup [0.25, 0.5, 0.75, 1.25, 2, 3.25, 5.25, 8.5, 13.75, ...]
3rd startup [0.5, 0.75, 1.25, 2, 3.25, 5.25, 8.5, 13.75, ...]
4th startup [0.75, 1.25, 2, 3.25, 5.25, 8.5, 13.75, ...]
5th startup [1.25, 2, 3.25, 5.25, 8.5, 13.75, ...]
6th startup [2, 3.25, 5.25, 8.5, 13.75, ...]
7th startup [3.25, 5.25, 8.5, 13.75, ...]
8th startup [5.25, 8.5, 13.75, ...]
nNVCfg0 Register (1B8h)
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register.
The nNVCfg0 register manages nonvolatile memory backup of device and fuel gauge register RAM locations. Each bit
of the nNVCfg0 register, when set, enables a given register location to be restored from a corresponding nonvolatile
memory location after reset of the IC. If nonvolatile restore of a given register is not enabled, that location initializes to a
default value after reset instead. See the individual register descriptions for details. The factory default value for nNVCfg0
register is 0x0702. Table 70 shows the nNVCfg0 register format.
Table 70. nNVCfg0 Register (1B8h) Format
D15
D14
D13
D12
D11
D10
D9
D8
enOCV
enX
enSHA
0
enCfg
enFCfg
enRCfg
enLCfg
D7
D6
D5
D4
D3
D2
D1
D0
enICT
enDP
enVE
enDC
enMC
enAF
—
enSBS
enSBS: Enable SBS. This bit enables SBS functions of the IC. When set, all registers accessed with the SBS 2-Wire
www.analog.com
Analog Devices | 94
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
address is regularly updated. When this bit is clear, all SBS related nonvolatile configuration register locations can be
used as general purpose user memory.
enAF: Enable Age Forecasting. Set this bit to enable Age Forecasting functionality. When this bit is clear, nAgeFcCfg
can be used for general purpose data storage. When set, nVoltTemp becomes repurposed for Age Forecasting data.
When enAF is set to 1, nNVCfg2.enVT must be 0 for proper operation.
enMC: Enable MiscCfg restore. Set this bit to enable MiscCfg register to be restored after reset by the nMiscCfg register.
When this bit is clear, MiscCfg restores with its alternate initialization value and nMiscCfg can be used for general
purpose data storage.
enDC: Enable DesignCap restore. Set this bit to enable DesignCap register to be restored after reset by the nDesignCap
register. When this bit is clear, DesignCap restores with its alternate initialization value and nDesignCap can be used for
general purpose data storage.
enVE: Enable VEmpty restore. Set this bit to enable VEmpty register to be restored after reset by the nVEmpty register.
When this bit is clear, VEmpty restores with its alternate initialization value and nVEmpty can be used for general purpose
data storage.
enDP: Enable Dynamic Power. Set this bit to enable Dynamic Power calculations. When this bit is set to 0, Dynamic
Power calculations are disabled and registers MaxPeakPower/SusPeakPower/MPPCurrent/SPPCurrent can be used as
general purpose memory. If enDP is set, enVE also needs to be set, and nVEmpty value needs to be valid.
enICT: Enable IChgTerm restore. Set this bit to enable IChgTerm register to be restored after reset by the nIChgTerm
register. When this bit is clear, IChgTerm restores to a value of 1/3rd of the nFullCapNom register and nIChgTerm can
be used for general purpose data storage.
enFCfg: Enable FilterCfg restore. Set this bit to enable FilterCfg register to be restored after reset by the nFilterCfg
register. When this bit is clear, FilterCfg restores with its alternate initialization value and nFilterCfg can be used for
general purpose data storage
enCfg: Enable Config and Config2 restore. Set this bit to enable Config and Config2 registers to be restored after reset
by the nConfig register. When this bit is clear, Config and Config2 restores with their alternate initialization values and
nConfig can be used for general purpose data storage.
enX: Enable XTable restore. Set this bit to enable nXTable register locations to be used for cell characterization data.
When this bit is clear, the IC uses the default cell model and all nXTable register locations can be used as general
purpose user memory.
enOCV: Enable OCVTable restore. Set this bit to enable nOCVTable register locations to be used for cell characterization
data. When this bit is clear, the IC uses the default cell model and all nOCVTable register locations can be used as
general purpose user memory.
enLCfg: Enable LearnCfg restore. Set this bit to enable LearnCfg register to be restored after reset by the nLearnCfg
register. When this bit is clear, LearnCfg restores with its alternate initialization value and nLearnCfg can be used for
general purpose data storage.
enRCfg: Enable RelaxCfg restore. Set this bit to enable RelaxCfg register to be restored after reset by the nRelaxCfg
register. When this bit is clear, RelaxCfg restores with its alternate initialization value and nRelaxCfg can be used for
general purpose data storage.
enSHA: Set to 1 to configure the MTP at address 0x1DC to 0x1DF as SHA space. Set to 0 to configure address 0x1DC
to 0x1DF as user MTP.
0: Set to 0. Do not set to 1.
nNVCfg1 Register (1B9h)
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register.
The nNVCfg1 register manages nonvolatile memory restore of device and fuel gauge register RAM locations. Each bit
of the nNVCfg1 register, when set, enables a given register location to be restored from a corresponding nonvolatile
memory location after reset of the IC. If nonvolatile backup of a given register is not enabled, that location initializes to a
default value after reset instead. See the individual register descriptions for details. Table 71 shows the nNVCfg1 register
www.analog.com
Analog Devices | 95
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
format.
Table 71. nNVCfg1 Register (1B9h) Format
D15
D14
D13
D12
D11
D10
D9
D8
enTherm
enMtl
enFTh
enRF
enODSC
enJP
enSC
enProt
D7
D6
D5
D4
D3
D2
D1
D0
enJ
enProtChksm
enTP
enTTF
enAT
enCrv
enCTE
enDS
enJ: Enable ChargingCurrent and ChargingVoltage. Set this bit to 1 to enable ChargingCurrent and ChargingVoltage
update feature.
enJP: Enable Protection with JIETA (temperature region dependent). Set this bit to 1 to enable JIETA Protection. Clear
this bit to disable JEITA protection and make OVP and OCCP thresholds become flat.
enSC: Enable Special Chemistry Model. Set this bit to 1 if a special chemistry model is used. This bit enables the use of
nScOcvLim.
enCTE: Enable Converge-to-Empty. Set this bit to enable the nConvgCfg register settings to affect the converge-toempty functionality of the IC. When this bit is clear, converge-to-empty is disabled and nConvgCfg can be used for
general purpose data storage.
enCrv: Enable Curve Correction. Set this bit to enable curvature correction on thermistor readings, improving thermistor
translation performance to -40°C to +80°C (instead of -10°C to +50°C). Note that enCrv and enMtl are mutually exclusive
functions. Do not set both enCrv and enMtl at the same time.
enAT: Enable Alert Thresholds. Set this bit to enable IAlrtTh, VAlrtTh, TAlrtTh, and SAlrtTh registers to be restored
after reset by the nIAlrtTh, nVAlrtTh, nTAlrtTh, and nSAlrtTh registers respectively. When this bit is clear, these registers
restore with their alternate initialization values and the nonvolatile locations can be used for general purpose data
storage.
enTTF: Enable Time-to-Full Configuration. Set to 1 to enable nTTFCfg (configures CVMixCap and CVHalftime) for tuning
of Time-to-Full performance. Otherwise, CVMixCap and CVHalftime restore to their alternate initialization values and
nTTFCfg can be used for general purpose data storage.
enODSC: Enable OD and SC Overcurrent Comparators. Set this bit to enable ODSCTh and ODSCCfg registers to be
restored after reset by the nODSCTh and nODSCCfg registers. When this bit is clear, ODSCTh and ODSCCfg restore
with their alternate initialization values (comparators disabled) and nODSCTh and nODSCCfg can be used for general
purpose data storage.
enRF: Enable RFast. Set this bit to enable RFast register to be restored after reset by the nRFast register. When this bit
is clear, RFast restores with their alternate initialization values and nRFast can be used for general purpose data storage.
enFTh: Enable FullSOCThr Configuration Restore. Set this bit to enable FullSOCThr register to be restored after reset
by the nFullSOCThr register. When this bit is clear, FullSOCThr restores with its alternate initialization value and
nFullSOCThr can be used for general purpose data storage.
enMtl: Enable CGTempCo Restore. Set this bit to enable CGTempCo register to be restored after reset by the nTCurve
register. When this bit is clear, CGTempCo restores with its alternate initialization value. nTCurve can be used for general
purpose data storage if both enCrv and enMtl are clear. Do not set both enCrv and enMtl at the same time.
enTP: Set to 1 to associate the TaskPeriod register with nTaskPeriod MTP. Otherwise, TaskPeriod restores with the
POR value and the register’s address configures nRippleCfg instead of nTaskPeriod.
enDS: Set to 0. Don't set to 1.
enProt: Enable Protector. Set this bit to enable the protector. When this bit is clear, protector is disabled.
enProtChksm: Enable Protector Checksum Function. Set this bit to enable the protector checksum function. When this
bit is clear, the checksum protection is disabled.
enTherm: Enable New Thermistor Calculations. (MAX17300/MAX17310 only). Set this bit to 1 to enable the new
thermistor calculations which can achieve thermistor accuracy within ±0.5ºC from -40ºC to +85ºC. When this bit is clear,
the original thermistor method is used for thermistor accuracy within ±3ºC from -20ºC to +70ºC.
www.analog.com
Analog Devices | 96
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
0: This location must remain 0. Do not write this location to 1.
nNVCfg2 Register (1BAh)
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register.
The nNVCfg2 register manages nonvolatile memory backup and restore of device and fuel gauge register RAM locations.
Each bit of the nNVCfg2 register, when set, enables a given register location to be restored from or backed up to a
corresponding nonvolatile memory location after reset of the IC. If nonvolatile backup of a given register is not enabled,
that location initializes to a default value after reset instead. See the individual register descriptions for details. Table 72
shows the nNVCfg2 register format.
Table 72. nNVCfg2 Register (1BAh) Format
D15
D14
D13
D12
D11
D10
D9
enT
0
enMMT
enMMV
enMMC
enVT
enFC
D8
D7
enMet
D6
D5
D4
D3
D2
FibMax
D1
D0
FibScl
FibMax/FibScl. Set the FibMax and FibScl "Fibonacci Saving" interval to provide recurring log-saving according to the
expected battery lifespan. See the 100 Record Life Logging section for more details.
enMet: Enable metal current sensing. Setting this bit to 1 enables temperature compensation of current readings for
allowing copper trace current sensing. This also forces the PackCfg.TdEn bit to 1 after reset of the IC to guarantee
internal temperature measurements occurs. See nNVCfg1.enMtl, which enables nTCurve register operation for
adjustment of the current sensing temperature coefficient.
enFC: Enable FullCap and FullCapRep backup and restore. Set this bit to enable FullCap and FullCapRep registers to
be restored after reset by the nFullCapRep register and FullCapRep to backup to nFullCapRep. When this bit is clear,
FullCap and FullCapRep registers restore from the nFullCapNom register. nFullCapRep can then be used as general
purpose user memory.
enVT: Enable Voltage and Temperature backup. Set this bit to enable storage of AvgVCell and AvgTA register
information into the nVoltTemp register during save operations. There is no corresponding restore option. When this bit
and nNVCfg0.enAF are clear, nVoltTemp can be used as general purpose memory. Note that enVT should not be set
simultaneously with nNVCfg0.enAF (AgeForecasting).
enMMC: Enable MinMaxCurr Backup. Set this bit to enable storage of MinMaxCurr register information into the
nMinMaxCurr register during save operations. There is no corresponding restore option. When this bit is clear,
nMinMaxCurr can be used as general purpose memory.
enMMV: Enable MinMaxVolt Backup. Set this bit to enable storage of MinMaxVolt register information into the
nMinMaxVolt register during save operations. There is no corresponding restore option. When this bit is clear,
nMinMaxVolt can be used as general purpose memory.
enMMT: Enable MinMaxTemp Backup. Set this bit to enable storage of MinMaxTemp register information into the
nMinMaxTemp register during save operations. There is no corresponding restore option. When this bit is clear,
nMinMaxTemp can be used as general purpose memory.
enT: Enable TimerH backup and restore. Set this bit to enable TimerH register to be backed up and restored by the
nTimerH register. When this bit is clear, TimerH restores with its alternate initialization value and nTimerH can be used
as general purpose memory.
Enabling and Freeing Nonvolatile vs. Defaults
There are seven nonvolatile memory words labeled nUser that are dedicated to general purpose user data storage. Most
other nonvolatile memory locations can also be used as general purpose storage if their normal function is disabled. The
nNVCfg0, nNVCfg1, and nNVCfg2 registers control which nonvolatile memory functions are enabled and disabled. Table
73 shows how to free up the specific registers for user data storage. Table 74 shows which nNVCfg bits control different
IC functions and the effects when the bit is set or cleared. See the nNVCfg register descriptions for complete details. Do
not convert a nonvolatile register to general purpose memory space if that register's function is used by the application.
Below is a summary of how many bytes can be made available for user memory and the functional trade off to free up
those bytes.
www.analog.com
Analog Devices | 97
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
● 156 bytes maximum freeable: The cost is to sacrifice any optional features/configuration, including no custom OCV
table and protector disabled.
● 74 bytes reasonably freeable: Made available without reverting halfway to EZ or disabling protector.
● 62 bytes freeable: Made available by using half of miscellaneous configurability.
● 42 bytes easily freeable
● 34 bytes always free: If SBS mode is not enabled.
● 4 bytes always free: If SBS enabled is enabled.
Table 73. Making Nonvolatile Memory Available for User Data
RELATED
FEATURE
MAJOR
FEATURE
CHOICES
www.analog.com
BYTES
REGISTERS
ADDRESS
COMMENTS
1 word
2 bytes
“Reserved”
0x1E4
Not freeable on
MAX17300/
MAX17310. Used as
nMiscCfg2.
0x1B4,
0x1CC-0x1CE,
0x1E3,
0x1E8-0x1EF
Generally freeable.
Always Free
Always
SBS NVM
Disable SBS and
DS2438 features
nNVCfg0.enSBS =
0
nNVCfg1.enDS = 0
15
words
30
bytes
nSBSCfg
nManfctrName[0:2]
nDesignVoltage
nManfctrDate
nFirstUsed
nSerialNumber[0:2]
nDeviceName[0:4]
Time-to-Full
Configurability
nNVCfg1.enTTF =
0
1 word
2 bytes
nTTFCfg
0x1C7
Free if default
nTTFCfg is
acceptable.
Dynamic
Power
nNVCfg0.enDP = 0
1 word
2 bytes
nDPLimit
0x1E0
Free if feature is not
used.
Age
Forecasting
nNVCfg0.enAF = 0
1 word
2 bytes
nAgeFcCfg
0x1E2
Free if feature is not
used. Has additional
implications with
nVoltTemp.
LiFePO4
nNVCfg1.enSC
1 word
2 bytes
nScOcvLim
0x1E1
Free if feature is not
used.
0x1D8
0x1DB
Free if feature is not
used. Note that
nJEITAV and
nJEITACfg are still
required for protector
functionality.
Freeable when
original full-capacity
isn’t required to be
remembered as
FullCapRep ages.
JEITA Charge
Voltage/
Current vs.
Temp
MODELLING/
CHARACTERIZATION
CONFIGURATION
OPTIONS
FREE BY:
nNVCfg0.enJ = 0
nNVCfg0.enJP = 0
2
words
4 bytes
nJEITAC
nStepChg
Design Cap +
FullCapRep
nNVCfg0.enDC = 0
1 word
2 bytes
nDesignCap
(else nFullCapRep)
0x1B3
Relaxation
Configuration
nNVCfg0.enRCfg =
0
nRelaxCfg
0x1B6
Misc
Configuration
nNVCfg0.enMC = 0
nMiscCfg
0x1B2
Converge-toEmpty NonDefault
Configuration
nNVCfg1.enCTE
Full Detection
% Threshold
nNVCfg1.enFTh
6
words
12
bytes
nConvgCfg
0x1B7
nFullSOCTh
0x1C6
Normally freeable.
Defaults work for most
applications.
Analog Devices | 98
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 73. Making Nonvolatile Memory Available for User Data (continued)
RFast
nNVCfg1.enRFVSH
nRFast
0x1E5
Filter
Configuration
nNVCfg0.enFC = 0
nFilterCfg
0x19D
nLearnCfg
nNVCfg0.en = 0
nLearnCfg
0x19F
Freeable depending
on modelling/
characterization.
1 word
2 bytes
Misc
Configuration
(Pushbutton,
CommShutdown,
AtRateenable
nNVCfg0.enCfg = 0
1 word
2 bytes
nConfig
0x1B0
Needed only for:
Pushbutton feature,
temp-alerts, 1% alerts,
AtRate, commshutdown.
Empty
Voltage
nNVCfg0.enVE = 0
1 word
2 bytes
nVEmpty
0x19E
Free if targeting the
fuel gauge to default
3.3V empty voltage.
Charge
Termination
nNVCfg0.enICT = 0
1 word
2 bytes
nIChgTerm
0x19C
12
words
24
bytes
nXTable[0:11]
0x180-0x18B
12
words
24
bytes
nCVTable[0:11]
0x190-0x19B
SOC Table
OCV Table
Use m5 EZ model
by setting
nNVCfg.enOCV = 0
nNVCfg.enX = 0
Alert Startup
Configuration
nNVCfg1.enAT = 0
4
words
8 bytes
nVAlrtTh
nTAlrtTh
nIAlrtTh
nSAlrtTh
0x18C-0x18F
Protector
NVM
Checksum
nNVCfg1
.enProtChkSm = 0
1 word
2 bytes
nCheckSum
0x1DF
16
words
32
bytes
nVPrtTh1,
nTPrtTh1
nTPrtTh3, nIPrtTh1
nVPrtTh2,
nTPrtTh2
nProtMisTh
nProtCfg, nJEITAV
nJEITACfg,
nDelayCfg
nODSCTh,
nODSCCfg
nCheckSum
(below if JEITA
also off) nJEITAC,
nStepChg
OTHER
Protector
nNVCfg1.enProt =
0
nNVCfg1.enJP = 0
0x1D0-0x1DF
With custom models/
characterization, this
is not freeable.
Most applications of
MAX1730x/
MAX1731x use
protector. However, if
the protector is
entirely disabled,
these 32 bytes
become free NVM.
FET drivers and
protection do not
execute in this
configuration.
.
www.analog.com
Analog Devices | 99
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 74. Nonvolatile Memory Configuration Options
ADDRESS
REGISTER
NAME
FACTORY
DEFAULT
CONTROL
BIT(S)
FUNCTION WHEN
CONTROL BIT IS SET
FUNCTION WHEN
CONTROL BIT(S)
CLEARED
180h 18Bh
nXTable0
through
nXTable12
All 0x0000
nNVCfg0.enX
180h-18Bh Hold Custom Cell
Model Information
Becomes Free1,
IC Uses Default EZ Cell
Model
18Ch
nVAlrtTh
0x0000
18Dh
nTAlrtTh
0x0000
18Eh
nIAlrtTh
0x0000
nNVCfg1.enAT
18Fh
nSAlrtTh
0x0000
VAlrtTh, TAlrtTh,
IAlrtTh, SAlrtTh
initialize from nVAlrtTh, nTAlrtTh,
nIAlrtTh, nSAlrtTh
Becomes Free1,
VAlrtTh, TAlrtTh, IAlrtTh,
SAlrtTh → Disabled
Threshold Values
190h 19Bh
nOCVTable0
through
nOCVTable12
All 0x0000
nNVCfg0.enOCV
190h-19Bh Hold Custom Cell
Model Information
Becomes Free1,
IC Uses Default EZ Cell
Model
19Ch
nIChgTerm
0x0000
nNVCfg0.enICT
nIChgTerm→ IChgTerm
Becomes Free1,
IChgTerm = FullCapRep/3
19Dh
nFilterCfg
0x0000
nNVCfg0.enFCfg
nFilterCfg→ FilterCfg
Becomes Free1,
FilterCfg = 0x0EA4
19Eh
nVEmpty
0x0000
nNVCfg0.enVE
nVEmpty→ VEmpty
Becomes Free1,
VEmpty = 0xA561
19Fh
nLearnCfg
0x0000
nNVCfg0.enLCfg
nLearnCfg → LearnCfg
Becomes Free1,
LearnCfg = 0x2687
1A0h
nQRTable00
0x1080
Always QRTable Information
1A1h
nQRTable10
0x2043
nQRTable00→ QRTable00
1A2h
nQRTable20
0x078C
nQRTable10→ QRTable10
1A3h
nQRTable30
0x0880
1A4h
nCycles
0x0000
Always nCycles→ Cycles
1A5h
nFullCapNom
0x0BB8
Always nFullCapNom→ FullCapNom
1A6h
nRComp0
0x08CC
Always nRComp0→ RComp0
1A7h
nTempCo
0x223E
Always nTempCo→ TempCo
1A8h
nBattStatus
0x0000
nNVCfg1.enProt
nProtCfg.PFen
Logs/Saves Permanent Failure
Status
Becomes Free1
1A9h
nFullCapRep
0x1A90
nNVCfg2.enFC
nFullCapRep→ FullCapRep
Becomes Free1
nFullCapNom→ FullCapRep
nNVCfg2.enVT
AvgVCell→ nVoltTemp and
AvgTA→ nVoltTemp at each
backup event
Becomes Free1,
Voltage, Temperature
Logging Disabled
nVoltTemp stores Age
Forecasting Information
Becomes Free1,
Age Forecasting Disabled
1AAh
nVoltTemp
0x0000
nQRTable20→ QRTable20
N/A
(nNVCfg0.enAF
= 0)
nNVCfg0.enAF
(nNVCfg2.enVT
= 0)
nQRTable30→ QRTable30
1ABh
nMaxMinCurr
0x807F
nNVCfg2.enMMC
MaxMinCurr→ nMaxMinCurr at
each backup event
Becomes Free1
1ACh
nMaxMinVolt
0x00FF
nNVCfg2.enMMV
MaxMinVolt→ nMaxMinVolt at
each backup event
Becomes Free1,
1ADh
nMaxMinTemp
0x807F
nNVCfg2.enMMT
MaxMinTemp→ nMaxMinTemp
at each backup event
Becomes Free1,
1AEh
nFullCapFlt
0x0000
nNVCfg0.enAF
nFullCapFlt stores Age
Forecasting backup information
Becomes Free1,
Age Forecasting Disabled
www.analog.com
Analog Devices | 100
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 74. Nonvolatile Memory Configuration Options (continued)
ADDRESS
REGISTER
NAME
FACTORY
DEFAULT
CONTROL
BIT(S)
FUNCTION WHEN
CONTROL BIT IS SET
FUNCTION WHEN
CONTROL BIT(S)
CLEARED
1AFh
nTimerH
0x0000
nNVCfg2.enT
TimerH→ nTimerH at each
backup event
Becomes Free1,
1B0h
nConfig
0x0000
nNVCfg0.enCfg
1B1h
nRippleCfg
0x0204
N/A
1B2h
nMiscCfg
0x0000
nNVCfg0.enMC
nMiscCfg→ MiscCfg
Becomes Free1,
MiscCfg = 0x3870
1B3h
nDesignCap
0x0000
nNVCfg0.enDC
nDesignCap→
DesignCap
Become Free1,
FullCapRep→ DesignCap
1B4h
nSBSCfg
0x0000
nNVCfg0.enSBS
SBS Functions Enabled
Becomes Free1
1B5h
nPackCfg
0x1101
N/A
1B6h
nRelaxCfg
0x0839
nNVCfg0.enRCfg
nRelaxCfg→ RelaxCfg
Becomes Free1,
RelaxCfg = 0x2039,
1B7h
nConvgCfg
0x2241
nNVCfg1.enCTE
Converge-to-Empty Enabled
Becomes Free1,
Converge-to-Empty Disabled
1B8h
nNVCfg0
0x0200
1B9h
nNVCfg1
0x0986
1BAh
nNVCfg2
0xFE0A
1BBh
nHibCfg
0x0909
1BCh
nROMID0
Varies
1BDh
nROMID1
Varies
1BEh
nROMID2
Varies
1BFh
nROMID3
Varies
1C0h
nPReserved0
0x8480
(0x00002)
1C1h
nPReserved1
0x8780
(0x00002)
1C2h
nPReserved2
0x0000
(0x00002)
1C3h
nPReserved3
0xDE00
(0xA0002)
1C4h
nRGain
0x0000
1C5h
nPackResistance
0x0000
1C6h
nFullSOCThr
1C7h
1C8h
www.analog.com
N/A
nConfig→ Config
nConfig→ Config2
Becomes Free1,
Config = 0x2214, Config2 =
0x2058
Always nRippleCfg→ RippleCfg
Always nPackCfg→ PackCfg
Always Required Nonvolatile Memory Control Registers
nHibCfg always applies, not optional
N/A
Always the Unique 64-bit ID
N/A
Do Not Modify without Special Guidance from Maxim
nNVCfg0.enDP
Used for Dynamic Power
Becomes Free1,
Dynamic Power Disabled
0x0000
nNVCfg1.enFTh
nFullSOCThr→ FullSOCThr
Becomes Free1,
FullSOCThr = 0x5005
nTTFCfg
0x0000
nNVCfg1.enTTF
nTTFCfg Configures Time-to-Full
Calculation
Becomes Free1,
Time-to-Full Default
Configuration
nCGain
0x4000
N/A
Trim for Calibrating Current-Sense Gain
Analog Devices | 101
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 74. Nonvolatile Memory Configuration Options (continued)
REGISTER
NAME
ADDRESS
FACTORY
DEFAULT
CONTROL
BIT(S)
FUNCTION WHEN
CONTROL BIT IS SET
FUNCTION WHEN
CONTROL BIT(S)
CLEARED
Metal Current Sense TempCo
Configurable nTCurve→
CGTempCo
Becomes Free1,
Metal Current Sense
TempCo Enabled,
CGTempCo = 0x20C8
Thermistor Curvature Controlled
by nTCurve
Becomes Free1,
Thermistor Curvature
Disabled
nNVCfg1.enMtl
(nNVCfg2.enMet
= 1)
nCGTempCo/
nTCurve
1C9h
0x0025
(nNVCfg1.enCrv
= 0)
nNVCfg1.enCrv
(nNVCfg2.enMet
= 0)
(default)
1CAh
nTGain
0xEE56
1CBh
nTOff
0x1DA4
1CCh
nManfctrName0
0x0000
1CDh
nManfctrName1
0x0000
1CEh
nManfctrName2
0x0000
1CFh
nRSense
0x03E8
1D0h
nVPrtTh1
0x508C
1D1h
nTPrtTh1
0x3700
1D2h
nTPrtTh3
0x5528
1D3h
nIPrtTh1
0x4BB5
1D4h
nVPrtTh2
0xDC00
1D5h
nTPrtTh2
0x2D0A
1D6h
nProtMiscTh
0x7A28
1D7h
nProtCfg
0x0A00
1D8h
nJEITAC
0x644B
1D9h
nJEITAV
0x0059
1DAh
nJeitaCfg
0x5054
N/A
nNVCfg0.enSBS
N/A
Configuration for Translating Thermistor to ºC
nManfctrName[2:0]→
sManfctrName
Becomes Free1
Sense Resistor Value—Helps Host Translate Currents and
Capacities
nNVCfg1.enProt
Configures Protection
Thresholds
Becomes Free1
Protector Disabled
1DBh
nStepChg
0xC884
1DCh
nDelayCfg
0xAB3D
1DDh
nODSCTh
0x0EAF
1DEh
nODSCCfg
0x4345
1DFh
nCheckSum
0x0017
nNVCfg1.
{enProtChkSm
and enProt}
Holds CheckSum Value of
0x1A0-0x1AE for Validating NVM
at Startup
Becomes Free1
1E0h
nDPLimit
0x0000
nNVCfg0.enDP
Configures Dynamic Power
Becomes Free1
Dynamic Power Disabled
1E1h
nScOcvLim
0x0000
nNVCfg1.enSC
Used for LiFePO4 Gauging
Becomes Free1
LiFePO4 Disabled
1E2h
nAgeFcCfg
0x0000
nNVCfg0.enAF
Configures Age Forecast
Becomes Free1
1E3h
nDesignVoltage
0x0000
nNVCfg0.enSBS
nDesignVoltage→
sDesignVolt
Becomes Free1
1E4h
nMiscCfg2
0x0000
N/A
www.analog.com
nMiscCfg2
Analog Devices | 102
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 74. Nonvolatile Memory Configuration Options (continued)
ADDRESS
REGISTER
NAME
FACTORY
DEFAULT
CONTROL
BIT(S)
FUNCTION WHEN
CONTROL BIT IS SET
FUNCTION WHEN
CONTROL BIT(S)
CLEARED
1E5h
nRFast
0x0000
nNVCfg1.enRF
nRFast→ RFast
Becomes Free1,
RFast = 0x0500
1E6h
nManfctrDate
0x0000
nManfctrDate→ sManfctrDate
Becomes Free1
1E7h
nFirstUsed
0x0000
nFirstUsed→ sFirstUsed
Becomes Free1
1E8h
nSerialNumber0
0x0000
1E9h
nSerialNumber1
0x0000
Becomes Free1
1EAh
nSerialNumber2
0x0000
nSerialNumber[2:0]→
sSerialNumber
1EBh
nDeviceName0
0x0000
1ECh
nDeviceName1
0x0000
1EDh
nDeviceName2
0x0000
Becomes Free1
1EEh
nDeviceName3
0x0000
nDeviceName[4:0]→
sDeviceName
1EFh
nDeviceName4
0x0000
nNVCfg0.enSBS
Note 1: "Free" indicates the address is unused and available as general user nonvolatile.
Note 2: MAX17300/MAX17310 only
Shadow RAM
Nonvolatile memory is never written to or read from directly by the communication interface. Instead, data is written to
or read from shadow RAM memory located at the same address. Copy and recall commands are used to transfer data
between the nonvolatile memory and the shadow RAM. Figure 26 describes this relationship. Nonvolatile memory recall
occurs automatically at IC power-up and software POR.
Shadow RAM and Nonvolatile Memory Relationship
SHADOW RAM
NONVOLATILE MEMORY
COMMUNICATION INTERFACE
0180h
0180h
DATA WRITE
COPY NV BLOCK
NV RECALL
DATA READ
01EFh
01EFh
Figure 26. Shadow RAM and Nonvolatile Memory Relationship
www.analog.com
Analog Devices | 103
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Nonvolatile Memory Commands
The following commands are used to copy or recall data from the nonvolatile memory. All commands are written to the
Command register at memory address 060h to perform the desired operation. The CommStat register can be used to
track the status of the request.
COPY NV BLOCK [E904h]
This command copies the entire block from shadow RAM to nonvolatile memory addresses 180h to 1EFh excluding
the unique ID locations of 1BCh to 1BFh. After issuing this command, the host must wait tBLOCK for the operation to
complete. The configuration memory can be copied a maximum of seven times. Note that the supply voltage must be
above VNVM for the operation to complete successfully.
NV RECALL [E001h]
This command recalls the entire block from nonvolatile memory to Shadow RAM addresses 180h to 1EFh. This is a
low power operation that takes up to tRECALL to complete. Note that the supply voltage must be above VNVM for the
operation to complete successfully.
HISTORY RECALL [E2XXh]
This command copies history data into page 1Fh of memory. After issuing this command, the host must wait tRECALL
for the operation to complete before reading page 1Fh. Table 75 shows what history information can be recalled. See
SHA-256, Battery Life Logging, and Determining Number of Remaining Updates sections for details on how to decode
this information.
Table 75. History Recall Command Functions
COMMAND
FUNCTION
0xE29D
Recall indicator flags to determine remaining SHA-256 secret updates or clears
0xE29B
Recall indicator flags to determine remaining configuration memory writes
0xE29C
Recall indicator flags to determine remaining Battery Life Logging updates
0xE29C, 0xE29D
Recall indicator flags to determine Battery Life Logging update errors
0xE22E to 0xE291
Recall Battery Life Logging information
Nonvolatile Block Programming
The host must program all nonvolatile memory locations at the same time by using the Copy NV Block command. The
host first writes all desired nonvolatile memory Shadow RAM locations to their desired values, then sends the Copy NV
Block command, and then waits tBLOCK for the copy to complete. Afterwards, the host should send the power-on-reset
sequence to reset the IC and have the new nonvolatile settings take effect. The CommStat.NVError bit should be read
to determine if the copy command executed successfully. Note that configuration memory is limited to nBLOCK total write
attempts. The recommended full sequence is:
1. Write desired memory locations to new values.
2. Clear CommStat.NVError bit.
3. Write 0xE904 to the Command register 0x060 to initiate a block copy.
4. Wait tBLOCK for the copy to complete.
5. Check the CommStat.NVError bit. If set, repeat the process. If clear, continue.
6. Write 0x000F to the Command register 0x060 to POR the IC.
7. Wait 10ms for the IC to reset.
8. Write 0x8000 to Config2 register 0x0AB to reset firmware.
9. Wait for POR_CMD bit (bit 15) of the Config2 register to be cleared to indicated POR sequence is complete.
Determining Number of Remaining Updates
The configuration memory can only be updated seven times by the user (first update occurs during manufacturing test).
www.analog.com
Analog Devices | 104
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
The number of remaining updates can be calculated using the following procedure:
1. Write 0xE29B to the Command register (060h).
2. Wait tRECALL.
3. Read memory address 1FDh.
4. Decode address 1FDh data as shown in Table 76. Each block write has redundant indicator flags for reliability.
Logically OR the upper and lower bytes together then count the number of 1s determine how many updates have already
been used. The first update occurs in manufacturing test prior to shipping to the user.
Table 76. Number of Remaining Config Memory Updates
ADDRESS 1FDH
DATA
LOGICAL OR OF UPPER AND LOWER
BYTES
NUMBER OF UPDATES
USED
NUMBER OF UPDATES
REMAINING
0000000x00000001b
or
00000001b
1
7
00000011b
2
6
00000111b
3
5
00001111b
4
4
00011111b
5
3
00111111b
6
2
01111111b
7
1
11111111b
8
0
000000010000000xb
000000xx0000001xb
or
0000001x000000xxb
00000xxx000001xxb
or
000001xx00000xxxb
0000xxxx00001xxxb
or
00001xxx0000xxxxb
000xxxxx0001xxxxb
or
0001xxxx000xxxxxb
00xxxxxx001xxxxxb
or
001xxxxx00xxxxxxb
0xxxxxxx01xxxxxxb
or
01xxxxxx0xxxxxxxb
xxxxxxxx1xxxxxxxb
or
1xxxxxxxxxxxxxxxb
nLearnCfg Register (19Fh)
Register Type: Special
Nonvolatile Restore: LearnCfg (0A1h) if nNVCfg0.enLCfg is set.
Alternate Initial Value: 0x4696
The nLearnCfg register controls all functions relating to adaptation during operation. Table 77 shows the register format.
Table 77. LearnCfg (0A1h)/nLearnCfg (19Fh) Register Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
0
1
0
0
0
1
1
0
1
D6
D5
LS
D4
D3
D2
D1
D0
0
1
1
0
0: Bit must be written 0. Do not write 1.
1: Bit must be written 1. Do not write 0.
LS: Learn Stage. The Learn Stage value controls the influence of the voltage fuel gauge on the mixing algorithm. Learn
www.analog.com
Analog Devices | 105
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Stage defaults to 0h, making the voltage fuel gauge dominate. Learn Stage then advances to 7h over the course of two
full cell cycles to make the coulomb counter dominate. Host software can write the Learn Stage value to 7h to advance
to the final stage at any time. Writing any value between 1h and 6h is ignored.
nMiscCfg Register (1B2h)
Register Type: Special
Nonvolatile Restore: MiscCfg (00Fh) if nNVCfg0.enMC is set.
Alternate Initial Value: 0x3070
The nMiscCfg control register enables various other functions of the device. The nMiscCfg register default values should
not be changed unless specifically required by the application. Table 78 shows the register format.
Table 78. MiscCfg (00Fh)/nMiscCfg (1B2h) Register Format
D15
D14
D13
D12
FUS
D11
D10
0
0
D9
D8
D7
D6
D5
D4
D3
D2
1
0
0
MR
D1
D0
SACFG
0: Bit must be written 0. Do not write 1.
1: Bit must be written 1. Do not write 0.
SACFG: SOC Alert Config. SOC Alerts can be generated by monitoring any of the SOC registers as follows. SACFG
defaults to 00 at power-up:
0 0 SOC Alerts are generated based on the RepSOC register.
0 1 SOC Alerts are generated based on the AvSOC register.
1 0 SOC Alerts are generated based on the MixSOC register.
1 1 SOC Alerts are generated based on the VFSOC register.
MR: Mixing Rate. This value sets the strength of the servo mixing rate after the final mixing state has been reached
(> 2.08 complete cycles). The units are MR0 = 6.25μV, giving a range up to 19.375mA with a standard 0.010Ω sense
resistor. Setting this value to 00000b disables servo mixing and the IC continues with time-constant mixing indefinitely.
The default setting is 18.75μV or 1.875mA with a standard sense resistor.
FUS: Full Update Slope. This field prevents jumps in the RepSOC and FullCapRep registers by setting the rate of
adjustment of FullCapRep near the end of a charge cycle. The update slope adjustment range is from 2% per 15 minutes
(0000b) to a maximum of 32% per 15 minutes (1111b).
nConfig Register (1B0h)
Register Type: Special
Nonvolatile Restore: Config (00Bh) and Config2 (0ABh) if nNVCfg0.enCfg is set.
Alternate Initial Value: 0x2214 for Config, 0x0050 for Config2
The nConfig register holds all shutdown enable, alert enable, and temperature enable control bits. Writing a bit location
enables the corresponding function within one task period. Table 79, Table 80, and Table 81 show the register formats.
Table 79. nConfig Register (1B0h) Format
D15
ProtAlrtEn
D14 D13 D12 D11
SS
www.analog.com
TS
VS
0
D10
PBen
D9 D8
1
0
D7
D6
D5
D4
D3
D2
D1
D0
AtRateEn
COMMSH
FastADCen
1
FTHRM
Aen
dSOCen
TAlrtEn
Analog Devices | 106
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 80. Config Register (00Bh) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
SS
TS
VS
0
PBen
1
0
SHDN
COMMSH
FastADCen
1
FTHRM
Aen
Bei
ProtAlrtEn
Table 81. Config2 Register (0ABh) Format
D15
D14
D13
D12
POR_CMD
0
AtRtEn
0
D11
D10
D9
POWR
D8
D7
D6
D5
D4
dSOCen
TAlrtEn
0
1
D3
D2
DRCfg
D1
D0
CPMode
BlockDis
0: Bit must be written 0. Do not write 1.
1: Bit must be written 1. Do not write 0.
PBEn: PushButton enable. Set PBEn = 1 to enable wakeup by pushbutton. This application allows a gadget to be
completely sealed with battery disconnected until a shared system button is pressed.
Bei: Enable alert on battery insertion when the IC is mounted host side. When Bei = 1, a battery-insertion condition, as
detected by the TH pin voltage, triggers an alert.
Aen: Enable alert on fuel-gauge outputs. When Aen = 1, violation of any of the alert threshold register values by
temperature, voltage, or SOC triggers an alert. This bit affects the ALRT1 pin operation only. The Smx, Smn, Tmx, Tmn,
Vmx, Vmn, Imx, and Imn bits of the Status register (000h) are not disabled.
ProtAlrtEn: Enable alert on protection event. When ProtAlrtEn = 1 and Aen = 1, any protection event triggers an alert.
This bit affects ALRT1 pin operation only. The Status.PA bit is not disabled. (MAX17300/10 Only)
FTHRM: Force Thermistor Bias Switch. This allows the host to control the bias of the thermistor switch or enable
fast detection of battery removal. Set FTHRM = 1 to always enable the thermistor bias switch. With a standard 10kΩ
thermistor, this adds an additional ~200μA to the current drain of the circuit.
FastADCen: Enable FastADC. Set to logic 1 to enable the FastADC feature.
COMMSH: Communication Shutdown. Set to logic 1 to force the device to enter shutdown mode if both SDA and SCL
are held low (MAX17300-MAX17303) or DQ is held low (MAX17310-MAX17313) for more than timeout of the ShdnTimer
register. This also configures the device to wake up on a rising edge of any communication. Note that if COMMSH is set
to 0, the device wakes up an edge of any of the DQ/SDA or OD/SCL pins. See Table 8.
SHDN: I2C Shutdown Command. Write this bit to logic 1 to force a shutdown of the device after timeout of the ShdnTimer
register (default 45s delay). SHDN is reset to 0 at power-up and upon exiting shutdown mode. In order to command
shutdown within 45 seconds, first write HibCFG = 0x0000 to enter active mode.
VS: Voltage ALRT1 Sticky. When VS = 1, voltage alerts can only be cleared through software. When VS = 0, voltage
alerts are cleared automatically when the threshold is no longer exceeded.
TS: Temperature ALRT1 Sticky. When TS = 1, temperature alerts can only be cleared through software. When TS = 0,
temperature alerts are cleared automatically when the threshold is no longer exceeded.
SS: SOC ALRT1 Sticky. When SS = 1, SOC alerts can only be cleared through software. When SS = 0, SOC alerts are
cleared automatically when the threshold is no longer exceeded.
POR_CMD: Firmware Restart. Set this bit to 1 to restart IC firmware operation without performing a recall of nonvolatile
memory into RAM. This allows different IC configurations to be tested without changing nonvolatile memory settings. This
bit is set to 0 at power-up and automatically clears itself after firmware restart.
POWR: Sets the time constant for the AvgPower register. The default POR value of 0000b gives a time constant of 0.7s.
The equation setting the period is:
AvgPower time constant = 45s x 2(POWR-6)
TAlrten: Temperature Alert Enable. Set this bit to 1 to enable temperature based alerts. Write this bit to 0 to disable
temperature alerts. This bit is set to 1 at power-up.
dSOCen: SOC Change Alert Enable. Set this bit to 1 to enable the Status.dSOCi bit function. Write this bit to 0 to disable
the Status.dSOCi bit. This bit is set to 0 at power-up.
CPMode: Constant-power mode. Set to 1 to enable constant-power mode.
www.analog.com
Analog Devices | 107
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
DRCfg: Deep Relax Time Configuration. 00 for 0.8 to 1.6 hours, 01 for 1.6 to 3.2 hours, 10 for 3.2 to 6.4 hours and 11
for 6.4 to 12.8 hours.
BlockDis: Block Discharge. The BlockDis bit is used for managing the discharging of multiple batteries in parallel and
is enabled by setting nPackCfg.ParEn = 1. Set to 1 and clear Status.AllowChgB to block discharging while allowing
charging (MAX17300/MAX17310 only).
nPackCfg Register (1B5h)
Register Type: Special
The nPackCfg register configures the voltage and temperature inputs to the A/D and also to the fuel gauge. The default
factory setting for nPackCfg is 0x1101 for the MAX1730x/MAX1731x. Table 82 shows the register format.
Table 82. nPackCfg Register (1B5h) Format
D15
D14
D13
D12
D11
0
0
0
A1En
R100
D10
D9
D8
001
D7
D6
D5
D4
0
ParEn
0
0
D3
D2
D1
D0
0001
R100: If using 100kΩ NTC, set R100 = 1; if using 10kΩ NTC, set R100 = 0.
A1En: AIN1 Channel Enable. Set to 1 to enable temperature measurements on the TH pin.
ParEn: Parallel Charging Functionality Enable. Set to 1 to enable parallel charging function. (MAX17300/MAX17310 only)
All other bits are reserved for future usage.
0: Bit must be written 0. Do not write 1.
1: Bit must be written 1. Do not write 0.
nMiscCfg2 Register (1E4h) (MAX17300/MAX17310 Only)
Register Type: Special
The nMiscCfg2 register configures the noiseless filter, smart-full threshold, and nMargin. The default factory setting for
nMiscCfg2 is 0x0800 for the MAX17300/MAX17310. Table 83 shows the register format.
Table 83. nMiscCfg2 Register (0x1E4h) Format
D15
D14
D13
D12
D11
D10
D9
0
0
0
0
1
0
0
D8
D7
D6
D5
D4
D3
D2
dSmartFull
D1
D0
nMargin
dSmartFull: Delta Smart-Full Threshold. The smart-full threshold is set relative to ChargingVoltage (see nJEITAV).
dSmartFull is a positive number with 0.625mV resolution and 80mV range. It is translated to a negative offset relative to
ChargingVoltage so that smart-full threshold is calculated as:
Smart-Full Threshold = ChargingVoltage – (dSmartFull x 0.625mV)
Whenever VFOCV is greater than smart-full threshold, it has the same behavior as end-of-charge detection with the
addition that the charge FET opens after the nDelayCfg.FullTimer expires.
The release condition of smart-full is VFOCV is less than smart-full threshold - hysteresis (10mV) and discharging.
To disable the smart-full functionality, set dSmartFull = 0. Factory default is 0.
nMargin: Charge\Discharge Current Detection Comparator Threshold. Configure nMargin = 0.
nDesignVoltage Register (1E3h)
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register.
Table 84. nDesignVoltage Register (1E3h) Format
D15
D14
D13
D12
Vminsys
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Vdesign
Vminsys: (unsigned byte) = 'Minimum system voltage' specification for the design. Generates MinSysVoltage value.
www.analog.com
Analog Devices | 108
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Vdesign: (unsigned byte) = 'Design voltage' specification for the design.
Each byte has an lsb = 20mV (resolution) giving a full scale range = 0V to 5.12V.
These values are used in SBS calculations only when enSBS = 1.
Vminsys 'translates' to sMinSysVoltage word, while Vdesign 'translates' to sDesignVolt word, where the lsb = 1mV.
MinSysVoltage = (0xFF00 and nDesignVoltage)
sMinSysVoltage = [(0xFF00 and nDesignVoltage) >> 8] x 20 (mV)
sDesignVolt
= (0x00FF and nDesignVoltage) x 20 (mV)
Memory Locks
ModelGauge m5 RAM registers and all non-volatile memory locations can be permanently locked to prevent accidental
data loss in the application. Locking a memory block only prevents future writes to the locations. Reading locked
locations is still allowed. Note that locking a memory location is permanent, so carefully choose all desired
locks before sending the NV LOCK command. The SHA secret is stored in separate secure nonreadable memory.
There is a different command for locking the SHA secret and its state is not displayed in the Lock register. See the
SHA_Authentication section for details. Once a lock bit is set it can never be cleared. Table 63 shows which lock bits
correspond to which memory blocks of the IC.
NV LOCK [6AXXh]
This command permanently locks a block or blocks of memory. To set a lock, send 6AXXh to the Command register
where the lower 5 bits of the command determine which locks are set. Table 85 shows a detailed format of the NV LOCK
command. Set each individual LOCK bit to 1 to LOCK the corresponding register block. Set the LOCK bit to 0 to do
nothing at this time. For example, writing 6A02h to the Command register sets LOCK2. Writing 6A1Fh sets all five locks.
Writing 6A00h sets no locks.
Table 85. Format of LOCK Command
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
0
1
1
0
1
0
1
0
0
0
0
D4
D3
D2
D1
D0
LOCK
LOCK
LOCK
LOCK
LOCK
5
4
3
2
1
LOCK1: Locks register pages 1A, 1B, 1E (Locking disables History Life Logging)
LOCK2: Locks register pages 01, 02, 03, 04, 0B, 0D
LOCK3: Locks register pages 18, 19
LOCK4: Locks register pages 1C
LOCK5: Locks register pages 1D
Locking Memory Blocks
Prior to sending the lock command, the CommStat.NVError bit should be cleared. After the command is sent, the
CommStat.NVError bit should be read to determine if the lock command executed successfully. Note that locking memory
blocks is a permanent operation. The recommended full sequence is:
1. Clear CommStat.NVError bit.
2. Write 0x6AXX to the Command register 0x060 to lock desired blocks.
3. Wait tUPDATE for the copy to complete.
4. Check the CommStat.NVError bit. If set, repeat the process.
Reading Lock State
The Lock register at address 07Fh reports the state of each lock. See Table 86 for the format of the Lock register. If a
LOCK bit is set, the corresponding memory block is locked. If the LOCK bit is cleared, the corresponding memory block
is unlocked. Note that the SHA-256 Secret lock state cannot be read through this register.
www.analog.com
Analog Devices | 109
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 86. Format of Lock Register (07Fh)
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
X
X
X
X
X
X
X
X
X
X
X
D4
D3
D2
D1
D0
LOCK
LOCK
LOCK
LOCK
LOCK
5
4
3
2
1
X: Don't Care
1: LOCK is set
0: LOCK is clear
Analog Measurements
The MAX1730x/MAX1731x monitors cell pack voltage, cell pack current, cell pack temperature, and the voltage of the
cell. This information is provided to the fuel-gauge algorithm to predict cell capacity, trigger protection FETs in case of
fault conditions, and also made available to the user. Note that ADC related register information is not maintained while
the IC is in shutdown mode. The following register information is invalid until the first measurement cycle after the IC
returns to active mode of operation.
Voltage Measurement
The MAX1730x/MAX1731x monitors the voltage at the BATT pin.
VCell Register (01Ah)
Register Type: Voltage
Nonvolatile Backup: None
Each update cycle, the lowest reading from all cell voltage measurements is placed in the VCell register. VCell is used
as the voltage input to the fuel-gauge algorithm and trigger protection FETs in case of fault conditions.
VCellRep Register (012h) (MAX17300/MAX17310 Only)
Register Type: Voltage
Nonvolatile Backup: None
VCellRep reports a low-noise measurement of battery voltage as shown in Figure 27.
Note: See Modes of Operation section for details to enable.
AvgVCell Register (019h)
Register Type: Voltage
Nonvolatile Backup: None
The AvgVCell register reports an average of the VCell register readings. The time period for averaging is configurable
from a 12 second to 24 minute time period. See the FilterCfg register description for details on setting the time filter.
The first VCell register reading after power up or exiting shutdown mode sets the starting point of the AvgVCell register.
Note that when a cell relaxation event is detected, the averaging period changes to the period defined by the RelaxCfg.dt
setting. The register reverts back to its normal averaging period when a charge or discharge current is detected.
MaxMinVolt Register (0008h)
Register Type: Special
Nonvolatile Backup: Saves to nMaxMinVolt (1ACh) if nNVCfg2.enMMV is set (does not restore from nonvolatile).
Initial Value: 0x00FF
The MaxMinVolt register maintains the maximum and minimum of VCell register values since device reset. Each time
the voltage registers update, they are compared against these values. If the new reading is larger than the maximum or
less than the minimum, the corresponding value is replaced with the new reading. At power-up, the maximum voltage
value is set to 00h (the minimum) and the minimum voltage value is set to FFh (the maximum). Therefore, both values
are changed to the voltage register reading after the first update. Host software can reset this register by writing it to its
www.analog.com
Analog Devices | 110
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
power-up value of 0x00FF. The maximum and minimum voltages are each stored as 8-bit values with a 20mV resolution.
Table 87 shows the register format.
Table 87. MaxMinVolt (008h)/nMaxMinVolt (1ACh) Register Format
D15
D14
D13
D12
D11
D10
D9
D8
MaxVCELL
D7
D6
D5
D4
D3
D2
D1
D0
MinVCELL
MaxVCELL: Maximum VCell register reading (20mV resolution).
MinVCELL: Minimum VCell register reading (20mV resolution).
MaxMinVolt is not cumulative across the entire battery lifetime. After each periodic nonvolatile-memory save, MaxMinVolt
resets to 0x00FF to find the next max/min volt across the next segment of battery life. This behavior helps provide a
useful log across the battery lifetime where each log segment shows the maximum and minimum voltage experienced
across only that segment.
MinVolt Register (0ADh)
Register Type: Voltage
Nonvolatile Backup: None
MinVolt is doing the same job as with MaxMinVolt's minimum voltage but with a finer resolution. It is used for Intel
dynamic power tests.
The MinVolt register maintains the minimum BATT register value within a 45 second period or until cleared by host
software. Each time the BATT register updates, it is compared against its value. If the reading is less than the minimum,
the corresponding value is replaced with the new reading. At power-up, MinVolt value is set to 0xFFFF. Therefore, value
is changed to the BATT register reading after the first update. Host software can reset this register by writing it to its
power-up value of 0xFFFF. LSB is 1.25mV.
Cell1 Register (0D8h)
Register Type: Voltage
Nonvolatile Backup: None
In the MAX1730x/MAX1731x the Cell1 register duplicates the voltage from the VCell register (measured at the BATT
pin). This register is only provided for cross-compatibility with multicell chips where a set of cell voltages is provided.
AvgCell1 Register (0D4h)
Register Type: Voltage
Nonvolatile Backup: None
The AvgCell1 register reports an 8-sample filtered average of the corresponding Cell1 register readings.
Batt Register (0D7h)
Register Type: Special
Nonvolatile Backup: None
The Batt register reports the VCell voltage on a 81.92V scale for cross-compatibility with other Maxim gauges that provide
multicell functionality. This allows a generalized driver to interact both with single-cell and multicell chips.
Current Measurement
The MAX1730x/MAX1731x is able to monitor the current flow through the cell pack by measuring the voltage between
the CSN and CSP pins over a ±51.2mV range. While in active mode, updates occur in intervals of 351.5ms. In hibernate
mode, the update interval is set by the nHibCfg register. All ICs are calibrated for current-measurement accuracy at the
factory. However, if the application requires, Current register readings can be adjusted by changing the nCGain register
setting.
If the application uses a sense resistor with a large temperature coefficient such as a copper metal board trace, current
readings can be adjusted based on the temperature measured by the IC. The CGTempCo register stores a percentage
www.analog.com
Analog Devices | 111
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
per ºC value that are applied to current readings if the nNVCfg2.enMet bit is set. If nNVCfg1.enMtl = 0, the default
temperature coefficient of copper is used for temperature adjustments. If enMt = 1, the CGTempCo register value is used
for temperature adjustments.
Additionally, the IC maintains a record of the minimum and maximum current measured by the IC and an average current
over a time period defined by the host. Contents of the Current and AvgCurrent registers are indeterminate for the first
conversion cycle time period after IC power-up.
Current Measurement Timing
Current measurements are always enabled regardless of nPackCfg settings. Table 88 shows the timing for current
measurements made by the IC. All times in this table are considered typical.
Table 88. Current Measurement Timing
APPLICATION
NPACKCFG
SETTING
Any
Any
REGISTER
FIRST UPDATE
AFTER RESET1
UPDATE RATE IN
ACTIVE MODE
UPDATE RATE IN
HIBERNATE MODE2
Current
150ms
351ms
1.4s
AvgCurrent
150ms
351ms
1.4s
1. AvgCurrent register is initialized using a single reading instead of an average.
2. Hibernate mode update times assume the recommended nHibCfg.HibScalar setting of 4 task periods.
Current Register (01Ch)
Register Type: Current
Nonvolatile Backup: None
The IC measures the voltage between the CSP and CSN pins and the result is stored as a two’s complement value in the
Current register. Voltages outside the minimum and maximum register values are reported as the minimum or maximum
value. The register value should be divided by the sense resistance to convert to amps. The value of the sense resistor
determines the resolution and the full-scale range of the current readings. Table 89 shows range and resolution values
for typical sense resistances.
Table 89. Current Measurement Range and Resolution vs. Sense Resistor Value
BATTERY FULL
CAPACITY (mAh)
SENSE
RESISTOR
(mΩ)
nRSENSE
CURRENT REGISTER
RESOLUTION (μA)
CURRENT
REGISTER
RANGE (A)
CAPACITY
RESOLUTION
(mAh)
MAXIMUM
CAPACITY
(mAh)
> 4000
1
0064h
1562.5
±51.2
5
144360
> 2000
2
00C8h
781.25
±25.6
2.5
71680
> 800
5
01F4h
312.5
±10.24
1
28672
> 400
10
03E8h
156.25
±5.12
0.5
14336
> 200
20
07D0h
78.125
±2.56
0.25
7168
> 80
50
1388h
31.25
±1.02
0.1
2867
> 40
100
2710h
15.625
±0.51
0.05
1433
CurrRep Register (022h) (MAX17300/MAX17310 Only)
Register Type: Current
Nonvolatile Backup: None
CurrRep reports a low-noise measurement of current as shown in Figure 27.
www.analog.com
Analog Devices | 112
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
NOISELESS CURRENT (CURRREP)
10
0
0
10
20
30
40
50
60
70
80
CURRENT (m A)
-10
-20
-30
-40
-50
-60
TIME (seconds)
CURRENT
CURRREP
AVGCURRENT
Figure 27. Noiseless Current
Note: See the Modes of Operation section for details to enable.
AvgCurrent Register (01Dh)
Register Type: Current
Nonvolatile Backup: None
The AvgCurrent register reports an average of Current register readings over a configurable 0.7 second to 6.4 hour time
period. See the FilterCfg register description for details on setting the time filter. The first Current register reading after
returning to active mode sets the starting point of the AvgCurrent filter.
MaxMinCurr Register (00Ah)
Register Type: Special
Nonvolatile Backup: periodically saves to nMaxMinCurr (1ABh) if nNVCfg2.enMMC is set, but does not restore from
nonvolatile memory.
Alternate Initial Value: 0x807F
The MaxMinCurr register maintains the maximum and minimum Current register values since the last IC reset or until
cleared by host software. Each time the Current register updates, it is compared against these values. If the reading is
larger than the maximum or less than the minimum, the corresponding value is replaced with the new reading. At power-
www.analog.com
Analog Devices | 113
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
up, the maximum current value is set to 80h (the minimum) and the minimum current value is set to 7Fh (the maximum).
Therefore, both values are changed to the Current register reading after the first update. Host software can reset this
register by writing it to its power-up value of 0x807F. The maximum and minimum voltages are each stored as two’s
complement 8-bit values with 0.4mV/RSENSE resolution. Table 90 shows the register format.
Table 90. MaxMinCurr (00Ah)/nMaxMinCurr (1ABh) Register Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
MaxCurrent
D4
D3
D2
D1
D0
MinCurrent
MaxCurrent: Maximum Current register reading (0.40mV resolution)
MinCurrent: Minimum Current register reading (0.40mV resolution)
MaxMinCurr is not cumulative across the entire battery lifetime. After each periodic nonvolatile-memory save,
MaxMinCurr resets to 0x807F to find the next maximum and minimum current across the next segment of battery life.
This behavior helps provide a useful log across the battery lifetime where each log segment shows the maximum and
minimum current experienced across only that segment.
MinCurr Register (0AEh)
Register Type: Current
Nonvolatile Backup: None
MinCurr is doing the same job as with MaxMinCurr's minimum current but with a finer resolution. It is used for Intel
dynamic power tests.
The MinCurr register maintains the minimum discharge Current register value within a 45 seconds period or until cleared
by host software. Each time the Current register updates, it is compared against its value. If the reading is less than the
minimum, the corresponding value is replaced with the new reading. At power-up, MinCurr value is set to 0 (maximum
discharge current). Therefore, value is changed to the Current register reading after the first update during discharge.
Host software can reset this register by writing it to its power-up value of 0. LSB is 0.0015625mV/RSense.
nCGain Register (1C8h)
Register Type: Special
The nCGain register adjusts the gain and offset of the current measurement result. The current measurement A/D is
factory trimmed to data sheet accuracy without the need for the user to make further adjustments. The recommended
default for the nCGain register is 0x4000 which applies no adjustments to the Current register reading.
For specific application requirements, the CGain and COff values can be used to adjust readings as follows:
Current register = (current A/D reading × (CGain / 256)) + COff
CGain and COff are combined into a single register formatted as shown in Table 91.
Table 91. nCGain Register (1C8h) Format
D15
D14
D13
D12
D11
D10
D9
CGain
D8
D7
D6
D5
D4
D3
D2
D1
D0
COff
COff: COff has a range of -32 to +31 LSbs. However, It is normally not recommended to calibrate COff. COff = 0 is
recommended for most applications.
CGain: The recommended default value of CGain = 0x100 corresponds to a gain of 1. CGain can be calculated as
follows: CGain = ((MeasuredCurrent/ReportedCurrent) x 0x0100). CGain is a signed value and can be negative.
CGTempCo (0B8h)/nCGTempCo (0x1C9) Register
Register Type: Special
Alternate Initial Value: 0x20C8
If nNVCfg1.enCrv = 0 and nNVCfg2.enMet = 1, then CGTempCo is used to adjust current measurements for
temperature. CGTempCo has a range of 0% to 3.1224% per °C with a step size of 3.1224/0x10000 percent per °C.
If the nNVCfg1.enMtl bit is clear, CGTempCo defaults to a value of 0x20C8 or 0.4% per °C which is the approximate
www.analog.com
Analog Devices | 114
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
temperature coefficient of a copper trace. If the nNVCfg1.enMtl bit is set, CGTempCo restores from nCGTempCo
(1C9h) after IC reset allowing a custom sense resistor temperature coefficient to be used. Note that nNVCfg1.enCrv and
nNVCfg2.enMet cannot be enabled simultaneously.
Copper Trace Current Sensing
The MAX1730x/MAX1731x has the ability to measure current using a copper board trace instead of a traditional sense
resistor. The main difference being the ability to adjust to the change in sense resistance over temperature. To enable
copper trace current sensing, set the following configuration bits: nNVCfg1.enCrv = 0 and nNVCfg2.enMet = 1. The IC's
default temperature adjustment is 0.4% per °C, but can be adjusted using the nTCurve register if nNVCfg1.enMtl = 1.
Note that copper trace current sensing cannot be enabled at the same time as thermistor curve adjustment. For 1-ounce
copper, a length to width ratio of 6:1 creates a 0.0035Ω sense resistor which is suitable for most applications. Table 92
summarizes the IC setting for copper trace sensing.
Table 92. Copper Trace Sensing
PARAMETER
SETTING
RESULT
nNVCfg1.enCRV
0
Thermistor curve compensation disabled.
nNVCfg1.enMet
1
Sense resistor temperature compensation enabled.
nNVCfg2.enMlt
0
Sense resistor temperature compensation set to default of 0.4% per °C (typical copper).
nRense
0x012C
RSENSE Size
6:1
Sense resistor indicator to host software set to 0.0035Ω.
A 6:1 length to width ratio of 1oz copper gives a resistance of 0.0035Ω.
Temperature Measurement
The IC can be configured to measure its own internal die temperature and an external NTC thermistor. See the nPackCfg
register for details.
Every 1.4s the IC biases the external thermistor with an internal trimmed pullup. After the pullup is enabled, the IC waits
for a settling period of tPRE prior to making measurements on the TH pin. Measurement results are converted to a
ratiometric value from 0 to 100%. The active pullup is disabled when temperature measurements are complete. This
feature limits the time the external resistor-divider network is active and lowers the total amount of energy used by the
system.
The ratiometric results are converted to temperature using the temperature gain (nTGain), temperature offset (nTOff),
and temperature curve (nTCurve) register values each time the TH pin is measured. Internal die temperature
measurements are factory calibrated and are not affected by nTGain, nTOff, and nTCurve register settings. Proper
nTCurve configuration is needed to achieve thermistor accuracy from -40ºC to +85ºC. For accuracy from -10ºC to +60ºC,
nTCurve is not needed.
The MAX17300/MAX17310 support new thermistor calculations which can achieve thermistor accuracy within ±0.5ºC
from -40ºC to +85ºC. To enable the new thermistor calculations, set nNVCfg2.enTherm = 1. The ratiometric results are
converted to temperature using the nThermCfg register each time the TH pin is measured. nTGain is repurposed as
nThermCfg, and nTOff and nTGain can be used as general purpose data storage.
Additionally, the IC maintains a record of the minimum and maximum temperature measured, and an average
temperature over a time period defined by the host.
Temperature Measurement Timing
Temperature measurement channels are individually enabled using the nPackCfg register. A/D measurement order and
firmware post processing determine when a valid reading becomes available to the user. In addition, not all channels are
measured each time through the firmware task loop. Selection options for enabled channels create a large number of
possible timing options. Table 93 shows the timing for all temperature measurements made by the IC for some typical
pack configurations. All times in this table are considered typical.
www.analog.com
Analog Devices | 115
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
Table 93. Temperature Measurement Timing
APPLICATION
Die Temperature
Only
Die Temperature
and Thermistor
NPACKCFG
SETTING
nPackCfg.A1En
=0
nPackCfg.A1En
=1
FIRST UPDATE
AFTER RESET
REGISTER
Temp, IntTemp,
AvgIntTemp
UPDATE RATE IN
ACTIVE MODE1
UPDATE RATE IN
HIBERNATE MODE2
351ms
550ms
AvgTA
1.4s
351ms
IntTemp, Temp1,
Temp,
AvgIntTemp,
AvgTemp1
550ms
AvgTA
1406ms
5.625s
351ms
1.4s
1. Not all registers update at the same time. Updates are staggered to one channel per task period. Update order is
IntTemp and Temp.
2. Hibernate mode update times assume the recommended nHibCfg.HibScalar setting of 4 task periods.
Temp Register (01Bh)
Register Type: Temperature
Nonvolatile Backup: None
The Temp register is the input to the fuel gauge algorithm. The Temp register reflects the thermistor temperature if
enabled, and the die-temperature if the thermistor is disabled.
AvgTA Register (016h)
Register Type: Temperature
Nonvolatile Backup: None
The AvgTA register reports an average of the readings from the Temp register. Averaging period is configurable from 6
minutes up to 12 hours as set by the FilterCfg register. The first Temp register reading after returning to active mode sets
the starting point of the averaging filters.
MaxMinTemp Register (009h)
Register Type: Special
Nonvolatile Backup: Periodically saves to nMaxMinTemp (1ADh) if nNVCfg2.enMMT is set, but does not restore from
nonvolatile memory.
Alternate Initial Value: 0x807F
The MaxMinTemp register maintains the maximum and minimum Temp register (008h) values since the last fuel-gauge
reset or until cleared by host software. Each time the Temp register updates, it is compared against these values. If
the reading is larger than the maximum or less than the minimum, the corresponding values are replaced with the new
reading. At power-up, the maximum value is set to 80h (minimum) and the minimum value is set to 7Fh (maximum).
Therefore, both values are changed to the Temp register reading after the first update. Host software can reset this
register by writing it to its power-up value of 0x807F. The maximum and minimum temperatures are each stored as two’s
complement 8-bit values with 1°C resolution. Table 94 shows the format of the register.
Table 94. MaxMinTemp (009h)/nMaxMinTemp (1ADh) Register Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
MaxTemperature
D6
D5
D4
D3
D2
D1
D0
MinTemperature
MaxTemperature: Maximum Temp register reading (1ºC resolution)
MinTemperature: Minimum Temp register reading (1ºC resolution)
MaxMinTemp is not cumulative across the entire battery lifetime. After each periodic nonvolatile memory save,
MaxMinTemp resets to 0x807F to find the next maximum and minimum temperatures across the next segment of battery
www.analog.com
Analog Devices | 116
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
life. This behavior helps provide a useful log across the battery lifetime where each log segment shows the maximum
and minimum temperature experienced across only that segment.
nTCurve Register (1C9h)
Register Type: Special
Nonvolatile Restore: There is no associated restore location for this register
If nNVCfg1.enCrv = 1 and nNVCfg2.enMet = 0, then nTCurve applies thermistor measurement curvature correction
to allow thermistor measurements to be accurate over a wider temperature range. A ±3°C accuracy can be achieved
over a -40°C to +85°C operating range. See Table 95 for recommended nTCurve values. If nNVCfg1.enCrv = 0 and
nNVCfg2.enMet = 0, then this location can be used as general purpose data storage.
nTGain (1CAh) Register/nTOff (1CBh) Register
Register Type: Special
External NTC thermistors generate a temperature related voltage measured at the TH pin. The nTGain, nTOff, and
nTCurve registers are used to calculate temperature with an accuracy of ±3°C over a range of -40°C to +85°C. Table 95
lists the recommended nTGain, nTOff, and nTCurve register values for common NTC thermistors.
Table 95. Register Settings for Common Thermistor Types
R25C
(kΩ)
BETA
RECOMMENDED
NTGAIN
RECOMMENDED
NTOFF
RECOMMENDED
NTCURVE
Murata
NCP15XH103F03RC
10
3435
0xEE56
0x1DA4
0x0025
Fenwal 197-103LAG-A01
10
3974
0xF49A
0x16A1
0x0064
TDK Type F
10
4550
0xF284
0x18E8
0x0035
Murata
NCU15WF104F6SRC
100
4250
0xEEF6
0x1BC6
0x0022
TDK
NTCG064EF104FTBX
100
4225
0xEF99
0x1C31
0x001C
THERMISTOR
Semitec 103AT-2,
nThermCfg (1CAh) (MAX17300/MAX17310 Only)
External NTC thermistors generate a temperature related voltage measured at the TH pin. Set nThermCfg register to
compensate the thermistor for accurate translation of temperature when nNVCfg1.enTherm = 1. If nNVCfg1.enTherm =
1, then nTOff and nTCurve locations can be used as general purpose data storage.
Table 96 lists common NTC thermistors with their associated Beta value and the nThermCfg value. The thermistors in
the table translate within ±0.5°C from -40°C to +85°C. For other thermistors, use the equation to translate within ±2.5°C.
Table 96. Register Settings for Common Thermistor Types with New Thermistor
Calculations
R25C(kΩ)
BETA
at +25°C to +85°C
nTHERMCFG
Murata NCP15XH103F03RC
10
3435
71BEh
Semitec 103AT-2
10
3435
91C3h
TDK B57560G1103 7003
10
3610
5183h
Murata NCU15WF104F6SRC
100
4250
48EBh
NTC TH11-4H104F
100
4510
08D9h
TDK NTCG064EF104FTBX
100
4225
58EFh
THERMISTOR
Other 10K
10
nThermCfg = 7000h + (3245919/Beta* - 512)
Other 100K
100
nThermCfg = 3000h + (3245919/Beta* - 512)
www.analog.com
Analog Devices | 117
MAX17300-MAX17303/
MAX17310-MAX17313
1-Cell ModelGauge m5 EZ Fuel Gauge with
Protector, Internal Self-Discharge Detection and
SHA-256 Authentication
*Use Beta +25°C to +85°C.
DieTemp (034h) Register
Register Type: Temperature
Nonvolatile Backup: None
This register displays temperature in degrees Celsius, ±128ºC, or 1ºC in the high-byte or 1/256ºC LSB.
AvgDieTemp (040h) Register
Register Type: Temperature
Nonvolatile Backup: None
The AvgDieTemp register reports a 4-sample filtered average of the DieTemp register.
Power
Power Register (0B1h)
Instant power calculation from immediate current and voltage. LSB is 0.8mW.
AvgPower Register (0B3h)
Filtered Average Power from the power register. LSB is 0.8mW with a 10mΩ sense resistor. Filter bits locate in
Config2.POWR.
Status and Configuration Registers
The following registers control IC operation not related to the fuel gauge such as power-saving modes, nonvolatile
backup, and ALRT pin functionality.
DevName Register (021h)
Register Type: Special
Nonvolatile Backup: None
The DevName register holds device type and firmware revision information. This allows host software to easily identify
the type of IC being communicated to. Table 97 shows the DevName register format.
Table 97. DevName Register (021h) Format
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
Revision
D5
D4
D3
D2
D1
D0
Device
The DevName for each part number is listed in Table 98.
Table 98. DevName For Each Part Number
PART NUMBER
PASS 2 DevName
MAX17300/MAX17310
PASS 3 DevName
4070h
MAX17301/MAX17311
4065h
4074h
MAX17302/MAX17312
4066h
4078h
MAX17303/MAX17313
4067h
407Ch
nPReserved0/1/2/3 Registers (Addresses 1C0h-1C3h) must be set accoring to the DevName for proper operation.
Table 99. nPReserved0-3 Settings Based on DevName
REGISTER NAME
REGISTER ADDRESS
VALUE FOR DEVNAME