0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX17303X+T

MAX17303X+T

  • 厂商:

    AD(亚德诺)

  • 封装:

    15-WFBGA,WLBGA

  • 描述:

    电池 电量计 IC 锂离子/聚合物 15-WLP(1.68x2.45)

  • 数据手册
  • 价格&库存
MAX17303X+T 数据手册
EVALUATION KIT AVAILABLE Click here to ask an associate for production status of specific part numbers. MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication General Description Benefits and Features The MAX17300-MAX17303/ MAX17310-MAX17313 is a 24μA IQ stand-alone pack-side fuel gauge IC with protector, optional battery internal self-discharge detection and optional SHA-256 authentication for 1-cell lithium-ion/polymer batteries. ● Battery Health + Programmable Safety/Protection • Overvoltage (Temperature Dependent) • Overcharge Current • Over/Undertemperature • Battery Internal Self-Discharge Detection (MAX17300/10 Only) • Ideal Diode Discharge During Charge Fault • Charging Prescriptions (JEITA) • Zero-Volt Charging Option • Undervoltage + SmartEmpty • Overdischarge/Short-Circuit To prevent battery pack cloning, the IC integrates SHA-256 authentication with a 160-bit secret key. Each IC incorporates a unique 64-bit ID. The fuel gauge uses ModelGauge m5 algorithm that combines the short-term accuracy and linearity of a coulomb counter with the long-term stability of a voltage-based fuel gauge to provide industry-leading fuel-gauge accuracy. The IC automatically compensates for cell aging, temperature, and discharge rate, and provides accurate state-ofcharge (SOC) in milliampere-hours (mAh) or percentage (%) over a wide range of operating conditions. Dynamic power functionality provides the instantaneous maximum battery output power which can be delivered to the system without violating the minimum system input voltage. ● Low Quiescent Current • FETs Enabled: 24µA Active, 18µA Hibernate • FETs Disabled: 5µA Ship, 0.5µA/0.02µA DeepShip ● Parallel Battery Management (MAX17300/10 Only) ● Pushbutton Wakeup—Eliminates System Consumption Until Button Press ● ModelGauge m5 EZ Algorithm • Percent, Capacity,Time-to-Empty/Full, Age • Cycle+™ Age Forecast ● Dynamic Power—Estimates Power Capability ● Precision Measurement Without Calibration • Current, Voltage, Power, Time, Cycles • Die Temperature/Thermistor Simple Fuel Gauge with Protector Circuit Diagram Applications ● ● ● ● ● ● ● ● Smartphones, Tablets, and 2-in-1 Laptops Smartwatches and Wearables Medical Devices, Health and Fitness Monitors Digital Still, Video, and Action Cameras Handheld Computers and Terminals Handheld Radios Home and Building Automation, Sensors Smart Batteries BATTERY PACK 10Ω 0.1µF CP SYSTEM N A Maxim 1-Wire® or 2-wire I2C interface provides access to data and control registers. The IC is available in a lead-free, 3mm x 3mm 14-pin TDFN and 1.7mm x 2.5mm 15-bump 0.5mm pitch WLP packages. ● Nonvolatile Memory for Stand-Alone Operation • History Logging, User Data (122 Bytes) N The IC monitors the voltage, current, temperature, and state of the battery to provide against over/undervoltage, overcurrent, short-circuit, over/undertemperature, overcharge, and internal self-discharge conditions using external high-side N-FETs, and provides charging prescription to ensure that the lithium-ion/polymer battery operates under safe conditions prolonging the life of the battery. CHG DIS ZVC BATT 0.1µF OPTIONAL OPTIONAL NTC THERMISTOR PK+ MAX1730x MAX MAX1731x 1731x PFAIL (MAX173x1 ONLY) 1kΩ PCKP ALRT/PIO SDA/DQ SCL/OD (TDFN) (WLP) CSN EP GND CSP TH REG 0.1µF HOST µP 0.47µF SENSE RESISTOR Secondary Protector PK- ModelGauge and Cycle+ are trademarks of Maxim Integrated Products, Inc. 1-Wire is a registered trademark of Maxim Integrated Products, Inc. Ordering Information appears at end of data sheet. 19-100463; Rev 9; 6/23 © 2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2023 Analog Devices, Inc. All rights reserved. MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simple Fuel Gauge with Protector Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 14 TDFN-EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 15 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 TDFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Protector Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Voltage Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Ideal Diode Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Current Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Fast Overcurrent Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Overcurrent Comparator Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Slow Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Temperature Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Other Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Battery Internal Self-Discharge Detection (ISD) (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . 39 Permanent Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Disabling FETs by Pin-Control or I2C Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Charging Prescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Step Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Zero-Volt Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Parallel Battery Management (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ModelGauge m5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Wakeup/Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Power Mode Transition State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 www.analog.com Analog Devices | 2 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS (CONTINUED) Pushbutton Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Register Description Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Standard Register Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Nonvolatile Backup and Initial Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Register Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Voltage Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 nVPrtTh1 Register (1D0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 nVPrtTh2 Register (1D4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 nJEITAV Register (1D9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 nJEITACfg Register (1DAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Current Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 nODSCTh Register (1DDh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 nODSCCfg Register (1DEh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 nIPrtTh1 Register (1D3h)—Overcurrent Protection Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 nJEITAC Register (1D8h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Temperature Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 nTPrtTh1 Register (1D1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 nTPrtTh2 Register (1D5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 nTPrtTh3 Register (1D2h) (beyond JEITA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Fault Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 nDelayCfg Register (1DCh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Battery Internal Self-Discharge Detection Registers (MAX17300/MAX1310 Only). . . . . . . . . . . . . . . . . . . . . . . . 58 Status/Configuration Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 nProtCfg Register (1D7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 nBattStatus Register (1A8h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 ProtStatus Register (0D9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 ProtAlrt Register (0AFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 HConfig2 Register (0F5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Other Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 nProtMiscTh Register (1D6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Charging Prescription Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ChargingCurrent Register (028h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ChargingVoltage Register (02Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 nStepChg Register (1DBh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ModelGauge m5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ModelGauge m5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ModelGauge m5 Algorithm Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 www.analog.com Analog Devices | 3 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS (CONTINUED) RepCap Register (005h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 RepSOC Register (006h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 FullCapRep Register (010h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 TTE Register (011h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 TTF Register (020h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Age Register (007h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Cycles Register (017h) and nCycles (1A4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 TimerH Register (0BEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 FullCap Register (010h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 nFullCapNom Register (1A5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 RCell Register (014h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 VRipple Register (0B2h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 nVoltTemp Register (1AAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 SOCHold Register (0D0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ModelGauge m5 EZ Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 OCV Estimation and Coulomb Count Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Empty Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 End-of-Charge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Smart-Full (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Fuel Gauge Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Converge-To-Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Determining Fuel-Gauge Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Initial Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Cycle+ Age Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 nAgeFcCfg Register (1E2h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 AgeForecast Register (0B9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Age Forecasting Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Enabling Age Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Battery Life Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Life Logging Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Determining Number of Valid Logging Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Reading History Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 History Data Reading Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ModelGauge m5 Algorithm Input Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 nXTable0 (180h) to nXTable11 (18Bh) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 nOCVTable0 (190h) to nOCVTable11 (19Bh) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 nQRTable00 (1A0h) to nQRTable30 (1A3h) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 nFullSOCThr Register (1C6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 nVEmpty Register (19Eh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 www.analog.com Analog Devices | 4 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS (CONTINUED) nDesignCap Register(1B3h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 nRFast Register (1E5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 nIChgTerm Register (19Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 nRComp0 Register (1A6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 nTempCo Register (1A7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ModelGauge m5 Algorithm Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 nFilterCfg Register (19Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 nRelaxCfg Register (1B6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 nTTFCfg Register (1C7h)/CV_MixCap (0B6h) and CV_HalfTime (0B7h) Registers . . . . . . . . . . . . . . . . . . . . 86 nConvgCfg Register (1B7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 nRippleCfg Register (1B1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 ModelGauge m5 Algorithm Additional Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Timer Register (03Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 dQAcc Register (045h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 dPAcc Register (046h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 QResidual Register (00Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 VFSOC Register (0FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 VFOCV Register (0FBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 QH Register (4Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 AvCap Register (01Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 AvSOC Register (00Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 MixSOC Register (00Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 MixCap Register (02Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 VFRemCap Register (04Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 FStat Register (03Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 ModelGauge m5 Memory Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Nonvolatile Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Nonvolatile Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 100 Record Life Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 nNVCfg0 Register (1B8h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 nNVCfg1 Register (1B9h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 nNVCfg2 Register (1BAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Enabling and Freeing Nonvolatile vs. Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Shadow RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Shadow RAM and Nonvolatile Memory Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Nonvolatile Memory Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 COPY NV BLOCK [E904h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 NV RECALL [E001h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 www.analog.com Analog Devices | 5 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS (CONTINUED) HISTORY RECALL [E2XXh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Nonvolatile Block Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Determining Number of Remaining Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 nLearnCfg Register (19Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 nMiscCfg Register (1B2h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 nConfig Register (1B0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 nPackCfg Register (1B5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 nMiscCfg2 Register (1E4h) (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 nDesignVoltage Register (1E3h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Memory Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 NV LOCK [6AXXh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Locking Memory Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Reading Lock State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Analog Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 VCell Register (01Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 VCellRep Register (012h) (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 AvgVCell Register (019h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 MaxMinVolt Register (0008h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 MinVolt Register (0ADh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Cell1 Register (0D8h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 AvgCell1 Register (0D4h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Batt Register (0D7h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Current Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Current Measurement Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Current Register (01Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 CurrRep Register (022h) (MAX17300/MAX17310 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 AvgCurrent Register (01Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 MaxMinCurr Register (00Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 MinCurr Register (0AEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 nCGain Register (1C8h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 CGTempCo (0B8h)/nCGTempCo (0x1C9) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Copper Trace Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Temperature Measurement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Temp Register (01Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 AvgTA Register (016h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 MaxMinTemp Register (009h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 nTCurve Register (1C9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 www.analog.com Analog Devices | 6 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS (CONTINUED) nTGain (1CAh) Register/nTOff (1CBh) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 nThermCfg (1CAh) (MAX17300/MAX17310 Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DieTemp (034h) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 AvgDieTemp (040h) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Status and Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 DevName Register (021h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 nROMID0 (1BCh)/nROMID1 (1BDh)/nROMID2 (1BEh)/nROMID3 (1BFh) Registers . . . . . . . . . . . . . . . . . . . . 119 nRSense Register (1CFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Status Register (000h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Status2 Register (0B0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 nHibCfg Register (1BBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 CommStat Register (061h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 At-Rate Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 AtRate Register (004h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 AtQResidual Register (0DCh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 AtTTE Register (0DDh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 AtAvSOC Register (0CEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 AtAvCap Register (0DFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Alert Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 nVAlrtTh Register (18Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 nTAlrtTh Register (18Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 nSAlrtTh Register (18Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 nIAlrtTh Register (0ACh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Smart Battery Compliant Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 SBS Compliant Memory Space (MAX17301-MAX17303 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 sRemCapAlarm/sRemTimeAlarm Registers (101h/102h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 At-Rate Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 sAtRate Register (104h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 sAtTTF Register (105h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 sAtTTE Register (105h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 sAtRateOK Register (107h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 sTemperature Register (108h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 sPackVoltage Register (109h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 sChargingCurrent Register (114h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 sDesignVolt Register (119h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 sSpecInfo Register (11Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 sSerialNumber Register (11Ch to 11Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 sManfctrName Register (120h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 www.analog.com Analog Devices | 7 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS (CONTINUED) sDeviceName Register (121h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 sDevChemistry Register (122h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 sManfctData Registers (123h to 12Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 sFirstUsed Register (136h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 sCell1 Register (13Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 sAvgCell1 Register (14Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 sAvCap Register (167h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 sMixCap Register (168h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 sManfctInfo Register (170h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Nonvolatile SBS Register Back-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 nSBSCfg Register (1B4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 nCGain and Sense Resistor Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Dynamic Battery Power Technology (DBPT) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 MaxPeakPower Register (0A4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 SusPeakPower Register (0A5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 sPackResistance (0A6h) and nPackResistance (1C5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 SysResistance (0A7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 sMPPCurrent (0A9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 SPPCurrent (0AAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 nDPLimit Register (1E0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 SHA-256 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Authentication Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Procedure to Verify a Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Alternate Authentication Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Battery Authentication without a Host Side Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Secret Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Single Step Secret Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Single Step Secret Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Multistep Secret Generation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Multistep Secret Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 2-Stage MKDF Authentication Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Create a Unique Intermediate Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Procedure for 2-Stage MKDF Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Determining Number of Remaining Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Authentication Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 COMPUTE MAC WITHOUT ROM ID [3600h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 COMPUTE MAC WITH ROM ID [3500h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 COMPUTE NEXT SECRET WITHOUT ROM ID [3000h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 COMPUTE NEXT SECRET WITH ROM ID [3300h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 www.analog.com Analog Devices | 8 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS (CONTINUED) CLEAR SECRET [5A00h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 LOCK SECRET [6000h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 COPY INTERMEDIATE SECRET FROM NVM [3800] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 COMPUTE NEXT INTERMEDIATE SECRET WITH ROMID [3900] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 COMPUTE NEXT INTERMEDIATE SECRET WITHOUT ROMID [3A00] . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 COMPUTE MAC FROM INTERMEDIATE SECRET WITHOUT ROMID [3C00] . . . . . . . . . . . . . . . . . . . . . . 141 COMPUTE MAC FROM INTERMEDIATE SECRET WITH ROMID [3D00] . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Reset Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 HARDWARE RESET [000Fh to address 060h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 FUEL GAUGE RESET [8000h to address 0ABh]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 2-Wire Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 2-Wire Bus Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 I/O Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Bus Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Acknowledge Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Data Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Read/Write Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 2-Wire Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 I2C Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 I2C Write Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 I2C Read Data Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 SBS Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 SBS Write Word Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Example SBS Write Word Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 SBS Read Word Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Example SBS Read Word Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 SBS Write Block Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 SBS Read Block Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Example SBS Read Block Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Valid SBS Read Block Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Packet Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 PEC CRC Generation Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 www.analog.com Analog Devices | 9 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TABLE OF CONTENTS (CONTINUED) 1-Wire Bus System (MAX17310-MAX17313 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 1-Wire Bus Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 64-Bit Net Address (ROM ID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 I/O Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Reset Time Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 1-Wire Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Write Time Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Read Time Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 1-Wire Write and Read Time Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Transaction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Net Address Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Read Net Address [33h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Match Net Address [55h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Skip Net Address [CCh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Search Net Address [F0h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 1-Wire Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Read Data [69h, LL, HH] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Write Data [6Ch, LL, HH]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Example 1-Wire Communication Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Summary of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Appendix A: Reading History Data Pseudo-Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Typical Application with a Secondary Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Typical Application with a Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Pushbutton Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 www.analog.com Analog Devices | 10 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication LIST OF FIGURES Figure 1. Simplified Protector State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 2. Programmable Voltage Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 3. Programmable Current Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 4. Fast, Medium, and Slow Overdischarge Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 5. Overcurrent Comparator Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 6. Example of Internal Self-Discharge with Temperature Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 7. Step-Charging State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 8. Zero-Volt Recovery Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 9. Zero-Volt Charging Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 10. Merger of Coulomb Counter and Voltage Based Fuel Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 11. ModelGauge m5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 12. Power Mode Transition State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 13. ModelGauge m5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 14. Voltage and Coulomb Count Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 15. ModelGauge m5 Typical Accuracy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 16. Handling Changes in Empty Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 17. False End-of-Charge Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 18. FullCapRep Learning at End-of-Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Figure 19. Smart-Full Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 20. FullCapNom Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 21. Converge-To-Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 22. Benefits of Age Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 23. Sample Life Logging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Figure 24. Write Flag Register and Valid Flag Register Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 25. Cell Relaxation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Figure 26. Shadow RAM and Nonvolatile Memory Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 27. Noiseless Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Figure 28. Procedure to Verify a Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Figure 29. Battery Authentication without a Host Side Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Figure 30. Single Step Secret Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Figure 31. Multistep Secret Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Figure 32. Create a Unique Intermediate Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Figure 33. Procedure for 2-Stage MKDF Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Figure 34. 2-Wire Bus Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Figure 35. 2-Wire Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Figure 36. Example I2C Write Data Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Figure 37. Example I2C Read Data Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Figure 38. Example SBS Write Word Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Figure 39. Example SBS Read Word Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 www.analog.com Analog Devices | 11 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication LIST OF FIGURES (CONTINUED) Figure 40. Example SBS Read Block Communication Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Figure 41. PEC CRC Generation Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Figure 42. 1-Wire Bus Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Figure 43. 1-Wire Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Figure 44. 1-Wire Write and Read Time Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Figure 45. Example 1-Wire Communication Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 www.analog.com Analog Devices | 12 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication LIST OF TABLES Table 1. Summary of Protector Registers by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 2. Voltage Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 3. AvgCurrDet Threshold When Using 10mΩ and Default nProtMiscTh.CurrDet = 7.5mA . . . . . . . . . . . . . . . . . . 36 Table 4. Current Threshold Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 5. Other Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 6. Parallel Control Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 7. Typical Quiescent Current Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 8. Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 9. Low Power Modes Entry and Exit Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 10. Recommended nHibCfg Settings and the Impact on IQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 11. ModelGauge Register Standard Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 12. nVPrtTh1 Register (1D0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 13. nVPrtTh2 Register (1D4h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 14. nJEITAV Register (1D9h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 15. nJEITACfg Register (1DAh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 16. nODSCTh Register (1DDh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 17. OCTH, SCTh, and ODTH Sample Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 18. nODSCCfg Register (1DEh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 19. nIPrtTh1 Register (1D3h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 20. nJEITAC Register (1D8h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 21. nTPrtTh1 Register (1D1h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 22. nTPrtTh2 (1D5h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 23. nTPrtTh3 Register (1D2h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 24. nDelayCfg (1DCh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 25. UVPTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 26. TempTimer Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 27. TempTrans Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 28. PermFailTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 29. OverCurrTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 30. OVPTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 31. FullTimer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 32. ChgWDT Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 33. nCheckSum Register (1DFh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 34. Alert and Fault Mode Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 35. LeakCurrRep Register (0x16F) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 36. nProtCfg Register (1D7h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 37. nBattStatus Register (1A8h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 38. ProtStatus Register (0D9h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 39. ProtAlrt Register (0AFh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 www.analog.com Analog Devices | 13 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication LIST OF TABLES (CONTINUED) Table 40. HConfig2 (0F5h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 41. nProtMiscTh Register (1D6h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 42. nStepChg Register (1DBh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 43. Cycles Register (017h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 44. nCycles Register (1A4h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 45. nNVCfg2.FibScl Setting Determines LSb of nNVCfg2.CyclesCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 46. nVoltTemp Register (1AAh) Format when nNVCfg2.enVT = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 47. SOCHold (0D0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 48. nAgeFcCfg Register (1E2h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 49. Minimum and Maximum Cell Sizes for Age Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 50. Life Logging Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 51. Reading History Page Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 52. Decoding History Page Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 53. Reading History Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 54. nFullSOCThr (1C6h)/FullSOCThr (013h) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 55. VEmpty (03Ah)/nVEmpty (19Eh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 56. nRFast Register (1E5h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 57. FilterCfg (029h)/nFilterCfg (19Dh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 58. RelaxCfg (0A0h)/nRelaxCfg (1B6h) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 59. nTTFCfg Register (1C7h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 60. nConvgCfg Register (1B7h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 61. nRippleCfg Register (1B1h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 62. FStat Register (03Dh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 63. Top Level Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 64. Individual Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 65. ModelGauge m5 Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 66. Nonvolatile Register Memory Map (Slave address 0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 67. Fibonacci Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 68. Eventual Matured Update Interval (in battery cycles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 69. Saving Schedule Example With the Most Preferred Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 70. nNVCfg0 Register (1B8h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 71. nNVCfg1 Register (1B9h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 72. nNVCfg2 Register (1BAh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 73. Making Nonvolatile Memory Available for User Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 74. Nonvolatile Memory Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 75. History Recall Command Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 76. Number of Remaining Config Memory Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table 77. LearnCfg (0A1h)/nLearnCfg (19Fh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table 78. MiscCfg (00Fh)/nMiscCfg (1B2h) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 www.analog.com Analog Devices | 14 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication LIST OF TABLES (CONTINUED) Table 79. nConfig Register (1B0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 80. Config Register (00Bh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 81. Config2 Register (0ABh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 82. nPackCfg Register (1B5h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 83. nMiscCfg2 Register (0x1E4h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 84. nDesignVoltage Register (1E3h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 85. Format of LOCK Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 86. Format of Lock Register (07Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 87. MaxMinVolt (008h)/nMaxMinVolt (1ACh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 88. Current Measurement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 89. Current Measurement Range and Resolution vs. Sense Resistor Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 90. MaxMinCurr (00Ah)/nMaxMinCurr (1ABh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 91. nCGain Register (1C8h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 92. Copper Trace Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Table 93. Temperature Measurement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 94. MaxMinTemp (009h)/nMaxMinTemp (1ADh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 95. Register Settings for Common Thermistor Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Table 96. Register Settings for Common Thermistor Types with New Thermistor Calculations . . . . . . . . . . . . . . . . . . 117 Table 97. DevName Register (021h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 98. DevName For Each Part Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 99. nPReserved0-3 Settings Based on DevName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 100. nROMID Registers (1BCh to 1BFh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 101. Recommended nRSense Register Values for Common Sense Resistors . . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 102. Status Register (000h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 103. Status2 Register (0B0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Table 104. nHibCfg Register (1BBh) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table 105. CommStat Register (061h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table 106. VAlrtTh (001h)/nVAlrtTh (18Ch) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Table 107. TAlrtTh (002h)/nTAlrtTh (18Dh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 108. SAlrtTh (003h)/nSAlrtTh (18Fh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 109. IAlrtTh (0ACh)/nIAlrtTh (18Eh) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 110. SBS Register Space Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 111. SpecInfo (11Ah) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 112. SBS to Nonvolatile Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 113. nSBSCfg Register (1B4h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 114. nCGain Register Settings to Meet SBS Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 115. nDPLimit (1E0h) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 116. Number of Remaining Secret Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 117. 2-Wire Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 www.analog.com Analog Devices | 15 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication LIST OF TABLES (CONTINUED) Table 118. Valid SBS Read Block Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Table 119. 1-Wire Net Address Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Table 120. All Function Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 www.analog.com Analog Devices | 16 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Absolute Maximum Ratings CP to BATT ................................................... -0.3V to BATT + 6V CHG to BATT ................................................. -0.3V to CP + 0.3V Continuous Sink Current for BATT ...................................... 50mA Continuous Sink Current for DQ/SDA, ALRT, PFAIL .......... 20mA Continuous Source Current for PFAIL ................................. 20mA Operating Temperature Range ............................ -40°C to +85°C Storage Temperature Range .............................. -55°C to +125°C Soldering Temperature (reflow) ........................................ +260°C Lead Temperature (soldering 10s) ................................... +300°C TDFN BATT to CSP ........................................................ -0.3V to +6V ALRT to CSP ...................................................... -0.3V to +17V TH, PFAIL to CSP ................................. -0.3 V to BATT + 0.3 V DQ/SDA, OD/SCL, ZVC to CSP ........................... -0.3V to +6V REG to CSP ....................................................... -0.3V to +2.2V CSN to CSP ............................................................. -2V to +2V DIS to CSP .................................................. -0.3V to CP + 0.3V PCKP to CSP ........................................................ -0.3V to 18V WLP BATT to GND ........................................................ -0.3V to +6V ALRT to GND ...................................................... -0.3V to +17V TH, PFAIL to GND .................................-0.3 V to BATT + 0.3 V DQ/SDA, OD/SCL, ZVC to GND ........................... -0.3V to +6V REG to GND....................................................... -0.3V to +2.2V CSN to CSP ............................................................. -2V to +2V CSP to GND ....................................................... -0.3V to +0.3V DIS to GND ................................................. -0.3V to CP + 0.3V PCKP to GND........................................................ -0.3V to 18V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 14 TDFN-EP Package Code T1433+2C Outline Number 21-0137 Land Pattern Number 90-0063 Thermal Resistance, Single-Layer Board: Junction to Ambient (θJA) 54°C/W Junction to Case (θJC) 8°C/W Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 41°C/W Junction to Case (θJC) 8°C/W 15 WLP Package Code W151H2+1 Outline Number 21-100256 Land Pattern Number Refer to Application Note 1891 Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 62°C/W Junction to Case (θJC) N/A For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. www.analog.com Analog Devices | 17 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Electrical Characteristics (VBATT = 2.3V to 4.9V (2.16V to 4.9V for MAX17300/MAX17310), typical value at 3.6V, TA = -40°C to +85°C, typical values are TA = +25°C, see schematic in the Functional Diagram. Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER SUPPLY Supply Voltage (MAX17300/MAX17310) VBATT (Note 1) 2.16 4.9 V Supply Voltage (MAX17301-03/11-13) VBATT (Note 1) 2.3 4.9 V DeepShip2 Supply Current IDD0 Undervoltage shutdown 0.02 0.1 μA DeepShip Supply Current IDD1 TA ≤ +50°C, typical at +25°C 0.5 1.1 μA 10 20 Ship Supply Current IDD2 DpShpEn = 0, TA ≤ +50°C, typical at +25°C, protection FETs off Hibernate Supply Current IDD3 TA ≤ +50°C, typical at +25°C, average current, CHG and DIS on, 1.4s updates 8 18 36 μA Active Supply Current IDD4 TA ≤ +50°C, typical at +25°C, average current, not including thermistor measurement current 13 24 50 μA Regulation Voltage VREG 1.4s updates 7 5.625s updates μA 7 1.8 V PCKP Startup Voltage (MAX17300/MAX17310) VPCKPSU VBATT ≥ 2.16V 1.9 2.6 V PCKP Startup Voltage (MAX17301-03/11-13) VPCKPSU VBATT ≥ 2.3V 1.9 2.6 V 2x VBATT 0.4 2x VBATT 0.2 2x VBATT V 10 15 20 ms PROTECTION FET DRIVERS CP Output Voltage VCP ICHG + IDIS = 1μA CP Startup Time tSCP FETS Off, CCP = 0.1μF, 1-tau settling CHG, DIS Output High VCP 0.4 VOHC, VOHD IOH = -100μA V CHG Output Low VOLC IOL = 100μA BATT + 0.1 V DIS Output Low VOLD IOL = 100μA 0.1 V ANALOG-TO-DIGITAL CONVERSION TA = +25°C -7.5 +7.5 -40ºC ≤ TA ≤ +85ºC -20 +20 Voltage Measurement Error VGERR Voltage Measurement Resolution VLSB Voltage Measurement Range (MAX17300/ MAX17310) VFS 2.16 4.9 V Voltage Measurement Range (MAX17301-03/ 11-13) VFS 2.3 4.9 V www.analog.com 78.125 mV μV Analog Devices | 18 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Electrical Characteristics (continued) (VBATT = 2.3V to 4.9V (2.16V to 4.9V for MAX17300/MAX17310), typical value at 3.6V, TA = -40°C to +85°C, typical values are TA = +25°C, see schematic in the Functional Diagram. Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Current Measurement Offset Error IOERR CSN = 0V, long-term average (Note 2) Current Measurement Gain Error IGERR CSP between -50mV and +50mV Current Measurement Resolution ILSB 1.5625 μV Current Measurement Range IFS ±51.2 mV Internal Temperature Measurement Error TIGERR ±1 ºC Internal Temperature Measurement Resolution TILSB 0.00391 ºC ±1.5 -1 TH (Note 1) μV +1 % of Reading INPUT/OUTPUT Output Drive Low, ALRT, SDA/DQ, PFAIL VOL IOL = 4mA, VBATT = 2.3V 0.01 Output Drive High, PFAIL VOH IOH = -1mA, VBATT = 2.3V VBATT 0.1 V Input Logic High, SCL/ OD, SDA/DQ, PIO VIH 1.5 V Input Logic Low, SCL/ OD, SDA/DQ, PIO VIL PIO Wake Debounce PIO_WD Sleep mode 100 External Thermistance Resistance REXT10 nPackCfg.R100 = 0 10 REXT100 nPackCfg.R100 = 1 100 0.4 0.5 V V ms kΩ COMPARATORS Overcurrent Threshold Offset Error ODOCOE Short-Circuit Threshold Offset Error SCOE Overcurrent Threshold Gain Error ODOCSCGE Overcurrent Comparator Delay OCDLY OC, OD comparator for WLP package -1.2 +1.2 OC, OD comparator for TDFN package -2 +2 SC comparator -2.5 +2.5 mV OC, OD, or SC comparator -5.0 +5.0 % of Threshold 6 μs +1 μA 0.2 0.5 μA 0.44 0.9 μA +1.5 % OD or SC comparator, 20mV minimum input overdrive, delay configured to minimum 2 mV RESISTANCE AND LEAKAGE Leakage Current, CSN, ALRT, TH ILEAK Input Pulldown Current IPD PCKP Current Consumption PCKP_IDD VALRT < 15V -1 SDA, SCL pin = 0.4V BATT = PCKP TA < 50°C, typical at TA = +25°C 0.02 TIMING Time-Base Accuracy www.analog.com tERR TA = +25°C -1.5 Analog Devices | 19 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Electrical Characteristics (continued) (VBATT = 2.3V to 4.9V (2.16V to 4.9V for MAX17300/MAX17310), typical value at 3.6V, TA = -40°C to +85°C, typical values are TA = +25°C, see schematic in the Functional Diagram. Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL SHA Calculation Time tSHA TH Precharge Time tPRE Task Period CONDITIONS Time between turning on the TH bias and analog-to-digital conversions MIN TYP MAX UNITS 4.5 10 ms 8.48 tTP ms 351.5 ms NONVOLATILE MEMORY Nonvolatile Access Voltage VNVM For block programming and recalling, applied on BATT 3.0 Programming Supply Current IPROG Current from BATT at 2.9V for block programming 2 Block Programming Time tBLOCK Page Programming Time tUPDATE Nonvolatile Memory Recall Time tRECALL Write Capacity, Configuration Memory nCONFIG (Notes 2, 3, 4) 7 writes Write Capacity, SHA Secret nSECRET (Notes 2, 3, 4) 5 writes Write Capacity, Learned Parameters nLEARNED (Notes 2, 3, 4) 99 writes Data Retention tNV SHA secret update or learned parameters update (Note 2) V 5.5 10 mA 368 7360 ms 64 1280 ms 5 ms 10 years 1-WIRE INTERFACE, REGULAR SPEED Time Slot tSLOT_STD 60 Recovery Time tREC_STD 1 120 μs Write-0 Low Time tLOW0_STD 60 120 μs Write-1 Low Time tLOW1_STD 1 15 μs 15 μs μs Read-Data Valid tRDV_STD Reset-Time High tRSTH_STD 480 Reset-Time Low tRSTL_STD 480 960 μs Presence-Detect High tPDH_STD 15 60 μs Presence-Detect Low tPDL_STD 60 240 μs tSLOT_OVD 6 16 μs μs 1-WIRE INTERFACE, OVERDRIVE SPEED Time Slot Recovery Time tREC_OVD 1 Write-0 Low Time tLOW0_OVD 6 16 μs Write-1 Low Time tLOW1_OVD 1 2 us 2 μs Read-Data Valid tRDV_OVD Reset-Time High tRSTH_OVD 48 Reset-Time Low tRSTL_OVD 48 www.analog.com μs μs 80 μs Analog Devices | 20 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Electrical Characteristics (continued) (VBATT = 2.3V to 4.9V (2.16V to 4.9V for MAX17300/MAX17310), typical value at 3.6V, TA = -40°C to +85°C, typical values are TA = +25°C, see schematic in the Functional Diagram. Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) MAX UNITS Presence-Detect High PARAMETER tPDH_OVD SYMBOL CONDITIONS MIN 2 TYP 6 μs Presence-Detect Low tPDL_OVD 8 24 μs 0 400 kHz 2-WIRE INTERFACE SCL Clock Frequency fSCL Bus Free Time Between a STOP and START Condition tBUF Hold Time (Repeated) START Condition tHD:STA (Note 5) (Note 6) 1.3 μs 0.6 μs Low Period of SCL Clock tLOW 1.3 μs High Period of SCL Clock tHIGH 0.6 μs Setup Time for a Repeated START Condition tSU:STA 0.6 μs Data Hold Time tHD:DAT (Notes 7, 8) Data Setup Time tSU:DAT (Note 7) 0 0.9 100 μs ns Rise Time of Both SDA and SCL Signals tR 5 300 ns Fall Time of Both SDA and SCL Signals tF 5 300 ns Setup Time for STOP Condition tSU:STO 0.6 Spike Pulse Width Suppressed by Input Filter tSP Capacitive Load for Each Bus Line CB SCL, SDA Input Capacitance CBIN μs (Note 9) 6 50 ns 400 pF pF Note 1: All voltages are referenced to CSP in the TDFN package. All voltages are referenced to GND in the WLP package. Note 2: Specification is guaranteed by design (GBD) and not production tested. Note 3: Write capacity numbers shown have one write subtracted for the initial write performed during manufacturing test to set nonvolatile memory to a known value. Note 4: Due to the nature of one-time programmable memory, write endurance cannot be production tested. Follow the nonvolatile memory and SHA secret update procedures detailed in the data sheet. Note 5: Timing must be fast enough to prevent the IC from entering shutdown mode due to bus low for a period greater than the shutdown timer setting. Note 6: fSCL must meet the minimum clock low time plus the rise/fall times. Note 7: The maximum tHD:DAT has only to be met if the device does not stretch the low period (tLOW) of the SCL signal. Note 8: This device internally provides a hold time of at least 100ns for the SDA signal (referred to the minimum VIH of the SCL signal) to bridge the undefined region of the falling edge of SCL. Note 9: Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant. www.analog.com Analog Devices | 21 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) www.analog.com Analog Devices | 22 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) www.analog.com Analog Devices | 23 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) Pin Configurations WLP TOP VIEW (BUMP SIDE DOWN) 3x5 WLP, 0.5mm PITCH www.analog.com Analog Devices | 24 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TDFN TOP VIEW (PAD SIDE DOWN) TH 1 14 CHG CP 2 13 ZVC BATT 3 12 DIS PFAIL 4 11 PCKP CSP 5 10 ALRT/PIO CSN 6 9 SCL/OD REG 7 8 SDA/DQ MAX1730x MAX MAX1731x 1731x EP* 3mm x 3mm 14 TDFN-EP *EP = EXPOSED PAD Pin Description PIN NAME FUNCTION WLP TDFN A1 1 TH Thermistor Connection. Connect an external 10kΩ or 100kΩ thermistor between TH and GND (CSP for TDFN) to measure the battery temperature. Leave disconnected or connect to BATT if not used. B1 2 CP Charge Pump Output. CP provides the voltage for driving external charge and discharge protection N-FETs. Connect a bypass 0.1μF capacitor between CP and BATT. C1 3 BATT Battery Connection. The MAX1730x/MAX1731x receives power from BATT and also measures and fuel gauges based on the voltage at BATT. Connect BATT to positive terminal of the battery with a 10Ω resistor and bypass with a 0.1μF capacitor to GND. B2 4 PFAIL Permanent Failure Indicator (Optional). MAX17300/01/10/11 Only. Connect to secondary protector (2-Level) to take action in case of primary FET failure detection. Disconnect if not used. All other devices connect to GND with a 1kΩ resistor. A3 5 CSP Current-Sense-Resistor Positive Input. Kelvin-connect to the Batt-side of an external sense resistor. CSP is IC GND for TDFN. Keep this trace short, wide, and low impedance. A4 6 CSN Current-Sense Negative Input. Kelvin connect to the pack-side of the sense resistor. www.analog.com Analog Devices | 25 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Pin Description (continued) PIN NAME FUNCTION WLP TDFN A5 7 REG C5 8 SDA/DQ Serial Data Input/Output for both 1-Wire and I2C Communication Modes. Opendrain output driver. Connect to the DATA terminal of the battery pack. DQ/SDA has an internal pulldown (IPD) for sensing pack disconnection. SCL/OD Serial Clock Input for I2C Communication or Speed Selection for 1-Wire Communication. Input only. For I2C communication, connect to the clock terminal of the battery pack. Connect to CSN for standard speed 1-wire communication. Connect to REG pin for overdrive 1-wire communication. OD/SCL has an internal pulldown (IPD) for sensing pack disconnection. B5 9 1.8V Regulator. REG provides a 1.8V supply for the IC. Bypass with a 0.47μF capacitor between REG and GND. Alert Output. ALRT is open-drain and active-low. Connect an external pullup resistor to indicate alerts. See the Alerts section for more details. B4 10 ALRT/PIO C4 11 PCKP Pack Positive Terminal. PCKP is the exposed terminal of the pack for charger detection and over-current fault removal detection. C3 12 DIS Discharge FET Control. DIS enables/disables battery discharge by driving an external N-FET between CP and GND. B3 13 ZVC Zero-Volt Charge Recovery Enable. Connect to GND to enable zero-volt charge recovery. Disconnect or connect 1MΩ to GND to disable function. C2 14 CHG Charge FET Control. CHG blocks/allows battery charge by controlling an external N-FET between CP and BATT. A2 — GND IC GND. Connect to CSP side of sense resistor. — EP Exposed Pad www.analog.com Pushbutton Wakeup.  Connect to the host-system's power button to GND without any external pullup since the IC has an internal pullup. The IC wakes up from shutdown mode when the button is pressed. Connect to CSP for normal operation. Analog Devices | 26 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Functional Diagram CP CHG CHARGE PUMP 10Ω PACK+ N N BATTERY PACK DIS ZVC PCKP CP GND BATT CHARGE DETECT ZERO-VOLT CHARGING BATT PFAIL (MAX173x1 ONLY) ALRT/PIO MODELGAUGE m5 MUX (TDFN) GND CSP MAX1730x MAX1731x I C/ 1-WIRE INTERFACE ADC REGULATOR SHA-256 PROTECTOR CONTROL REG OUT IN SDA/DQ SCL/OD 2 1.8V INTERNAL TEMPERATURE SENSOR TH BIAS GENERATOR TH CSN (WLP) PACK- www.analog.com Analog Devices | 27 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Detailed Description General Description The MAX1730x/MAX1731x is a family of 24μA IQ stand-alone pack-side fuel gauge ICs with protector and SHA-256 authentication for 1-cell lithium-ion/polymer batteries which implements Maxim's ModelGauge m5 algorithm without requiring host interaction for configuration. This makes the MAX1730x/MAX1731x an excellent pack-side fuel gauge. The MAX1730x/MAX1731x monitors the voltage, current, temperature, and state of the battery to ensure that the lithiumion/polymer battery is operating under safe conditions to prolong the life of the battery. Voltage of the battery pack is measured at the BATT connection. Current is measured with an external sense resistor placed between the CSP and CSN pins. Power and average power are also reported. An external NTC thermistor connection allows the IC to measure temperature of the battery pack by monitoring the TH pin. The TH pin provides an internal pull-up for the thermistor that is disabled internally when temperature is not being measured. Internal die temperature of the IC is also measured and can be a proxy for the protection FET temperature if they are located close by the IC. The MAX1730x/MAX1731x provides programmable discharge protection for overdischarge currents (fast, medium, and slow protection), overtemperature, and undervoltage. The IC also provides programmable charge protection for overvoltage, over/undertemperature, overcharge currents (fast and slow), charge done, charger communication timeout, and overcharge capacity fault. The IC provides ideal diode discharge behavior even while a charge fault persists. The IC provides programmable charging current/voltage prescription following JEITA temperature regions as well as stepcharging. The MAX17300/MAX17301/MAX17310/MAX17311 provides additional protection to permanently disable the battery by overriding a secondary protector or blowing a fuse in severe fault conditions. This is useful when the IC has detected FET failure and is unable to block charge/discharge any other way. Additional functionality is described in the Protector section. The IC supports three low-power modes: deepship2 (IQDS2), deepship (IQDS), and ship (IQS). The IC can enter these low-power modes by command, communication collapsed (if enabled), or undervoltage shutdown. The IC can wake up from these low-power modes by communication, charger detection, or pushbutton wakeup (if enabled and installed). Pushbutton wakeup allows a pack to completely disconnect from a system during shipping, yet wakeup immediately upon the user pressing the button, not needing the user to plug in a charger. The ModelGauge m5 algorithm combines the short-term accuracy and linearity of a coulomb counter with the longterm stability of a voltage-based fuel gauge, along with temperature compensation to provide industry-leading fuelgauge accuracy. Additionally, the algorithm does not suffer from abrupt corrections that normally occur in coulombcounter algorithms, since tiny continual corrections are distributed over time. The MAX1730x/MAX1731x automatically compensates for aging, temperature, and discharge rate and provides accurate state of charge (SOC) in milliamperehours (mAh) or percentage (%) over a wide range of operating conditions. Fuel gauge error always converges to 0% as the cell approaches empty. Dynamic power functionality provides the instantaneous maximum battery output power which can be delivered to the system without violating the minimum system input voltage. The IC provides accurate estimation of time-to-empty and time-to-full and provides three methods for reporting the age of the battery: reduction in capacity, increase in battery resistance, and cycle odometer. In addition, age forecasting allows the user to estimate the expected lifespan of the cell. To prevent battery clones, the IC integrates SHA-256 authentication with a 160-bit secret key (MAX17300/01/02/10/11/ 12 Only). Every IC also incorporates a 64-bit unique identification number (ROM ID). Additionally, up to 122 bytes of user memory (NVM) can be made available to store custom information. Communication to the host occurs over a Maxim 1-Wire (MAX17310-MAX17313) or standard I2C interface (MAX17300-MAX17303). OD/SCL is an input from the host, and DQ/SDA is an open-drain I/O pin that requires an external pullup. The ALRT1 pin is an output that can be used as an external interrupt to the host processor if certain application conditions are detected. For additional reference material, refer to the following Application Notes: Application Note 6807: MAX1730x/MAX1731x Host Software Implementation Guide Application Note 6954: MAX1730x/MAX1731x Battery Pack Implementation Guide www.analog.com Analog Devices | 28 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Protector Lithium-ion/polymer batteries are very common in a wide variety of portable electronic devices because they have very high energy density, minimal memory effect and low self-discharge. However, care must be taken to avoid overheating or overcharging these batteries to prevent damage to the batteries potentially resulting in dangerous outcomes/explosive results. By operating in safe temperature ranges, at safe voltages and under safe current levels, the overall safety of the lithium-ion/polymer batteries can be assured throughout the life of the battery. Simple protection schemes are available to protect a battery from exceeding the safe levels. These schemes include protection for overdischarge current, short-circuit current, over-charge current, undervoltage and overvoltage. The next level of protection offers smart protection schemes which include protection for long overdischarge current, overtemperature limits for charge and discharge, undertemperature charge limits, and charge-done protection. The MAX1730x/MAX1731x provides all of these simple and smart protection schemes with programmable thresholds and programmable timer delays for each fault. The MAX1730x/MAX1731x provides additional protection functionality beyond these schemes including: Discharging Protection Functionality ● Overcurrent: (see nODSCCfg and nODSCTh) • Fast Short-Circuit (70μs to 985μs): The short-circuit comparator is programmable from 5mV to 155mV with delay programmable from 70μs to 985μs. • Medium (1ms to 15ms): The overdischarge current comparator is programmable from 2.5mV to 77.5mV with delay programmable from 1ms to 15ms. • Slow (351ms to 23s): Slow overdischarge protection is programmable from 0mV to 51.2mV in 0.2mV steps with delay programmable from 351ms to 23s (see nDelayCfg). ● Overtemperature: • Hot (OTPD—Overtemperature Discharge): Discharge overtemperature (OTPD, see nProtMiscTh) is separately programmable from charge overtemperature (OTPC). OTPD is typically a higher temperature than OTPC, since charging while hot is more hazardous than discharging. OTPD is programmable in 1°C steps, with a programmable timer (see nDelayCfg). • Die-Hot: The MAX1730x/MAX1731x measures die temperature as well as a thermistor's temperature. Since the IC is generally located close to the external FETs, the die temperature can indicate when the FETs are overheating. This separately programmable threshold (see nProtMiscTh) blocks both charging and discharging. • Permanent-Fail-Hot: When a severe overtemperature is detected, the fault is recorded into NVM and permanently disables the charge and discharge FETs (see nTPrtTh3). ● Undervoltage: Undervoltage is protected by three thresholds: UVP (undervoltage protect), UVShdn (undervoltage shutdown), and UOCVP (under OCV protect—SmartEmpty). UOCVP provides a deep-discharge-state protection that is immune from load and cell impedance/resistance variations. Charging Protection Functionality: ● Overvoltage Protection (OVP): Overvoltage protection is programmable with 10mV resolution (see nJEITACfg). Temperature-region dependent OVP protection is also provided for cold/room/warm and hot temperature regions (see nJEITAV). OVP detection is debounced with a programmable timer (see nDelayCfg). An additional, higher OVP permanent failure threshold is programmable, which records any excessive OVP into NVM and permanently blocks charging. ● Charge Temperature Protection: Temperature protection thresholds are debounced with a programmable timer (see nDelayCfg). • Hot (OTPC): Charging temperature protection is programmable with 1°C resolution (see nTPrtTh1) and 2°C hysteresis. • Cold (UTP): Charging is blocked at cold, programmable with 1°C resolution (see nTPrtTh1) and 2°C hysteresis. ● Overcharge-Current Protection: • Fast: Overcharge current is detected by a programmable hardware comparator and debounce timer between 0 to 38.75mV and 1ms to 15ms thresholds. • Slow: A lower and slower overcharge current protection ensures that more moderate high currents do not persist www.analog.com Analog Devices | 29 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication for a long time. With a 10mΩ sense resistor, this is programmable up to 5.12A in 40mA steps, with an additional delay programmable between 0.35s and 22.5s. Additionally, with nNVCfg1.enJP = 1, this overcurrent protection threshold is modulated according to temperature region (see nJEITAC). ● Charger-Communication Timeout: If enabled, during charging the IC turns off the charge FET if the host has stopped communicating beyond a timeout configurable from 11s to 3 minutes. In systems which consult the battery for prescribing the charge current or charge voltage, especially to apply JEITA thresholds or step-charging, this feature is useful to protect against operating system crash or shutdown. ● Overcharge-Capacity Fault: If any charge session delivers more charge (coulombs) to the battery than the expected full design capacity, charging is blocked, if the feature is enabled. This threshold is programmable as a percentage (see nProtMiscTh.QOvflwTh) beyond the design capacity. Other Faults: ● Nonvolatile CheckSum Failure: If enabled (nNVCfg1.enProtChkSm), the MAX1730x/MAX1731x blocks charge and discharge when startup checksum of protector NVM does not match the value stored in nCheckSum. Other Protection Functionality: ● Zero-Volt Charging: The IC is able to begin charging when the cell has depleted to 1.8V (ZVC disabled) or even 0.0V (ZVC enabled). See the Zero-Volt Charging section for more details. ● Overdischarge-Removal Detection: Following any overdischarge current fault, after the IC turns off the discharge FET, it tests the load to detect the removal/disconnection of the offending load by sourcing 30μA into PCKP. Load removal is detected when PCKP exceeds 1V. This low threshold is intentionally below the startup voltage of most ICs in order to allow active loads by external ICs while rejecting passive loads by resistors (short-circuit, failed components, etc.). ● Battery Internal Self-Discharge Detection: The IC (MAX17300/MAX17310 only) measures the internal selfdischarge of the battery that might indicate health or safety problems. The IC alerts the system or turns off the charge and discharge FETs when a leakage is detected above the configurable threshold. See the Battery Internal SelfDischarge Detection (ISD) (MAX17300/MAX17310 Only) section for more details. ● Charger Removal Detection: Following any charge fault, after the IC turns off the charge FET, it tests PCKP to detect the removal of the offending charger by connecting 40kΩ from PCKP to GND. Charger removal is detected when PCKP falls below BATT + 0.1V or whenever discharge current is detected. ● Ideal-Diode Control: During any charge fault, the charge FET turns on when a discharge current is detected, with up to 350ms delay. The discharge FET behaves the same way during discharge faults to block discharging, yet turns on during charging. This ideal diode behavior reduces the heat and voltage drop associated with the body diode during protection faults. Protection Fault Reporting: ● Protection Fault Status: Each charge and discharge fault state is latched in the ProtStatus register. When the fault is cleared, the corresponding bit is cleared. ● Protection Fault Alerts: The ProtAlrt register latches the status of any previous faults detected by the device. Once a fault is detected, the corresponding bit remains set until it is cleared by the host. Additionally, the Status.ProtAlrt bit is set when any ProtAlrt bit is set. ● Protection Fault Logging: The nFaultLog register indicates which protection events happened during each history log period. www.analog.com Analog Devices | 30 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Charging Prescription Registers: The ChargingVoltage and ChargingCurrent registers can guide the charger according to recommended charging profile. This can include the following knowledge which generally is associated with a particular battery and may be stored in the battery with the MAX1730x/MAX1731x: ● Factory Recommended Charging Current and Voltage: This is useful when a system involves multiple battery vendors, swappable batteries, or legacy system support. ● Charging Modifications According to Battery Temperature: Significantly above and below room temperature, most cell manufacturers recommend to charge at reduced current and lower termination voltage to assure safety and improve lifespan. The MAX1730x/MAX1731x can be configured to modulate its guidance according to TooCold/Cold/ Room/Warm/Hot/TooHot programmable temperature regions (see nTPrtTh1/2/3). Both charging current and voltage are modulated at Cold/Warm/Hot, generally targeting lower than Room (see nJEITAV and nJEITAC). ● Step-Charging: A common practice to balance lifespan and charge speed is to apply step-charging profiles (see the Step-Charging section). The MAX1730x/MAX1731x supports three programmable steps with programmable charge currents and voltages. At a high level, the MAX1730x/MAX1731x protector has state-machine as shown in Figure 1. Each charge and discharge fault state is latched in the ProtStatus register, where each fault obeys a separate instance of the state machine shown in Figure 1. CHARGE FAULT (OR’D) BLOCK CHARGE CHARGEGOOD = 0 ALLOW CHARGE CHARGEGOOD = 1 CHARGE FET ENABLED IF (NO CHARGE FAULTS OR DISCHARGING) CHARGE FAULTS RELEASED (AND’D) DISCHARGE FAULT (OR’D) ALLOW DISCHARGE DISGOOD = 1 BLOCK DISCHARGE DISGOOD = 0 DISCHARGE FET ENABLED IF (NO DISCHARGE FAULTS OR CHARGING) DISCHARGE FAULTS RELEASED (AND’D) Figure 1. Simplified Protector State Machine www.analog.com Analog Devices | 31 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Note: Due to the highly configurable protection thresholds, the MAX1730x/MAX1731x must be locked when deployed into the field to prevent accidental overwrites or intentional tampering that may result in hazardous conditions. See the Memory Locks section for more details. The protector registers are summarized by their protection function in Table 1 and are graphically shown across the various temperature ranges in Figure 2 and Figure 3. Table 1. Summary of Protector Registers by Function FUNCTION REGISTER Voltage Thresholds Permanent Fail Overvoltage Protection Overvoltage Protection Overvoltage Protection Release nVPrtTh2 nJEITAV, nJEITACfg nJEITACfg UnderOCV Protection nVPrtTh1 Undervoltage Protection nVPrtTh1 Undervoltage Shutdown nVPrtTh1 Current Thresholds Fast Overcharge Protection nODSCTh, nODSCCfg Slow Overcharge Protection nIPrtTh1 Slow Overdischarge Protection nIPrtTh1 Fast Overdischarge Protection nODSCTh, nODSCCfg Short Circuit Protection nODSCTh, nODSCCfg Charging Detected nProtMiscTh Discharging Detected nProtMiscTh Temperature Thresholds Fault Timers nTPrtTh1, nTPrtTh2, nTPrtTh3, nProtMiscTh nDelayCfg Charging Prescription Charging Voltage nJEITAV Charging Current nJeitaC Precharge Current nJEITACfg Step Charging nStepChg Protection Status/Configuration www.analog.com nProtCfg, ProtStatus, nBattStatus Analog Devices | 32 OVP RELEASE 4.2V CHARGING VOLTAGE TOO COLD COLD -10 ROOM 10 TEMPERATURE WARM 35 HOT 45 STEP-CHARGING JEITA CHARGE VOLTAGE STEPDV1 4.25V STEPDV0 TOO HOT DISCHARGE OVERVOLTAGE PROTECTION PERM FAIL OTP T4 (TOO HOT) T3 (HOT) 4.4V PERM FAIL OVP 4.35V TWARM 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication DIE TEMP HOT CELL VOLTAGE T2 (COLD) T1 (TOO COLD) MAX17300-MAX17303/ MAX17310-MAX17313 STEPV2 STEPV1 STEPV0 TOO HOT 60 70 75 80 3.7V DESIGN VOLTAGE 3.0V VEMPTY 2.9V UOCV PROTECTION 2.8V UV PROTECTION 2.7V UV SHUTDOWN 2.3V (2.16V for MAX17300/MAX17310) MINIMUM OPERATING VOLTAGE Figure 2. Programmable Voltage Thresholds www.analog.com Analog Devices | 33 CHARGING CURRENT T3 (HOT) TWARM 3500mA FAST OVERCHARGE PROTECTION T4 (TOO HOT) 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication T2 (COLD) T1 (TOO COLD) MAX17300-MAX17303/ MAX17310-MAX17313 DIE TEMP HOT TOO HOT DISCHARGE 2000mA CHARGING CURRENT PERM FAIL OTP 3000mA SLOW OVERCHARGE PROTECTION STEP-CHARGING CHARGING CURRENT STEPCURR1 STEPCURR2 TOO COLD COLD ROOM WARM HOT TOO HOT 100mA PRECHARGE DISCHARGING CURRENT 10mA CURRDET -10 10 TEMPERATURE 35 45 60 70 75 80 -3000mA SLOW OVERDISCHARGE PROTECTION -4000mA FAST OVERDISCHARGE PROTECTION -5000mA SHORT CIRCUIT PROTECTION Figure 3. Programmable Current Thresholds Protector Thresholds The MAX1730x/MAX1731x provides for a variety of programmable protector thresholds that are stored in nonvolatile memory. These thresholds include voltage, current, temperature, and timer delays. Voltage Thresholds All voltage thresholds of the MAX1730x/MAX1731x are shown graphically in Figure 2 and in table form with details of which bits and registers create the various thresholds in Table 2. The description of each register provides additional guidance for selection of the register value. www.analog.com Analog Devices | 34 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 2. Voltage Thresholds NAME DESCRIPTION Permanent Fail Overvoltage CONFIGURATION REGISTERS EXAMPLE nVPrtTh2.OVP_PermFail 4.4V ChargeVoltage[temp] + nJEITACfg.dOVP {4.1V/4.20V/4.18/ 4.15V} +50mV Overvoltage JEITACfg.dOVPR {4.15V/4.25V/ 4.23V/4.2V} -10mV nJEITAV.Room 4.20V Overvoltage (with 4xJEITA) Programmable overvoltage at each JEITA band. Programmable 10mV resolution from 3.9V to 4.88V. Programmable delay. Overvoltage Release Programmable release hysteresis. Release fault when voltage drops below this threshold and discharging is detected. ChargeVoltage-Room ChargingVoltage() output ChargeVoltage-Hot ChargingVoltage() output nJEITAV.Hot 4.15V ChargeVoltage-Warm ChargingVoltage() output nJEITAV.Warm 4.18V ChargeVoltage-Cold ChargingVoltage() output nJEITAV.Cold 4.10V DesignVoltage Just for information, no action nDesignVolt 3.7V EmptyVoltage For fuel gauge only (not related to protection) nVEmpty 3.0V Undervoltage Release Charger applied Under OCV Protection (SmartEmpty) Programmable under-OCV 40mV steps UVP to UVP + 1.28V. nVPrtTh1.UOCVP 3.2V Undervoltage Protection Programmable undervoltage 20mV steps 2.2V to 3.4V. Gauging and communications work until undervoltage-shutdown nVPrtTh1.UVP 2.7V Undervoltage Shutdown Gauging and communications work until undervoltage-shutdown nVPrtTh1.UVShdn 2.5V Undervoltage Lockout 2.11V typ, 2.16V max (MAX17300/ MAX17310) 2.1V typ, 2.3V max Low-Voltage Charging 1.8V Zero-Voltage Charging 0.0V Ideal Diode Behavior The IC uses several methods to detect charge and discharge to provide the following "Ideal Diode" discharge control without forgetting a possible charge fault state such as OVP, OTP, or UTP (overcharge current is fully released during a discharge condition). 1. Fast On. When discharge is detected, the CHG FET quickly turns on regardless of any charge fault condition. This limits the heat and voltage drop associated with the 0.6V CHG FET body diode. 1. Current < -CurrDet. nProtMiscTh.CurrDet is normally configured to 2 to provide a clear threshold relative to ADC noise. With a 10mΩ sense resistor, this corresponding to 7.5mA, provides sufficient sensitivity for most active loads. 2. PCKP < BATT +0.1V (falling only). Additionally, a comparator detects charger removal to support better discharging detection even during small standby currents. 2. Fast Off. When discharge to charge transition is detected while a charge fault (such as OTP/OVP/UTP) remains latched, the CHG FET quickly turns off to prevent charging. Since the charge fault remains remembered (not released by the discharging), the response happens quickly without waiting for double-confirmation by the fault timer. 3. Slow On. Smaller standby currents require the sensitivity provided by the filter of the AvgCurrent register. 1. AvgCurrent < -AvgCurrDet. For default configuration and with 10mΩ, AvgCurrDet is sensitive to 1.4mA discharge. The AvgCurrDet threshold follows the filter configuration nFilterCfg.Curr as well as the hibernate state and configuration according Table 3 when using default nProtMiscTh.CurrDet = 7.5mA. www.analog.com Analog Devices | 35 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 3. AvgCurrDet Threshold When Using 10mΩ and Default nProtMiscTh.CurrDet = 7.5mA AVGCURRENT FILTER CONFIGURATION (nFilterCfg.Curr) 1 (0.7s) 2 (1.4s) 3 (2.8s) 4 (5.6s) 5 (11.25s) 6 (22.5s) 7 (45s) 8 (90s) Active (0.351s) 4.22mA 2.34mA 2.34mA 1.41mA 1.41mA 0.94mA 0.94mA 0.7mA Hibernate (1.4s) 7.5mA 4.2mA 4.2mA 2.3mA 2.3mA 1.4mA 1.4mA 0.94mA Hibernate (2.8s) 7.5mA 7.5mA 7.5mA 4.2mA 4.2mA 2.3mA 2.3mA 1.4mA 4. Slow Off. AvgCurrent > -0.3mA. While the Charge Fault remains, the CHG FET turns off whenever AvgCurrent fails to exceed the more sensitive -0.3mA discharge threshold. The fast responses in Table 3 correspond with the 0.351s ADC update rate. The more accurate slow responses correspond with the AvgCurrent filter delay configuration. Current Thresholds All of the current thresholds of the MAX1730x/MAX1731x are shown graphically in Figure 3 and in table form with details of each threshold in Table 4. The description of each register provides additional guidance for selection of the register value. Table 4. Current Threshold Summary CURRENT ACTION RELEASE DETAILS Overcharge Current (fast) CHG off Overcharge Current (slow with 4xJEITA) CHG off Overdischarge Current (fast) DIS off Overdischarge Current (slow) DIS off Short-Circuit Current DIS off Charging Detected Normal Current > CurrDet or AvgCurrent > AvgCurrDet or PCKP > BATT + 0.15V to release overdischarge protection. Normal Current < -CurrDet or AvgCurrent < -AvgCurrDet or PCKP < BATT + 0.15V (falling-edge) indicates discharging. When discharging is detected, overcharge current faults release. Other charge faults such as OVP, OTP, UTP remain set, however, the CHG FET turns on to prevent the heat and voltage drop associated with the 0.6V CHG FET body diode. See the Ideal Diode Behavior section for more details. An OVP fault remains remembered (unreleased) until voltage falls and discharging is also detected. Discharging Detected Discharging or charger removal detection Charging or load removal detection Threshold 5-bit, 1.25mV steps to 38.75mV. Delay programmable 4-bit, 1ms to 15ms in 0.9ms steps. Programmable 0.4mV steps to 51.2mV. Delay programmable 351ms to 45s. Separate thresholds for 4 out of 6 JEITA segments. 5-Bit, 2.5mV steps to 77.5mV. Delay programmable 4-bit, 1ms to 15ms in 0.9ms steps. Programmable 0.4mV steps to 51.2mV. Delay programmable 351ms to 45s. 5-Bit, 5mV steps to 155mV. Delay programmable 4-bit, 70μs steps to 985μs. Overcurrent Protection The MAX1730x/MAX1731x provides three levels of protection for overdischarge current events: fast, medium, and slow as shown in Figure 4. The MAX1730x/MAX1731x also provides fast and slow levels of protection for overcharge current protection. The fast and medium levels of protection are provided by comparators and the slow levels are based on the ADC readings. The MAX1730x/MAX1731x maintains the protection until the source of the fault has been removed. Overcharge protection fault releases when pack voltage falls below BATT + 0.1V (edge, not level) while the IC tests charger removal by applying a 40kΩ pull down from PCKP to GND (during any charger fault). Overdischarge current (fast or slow) or short-circuit current protection faults release when PCKP rises above 1V, while the IC applies 30μA source current test to PCKP. www.analog.com Analog Devices | 36 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication SHORT-CIRCUIT THRESHOLD FAST MEDIUM SLOW (MICROSECONDS) (MILLISECONDS) (SECONDS, WITH 1% ACCURACY) OVERDISCHARGE THRESHOLD NODSCTH.ODTH (0-77.5mV) ADC OVERDISCHARGE THRESHOLD NDELAYCFG.OVERCURRTIMER (0.351s to 22.5s) OVERDISCHARGE DELAY NODSCCFG.ODDLY (1.05ms - 14.66ms) ADC OVERCURRENT DELAY NIPRTTH1.ODCP (0-51.2mV) SHORT-CIRCUIT DELAY NODSCCFG.SCDLY (131µs TO 985µs) DISCHARGE CURRENT NODSCTH.SCTH (0-155mV) DEBOUNCE TIME Figure 4. Fast, Medium, and Slow Overdischarge Protection Fast Overcurrent Comparators The MAX1730x/MAX1731x contains three programmable fast overcurrent comparators called Overdischarge (OD), Short-Circuit (SC), and Overcharge (OC) that allow control protection for overdischarge current, short-circuit current, and overcharge current. These comparators have programmable threshold levels and programmable debounced delays. See Figure 5. The OD comparator threshold can be programmed from 0mV to -77.5mV with 2.5mV resolution (0 to -7.75A with 0.25A resolution using 10mΩ sense resistor). The OC comparator threshold can be programmed from 0mV to 38.75mV with 1.25mV resolution (0 to 3.875A with 0.125A resolution using 10mΩ sense resistor). The OD and OC comparators have a programmable delay from 1.05ms to 14.6ms with 0.97ms resolution. The SC comparator threshold can be programmed from 0mV to -155mV with 5mV resolution (0 to -15.5A with 0.5A resolution using 10mΩ sense resistor), and has a programmable delay from 70μs to 985μs with a 61μs resolution. The nODSCTh register sets the threshold levels where each comparator trips. The nODSCCfg register enables each comparator and sets their debounce delays. The nODSCCfg register also maintains indicator flags of which comparator has been tripped. These register settings are maintained in nonvolatile memory if the nNVCfg1.enODSC bit is set. www.analog.com Analog Devices | 37 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Overcurrent Comparator Diagram + SCTH - OCTH + SCDLY - OCDLY OCi SCi ODSCCfg + ODTH OCDLY - ODi CSN CSP RSENSE Figure 5. Overcurrent Comparator Diagram Slow Overcurrent Protection The MAX1730x/MAX1731x provides programmable thresholds for the slow overdischarge current protection (ODCP) and overcharge current protection (OCCP). ODCP and OCCP can be configured to provide different levels of protection across the six temperature zones as shown in Figure 3. Temperature Thresholds The six temperature zones shown in Figure 2 and Figure 3 can be configured in the nTPrtTh1, nTPrtTh2, and nTPrtTh3 registers. Other Thresholds Table 5. Other Thresholds THRESHOLD ACTION CONDITIONS Charge Suspend CHG off ChgWDT Fault—if enabled (nProtCfg.ChgWDTEn) and communications timeout. Charge-Suspend Release Normal FullDet Release—Discharge or charger removal detected. ChgWDT Release—Communications or discharge or charger removal detected. Charge FET Failure Blow fuse CHG off yet charge-current persists (programmable). Discharge FET Failure Blow fuse DIS off yet discharge-current persists (programmable). Charge Voltage/Current "Prescription" www.analog.com Six-zone JEITA (four charge currents and voltages). Analog Devices | 38 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Battery Internal Self-Discharge Detection (ISD) (MAX17300/MAX17310 Only) A healthy lithium-ion/polymer battery has a very high coulombic-efficiency, typically greater than 99.9% (defined as discharge mAh vs. charge mAh). Some portion of the charge capacity can be lost by internal self-discharge. This includes natural aging, which is exacerbated if the battery stays at a high temperature and/or high state for long periods of time. However, in a damaged battery, additional capacity can be lost (unavailable for discharge), and some portion of this reflects permanent capacity loss. Unusual self-discharge in a lithium-ion/polymer battery might indicate health or safety problems. The MAX17300/MAX17310 internal self-discharge (ISD) detection feature measures battery leakage and provides the following functions: ● Leakage Measurement. The LeakCurrRep register outputs the milliampere leakage measured across many days and multiple charge termination events. • Accurate leakage detection • Low ppm false-positive rate at a 3mA threshold • Detection during normal use • No discharge depth or duration constraints • Requires at least four full events, each separated by 20 hours or more ● Leakage Log. Leakage measurements are recorded in the battery-life-logging data. This reveals leakage vs. time for any returned battery or for managing deployed packs. ● Leakage Alert. If enabled, when LeakCurrRep exceeds the programmable alert threshold, an LDET alert (see ProtAlrt) is asserted. ● Leakage Fault. If enabled, when LeakCurrRep exceeds the programmable fault threshold, the protector disconnects the battery. Example of Internal Self-Discharge Detection Figure 6 shows the current leakage the MAX17300/MAX17310 detect as a result of placing a 909Ω resistor across a cell to emulate a battery with internal self-discharge over various temperatures. www.analog.com Analog Devices | 39 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Figure 6. Example of Internal Self-Discharge with Temperature Variation Configuring ISD Contact Maxim for configuring the ISD feature. See the Battery Internal Self-Discharge Registers section for configuration details. Permanent Failure The MAX1730x/MAX1731x supports several types of faults which result in a permanent failure. When any enabled permanent failure is detected, both FETs turn off and remain off regardless of power-cycling. When any permanent failure fault is detected, the nBattStatus.PermFail bit and the specific fault bit (also in nBattStatus) are set and both FET drivers are put in the off state. Furthermore, the PFAIL output drives high to either drive an external fuse or latch a secondary protector. This action is useful when FET failure is detected because charge and discharge cannot be blocked in any other way. The following permanent failure faults are supported whenever permanent failures are enabled (nProtCfg.PFEn = 1) and the condition persists longer than the Permanent Fail debounce timer (nDelayCfg.PermFailTimer): ● FET Failures: Enable/disable this feature by configuring nProtCfg.FetPFEn. • DIS FET Shorted: If discharging is detected during the discharge fault, nBattStatus.DFETFs is set and written to NVM. • CHG FET Shorted: If charging is detected during the charge fault, nBattStatus.CFETFs is set and written to NVM. www.analog.com Analog Devices | 40 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication • FET Open Failure: If either FET is detected open by the following detection methods: • Detected By Discharge Fail: If DIS = On, VPCKP < 1.5V, and discharge current is not detected, nBattStatus.FETFo is set and written to NVM. • Detected By Charge Fail: If CHG = On, DIS = On, VPCKP > VBATT + ChgDet, and charge current is not detected, nBattStatus.FETFo is set and written to NVM. ● Severe Overvoltage Failure: If any cell voltage exceeds nOVPrtTh.OVPPermFail, nBattStatus.OVPF is set and written to NVM. Disable by configuring nOVPrtTh.OVPPermFail to the maximum value of 5.12V (FF__h). ● Severe Overtemperature Failure: If temperature exceeds nTPrtTh3.TpermFailHot, nBattStatus.OTPF is set and written to NVM. Disable by configuring OTPPermFail to the maximum value of 127°C (7F__h). ● Nonvolatile Protector Checksum Failure: If enabled (nNVCfg1.enProtChkSum), during startup, a checksum of the protector configuration is calculated and compared against the nChkSum register. If the value mismatches, nBattStatus.ChkSumF is set. Disabling FETs by Pin-Control or I2C Command The IC provides FET override control by either I2C command or pin-command to the ALRT pin. This functionality can be useful for various types of applications: ● Factory Testing. Disconnecting the battery is useful for testing with a controlled external power supply. ● Battery Selection. In a multiple battery system, one battery can be disconnected and another connected by operating the FETs. When allowed by nonvolatile configuration, both FETs can be turned off by pin control or either FET can be individually turned off by I2C command. The control operates as follows: ● ALRT Pin Override. Set nProtCfg.OvrdEn = 1 and drive ALRT low to force both FETs into the off state. Releasing the ALRT line recovers the FETs according to the protector's fault state machine. ● I2C Command Override. Set nProtCfg.CmOvrdEn = 1 and write CommStat.CHGOff or CommStat.DISOff to independently disable either the charge or discharge FET. Clearing CHGOff and DISOff recovers the FETs according to the protector's fault state machine. These features may be disabled and locked by nonvolatile memory to prevent malicious code from blocking the FETs. Although disabling FETs does not produce any safety issue, it can be a nuisance if malicious system-side software denies power to the system. Charging Prescription The MAX1730x/MAX1731x can guide a charger with recommended charging voltage and charging current to safely charge the battery depending on the state of the battery and the temperature. The ChargingVoltage and ChargingCurrent registers provide the information according to the recommended charging based on knowledge that is installed in the battery under the principle that the battery maker knows the requirements best. This information can be stored in the MAX1730x/MAX1731x to provide the factory recommended charging current and voltage. This is useful when a system involves multiple battery vendors, swappable batteries, aftermarket batteries, or legacy system support. As the temperature of the battery changes significantly above and below room temperature, most cell manufacturers recommend to charge at reduced current and lower termination voltage to assure safety and improve lifespan. The MAX1730x/MAX1731x can be configured to change its guidance according to TooCold/Cold/Room/Warm/Hot/TooHot programmable temperature regions (see nTPrtTh1/2/3). Both charging current and voltage are updated at Cold/Warm/ Hot (see nJEITAV and nJEITAC). See Figure 2 and Figure 3. Additionally, the IC provides step-charging to improve lifespan of the battery and charge speed by applying a stepcharging profile (see the Step-Charging section) as shown in Figure 7. www.analog.com Analog Devices | 41 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Step Charging A step-charging profile sets three charge voltages, three corresponding charge currents, and manages a state-machine to trace through the stages as shown in Figure 7. FULL VOLTAGE TH1 = FULL VOLTAGE - STEPDV1 TH0 = FULL VOLTAGE – STEPDV0 VCELL 90% SOC 50% VC E LL 30% SOC HIGHEST CURRENT, LOWEST VOLTAGE PROTTMRSTAT.CHARGESTEP 0 REDUCED CURRENT UNTIL FULL MEDIUM CURRENT VCELL > TH0 1 VCELL > TH1 2 NOT CHARGING/DISCHARGING NOT CHARGING/DISCHARGING Figure 7. Step-Charging State Machine This breaks charging into three regions: Region 0: Highest current, lowest voltage. ChargingCurrent comes from nJEITAC until VCell > StepVolt0. After VCell > StepVolt0, ChargingCurrent becomes defined by Region 1. Region 1: Medium current. ChargingCurrent comes from nJEITAC x (StepCurr1 + 1)/16, which is a ratio from 1/16 to 16/ 16 until VCell > StepVolt1. When VCell > StepVolt1, ChargingCurrent becomes defined by Region 2. Region 2: Reduced current until full. ChargingCurrent comes from nJEITAC x (StepCurr2 + 1)/16, which is a ratio from 1/ 16 to 16/16 until full. For example, a charge may start with a ChargingCurrent of 2000mA until the cell voltage reaches 4.12V. At that point, the ChargingCurrent is reduced to 1000mA until the cell voltage reaches 4.16V. Then, the ChargingCurrent is further reduced to 500mA where it remains until the current begins to taper off naturally to the termination current. Zero-Volt Charging When in undervoltage protection, the MAX1730x/MAX1731x turns both FETs off and then enters a low quiescent state. After a long time in the undervoltage state, it is possible for the battery voltage to fall below the minimum 2.3V (2.16V for MAX17300/MAX17310) operating voltage, making it unable to wakeup by communications or pushbutton. In this situation, an external charge voltage must be applied to PCKP in order to wake up the IC. The IC supports two options to recover an overdischarged battery according to the ZVC pin voltage: 1. Zero-Volt Charge Recovery. In this configuration (connect ZVC to GND), even a battery at zero volts can be charged by applying a charger at PCKP. If a secondary protector is used, zero-volt charge recovery must be enabled. www.analog.com Analog Devices | 42 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication There are three phases for 0V recovery charge as shown in Figure 8. ● Phase 1. VBATT ≤ max(1.8V, VGS). Low battery recovery charge phase. CHG is shorted to PCKP. PCKP voltage is clamped to VGS_CHG + VBATT. ● Phase 2. max(1.8V, VGS) ≤ VBATT. Charge pump recovery charge phase. CHG is powered by the charge pump and CHG driver. This phase begins when VBATT exceeds the FET's Vt threshold. The IC detects that the pump voltage is sufficient to drive the gate. ● Phase 3. VBATT > 2.1V. The IC wakes up, begins ADC readings, and resumes normal protection functionality. CHARGE PUMP ON NORMAL PROTECTOR OPERATION VPCKP 2.16V 1.8V VtCHG VBATT 0V BODY-DIODE DROP OF DIS FET VPCKP = VBATT + VtCHG PHASE 1 PHASE 2 PHASE 3 Figure 8. Zero-Volt Recovery Charge 2. 1.8V Charge Recovery. In this configuration, a battery below 1.8V permanently rejects charge. This has some safety benefit for some Lithium batteries, since very low voltage can cause copper-deposition creating an unsafe state in the battery. If the cell is above 1.8V, then charge recovery begins in Phase 2 whenever a charger is applied at PCKP. If the cell voltage is less than 1.8V, then the MAX1730x/MAX1731x connects PCKP to CHG as shown in Figure 9. VPCKP becomes VBATT + VTCHG. This connection persists until the CP charge pump is enabled at approximately 1.8V. VPCKP voltage varies based on the VGS of the external CHG FET. At this time, PCKP disconnects from CHG and the device resumes normal protection operation. Note: To ensure that a pack can be recovered from low voltage, the Vt of the CHG FET must be less than Charger's Voltage/2. www.analog.com Analog Devices | 43 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication VDIODE N PCKP N BATT S VG CHG CP DIS PCKP ZERO-VOLT CHARGE CONNECTION MAX1730X MAX1731X Figure 9. Zero-Volt Charging Diagram Parallel Battery Management (MAX17300/MAX17310 Only) The MAX17300/MAX17310 support automation to manage parallel charging or discharging of multiple batteries and prevent one battery from charging the other (cross-charging) with the following features and benefits: ● Converge cell voltages faster with independent control • Priority to charge the emptiest battery first • Priority to discharge the fullest battery first • Charge and discharge in parallel once cell voltages converge ● Prevent cross-charge to optimize heat and dropout • Break-Before-Make Control • Charger Insertion: Discharge blocking applies before charge enabling • Charger Removal: Charge blocking applies before discharge enabling Set nPackCfg.ParEn = 1 to enable the Parallel Battery Management functionality. When enabled, a timeout automatically sequences charge/discharge blocking and enabling. The automatic charge blocking allows the host to determine which battery must be charged first and allows charging only the battery that is commanded to charge. Automatic discharge blocking prevents batteries at higher state from charging batteries at lower state. To block discharging while allowing charging, set Config2.BlockDisEn = 1. Status.AllowChgB is internally set every 351ms. Host Responsibility for Parallel Battery Management ● Declare the presence of charge source. Only the host has this knowledge. Repeatedly write STATUS = 0xFFDF (AllowChgB = 0). The IC automatically blocks charging if AllowChgB is not cleared repeatedly within nDelayCfg.CHGWDT time (default 11.25s to 22.5s). After this timeout, all packs revert to allow-discharge and block-charge state. ● Configure and manage to prevent cross-charging. If cell voltages differ by more than 400mV, configure the higher voltage packs to block discharging. Note that the higher voltage pack resumes discharge after host stops declaring charger-presence. The nDelayCfg.CHGWDT should be set to 0 to minimize delay which can be up to 11.25s. • Determine if emptiest cell can support system load (3.3V, for example). If the lowest cell cannot support the system load, clear Config2.BlockDis = 0 until the empty battery is sufficiently charged to support the system. This prevents risk of system crash while higher-voltage packs are denied discharge support. Cross-charging should be allowed during the limited time associated with VCell < 3.3V. • Block discharge on packs identified as cross-charging risk. Set Config2.BlockDis = 1. www.analog.com Analog Devices | 44 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 6. Parallel Control Modes NAME nPackCfg.ParEn Config2.BlockDis Status.AllowChgB CHG FET DIS FET No Parallel Management 0 x x NORMAL NORMAL Parallel Charging 1 0 0 NORMAL NORMAL Parallel Discharging 1 0 1 (+timeout) BLOCK READY NORMAL Block Discharge 1 1 0 NORMAL BLOCK READY Parallel Discharging 1 1 1 (+timeout) BLOCK READY NORMAL In the BLOCK READY state, the CHG or DIS FET is ready to block and is turned off if charging or discharging current is observed. In the NORMAL case, the CHG/DIS FET is controlled by standard protection. ModelGauge m5 Algorithm Classical coulomb-counter-based fuel gauges have excellent linearity and short-term performance. However, they suffer from drift due to the accumulation of the offset error in the current-sense measurement. Although the offset error is often very small, it cannot be eliminated, causes the reported capacity error to increase over time, and requires periodic corrections. Corrections are usually performed at full or empty. Some other systems also use the relaxed battery voltage to perform corrections. These systems determine the true state-of-charge (SOC) based on the battery voltage after a long time of no current flow. Both have the same limitation; if the correction condition is not observed over time in the actual application, the error in the system is boundless. The performance of classic coulomb counters is dominated by the accuracy of such corrections. Voltage measurement based SOC estimation has accuracy limitations due to imperfect cell modeling, but does not accumulate offset error over time. The IC includes an advanced voltage fuel gauge (VFG), which estimates OCV, even during current flow, and simulates the nonlinear internal dynamics of a Li+ battery to determine the SOC with improved accuracy. The model considers the time effects of a battery caused by the chemical reactions and impedance in the battery to determine SOC. This SOC estimation does not accumulate offset error over time. The IC performs a smart empty compensation algorithm that automatically compensates for the effect of temperature condition and load condition to provide accurate state-ofcharge information. The converge-to-empty function eliminates error toward empty state. The IC learns battery capacity over time automatically to improve long-term performance. The age information of the battery is available in the output registers. www.analog.com Analog Devices | 45 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication The ModelGauge m5 algorithm combines a high-accuracy coulomb counter with a VFG. See Figure 10. The complementary combined result eliminates the weaknesses of both the coulomb counter and the VFG while providing the strengths of both. A mixing algorithm weighs and combines the VFG capacity with the coulomb counter and weighs each result so that both are used optimally to determine the battery state. In this way, the VFG capacity result is used to continuously make small adjustments to the battery state, canceling the coulomb-counter drift. MODELGAUGE Δ% SOC COULOMB COUNTER VERY SLOW INFLUENCE ΔQ MICROCORRECTIONS CAPACITY FULL, EMPTY, AND STANDBY STATE DETECTION UNNECESSARY Figure 10. Merger of Coulomb Counter and Voltage Based Fuel Gauge The ModelGauge m5 algorithm uses this battery state information and accounts for temperature, battery current, age, and application parameters to determine the remaining capacity available to the system. As the battery approaches the critical region near empty, the ModelGauge m5 algorithm invokes a special error correction mechanism that eliminates any error. The ModelGauge m5 algorithm continually adapts to the cell and application through independent learning routines. As the cell ages, its change in capacity is monitored and updated and the voltage-fuel-gauge dynamics adapt based on cellvoltage behavior in the application. www.analog.com Analog Devices | 46 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication VOLTAGE OCV TEMPERATURE COMPENSATION LEARN RELAXED CELL DETECTION OCV CALCULATION OCV OUTPUT OCV TABLE LOOKUP COULOMB COUNTER % REMAINING OUTPUT mAh OUTPUT CURRENT TIME × CAPACITY LEARN mAh PER PERCENT EMPTY DETECTION MIXING ALGORITHM mAh OUTPUT MIXCAP REGISTER MIXSOC REGISTER EMPTY COMPENSATION LEARNING APPLICATION EMPTY COMPENSATION BASED ON APPLICATION TEMPERATURE AND DISCHARGE RATE + - + END-OF-CHARGE DETECTION APPLICATION OUTPUTS: REPSOC REGISTER REPCAP REGISTER AVSOC REGISTER AVCAP REGISTER TTE / AtTTE / TTF REGISTERS FULLCAP REGISTER CELL CHEMISTRY OUTPUTS: VFOCV REGISTER CYCLES REGISTER RFAST REGISTER FULLCAPNOM REGISTER AGE REGISTER Figure 11. ModelGauge m5 Block Diagram www.analog.com Analog Devices | 47 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Wakeup/Shutdown Modes of Operation The MAX1730x/MAX1731x support six power modes (three active modes and three shutdown modes) with the typical current consumption of each mode for the different device types and configurations as shown in Table 7. Table 8 and Table 9 provide descriptions of the features available in each mode, and the method to enter and exit each mode. Table 7. Typical Quiescent Current Values SYMBOL MAX17300/MAX17310 (μA) MAX17301–MAX17303/ MAX17311–MAX17313 (μA) Active IQA 24 24 Hibernate IQH 18 18 Protect IQP 10 10 MODE Ship IQS 7 7 DeepShip IQDS 0.5 0.5 DeepShip2 IQDS2 0.02 0.05 (UVShdn Only) Table 8. Modes of Operation MODE SYMBOL DESCRIPTION IQA Full Functionality. Protection FETs, charge pump, and ADC are on. Firmware tasks execute every 351ms. Hibernate (optional) IQH FETs, charge pump, and ADC are on. Firmware tasks execute every 1.4s. If enabled, the device automatically enters and exits this mode depending on current measurements. Entering hibernate mode requires a low-enough current for a long-enough duration. Exiting requires just one high-enough current event. For specific details regarding the thresholds, see nHibCfg register definition. Protect IQP ADC is on. FETs and charge pump are disabled due to a protection event, disconnecting the battery from the system. RAM is preserved and the gauge continues to monitor the battery until the fault is removed. Firmware remains awake and ready to communicate. Firmware tasks execute every 1.4s. IQP Similar state as "Protected and Awake" except the firmware is responsive to wakeup events such as: charger-connection, communications-wakeup, or pushbutton wakeup (depending on which wakeups are enabled by configuration). Firmware tasks execute every 1.4s. IQS Similar state as "Protected and Awake" except the firmware is responsive to wakeup events such as: charger-connection, communications-wakeup, or pushbutton wakeup (depending on which wakeups are enabled by configuration). Firmware tasks execute every 5.625s. Active Ship* DeepShip* IQDS FETs, charge pumps, ADC, and firmware are all placed into a shutdown state. The only activity alive relates to analog circuits that monitor for wakeup conditions (charger-detection, communications, or pushbutton, depending on which are enabled). DeepShip2* IQDS2 FETs, charge pumps, ADC, firmware, and most wakeup circuits are powered down. Only the chargerdetection wakeup circuit remains powered in this mode to best conserve the small remaining battery capacity and prevent deep discharge. *On I2C shutdown command (setting Config.SHDN = 1) or when I2C SCL/SDA lines collapse (and depending on whether COMMSH is enabled), the MAX1730x/MAX1731x either enter Ship (if nProtCfg.DeepShpEn = 0), DeepShip (if nProtCfg.DeepShpEn = 1) or enter DeepShip2 if nProtCfg.DeepShp2En = 1 (MAX17300/MAX17310 only). www.analog.com Analog Devices | 48 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 9. Low Power Modes Entry and Exit Conditions MODE Ship (IQA) DeepShip (IQDS) DeepShip2 (IQDS2) DeepShip2 (IQDS2) ENTER WAKEUP Config.SHDN I2C, Pushbutton, or Charge Source or SDAcollapse FUNCTIONALITY nProtCfg. DeepShipEn nProtCfg. DeepShip2En 1.4s/5.6s Measurements/ Updates 0 0 1 0 1 1 X X No Updates Charge Source Only VCell < UVShdn The MAX1730x/MAX1731x can be awoken with a variety of methods depending on the configuration. If pushbutton wakeup is enabled (nConfig.PBen = 1), then consistently pulling the ALRT/PIO pin low, either by pushbutton or system configuration will wakeup the device. A high to low transition on any of the communication lines will wake up the device. A consistent connection to a charger will wake up the device. The MAX1730x/MAX1731x prevents accidental wakeup when the system is boxed and shipped. When awoken by any source, it debounces all wakeup sources (button, communications, and charger-detection) to ensure that the wakeup is valid. If no valid wakeup is discovered, the device returns to Ship, DeepShip, or DeepShip2. The IQ in the active, hibernate, and ship modes are impacted by the configuration of the IC. Table 10 shows the recommended configuration settings for the nConfig register and the impact those settings have on the IQ of each mode. Note that when in hibernate mode, the protection for overtemperature and overvoltage are delayed by the nHibCfg.HibScalar value. It is not recommended to have hibernation enabled with the nHibCfg.HibScalar set to more than 1.4 seconds. Table 10. Recommended nHibCfg Settings and the Impact on IQ FETSOFF FETS-ON MODES nHibCfg SHIP IQ (μA) ACTIVE/ HIBERNATE IQ (μA) ACTIVE (s) SHIP (s) 1.4s Ship 0x0909 IQP IQA/NA 0.351 1.4 1.4s Ship + Hibernate 0x8909 IQP IQA/IQH 0.351 1.4 5.625s Ship 0x090B IQS IQA/NA 0.351 5.625 AVAILABLE LOW POWER CONFIGURATION UPDATE RATE NOTES Overtemperature and overvoltage detection is delayed by 1.4s when in hibernate mode. Power Mode Transition State Diagram Figure 12 illustrates how the device transitions in and out of all of the possible power modes of operation of the device. See Table 7 for the IQ values for each mode and the different device types and configurations. www.analog.com Analog Devices | 49 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication POWER GOOD STARTUP C OR HGD BU ET TTO OR N ( COM IF E NA MS BLE D) WAKEVERIFY WakeVerify: Any of the following confirm legitimate wakeup: 1) ALRT/PIO consistantly low (if feature enabled) 2) Communications (high+low detected) 3) Charger consistently detected NO W AKEU PS VE RIFIE D WAKEUP VERIFIED CH OR B GDET O UTT R CO ON (IF E MMS NAB LED ) CH GD ET HW STARTUP ACTIVE (IQA) OR HIBERNATE (IQH) EITHER FET ON IF (FETS OFF) PROTECT (IQS) SHIP (IQS) ANY SHUTDOWN CONDITION > TMR/2 0 NPROTCFG. DEEPSHIPEN DEEPSHIP (IQDS) N DE PRO EP TC SH FG IP . 2E N 1 0 1 UV DEEPSHIP2 (IQDS2) SHDN COMMITTED FETS OFF, PKSINK =1 TIMER & PCKPOK Shutdown Conditions: Command, Comms-drop, or UV SHDNTimer counts upon condition, aborts (clears) upon absence of conditions. At half timer, the timer pauses unless charger is clearly absent (PckpOK = 0) Figure 12. Power Mode Transition State Diagram www.analog.com Analog Devices | 50 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Pushbutton Wakeup The ALRT/PIO pin can be used to wake up the device by enabling the pushbutton wakeup function by setting the nConfig.PBen. The pushbutton can be implemented in the system to wakeup the device and the system as shown in the Pushbutton Schematic. Register Description Conventions The following sections define standard conventions used throughout the data sheet to describe register functions and device behavior. Any register that does not match one of the following data formats is described as a special register. Standard Register Formats Unless otherwise stated during a given register's description, all IC registers follow the same format depending on the type of register. Refer to Table 11 for the resolution and range of any register described hereafter. Note that current and capacity values are displayed as a voltage and must be divided by the sense resistor to determine amps or amp-hours. It is strongly recommended to use the nRSense (1CFh) register to store the sense resistor value for use by host software. Table 11. ModelGauge Register Standard Resolutions REGISTER TYPE Capacity Percentage LSB SIZE MINIMUM VALUE MAXIMUM VALUE 5.0μVh/ RSENSE 0.0μVh 327.675mVh/ RSENSE NOTES Equivalent to 0.5mAh with a 0.010Ω sense resistor. 1/256% 0.0% 255.9961% Voltage 0.078125mV 0.0V 5.11992V Current 1.5625μV/ RSENSE -51.2mV/ RSENSE 51.1984mV/ RSENSE Signed 2's complement format. Equivalent to 156.25μA with a 0.010Ω sense resistor. Temperature 1/256°C -128.0°C 127.996°C Signed 2's complement format. 1°C LSb when reading only the upper byte. Resistance 1/4096Ω 0.0Ω 15.99976Ω 5.625s 0.0s 102.3984hr Time Special 1% LSb when reading only the upper byte. Format details are included with the register description. Device Reset Device reset refers to any condition that would cause the IC to recall nonvolatile memory into RAM locations and restart operation of the fuel gauge. Device reset refers to initial power up of the IC, temporary power loss, or reset through the software power-on-reset command. Nonvolatile Backup and Initial Value All configuration register locations have nonvolatile memory backup that can be enabled with control bits in the nNVCfg0, nNVCfg1, and nNVCfg2 registers. If enabled, these registers are initialized to their corresponding nonvolatile register value after device reset. If nonvolatile backup is disabled, the register restores to an alternate initial value instead. See each register description for details. Register Naming Conventions Register addresses are described throughout the document as 9-bit internal values from 000h to 1FFh. These addresses must be translated to 16-bit external values for the MAX17300-MAX17303 (I2C) or 8-bit values for the MAX17310-MAX17313 (1-Wire). See the Memory section for details. Register names that start with a lower case 'n', such as nPackCfg for example, indicate the register is a nonvolatile memory location. Register names that start with a lower case 's' indicate the register is part of the SBS compliant register block. www.analog.com Analog Devices | 51 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Protection Registers Voltage Protection Registers nVPrtTh1 Register (1D0h) Register Type: Special The nVPrtTh1 register shown in Table 12 sets undervoltage protection, deep-discharge-state protection, and undervoltage-shutdown thresholds. Prior to updating the nVPrtTh1 Register (Address 1D0h), the nVPrtTh1Bak Register (Address 0D6h) must first be written with the desired value. Table 12. nVPrtTh1 Register (1D0h) Format D15 D14 D13 D12 D11 D10 UVP D9 D8 D7 DisUVP D6 D5 D4 D3 UOCVP D2 D1 D0 UVShdn UVP: Undervoltage Protection Threshold. The MAX1730x/MAX1731x opens the discharge FET when VCell < UVP. UVP can be configured from 2.2V to 3.46V in 20mV steps. UVP is unsigned. DisUVP: Disable UVP. Set DisUVP = 1 to disable undervoltage protection threshold only. UOCVP and UVShdn still function normally. The DisUVP feature allows the application to continue to run down to the 2.16V minimum voltage of the IC. (MAX17300/MAX17310 only) UOCVP: Under Open Circuit Voltage Protection Threshold (also referred to as SmartEmpty). The MAX1730x/MAX1731x opens the discharge FET when VFOCV < UOCVP. UOCVP is relative to UVP and can be configured from UVP to UVP + 1.28V in 40mV steps. UVShdn: Undervoltage Shutdown Threshold. The MAX1730x/MAX1731x shutdowns when VCell < UVShdn. UVShdn is relative to UVP and can be configured from UVP - 0.32V to UVP + 0.28V in 40mV steps. Note that this is a signed value and UVShdn should be configured as a 2's compliment negative value so that UVShdn < UVP for MAX17301–MAX17303/MAX17311–MAX17313. This results in the IC protecting at the UVP threshold and continuing to operate and communicate until VCell < UVShd. The MAX17300/MA17310 support two UVP/UVShdn cases: ● Case 1: Protect + Shutdown simultaneously. Set UVShdn > UVProtect. For example, UVShdn = 2.8V with UVProtect = 2.7V results in the MAX17300/MAX17310 simultaneously shutting down and protecting when VCell < 2.7V. ● Case 2: Continue operating/communicating after shutdown. Set UVShdn < UVProtect. For example, UVShdn = 2.6V with UVProtect = 2.7V results in the MAX17300/MAX17310 protecting at 2.7V and continuing to operate and communicate until VCell < 2.6V. nVPrtTh2 Register (1D4h) Register Type: Special The nVPrtTh2 register shown in Table 13 sets permanent-failure-overvoltage-protection and prequalification voltage thresholds. Threshold limits are configurable with 20mV resolution over the full operating range of the VCell register. Table 13. nVPrtTh2 Register (1D4h) Format D15 D14 D13 D12 D11 OVP_PermFail D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Reserved OVP_PermFail: Permanent Failure OVP (overvoltage protection) threshold. Permanent Failure Overvoltage protection occurs when VCell register reading exceeds this value. nJEITAV Register (1D9h) nJEITAV Register, shown in Table 14, sets the JEITA charge voltage configuration for the MAX1730x/MAX1731x. The JEITA charge voltage can be read from a charger to set the appropriate charge voltage based on the temperature. Also, this value is used to determine the overvoltage-protection threshold. Each charge voltage register is a signed offset with 5 or 20mV resolution. The RoomChargeV offset is defined relative www.analog.com Analog Devices | 52 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication to a normal standard charge setting of 4.2V. The additional charge voltages are relative to RoomChargeV based on the temperature. To disable the temperature dependence and create a flat charging voltage across the temperature range, set dWarmChargeV, dColdChargeV, and dHotChargeV to a value of 0x00. Table 14. nJEITAV Register (1D9h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 RoomChargeV D6 D5 dWarmChargeV D4 D3 D2 dColdChargeV D1 D0 dHotChargeV RoomChargeV: RoomChargeV defines the charge voltage between temperatures T2 and Twarm, relative to a standard 4.2V setting, providing a range of 3.56V to 4.835V in 5mV steps. RoomChargeV is a signed configuration. Set to 0x00 to configure for standard 4.2V. dColdChargeV: ColdChargeV defines the delta charge voltage (relative to room) between temperatures T1 and T2, relative to the room setting, providing a range of RoomChargeV to RoomChargeV-140mV in -20mV steps. dColdChargeV configuration is unsigned. dWarmChargeV: WarmChargeV defines the delta charge voltage (relative to room) between temperatures TWarm and T3, relative to the room setting, providing a range of RoomChargeV to RoomChargeV-60mV in -20mV steps. dWarmChargeV configuration is unsigned. dHotChargeV: HotChargeV defines the delta charge voltage (relative to warm) between temperatures T3 and T4, relative to the warm setting, providing a range of WarmChargeV to WarmChargeV-140mV in -20mV steps. dHotChargeV configuration is unsigned. nJEITACfg Register (1DAh) The nJEITACfg register shown in Table 15 sets precharging current, the overvoltage protection threshold, and the overvoltage protection release threshold. dOVP and dOVP are relative to the Charge Voltage that is set in the nJEITAV register and have a 10mV resolution. Table 15. nJEITACfg Register (1DAh) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 PreChg D6 D5 D4 D3 dOVP D2 D1 D0 dOVPR PreChg: Sets the precharging current for the ChargingCurrent register. Do not set PreChg = 0. Precharge current is calculated as: PreChargeCurrent = nJEITAC.RoomChargingCurrent/(2 x PreChg) dOVP: Sets JEITA overvoltage protection relative to ChargeVoltage (see nJEITAV). This is a positive number with 10mV resolution and 150mV range. Overvoltage protection is calculated as: OVP = ChargeVoltage + dOVP x 10mV dOVPR: Sets overvoltage-protection release relative to the overvoltage protection setting. This is a positive number with 10mV resolution and is translated to a negative offset relative to OVP. Overvoltage-protection release is calculated as: OVPR = OVP - dOVPR x 10mV Current Protection Registers nODSCTh Register (1DDh) Register Type: Special Nonvolatile Restore: Enabled if nNVCfg1.enODSC is set. The nODSCTh register sets the current thresholds for each overcurrent alert. The format of the registers is shown in Table 16. Table 16. nODSCTh Register (1DDh) Format D15 D14 X www.analog.com D13 D12 OCTH D11 D10 D9 D8 D7 SCTH D6 D5 D4 D3 D2 D1 D0 ODTH Analog Devices | 53 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication X:  Don't Care. SCTH: Short-Circuit Threshold Setting. Sets the short-circuit threshold to a value between 0mV and -155mV with a step size of -5mV. The SCTH bits are stored such that 0x1F = 0mV and 0x00 = -155mV. Short-circuit threshold is calculated as -155mV + (SCTH x 5mV). ODTH: Overdischarge Threshold Setting. Sets the overdischarge threshold to a value between 0mV and -77.5mV with a step size of -2.5mV. The ODTH bits are stored such that 0x1F = 0mV and 0x00 = -77.5mV. Overdischarge threshold is calculated as -77.5mV + (ODTH x 2.5mV). OCTH: Overcharge Threshold Setting. Sets the overcharge threshold to a value between 0mV and 38.75mV with a step size of 1.25mV. The OCTH bits are stored such that 0x1F = 0mV and 0x00 = 38.75mV. Overcharge threshold is calculated as 38.75mV - (OCTH x 1.25mV). Table 17 shows sample values of calculated mV thresholds for OCTH, SCTh, and ODTH. Equivalent current thresholds are shown assuming a 0.010Ω sense resistor. Table 17. OCTH, SCTh, and ODTH Sample Values OCTH SCTH ODTH 0x00 38.75mV 3.875A -155mV -15.50A -77.5mV -7.75A 0x01 37.50mV 3.750A -150mV -15.00A -75.0mV -7.50A 0x02 36.25mV 3.625A -145mV -14.50A -72.5mV -7.25A 0x04 33.75mV 3.375A -135mV -13.50A -67.5mV -6.75A 0x08 28.75mV 2.875A -115mV -11.50A -57.5mV -5.75A 0x10 18.75mV 1.875A -75mV -7.50A -37.5mV -3.75A 0x14 13.75mV 1.375A -55mV -5.50A -27.5mV -2.75A 0x18 8.75mV 0.875A -35mV -3.50A -17.5mV -1.75A 0x1E 1.25mV 0.125A -5mV -0.50A -2.5mV 0.25A 0x1F 0.00mV 0.000A 0mV 0.00A 0.0mV 0.00A nODSCCfg Register (1DEh) Register Type: Special Nonvolatile Restore: Operates if nNVCfg1.enODSC is set. The nODSCCfg register configures the delay behavior for the short-circuit, over-discharge-current, and over-chargecurrent comparators. The format of the register is shown in Table 18. Table 18. nODSCCfg Register (1DEh) Format D15 D14 D13 D12 X 1 X X D11 D10 SCDLY D9 D8 D7 D6 D5 D4 X 1 X 1 D3 D2 D1 D0 OCDLY X: Don't Care. SCDLY: Short-Circuit Delay. Configure from 0x0 to 0xF to set short circuit detection debouncing delay between 70μs and 985μs (70μs + 61μs x SCDLY). There may be up to 31μs of additional delay before the short-circuit's alert effects the discharge FET. OCDLY: Overdischarge and Overcharge Current Delay. Configure from 0x1 to 0xF to set overdischarge/overcharge detection debouncing delay between 70μs and 14.66ms (70μs + 977μs x OCDLY). nIPrtTh1 Register (1D3h)—Overcurrent Protection Thresholds Register Type: Special The nIPrtTh1 register shown in Table 19 sets upper and lower limits overcurrent protection when current exceeds the configuration. The upper 8-bits set the overcharge current protection threshold and the lower 8-bits set the overdischarge current protection threshold. Protection threshold limits are configurable with 400μV resolution over the full operating range of the current register. www.analog.com Analog Devices | 54 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 19. nIPrtTh1 Register (1D3h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 OCCP D4 D3 D2 D1 D0 ODCP OCCP: Overcharge current-protection threshold in room temperature. Overcharge current-protection occurs when current register reading exceeds this value. This field is signed 2's complement with 400μV LSb resolution to match the upper byte of the current register. HotCOEF, WarmCOEF, and ColdCOEF rescales nIPrtTh1.OCCP in hot, warm, and cold regions. For example, in warm regions, overcharge current protection threshold updates to OCCP x WarmCOEF. See nJEITAC register for HotCOEF, WarmCOEF, and ColdCOEF definition and nTPrtTh2 and nTPrtTh3 registers for temperature region definition. ODCP: Overdischarge current-protection threshold. Overdischarge current-protection occurs when current register reading exceeds this value. This field is signed 2's complement with 400μV LSb resolution to match the upper byte of the current register. The fault delay for OCCP and ODCP is configured in nDelayCfg.OverCurrTimer. nJEITAC Register (1D8h) The nJEITAC register shown in Table 20 sets the nominal room temperature charging current and the coefficients to scale the charging current across the temperature zones shown in Figure 3. The WarmCOEF, ColdCOEF, and HotCOEF coefficients impact the charging current as well as OCCP and ODCP (See nIPrtTh1). To disable the temperature dependence and create a flat charging current across the temperature range, set the lower byte of nJEITAC to a value of 0xFF. Table 20. nJEITAC Register (1D8h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 RoomChargingCurrent D6 D5 WarmCOEF D4 D3 D2 ColdCOEF D1 D0 HotCOEF RoomChargingCurrent: Sets the nominal room-temperature charging current. The LSB is 200μV. HotCOEF: Coefficient 12.5% to 100% relative to RoomChargingCurrent for controlling the charge current at hot. HotCOEF has a 12.5% LSB resolution. The resulting HotChargingCurrent is controlled by the following equation: HotChargingCurrent = RoomChargingCurrent x (HotCOEF+1)/8 WarmCOEF: Coefficient 62.5% to 100% relative to RoomChargingCurrent for controlling the charge current at warm. WarmCOEF has a 12.5% LSB resolution. The resulting WarmChargingCurrent is controlled by the following equation: WarmChargingCurrent = RoomChargingCurrent x (WarmCOEF+5)/8 ColdCOEF: Coefficient 12.5% to 100% relative to RoomChargingCurrent for controlling the charge current at cold. ColdCOEF has a 12.5% LSB resolution. The resulting ColdChargingCurrent is controlled by the following equation: ColdChargingCurrent = RoomChargingCurrent x (ColdCOEF+1)/8 HotCOEF, WarmCOEF, and ColdCOEF also rescale nIPrtTh1.OCCP. Temperature Protection Registers nTPrtTh1 Register (1D1h) Register Type: Special The nTPrtTh1 register shown in Table 21 sets T1 "Too-Cold" and T4 "Too-Hot" thresholds which control JEITA and provide charging (Too-Hot or Too-Cold) protection. nProtMiscTh.TooHotDischarge provides discharging (Too-Hot only) protection. Threshold limits are signed and configurable with 1°C resolution over the full operating range Temp register. Table 21. nTPrtTh1 Register (1D1h) Format D15 D14 www.analog.com D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Analog Devices | 55 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 21. nTPrtTh1 Register (1D1h) Format (continued) T4 ("Too-Hot") T1 ("Too-Cold") T1-T4 follow JEITA's naming convention for temperature ranges. T1: JEITA "Too-Cold" temperature threshold. When Temp < T1, charging is considered unsafe and unhealthy, and the MAX1730x/MAX1731x blocks charging. T4: JEITA "Too-Hot" temperature threshold. When Temp > T4, charging is blocked by the MAX1730x/MAX1731x. nTPrtTh2 Register (1D5h) Register Type: Special The nTPrtTh2 register shown in Table 22 sets T2 "Cold" and T3 "Hot" thresholds which control JEITA and modulate charging (Hot or Cold) guidance and protection. Threshold limits are signed and configurable with 1°C resolution over the full operating range Temp register. Table 22. nTPrtTh2 (1D5h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 T3 ("Hot") D3 D2 D1 D0 T2 ("Cold") T1-T4 follow JEITA's naming convention for temperature ranges. T2: JEITA "Cold" temperature threshold. When Temp < T2, charging current/voltage should be reduced, and the chargeprotection thresholds are adjusted accordingly. T3: JEITA "Hot" temperature threshold. When Temp > T3, charging current/voltage should be reduced and the chargeprotection thresholds are adjusted accordingly. nTPrtTh3 Register (1D2h) (beyond JEITA) Register Type: Special The nTPrtTh3 register shown in Table 23 sets Twarm and TpermFailHot thresholds which control JEITA and modulate charging (Warm) guidance and protection. Threshold limits are signed and configurable with 1°C resolution over the full operating range Temp register. Table 23. nTPrtTh3 Register (1D2h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 TpermFailHot D3 D2 D1 D0 Twarm nTPrtTh3 defines protection thresholds beyond standard JEITA definition. Twarm: Warm temperature threshold (between 'normal' and THot), giving an extra temperature region for changing charging current and charging voltage control. TpermFailHot: The IC goes into permanent failure mode (if enabled on the MAX17300-301/MAX17310-311 only), and permanently disables the charge FET as well as trips the secondary protector (if installed) or blows the fuse (if installed). Fault Timer Registers nDelayCfg Register (1DCh) Set nDelayCfg to configure debounce timers for various protection faults. A fault state is concluded only if the condition persists throughout the duration of the timer. Table 24. nDelayCfg (1DCh) Format D15 D14 CHGWDT D13 D12 FullTimer D11 D10 D9 OVPTimer D8 D7 D6 OverCurrTimer D5 D4 PermFailTimer D3 D2 TempTimer D1 D0 UVPTimer UVPTimer: Set UVPTimer to configure the Undervoltage-Protection timer. Shutdown Timer: Set UVPTimer to configure the Shutdown timer. (DevName >= 0x4070 only) www.analog.com Analog Devices | 56 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 25. UVPTimer Settings UVPTIMER SETTING 0 1 2 3 UVPTimer Configuration 0 to 351ms 351ms to 0.7s 0.7s to 1.4s 1.4s to 2.8s Shutdown Timer Configuration 22.5s to 45s 45s to 90s 90s to 180s 3min to 6min TempTimer: Set TempTimer to configure the fault-timing for the following faults: Too-Cold-Charging (TooColdC), TooHot-Charging (TooHotC), Die-Hot (DieHot), and Too-Hot-Discharging (TooHotD). Table 26. TempTimer Setting TEMPTIMER SETTING 0 1 2 3 Configuration 0 to 351ms 351ms to 0.7s 0.7s to 1.4s 1.4s to 2.8s The TempTimer setting also controls the temperature transition delay which means if the MAX1730x/MAX1731x detects a change in temperature region that results in the OVP level being reduced to a lower level due to the JEITA configuration, there is a delay equal to the TempTrans configuration before the new lower OVP threshold goes into effect. Table 27. TempTrans Configuration Settings TEMPTIMER SETTING 0 1 2 3 TempTrans Configuration 3.151s to 4.55s 5.951s to 8.75s 11.55s to 17.15s 23.351s to 34.851 PermFailTimer: Set PermFailTimer to configure the fault timing for permanent failure detection. Generally, larger configurations are preferred to prevent permanent failure unless some severe condition persists. Table 28. PermFailTimer Settings PERMFAILTIMER SETTING 0 (NOT RECOMMENDED) 1 2 3 Configuration 0 to 351ms 351ms to 0.7s 0.7s to 1.4s 1.4s to 2.8s OverCurrTimer: Set OverCurrTimer to configure the slower overcurrent protection (the additional fast hardware protection thresholds are described in nODSCCfg and nODSCTh). OverCurrTimer configures the fault timing for the slow overcharge-current detection (OCCP) as well as overdischarge current detection (ODCP). Table 29. OverCurrTimer Settings OVERCURRTIMER SETTING 0 1 2 3 4 5 6 7 Configuration 0-351ms 0.351s to 0.7s 0.7s to 1.4s 1.4sto 2.8s 2.8s to 5.6s 5.6s to 11.25s 11.25s to 22.5s 22.5s to 45s OVPTimer: Set OVPTimer to configure the fault timing for overvoltage protection. Table 30. OVPTimer Settings OVPTIMER SETTING 0 1 2 3 Configuration 0 to 351ms 351ms to 0.7s 0.7s to 1.4s 1.4s to 2.8s FullTimer: Set FullTimer to configure the timing for full detection. When charge-termination conditions are detected and after the timeout, the CHG FET turns off (if feature is enabled). Table 31. FullTimer Settings FULLTIMER SETTING 0 1 2 3 4 5 6 7 Configuration 22s to 33s 45s to 67s 1.5min to 2.25min 3min to 4.5min 6min to 9min 12min to 18min 24min to 36min 72min to 1.6hr CHGWDT: Set CHGWDT to configure the charger communication watchdog timer. If enabled, the MAX173xx chargeprotects whenever the host has stopped communicating longer than this timeout. www.analog.com Analog Devices | 57 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 32. ChgWDT Settings CHGWDT SETTING 0 1 2 3 Configuration 11.2s to 22.5s 22.5s to 45s 45s to 90s 90s to 3min Battery Internal Self-Discharge Detection Registers (MAX17300/MAX1310 Only) Factory Default nCheckSum Value: 10F0h To enable the ISD feature using the coulombic-efficiency (CE) method, configure LeakFaultCfg, LeakCurrTh, and CEEn as shown in [[nCheckSum Register (1DFh) Format]]. Choose the alert and fault mode with LeakFaultCfg and configure the thresholds with LeakCurrTh, as shown in Table 34. When the ISD alerts are enabled, any leakage current detected beyond the threshold is indicated by the ProtAlrt.LDET bit and Status.PA bit (if nConfig.ProtAlrtEn = 1). If the ALRT pin is enabled for alerts (nConfig.Aen = 1 and nConfig.ProtAlrtEn = 1), then the pin indicates the ISD alert. To service the alert, first clear the ProtAlrt register and then clear Status.PA. The event is also indicated in nBattStatus.LDET, which is recorded in the permanent lifelog. The reported leakage-current measurement can be read from two different different registers: ● LeakCurrRep = 15-bit unsigned left-justified value with an LSB of 1.5625μV/16 (or 0.15625mA/16 with 10mΩ sense resistor) ● nBattStatus.LeakCurr = 8-bit unsigned value with an LSB of 3.125μV (or 0.3125mA with 10mΩ sense resistor) Contact Maxim for configuring the ISD feature. Table 33. nCheckSum Register (1DFh) Format D15 D14 D13 LeakFaultCfg D12 D11 CEEn D10 D9 D8 D7 D6 LeakCurrTh D5 D4 D3 D2 D1 D0 CheckSum Table 34. Alert and Fault Mode Settings LEAKFAULTCFG SETTING DESCRIPTION LEAKCURRTH RESOLUTION ALERT RANGE FAULT RANGE Note: Leakage current above LeakCurrTh triggers an alert/fault. Currents refer to the 10mΩ RSENSE. 000 Disabled 001 Alert Only 010 Fault = Alert + 2.5mA 0.3125mA 0.3125mA to 5mA 2.8125mA to 7.5mA 011 Fault = Alert + 5mA 5.3125mA to 10mA 100 Fault Only (+2.5mA offset) 3.125mA to 12.5mA 101 Alert Only 110 Fault = Alert + 2.5mA 111 Fault = Alert + 10mA 0.625mA 0.625mA to 10mA 3.125mA to 12.5mA 10.625mA to 20mA X: Don't Care CEEn: Coulombic-Efficiency (CE) Method Enable. Set to 1 to enable self-discharge detection. LeakFaultCfg: Leakage Fault Configuration. Set LeakFaultCfg to configure the alert and fault behavior as shown in Table 34. LeakCurrTh: Leakage Current Threshold is an unsigned 4-bit threshold for leakage current alert and fault generation. The LSB resolution is either 0.3125mA or 0.625mA based on the LeakFaultCfg setting as shown in Table 34. When alerts and faults are both enabled, the fault threshold is either 2.5mA, 5mA, or 10mA above the alert threshold as shown in the Description column of Table 34. CheckSum: Protector NVM CheckSum. CheckSum is the checksum value of the protection registers for validating NVM www.analog.com Analog Devices | 58 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication at startup when nNVCfg1.enProtChksm = 1. LeakCurrRep Register (0x16F) The LeakCurrRep register contains the reported leakage current when it is enabled with nCheckSum.CEEn as shown in Table 35. Table 35. LeakCurrRep Register (0x16F) Format D15 D14 D13 D12 D11 D10 D9 0 D8 D7 D6 D5 D4 D3 D2 D1 D0 Reported LeakCurrent Reported LeakCurrent: Reported Leak Current is an unsigned 15-bit leakage current. This register stores the reported leakage current with an LSB of 1.5625μV/16 (or 0.15625mA/16 with a 10mΩ sense resistor). The range is 0mA to 319.99mA. Status/Configuration Protection Registers nProtCfg Register (1D7h) The Protection Configuration register contains enable bits for various protection functions. Table 36. nProtCfg Register (1D7h) Format D15 D14 D13 ChgWDTEn 0 0 D12 D11 SCTest D10 D9 D8 CmOvrdEn 1 Reserved D7 D6 D5 D4 D3 D2 D1 D0 Reserved PFEn DeepShpEn OvrdEn UVRdy FetPFEn BlockDisCEn DeepShp2En PFEn: PermFail Enable (MAX17300-301/MAX17310-311). Set PFEn = 1 to enable the detection of a permanent failure to permanently turn the FETs off. All types of permanent failures operate only if PFEn = 1 and are all disabled if PFEn = 0. FetPFEn:  FET PermFail Enable (MAX17300-301/MAX17310-311). Set to 1 to enable Charge FET failure detection and Discharge FET failure detection, which registers a permanent failure and permanently turns the FETs off. UVRdy: Undervoltage Ready. In the undervoltage protected state (but higher than undervoltage shutdown), this bit chooses whether or not the CHG FET remains enabled. Configure UVRdy = 0 to keep the CHG FET and corresponding pumps powered during undervoltage protection. In this state, the pack is quickly responsive to charger connection, but the quiescent consumption remains at the full-active rate (see Table 8). Configure UVRdy = 1 to disable the CHG FET and corresponding charge pumps during undervoltage protection. In this state, the consumption drops to the protected and awake rate, but there is a hibernate latency (set by nHibCfg.HibScalar) between when the charger is applied and when the battery begins charging. OvrdEn: Override Enable. Set OvrdEn = 1 to enable the Alert pin to be an input to disable the protection FETs. DeepShpEn: Set DeepShpEn = 1 and DeepShp2En = 0 to associate shutdown actions (I2C shutdown command or communication removal) with deep ship mode (IQDS). All registers power down in this mode. Set DeepShpEn = 0 to continue full calculations but with protector disabled (CHGEn = 0, DISEn = 0, pump off), operating at the Ship mode consumption rate (IQS). DeepShp2En: Set DeepShp2En = 1 to associate shutdown actions (I2C shutdown command or communication removal) with DeepShip2 mode (IQDS2). (MAX17300/MAX17310 only) CmOvrdEn: Comm Override Enable. This bit when set to 1 allows the CHGOff and DISOff bits in CommStat to be set by I2C/1-Wire communication to turn off the protection FETs. SCTest: Set SCTest = 01 to source 30μA from BATT to PCKP for testing the presence/removal of any overload/shortcircuit at PCKP. SCTest is only used during special circumstances when DIS = off. Particularly if an overdischarge current fault has been tripped. Firmware sets SCTest to push 30μA into PCKP. If PCKP rises above the SCDet (Short-Circuit Detection) threshold (1V), then the overload is considered "removed" and safe to reconnect the DIS FET. ChgWDEn:  Charger WatchDog Enable. If the charger watchdog feature is enabled, the protector disallows charging if communication has not been detected for more than the Charger WatchDog delay that is configured in www.analog.com Analog Devices | 59 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication nDelayCfg.ChgWdg. BlockDisCEn: Block Discharge at TooCold Enable. If the block discharge at cold is enabled, the protector also disallows discharging when the temperature is below the TooCold Threshold (nTPrtTh1). (MAX17300/MAX17310 only) nBattStatus Register (1A8h) Battery Status Nonvolatile Register The Battery Status register contains the permanent battery status information. If nProtCfg.PFen = 1, then a permanent fail results in permanently turning the FETs off to ensure the safety of the battery. Table 37. nBattStatus Register (1A8h) Format D15 D14 D13 D12 D11 D10 D9 D8 PermFail OVPF OTPF CFETFs DFETFs FETFo LDet ChksumF D7 D6 D5 D4 D3 D2 D1 D0 LeakCurr PermFail: Permanent Failure. This bit is set if any permanent failure is detected. CFETFs: ChargeFET Failure-Short Detected. If the MAX1730x/MAX1731x detects that the charge FET is shorted and cannot be opened, it sets the CFETFs bit and the PermFail bit. This function is enabled with nProtCfg.FetPFEn. DFETFs: DischargeFET Failure-Short Detected. If the MAX1730x/MAX1731x detects that the discharge FET is shorted and cannot be opened, it sets the DFETFs and the PermFail bit. This function is enabled with nProtCfg.FetPFEn. FETFo: FET Failure Open. If the MAX1730x/MAX1731x detects an open FET failure, it sets FETFo. In this case, it is not possible to distinguish which FET is broken. This function is enabled with nProtCfg.FetPFEn. LDet: Leakage Detection Fault. This bit is set when a leakage detection fault has been detected. ChksumF: Checksum Failure. ChksumF protection related NVM configuration registers checksum failure. In the case of a checksum failure, the device sets the PermFail bit but does not write it to NVM in order to prevent using an additional NVM write. This allows the PermFail bit to be cleared by the host so that the INI file can be reloaded. LeakCurr: Leakage Current. Leakage current is an unsigned 8-bit result of leakage current from self-discharge in a cell. This field saves the leakage current from the LeakCurrRep register. The LSB for this field is 3.125μV (or 0.625mA with a 5mΩ RSENSE with a range of 0mA to 159.375mA). ProtStatus Register (0D9h) The Protection Status register contains the Fault States of the Protection State Machine. Table 38. ProtStatus Register (0D9h) Format D15 D14 D13 D12 D11 D10 D9 D8 ChgWDT/BlockChg TooHotC Full TooColdC OVP OCCP Qovflw 0 D7 D6 D5 D4 D3 D2 D1 D0 Reserved PermFail DieHot TooHotD UVP ODCP TooColdD Shdn Shdn:  A flag to indicate the Shutdown Event status to Protector module for further action on Charging/Discharging FETs, Charge Pump and PkSink. PermFail:  Permanent Failure Detected. See nBatteryStatus for details of the Permanent Failure. Discharging Faults: ODCP—Overdischarge current protection UVP—Undervoltage Protection VPreQual—PreQual Voltage TooHotD—Overtemperature for Discharging TooColdD—Undertemperature for Discharging (If enabled with nProtCfg.BlockDisCEn = 1) (MAX17300/ www.analog.com Analog Devices | 60 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication MAX17310 only) DieHot—Overtemperature for die temperature Charging Faults: TooHotC—Overtemperature for Charging OVP—Overvoltage OCCP—Overcharge Current Protection Qovrflw—Q Overflow TooColdC—Undertemperature Full—Full Detection ChgWDT—Charge Watch Dog Timer BlockChg—Block Charge by Parallel Charging Management (MAX17300/MAX17310 only) DieHot—Overtemperature for Die Temperature ProtAlrt Register (0AFh) The Protection Alerts register (MAX17300/MAX17310 only) contains a history of any protection events that have been logged by the device and is formatted as shown in Table 39. If any bit of ProtAlrt is 1, then the Status.PA bit is also 1 if Config.ProtAlrtEn = 1. Once a bit is set, it remains set until cleared by the host. The Alert pin is driven low if Config.AEn = 1 and Config.ProtAlrtEn = 1. The bits in ProtAlrt mirror the bits in ProtStatus with the exception of the RegionChange and LDET bits. Table 39. ProtAlrt Register (0AFh) Format D15 D14 D13 D12 D11 D10 D9 D8 ChgWDT TooHotC Full TooColdC OVP OCCP Qovflw Reserved D7 D6 D5 D4 D3 D2 D1 D0 Reserved RegionChange DieHot TooHotD UVP ODCP TooColdD LDet HConfig2 Register (0F5h) Register Type: Special Nonvolatile Backup: None The status of the discharge FET and charge FET can be monitored in the HConfig2 register as shown in Table 40. Table 40. HConfig2 (0F5h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 x x x x x x x x DISs CHGs x x x x x x DISs:  Discharge FET Status. DISs = 1 indicates the discharge FET is on and allows discharge current. DISs = 0 indicates the discharge FET is off and blocks discharge current. CHGs:  Charge FET Status. CHGs = 1 indicates the charge FET is on and allows charge current. CHGs = 0 indicates the charge FET is off and blocks charge current. X:  Reserved. Other Protection Registers nProtMiscTh Register (1D6h) Register Type: Special The nProtMiscTh register is shown in Table 41 and sets a few miscellaneous protection thresholds. www.analog.com Analog Devices | 61 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 41. nProtMiscTh Register (1D6h) Format D15 D14 D13 D12 D11 QovflwTh D10 D9 D8 D7 TooHotDischarge D6 D5 D4 D3 CurrDet D2 D1 D0 DieTempTh DieTempTh: Sets the dietemp overtemperature protection threshold relative to 50°C and has an LSB of 5°C. DieTempTh defines the delta between 50°C and the dietemp protection threshold. The range is 50°C and 125°C. CurrDet: CurrDet is configurable from 25μV/RSENSE to 400μV/RSENSE in 25μV/RSENSE steps (equivalent to 2.5mA to 40mA in 2.5mA steps with a 0.010Ω sense resistor). It is a threshold to detect discharging and charging event from the device perspective. If (current > CurrDet) charging; if (current < -CurrDet) discharging. TooHotDischarge: Sets the over-temperature protection threshold associated with discharge. TooHotDischarge has 2°C LSB's and defines the delta between Over-Temp-Charge (nTPrtTh1.T4) and Over-Temp-Discharge. The range is nTPrtTh1.T4(TooHot) to nTPrtTh1.T4(TooHot) + 30°C. QovflwTh: QovflwTh sets the coefficient for the Qoverflow protection threshold. Qoverflow protection threshold = designCap x coefficient. The MAX1730x/MAX1731x monitors the delta Q between the Q at the start of charge and the current Q. If the delta Q exceeds the Qoverflow protection threshold, indicating that the charger has charged more than the expected capacity of the battery, then a ProtStatus.Qovrflw fault is generated. The coefficient is calculated as: coefficient = 1.0625 + (QovflwTh x 0.0625). Charging Prescription Registers ChargingCurrent Register (028h) Register Type: Current Nonvolatile Backup: None The ChargingCurrent register reports the prescribed charging current. ChargingVoltage Register (02Ah) Register Type: Voltage Nonvolatile Backup: None The ChargingVoltage register reports the prescribed charging voltage. nStepChg Register (1DBh) The nStepChg register defines the step-charging prescription as shown in Figure 7. Note: This only effects the ChargingCurrent output register which prescribes a charge current from the external charger. To disable step-charging, set nStepChg = 0xFF00. Table 42. nStepChg Register (1DBh) Format D15 D14 D13 D12 StepCurr1 D11 D10 D9 StepCurr2 D8 D7 D6 D5 StepdV0 D4 D3 D2 D1 D0 StepdV1 StepCurr1 and StepCurr2: Both of these register bit-fields scale the JEITA charge current down by a 4-bit ratio from 1/ 16 to 16/16. StepdV0 and StepdV1: These register bit-fields configure StepVolt0 and StepVolt1 relative to the JEITA charge voltage. Both registers are negative offsets relative to JEITA ChargeVoltage, and both registers support 10mV LSB. ModelGauge m5 Algorithm ModelGauge m5 Registers For accurate results, ModelGauge m5 uses information about the cell and the application as well as the real-time information measured by the IC. Figure 13 shows inputs and outputs to the algorithm grouped by category. Analog input registers are the real-time measurements of voltage, temperature, and current performed by the IC. Applicationspecific registers are programmed by the customer to reflect the operation of the application. The Cell Characterization www.analog.com Analog Devices | 62 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication AVCAP / AVSOC CURRENT REPCAP / REPSOC TEMPERATURE MIXCAP / MIXSOC AVGVCELL FULLCAP AVGCURRENT FULLCAPREP AVGTEMPERATURE FULLCAPNOM TTE / TTF / AtTTE NDESIGNVOLT VFOCV / VFSOC NDESIGNCAP VRIPPLE NICHGTERM Characterization Table CHARACTERIZATION Characterization Table TABLES NQRTABLES00,10,20,30 NFULLSOCTHR NRCOMP0 NFULLCAPNOM NVEMPTY NTEMPCO MODELGAUGE m5 ALGORITHM AGE AGEFORECAST CYCLES NRIPPLECFG NCONVGCFG NCVCFG NAGEFCCFC NLEARNCFG NFLITERCFG NRELAXCFG NMISCCFG NIAVGEMPTY ATRATE FULLCAPNOM ALGORITHM CONFIGURATION CELL CHARACTERIZATION INFORMATION APPLICATION SPECIFIC RSLOW MODELGAUGE ALGORITHM OUTPUTS VCELL CYCLES TIMERH NQRTABLES00,10,20,30 NIAVGEMPTY RCOMP0 TEMPCO FULLCAPREP LEARNED INFORMATION ANALOG INPUTS Information registers hold characterization data that models the behavior of the cell over the operating range of the application. The Algorithm Configuration registers allow the host to adjust performance of the IC for its application. The Learned Information registers allow an application to maintain accuracy of the fuel gauge as the cell ages. The register description sections describe each register function in detail. Figure 13. ModelGauge m5 Registers ModelGauge m5 Algorithm Output Registers The following registers are outputs from the ModelGauge m5 algorithm. The values in these registers become valid 480ms after the IC is reset. RepCap Register (005h) Register Type: Capacity Nonvolatile Backup: None RepCap or Reported Capacity is a filtered version of the AvCap register that prevents large jumps in the reported value caused by changes in the application such as abrupt changes in temperature or load current. See the Fuel-Gauge Empty Compensation section for details. www.analog.com Analog Devices | 63 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication RepSOC Register (006h) Register Type: Percentage Nonvolatile Backup: None RepSOC is a filtered version of the AvSOC register that prevents large jumps in the reported value caused by changes in the application such as abrupt changes in load current. RepSOC corresponds to RepCap and FullCapRep. RepSOC is intended to be the final state of charge percentage output for use by the application. See the Fuel-Gauge Empty Compensation section for details. FullCapRep Register (010h) Register Type: Capacity Nonvolatile Backup and Restore: nFullCapRep (1A9h) or nFullCapNom (1A5h) This register reports the full capacity that goes with RepCap, generally used for reporting to the user. A new full-capacity value is calculated at the end of every charge cycle in the application. TTE Register (011h) Register Type: Time Nonvolatile Backup: None The TTE register holds the estimated time-to-empty for the application under present temperature and load conditions. The TTE value is determined by dividing the AvCap register by the AvgCurrent register. The corresponding AvgCurrent filtering gives a delay in TTE empty, but provides more stable results. TTF Register (020h) Register Type: Time Nonvolatile Backup: None The TTF register holds the estimated time to full for the application under present conditions. The TTF value is determined by learning the constant current and constant voltage portions of the charge cycle based on experience of prior charge cycles. Time-to-full is then estimated by comparing present charge current to the charge termination current. Operation of the TTF register assumes all charge profiles are consistent in the application. See the Typical Operating Characteristics for sample performance. Age Register (007h) Register Type: Percentage Nonvolatile Backup: None The Age register contains a calculated percentage value of the application’s present cell capacity compared to its expected capacity. The result can be used by the host to gauge the battery pack health as compared to a new pack of the same type. The equation for the register output is: Age Register = 100% x (FullCapNom register/DesignCap register) Cycles Register (017h) and nCycles (1A4h) Register Type: Special Nonvolatile Backup and Restore: nCycles (1A4h) The Cycles register maintains a total count of the number of charge/discharge cycles of the cell that have occurred. The result is stored as a percentage of a full cycle. For example, a full charge/discharge cycle results in the Cycles register incrementing by 100%. The Cycles register has a full range of 0 to 16383 cycles with a 25.0% LSb. Cycles is periodically saved to nCycles to provide a long term nonvolatile cycle count. Table 43. Cycles Register (017h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CycleCount (LSb 25%) www.analog.com Analog Devices | 64 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 44. nCycles Register (1A4h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 CycleCount (LSb 25%, 50%, 100%, or 200%) D1 D0 nFib The LSb of Cycles register is 25%. The LSb of nCycles.CycleCount depends on the setting of nNVCfg2.fibScl as shown in Table 45. Configure nFib = 0 for any new pack. nFib is a reset counter which controls Fibonacci-saving reset accelleration (see 100 Record Life Logging section). Each reset followed by any nonvolatile save increases by 1. Maximum value is 7 without overflow. Table 45. nNVCfg2.FibScl Setting Determines LSb of nNVCfg2.CyclesCount NNVCFG2.FIBSCL NCYCLES.CYCLECOUNT LSB 00b 25% 01b 50% 10b 100% 11b 200% TimerH Register (0BEh) Register Type: Special Nonvolatile Backup and Restore: nTimerH (1AFh) if nNVCfg2.enT is set Alternate Initial Value: 0x0000 This register allows the IC to track the age of the cell. An LSb of 3.2 hours gives a full scale range for the register of up to 23.94 years. If enabled, this register is periodically backed up to nonvolatile memory as part of the learning function. FullCap Register (010h) Register Type: Capacity Nonvolatile Restore: Derived from nFullCapNom (1A5h) This register holds the calculated full capacity of the cell based on all inputs from the ModelGauge m5 algorithm including empty compensation. A new full-capacity value is calculated continuously as application conditions change. nFullCapNom Register (1A5h) Register Type: Capacity Nonvolatile Backup and Restore: FullCapNom (023h) This register holds the calculated full capacity of the cell, not including temperature and empty compensation. A new fullcapacity nominal value is calculated each time a cell relaxation event is detected. This register is used to calculate other outputs of the ModelGauge m5 algorithm. RCell Register (014h) Register Type: Resistance Nonvolatile Backup: None Initial Value: 0x0290 The RCell register displays the calculated internal resistance of the cell, or average internal resistance of each cell in the cell stack. RCell is determined by comparing open-circuit voltage (VFOCV) against measured voltage (VCell) over a long time period while under load current. VRipple Register (0B2h) Register Type: Special Nonvolatile Backup: None www.analog.com Analog Devices | 65 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Initial Value: 0x0000 The VRipple register holds the slow average RMS value of VCell register reading variation compared to the AvgVCell register. The default filter time is 22.5s. See nRippleCfg register description. VRipple has an LSb weight of 1.25mV/128. nVoltTemp Register (1AAh) Register Type: Special Nonvolatile Backup: AvgVCell and AvgTA registers if nNVCfg2.enVT = 1 This register has dual functionality depending on configuration settings. If nNVCfg2.enVT = 1, this register provides nonvolatile back up of the AvgVCell and AvgTA registers as shown in Table 46. Table 46. nVoltTemp Register (1AAh) Format when nNVCfg2.enVT = 1 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 AvgVCell Upper 9 Bits D3 D2 D1 D0 AvgTA Upper 7 Bits Alternatively, if nNVCfg0.enAF = 1, this register stores an accumulated age slope value to be used with the Age Forecasting algorithm. Regardless of which option is enabled, this register is periodically saved to nonvolatile memory as part of the learning function. If neither option is enabled, this register can be used as general purpose user memory. SOCHold Register (0D0h) Register Type: Special The SOCHold register configures operation of the hold before empty feature and also the enable bit for 99% hold during charge. The default value for SOCHold is 0x1002. Table 47 shows the SOCHold register format. Table 47. SOCHold (0D0h) Format D15 D14 D13 D12 0 0 0 99%HoldEn D11 D10 D9 D8 D7 EmptyVoltHold D6 D5 D4 D3 D2 D1 D0 EmptySocHold EmptyVoltHold: The positive voltage offset that is added to VEmpty. At VCell = VEmpty + EmptyVoltHold point, the empty detection/learning is occured. EmptyVoltHold has an LSb of 10mV giving a range of 0 to 1270mV. EmptySocHold: It is the RepSOC at which RepSOC is held constant. After empty detection/learning occurs, RepSOC update continues as expected. EmptySocHold has an LSb of 0.5%, giving it a full range of 0 to 15.5%. 99%HoldEn: Enable bit for 99% hold feature during charging. When enabled, RepSOC holds a maximum value of 99% until Full Qualified is reached. ModelGauge m5 EZ Performance ModelGauge m5 EZ performance provides plug-and-play operation of the IC. While the MAX1730x/MAX1731x can be custom tuned to the applications battery through a characterization process for ideal performance, the IC has the ability to provide reasonable performance for most applications with no custom characterization required. While EZ performance provides reasonable performance for most cell types, some chemistries such as lithium-ironphosphate (LiFePO4) and Panasonic NCR/NCA series cells require custom characterization for best performance. EZ performance targets 3.3V as the empty voltage for the application. Contact Maxim for details of the custom characterization procedure. www.analog.com Analog Devices | 66 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication OCV Estimation and Coulomb Count Mixing The core of the ModelGauge m5 algorithm is a mixing algorithm that combines the OCV state estimation with the coulomb counter. After power-on reset of the IC, coulomb-count accuracy is unknown. The OCV state estimation is weighted heavily compared to the coulomb count output. As the cell progresses through cycles in the application, coulomb-counter accuracy improves and the mixing algorithm alters the weighting so that the coulomb-counter result is dominant. From this point forward, the IC switches to servo mixing. Servo mixing provides a fixed magnitude continuous error correction to the coulomb count, up or down, based on the direction of error from the OCV estimation. This allows differences between the coulomb count and OCV estimation to be corrected quickly. See Figure 14. The resulting output from the mixing algorithm does not suffer accumulation drift from current measurement offset error and is more stable than a stand-alone OCV estimation algorithm. See Figure 15. Initial accuracy depends on the relaxation state of the cell. The highest initial accuracy is achieved with a fully relaxed cell. OCV AND COULOMB COUNT MIXING RATIO 100% COULOMB COUNT INFLUENCE SERVO MIXING OCV INFLUENCE 0% 0 0.50 1.00 1.50 2.00 CELL CYCLES Figure 14. Voltage and Coulomb Count Mixing www.analog.com Analog Devices | 67 STATE OF CHARGE ERROR (%) MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication MAXIMUM COULOMB COUNTER ERROR (±0.1% PER HOUR IN THIS EXAMPLE) TYPICAL OCV ESTIMATION ERROR AS CELL IS CYCLED (SHADED AREA) MODELGAUGE OCV + COULOMB COUNT MIXING MAXIMUM ERROR RANGE TIME Figure 15. ModelGauge m5 Typical Accuracy Example Empty Compensation As the temperature and discharge rate of an application changes, the amount of charge available to the application also changes. The ModelGauge m5 algorithm distinguishes between remaining capacity of the cell, remaining capacity of the application, and reports both results to the user. The MixCap output register tracks the charge state of the cell. This is the theoretical mAh of charge that can be removed from the cell under ideal conditions—extremely low discharge current and independent of cell voltage. This result is not affected by application conditions such as cell impedance or minimum operating voltage of the application. ModelGauge m5 continually tracks the expected empty point of the application in mAh. This is the amount of charge that cannot be removed from the cell by the application because of minimum voltage requirements and internal losses of the cell. The IC subtracts the amount of charge not available to the application from the MixCap register and reports the result in the AvCap register. Since available remaining capacity is highly dependent on discharge rate, the AvCap register can be subject to large instantaneous changes as the application load current changes. The result can increase, even while discharging, if the load current suddenly drops. This result, although correct, can be very counter-intuitive to the host software or end user. The RepCap output register contains a filtered version of AvCap that removes any abrupt changes in remaining capacity. RepCap converges with AvCap over time to correctly predict the application empty point while discharging or the application full point while charging. Figure 16 shows the relationship of these registers. www.analog.com Analog Devices | 68 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication LOAD INCREASES CAPACITY (mAh) MIXCAP REGISTER ABSOLUTE mAh STATE OF BATTERY NOT CONSIDERING TEMPERATURE AND DISCHARGE RATE (I.E. CAPACITY AVAILABLE IF VERY LIGHT LOAD) INCREASE IN AVAILABLE CAPACITY WHEN UNDER LOAD IS COUNTERINTUITIVE TO USERS AND OPERATING SYSTEMS AVCAP REGISTER AVAILABLE CAPACITY OF THE CELL UNDER PRESENT CONDITIONS REPCAP REGISTER REPORTED CAPCITY WITH NO SUDDENT JUMPS AND CORRECT FORECAST OF EMPTY EMPTY TIME (h) Figure 16. Handling Changes in Empty Calculation End-of-Charge Detection The IC detects the end of a charge cycle when the application current falls into the band set by the IChgTerm register value while the VFSOC value is above the FullSOCThr register value. By monitoring both the Current and AvgCurrent registers, the device can reject false end-of-charge events such as application load spikes or early charge-source removal. See the End-of-Charge Detection graph in the Typical Operating Characteristics and Figure 17. When a proper end-of-charge event is detected, the device learns a new FullCapRep register value based on the RepCap register output. If the old FullCapRep value was too high, it is adjusted on a downward slope near the end-of-charge as defined by the MiscCfg.FUS setting until it reaches RepCap. If the old FullCapRep was too low, it is adjusted upward to match RepCap. This prevents the calculated state-of-charge from ever reporting a value greater than 100%. See Figure 18. Charge termination is detected by the IC when the following conditions are met: • VFSOC register > FullSOCThr register • AND IChgTerm x 0.125 < Current register < IChgTerm x 1.25 • AND IChgTerm x 0.125 < AvgCurrent register < IChgTerm x 1.25 www.analog.com Analog Devices | 69 CHARGING MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication AVGCURRENT CURRENT 1.25 x ICHGTERM 0.125 x ICHGTERM CHARGING DISCHARGING 0mA HIGH CURRENT LOAD SPIKES DO NOT GENERATE END-OF-CHARGE DETECTION BECAUSE CURRENT AND AVERAGE CURRENT READINGS DO NOT FALL INTO THE DETECTION AREA AT THE SAME TIME. AVGCURRENT CURRENT 1.25 x ICHGTERM 0.125 x ICHGTERM DISCHARGING 0mA EARLY CHARGER REMOVAL DOES NOT GENERATE END-OF-CHARGE DETECTION BECAUSE CURRENT AND AVERAGE CURRENT READINGS DO NOT FALL INTO THE DETECTION AREA AT THE SAME TIME. Figure 17. False End-of-Charge Events www.analog.com Analog Devices | 70 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication CHARGING MAX17300-MAX17303/ MAX17310-MAX17313 AVGCURRENT CURRENT 1.25 x ICHGTERM 0.125 x ICHGTERM DISCHARGING 0mA CORRECT END-OF-CHARGE DETECTION AREA CASE 1: OLD FULLCAPREP TOO HIGH NEW FULLCAPREP CASE 2: OLD FULLCAPREP TOO LOW REPCAP Figure 18. FullCapRep Learning at End-of-Charge Smart-Full (MAX17300/MAX17310 Only) Smart-full charge termination declares an end-of-charge based on the true state of the battery as determined by the open-circuit-voltage (OCV) of the cell. Typical end-of-charge detection is highly variable with temperature and state of the battery. Relying on the OCV of the cell for charge termination is highly reliable as shown in Figure 19. www.analog.com Analog Devices | 71 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication 4.15V CHARGER TERMINATED 4.1V CHARGER TERMINATED 4.15V 4.1V CELLS RELAX TO SAME OCV STATE 4.05V 0mA Figure 19. Smart-Full Example Smart-full enables: ● Lifespan extension combined with faster charging. Smart-full is an alternative to reduced charging voltage (for example 4.1V charging) to extend the life of a battery. Smart-full offers an alternative strategy allowing conventional charge voltage (example 4.15V). Smart-full controls termination to the same battery state as the reduced charger voltage approach. ● Faster charging to normal state by charging to higher cell voltage. Smart-full allows a higher charging voltage to be used, but prevents the OCV of the cell from exceeding the user-defined smart-full threshold. ● Better normal charge termination. Better control of charge termination even for normal 4.2V charging. Smart-full is more accurate than the traditional charge current termination approach. It is especially robust against: • • • • Adapter current limit interaction Recharging near full Charge control at hot and cold Aged battery The MAX17300/MAX17310 support smart-full charge termination and open the CHG FET when the VFOCV (estimated open-circuit voltage) is greater than the smart-full threshold and the nDelayCfg.FullTimer expires. See nMiscCfg2 for details. www.analog.com Analog Devices | 72 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Fuel Gauge Learning The IC periodically makes internal adjustments to cell characterization and application information to remove initial error and maintain accuracy as the cell ages. These adjustments always occur as small under-corrections to prevent instability of the system and prevent any noticeable jumps in the fuel-gauge outputs. Learning occurs automatically without any input from the host. In addition to estimating the battery’s state-of-charge, the IC observes the battery’s relaxation response and adjusts the dynamics of the voltage fuel gauge. Registers used by the algorithm include: • Application Capacity (FullCapRep Register). This is the total capacity available to the application at full, set through the IChgTerm and FullSOCThr registers as described in the End-of-Charge Detection section. See the FullCapRep register description. • Cell Capacity (FullCapNom Register). This is the total cell capacity at full, according to the voltage fuel gauge. This includes some capacity that is not available to the application at high loads and/or low temperature. The IC periodically compares percent change based on an open circuit voltage measurement vs. coulomb-count change as the cell charges and discharges, maintaining an accurate estimation of the pack capacity in mAh as the pack ages. See Figure 20. • Voltage Fuel-Gauge Adaptation. The IC observes the battery’s relaxation response and adjusts the dynamics of the voltage fuel gauge. This adaptation adjusts the RComp0 register during qualified cell relaxation events. • Empty Compensation. The IC updates internal data whenever cell empty is detected (VCell < VEmpty) to account for cell age or other cell deviations from the characterization information. www.analog.com Analog Devices | 73 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication RELAXATION EVENTS 100% 90% VFSOC (%) 80% 70% 60% 50% D%4 D%1 D%5 OBSERVED SIZE OF BATTERY: D%2 40% 30% 20% 10% FULLCAPNOM = COULOMB COUNT (mAh) 1200mAh 1100mAh 1000mAh 900mAh 800mAh 700mAh 600mAh 500mAh 400mAh 300mAh 200mAh 100mAh DPACC x 100% WHERE: D%3 0% DQACC DQACC=|DQ1|+|DQ2| +|DQ3| ... DPACC=|D%1|+|D%2| +|D%3| ... DQ4 DQ1 DQ5 DQ2 DQ3 0mAh Figure 20. FullCapNom Learning Converge-To-Empty The MAX1730x/MAX1731x includes a feature that guarantees the fuel gauge output converges to 0% as the cell voltage approaches the empty voltage. As the cell's voltage approaches the expected empty voltage (AvgVCell approaches VEmpty) the IC smoothly adjusts the rate of change of RepSOC so that the fuel gauge reports 0% at the exact time the cell's voltage reaches empty. This prevents minor over or under-shoots in the fuel gauge output. See Figure 21. www.analog.com Analog Devices | 74 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication AVGVCELL MAX17300-MAX17303/ MAX17310-MAX17313 VEMPTY REPSOC REPSOC ESTIMATION TOO HIGH IDEAL REPSOC REPSOC ESTIMATION TOO LOW RESOC RATE OF CHANGE ADJUSTED SO THAT IT REACHES 0% AS THE CELL’S VOLTAGE REACHES VEMPTY 0% Figure 21. Converge-To-Empty Determining Fuel-Gauge Accuracy To determine the true accuracy of a fuel gauge, as experienced by end users, the battery should be exercised in a dynamic manner. The end-user accuracy cannot be understood with only simple cycles. To challenge a correctionbased fuel gauge, such as a coulomb counter, test the battery with partial loading sessions. For example, a typical user may operate the device for 10 minutes and then stop use for an hour or more. A robust test method includes these kinds of sessions many times at various loads, temperatures, and duration. Refer to the Application Note 4799: Cell Characterization Procedure for a ModelGauge m3/ModelGauge m5 Fuel Gauge. Initial Accuracy The IC uses the first voltage reading after power-up or after cell is connected to the IC to determine the starting output of the fuel gauge. It is assumed that the cell is fully relaxed prior to this reading; however, this is not always the case. If there is a load or charge current at this time, the initial reading is compensated using the characterized internal impedance of the cell (RFast register) to estimate the cell's relaxed voltage. If the cell was recently charged or discharged, the voltage measured by the IC may not represent the true state-of-charge of the cell, resulting in initial error in the fuel gauge outputs. In most cases, this error is minor and is quickly removed by the fuel gauge algorithm during the first hour of normal operation. www.analog.com Analog Devices | 75 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Cycle+ Age Forecasting A special feature of the ModelGauge m5 algorithm is the ability to forecast the number of cycles a user is able to get out of the cell during its lifetime. This allows an application to adjust a cell's charge profile over time to meet the cycle life requirements of the cell. See Figure 22. The algorithm monitors the change in cell capacity over time and calculates the number of cycles it takes for the cell’s capacity to drop to a predefined threshold of 85% of original. Remaining cycles below 85% of the original capacity are unpredictable and not managed by age forecasting. 100% ADDITIONAL DATA CAPACITY NEW AGE FORECAST SHOWS THAT APPLICATION REQUIREMENTS SHOULD BE MET MINIMUM CYCLES REQUIRED BY THE APPLICATION INITIAL DATA CHARGE PROFILE CHANGED Initial Age Forecast shows that application requirements may not be met 100 CYCLES MINIMUM CELL CAPACITY REQUIRED BY THE APPLICATION CYCLES Figure 22. Benefits of Age Forecasting nAgeFcCfg Register (1E2h) Register Type: Special Nonvolatile Restore: There is no associated restore location for this register. The nAgeFcCfg register is used to configure age forecasting functionality. Register data is nonvolatile and is typically configured only once during pack assembly. Table 48 shows the register format. Table 48. nAgeFcCfg Register (1E2h) Format D15 D14 D13 DeadTargetRatio D12 D11 D10 D9 D8 CycleStart D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 DeadTargetRatio: Sets the remaining percentage of initial cell capacity where the cell is considered fully aged. DeadTargetRatio can be adjusted between 75% and 86.72% with an LSb of 0.7813%. For example, if age forecasting was configured to estimate the number of cycles until the cell’s capacity dropped to 85.1574% of when it was new, DeadTargetRatio should be programmed to 1101b. CycleStart: Sets the number of cell cycles before age forecasting calculations begin. CycleStart has a range of 0.00 www.analog.com Analog Devices | 76 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication to 81.92 cycles with an LSb of 0.64 cycles. Since age forecasting estimation becomes more accurate over time, most applications use a default value of 30 cycles. 0: Always write this location 0. 1: Always write this location 1. AgeForecast Register (0B9h) Register Type: Special Nonvolatile Backup: None The AgeForecast register displays the estimated cycle life of the application cell. The AgeForecast value should be compared against the Cycles (017h) register to determine the estimated number of remaining cell cycles. This is accomplished by accumulating the capacity loss per cycle as the cell ages. The result becomes more accurate with each cycle measured. The AgeForecast register has a full range of 0 cycles to 16383 cycles with a 25% LSb. This register is recalculated from learned information at power-up. Age Forecasting Requirements There are several requirements for proper operation of the age forecasting feature as follows: 1. There is a minimum and maximum cell size that the age forecasting algorithm can handle. Table 49 shows the allowable range of cell sizes that can be accurately age forecasted depending on the size of the sense resistor used in the application. Note this range is different from the current and capacity measurement range for a given sense resistor. See the Current Measurement section for details. 2. Age forecasting requires a minimum of 100 cycles before achieving reasonable predictions. Ignore the age forecasting output until then. 3. Age forecasting requires a custom characterized battery model to be used by the IC. Age forecasting is not valid when using the default model. Table 49. Minimum and Maximum Cell Sizes for Age Forecasting SENSE RESISTOR (Ω) MINIMUM CELL SIZE FOR FORECASTING (mAh) MAXIMUM CELL SIZE FOR FORECASTING (mAh) 0.005 1600 5000 0.010 800 2500 0.020 400 1250 Enabling Age Forecasting The following steps are required to enable the Age Forecasting feature: 1. Set nNVCfg2.enVT = 0. This function conflicts with age forecasting and must be disabled. 2. Set nFullCapFlt to the value of nFullCapNom. 3. Set nVoltTemp to 0x0001. 4. Set nNVCfg0.enAF = 1 to begin operation. www.analog.com Analog Devices | 77 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Battery Life Logging The MAX1730x/MAX1731x has the ability to log learned battery information providing the host with a history of conditions experienced by the cell pack over its life time. The IC can store up to 100 snapshots of page 1Ah in nonvolatile memory. Individual registers from page 1Ah are summarized in Table 50. Their nonvolatile backup must be enabled and LOCK1 must be unlocked in order for logging to occur. See each register's detailed description in other sections of this data sheet. The logging rate follows the "Fibonacci Saving" interval to provide recurring log-saving according to the expected battery lifespan and is configured by nNVCFG2.FibMax and nNVCFG2.FibScl. See the 100 Record Life Logging section for more details. Table 50. Life Logging Register Summary REGISTER ADDRESS REGISTER NAME 1A0h nQRTable00 1A1h nQRTable10 1A2h nQRTable20 1A3h nQRTable30 1A4h nCycles 1A5h nFullCapNom 1A6h nRComp0 1A7h nTempCo 1A8h nBattStatus 1A9h nFullCapRep 1AAh nVoltTemp 1ABh nMaxMinCurr 1ACh nMaxMinVolt 1ADh nMaxMinTemp 1AEh nFullCapFlt 1AFh nTimerH FUNCTION Learned characterization information used to determine when the cell pack is empty under application conditions. Total number of equivalent full cycles seen by the cell since assembly. Calculated capacity of the cell independent of application conditions. Learned characterization information related to the voltage fuel gauge. Contains the permanent battery status information. Calculated capacity of the cell under present application conditions. The average voltage and temperature seen by the IC at the instance of learned data backup. If Age Forecasting is enabled, this register contains different information. Maximum and minimum current, voltage, and temperature seen by the IC during this logging window. If Age Forecasting is enabled, this register contains a highly filtered nFullCapNom. Total elapsed time since cell pack assembly not including time spent in shutdown mode. Life Logging Data Example Figure 23 shows a graphical representation of sample history data read from an IC. Analysis of this data can provide information of cell performance over its lifetime as well as detect any application anomalies that may have affected performance. www.analog.com Analog Devices | 78 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication TIME 6m 0 TIME VS. CYCLES AND MAXIMUM / MINIUMUM VOLTAGE GIVES AN INDICATION OF THE USAGE PROFILE VOLTAGE 4.2V 3.0V TEMPERATURE 85C -40C MAXIMUM / MINUMUM TEMPERATURE AND CURRENT CAN INDICATE IF THE CELL HAS BEEN ABUSED CURRENT 2.0A -5.0A FULLCAPNOM 100% CAPACITY FULLCAPREP QRESIDUAL 0% CYCLES Figure 23. Sample Life Logging Data www.analog.com Analog Devices | 79 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Determining Number of Valid Logging Entries While logging data, the IC begins on history page 1 and continues until all history memory has been used at page 100. Prior to reading history information out of the IC, the host must determine which history pages has been written and which, if any, had write errors and should be ignored. Each page of history information has two associated write flags that indicate if the page has been written and two associated valid flags which indicate if the write was successful. The HISTORY RECALL command [0xE2XX] is used to load the history flags into page 1Fh of IC memory where the host can then read their state. Table 51 shows which command and which page 1Fh address has the flag information for a given history page. For example, to see the write flag information of history pages 1-8, send the 0xE29C command then read address 1F2h. To see the valid flag information of pages 1-8, send the 0xE29C command and then read address 1FFh. Table 51. Reading History Page Flags ASSOCIATED HISTORY PAGES COMMAND TO RECALL WRITE FLAGS WRITE FLAG ADDRESS COMMAND TO RECALL VALID FLAGS VALID FLAG ADDRESS 0xE29C 1FFh 1-8 1F2h 9-16 1F3h 1F0h 17-24 1F4h 1F1h 25-32 1F5h 1F2h 33-40 1F6h 1F3h 41-48 1F7h 1F4h 49-56 0xE29C 1F8h 0xE29D 1F5h 57-64 1F9h 65-72 1FAh 1F6h 1F7h 73-80 1FBh 1F8h 81-88 1FCh 1F9h 89-96 1FDh 1FAh 97-100 1FEh 1FBh Once the write flag and valid flag information is read from the IC, it must be decoded. Each register holds two flags for a given history page. Figure 24 shows the register format. The flags for a given history page are always spaced 8-bits apart from one another. For example, history page 1 flags are always located at bit positions D0 and D8, history page 84 flags are at locations D3 and D11, etc. Note that the last flag register contains information for only 3 pages, in this case the upper 5-bits of each byte should be ignored. www.analog.com Analog Devices | 80 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication HISTORY PAGE N WRITE INDICATOR 2 HISTORY PAGE N+7 WRITE INDICATOR 2 HISTORY PAGE N+1 WRITE INDICATOR 2 D15 D14 D13 D12 D11 D10 D9 HISTORY PAGE N WRITE INDICATOR 1 HISTORY PAGE N+7 WRITE INDICATOR 1 D8 D7 D6 D5 HISTORY PAGE N+1 WRITE INDICATOR 1 D4 D3 D2 D1 D0 WRITE FLAG REGISTER FORMAT HISTORY PAGE N VALID INDICATOR 2 HISTORY PAGE N+7 VALID INDICATOR 2 HISTORY PAGE N+1 VALID INDICATOR 2 D15 D14 D13 D12 D11 D10 D9 HISTORY PAGE N VALID INDICATOR 1 HISTORY PAGE N+7 VALID INDICATOR 1 D8 D7 D6 D5 HISTORY PAGE N+1 VALID INDICATOR 1 D4 D3 D2 D1 D0 VALID FLAG REGISTER FORMAT Figure 24. Write Flag Register and Valid Flag Register Formats Once all four flags for a given history page are known, the host can determine if the history page contains valid data. If either write flag is set then data has been written to that page by the IC. If both write flags are clear, the page has not yet been written. Due to application conditions, the write may not have been successful. Next check the valid flags. If either valid flag is set, the data should be considered good. If both valid flags are clear then the data should be considered bad and the host should ignore it. Table 52 shows how to decode the flags. Table 52. Decoding History Page Flags WRITE INDICATOR 1 WRITE INDICATOR 2 VALID INDICATOR 1 VALID INDICATOR 2 0 0 X X Page empty. 0 0 Write failure. Page has invalid data. 1 X www.analog.com X 1 1 X X 1 0 0 1 X X 1 PAGE STATUS Write success. Page has valid data. Write failure. Page has invalid data. Write success. Page has valid data. Analog Devices | 81 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Reading History Data Once all pages of valid history data have been identified, they can be read from the IC using the HISTORY RECALL command. Table 53 shows the command and history page relationship. After sending the command, wait tRECALL, then read the history data from IC page 1Fh. Each page of history data has the same format as page 1Ah. For example, nCycles is found at address 1A4h and nCycles history are at 1F4h, nTimerH is located at address 1AFh and nTimerH history is located at address 1FFh, etc. Table 53. Reading History Data COMMAND HISTORY PAGE RECALLED TO PAGE 1EH 0xE22E Page 1 0xE22F Page 2 ... ... 0xE291 Page 100 History Data Reading Example The host would like to read the life logging data from a given IC. The host must first determine how many history pages have been written and if there are any errors. To start checking history page 1, the host sends 0xE29C to the command register, wait tRECALL, then read location 1F2h. If either the D0 or the D8 bit in the read data word is a logic 1, the host knows that history page 1 contains history data. The host can then check page 2 (bits D1 and D9) up to page 7 (bits D7 and D15). The host continues on to pages 8 to 16 by reading location 1F3h, and then repeating individual bit testing. This process is repeated for each command and address listed in Table 51 until the host finds a history page where both write flags read logic 0. This is the first unwritten page. All previous pages contain data, all following pages are empty. The host must now determine which, if any, of the history pages have bad data and must be ignored. The above process is repeated for every location looking at the valid flags instead of the write flags. Any history page where both valid flags read logic 0 is considered bad due to a write failure and that page should be ignored. Once the host has a complete list of valid written history pages, commands 0xE22E to 0xE291 can be used to read the history information from page 1Fh for processing. Note that this example was simplified in order to describe the procedure. A more efficient method would be for the host to send a history command once and then read all associated registers. For example, the host could send the 0xE29C command once and then read the entire memory space of 1F0h to 1FFh which would contain all write flags for pages 1 to 100 (1F2h to 1FEh) and all valid flags for pages 1 to 8 (1FFh). This applies for all 0xE2XX history commands. See Appendix A: Reading History Data Pseudo-Code Example section for a psuedo-code example of reading history data. ModelGauge m5 Algorithm Input Registers The following registers are inputs to the ModelGauge algorithm and store characterization information for the application cells as well as important application specific specifications. They are described only briefly here. Contact Maxim for information regarding cell characterization. nXTable0 (180h) to nXTable11 (18Bh) Registers Register Type: Special Nonvolatile Restore: There are no associated restore locations for these registers. Cell characterization information used by the ModelGauge algorithm to determine capacity versus operating conditions. This table comes from battery characterization data. These are nonvolatile memory locations. nOCVTable0 (190h) to nOCVTable11 (19Bh) Registers Register Type: Special Nonvolatile Restore: There are no associated restore locations for these registers. Cell characterization information used by the ModelGauge algorithm to determine capacity versus operating conditions. www.analog.com Analog Devices | 82 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication This table comes from battery characterization data. These are nonvolatile memory locations. nQRTable00 (1A0h) to nQRTable30 (1A3h) Registers Register Type: Special Nonvolatile Backup and Restore: QRTable00 to QRTable30 (012h, 022h, 032h, 042h) The nQRTable00 to nQRTable30 register locations contain characterization information regarding cell capacity that is not available under certain application conditions. nFullSOCThr Register (1C6h) Register Type: Percentage Nonvolatile Restore: FullSOCThr (013h) if nNVCfg1.enFT is set. Alternate Initial Value: 80% The nFullSOCThr register gates detection of end-of-charge. VFSOC must be larger than the nFullSOCThr value before nIChgTerm is compared to the AvgCurrent register value. The recommended nFullSOCThr register setting for most custom characterized applications is 95% . For EZ performance applications, the recommendation is 80% (0x5005). See the nIChgTerm register description and End-of-Charge Detection section for details. Table 54 shows the register format. Table 54. nFullSOCThr (1C6h)/FullSOCThr (013h) Register Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 nFullSOCThr D2 D1 D0 1 0 1 nVEmpty Register (19Eh) Register Type: Special Nonvolatile Restore: VEmpty (03Ah) if nNVCfg0.enVE is set Alternate Initial Value: 0xA561 The nVempty register sets thresholds related to empty detection during operation. Table 55 shows the register format. Table 55. VEmpty (03Ah)/nVEmpty (19Eh) Register Format D15 D14 D13 D12 D11 D10 D9 D8 VE D7 D6 D5 D4 D3 D2 D1 D0 VR VE: Empty Voltage. Sets the voltage level for detecting empty. A 10mV resolution gives a 0 to 5.11V range. This value is written to 3.3V after reset if nonvolatile backup is disabled. VR: Recovery Voltage. Sets the voltage level for clearing empty detection. Once the cell voltage rises above this point, empty voltage detection is re-enabled. A 40mV resolution gives a 0 to 5.08V range. This value is written to 3.88V after reset if nonvolatile backup is disabled. nDesignCap Register(1B3h) Register Type: Capacity Nonvolatile Restore: DesignCap (018h) if nNVCfg0.enDC is set Alternate Initial Value: FullCapRep register value The nDesignCap register holds the expected capacity of the cell. This value is used to determine age and health of the cell by comparing against the measured present cell capacity. nRFast Register (1E5h) Register Type: Special Nonvolatile Restore: RFast (015h) if nNVCfg1.enRF is set Alternate Initial Value: RFast defaults 0x0148(80mΩ) When enabled, the nRFast register is used to configure the initial values for the RFast register. If nNVCfg1.enRF is clear, www.analog.com Analog Devices | 83 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication nRFast can be used for general purpose data storage. Table 56 shows the format. Table 56. nRFast Register (1E5h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 nRFast nRFast: Restores to the RFast register using the following equation: RFast = (nRFast AND 0xFF00) >> 4 The RFast register value is used by the ModelGauge m5 algorithm to compensate an initial open-circuit voltage starting point if the IC is powered up or reset while the cell stack is under load and not relaxed. RFast is a unit-less scalar with an LSb of (100 x RSENSE)/4096 . The initial value of 0x0148 gives a default RFast value of 80mΩ with a 10mΩ sense resistor. nIChgTerm Register (19Ch) Register Type: Current Nonvolatile Restore: IChgTerm (01Eh) if nNVCfg0.enICT is set Alternate Initial Value: 1/3rd the value of the nFullCapNom register (corresponds to C/9.6) The nIChgTerm register allows the device to detect when a charge cycle of the cell has completed. nIChgTerm should be programmed to the exact charge termination current used in the application.The device detects end-of-charge if all the following conditions are met: • VFSOC Register > FullSOCThr Register • AND IChgTerm x 0.125 < Current Register < IChgTerm x 1.25 • AND IChgTerm x 0.125 < AvgCurrent Register < IChgTerm x 1.25 See the End-of-Charge Detection section for more details. nRComp0 Register (1A6h) Register Type: Special Nonvolatile Restore: RComp0 (038h) The nRComp0 register holds characterization information critical to computing the open circuit voltage of a cell under loaded conditions. nRComp0 on MAX1730x/MAX1731x is redimensioned and not directly compatible with values from previous ModelGauge m5 ICs (MAX17201-15, MAX17055, MAX17260-3). Please consult Maxim for translation of any prior characterizations. nTempCo Register (1A7h) Register Type: Special Nonvolatile Restore: TempCo (039h) The nTempCo register holds temperature compensation information for the nRComp0 register value. ModelGauge m5 Algorithm Configuration Registers The following registers allow operation of the ModelGauge m5 algorithm to be adjusted for the application. It is recommended that the default values for these registers be used. nFilterCfg Register (19Dh) Register Type: Special Nonvolatile Restore: FilterCfg (029h) if nNVCfg0.enFCfg is set. Alternate Initial Value: 0x0EA4 The nFilterCfg register sets the averaging time period for all A/D readings, for mixing OCV results, and coulomb count www.analog.com Analog Devices | 84 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication results. It is recommended that these values are not changed unless absolutely required by the application. Table 57 shows the nFilterCfg register format. Table 57. FilterCfg (029h)/nFilterCfg (19Dh) Register Format D15 D14 0 0 D13 D12 D11 D10 TEMP D9 D8 D7 D6 MIX D5 D4 D3 VOLT D2 D1 D0 CURR CURR: Sets the time constant for the AvgCurrent register. The default POR value of 0100b gives a time constant of 5.625s. The equation setting the period is: AvgCurrent time constant = 45s x 2(CURR-7) VOLT: Sets the time constant for the AvgVCell register. The default POR value of 010b gives a time constant of 45.0s. The equation setting the period is: AvgVCell time constant = 45s x 2(VOLT-2) MIX: Sets the time constant for the mixing algorithm. The default POR value of 1101b gives a time constant of 12.8 hours. The equation setting the period is: Mixing Period = 45s x 2(MIX-3) TEMP: Sets the time constant for the AvgTA register. The default POR value of 0001b gives a time constant of 1.5 minutes. The equation setting the period is: AvgTA time constant = 45s x 2TEMP 0: Write these bits to 0. nRelaxCfg Register (1B6h) Register Type: Special Nonvolatile Restore: RelaxCfg (0A0h) if nNVCfg0.enRCfg is set. Alternate Initial Value: 0x2039 The nRelaxCfg register defines how the IC detects if the cell is in a relaxed state. See Figure 25. For a cell to be considered relaxed, current flow through the cell must be kept at a minimum while the change in the cell’s voltage over time, dV/dt, shows little or no change. If AvgCurrent remains below the LOAD threshold while VCell changes less than the dV threshold over two consecutive periods of dt, the cell is considered relaxed. Table 58 shows the nRelaxCfg register format. Table 58. RelaxCfg (0A0h)/nRelaxCfg (1B6h) Register Format D15 D14 D13 D12 LOAD D11 D10 D9 D8 D7 D6 dV D5 D4 D3 D2 D1 D0 dt LOAD: Sets the threshold, which the AvgCurrent register is compared against. The AvgCurrent register must remain below this threshold value for the cell to be considered unloaded. Load is an unsigned 7-bit value where 1 LSb = 50μV. The default value is 800μV. dV: Sets the threshold, which VCell is compared against. If the cell’s voltage changes by less than dV over two consecutive periods set by dt, the cell is considered relaxed; dV has a range of 0 to 40mV where 1 LSb = 1.25mV. The default value is 3.75mV. dt: Sets the time period over which change in VCell is compared against dV. If the cell’s voltage changes by less than dV over two consecutive periods set by dt, the cell is considered relaxed. The default value is 1.5 minutes. The comparison period is calculated as: Relaxation period = 2(dt-8) x 45s www.analog.com Analog Devices | 85 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication 0 CURRENT dV 4 CELL VOLTAGE dV 6 dV 5 FSTAT.RELDT2 BIT SET (RELAXATION BEGINS) LONG RELAXATION CELL UNLOADED FSTAT.RELDT BIT SET DISCHARGING CELL IS RELAXED RELAXATION LOAD THRESHOLD dV 3 dV 2 dt 2 dt 3 dt 4 dt 5 48-96 MINUTES dt 6 FI R S dV T R /d E t T AD H IN R G ES SE H BE C O LO O LD W dV ND /d R T E TH AD R IN ES G H BE O LD LO W dt 1 Figure 25. Cell Relaxation Detection nTTFCfg Register (1C7h)/CV_MixCap (0B6h) and CV_HalfTime (0B7h) Registers Register Type: Special Nonvolatile Restore: There is no associated restore location for this register. Alternate Initial Value: CV_HalfTime = 0xA00 (30 minutes) and CV_MixCap = 75% x FullCapNom. The nTTFCfg register configures parameters related to the time-to-full (TTF) calculation. There is no associated RAM register location that this register is recalled into after device reset. These parameters can be tuned for best TTF performance during characterization by Maxim. Table 59 shows the register format. Table 59. nTTFCfg Register (1C7h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 nCV_HalfTime D5 D4 D3 D2 D1 D0 nCV_MixCapRatio nCV_HalfTime: Sets the HalfTime value with an LSb of 45 seconds giving a full scale range of 0 seconds to 192 minutes. nCV_MixCapRatio: Sets the MixCapRatio with an LSb of 1/256 giving a full scale range of 0 to 0.9961. nConvgCfg Register (1B7h) Register Type: Special Nonvolatile Restore: There is no associated restore location for this register. The nConvgCfg register configures operation of the converge-to-empty feature. The recommended value for nConvgCfg is 0x2241. Table 60 shows the nConvgCfg register format. The nNVCfg1.CTE bit must be set to enable converge-toempty functionality. If nNVCfg1.CTE is clear this register can be used as general purpose data storage. www.analog.com Analog Devices | 86 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 60. nConvgCfg Register (1B7h) Format D15 D14 D13 D12 D11 RepLow D10 D9 D8 D7 D6 D5 VoltLowOff D4 D3 D2 MinSlopeX D1 D0 RepL_per_stage RepL_per_stage: Adjusts the RepLow threshold setting depending on the present learn stage using the following equation. This allows the RepLow threshold to be at higher levels for earlier learn states. RepL_per_stage has an LSb of 1% giving a range of 0% to 7%. RepLow Threshold = RepLow Field Setting + RemainingStages x RepL_per_stage MinSlopeX: Sets the amount of slope-shallowing which occurs when RepSOC falls below RepLow. MinSlopeX LSb corresponds to a ratio of 1/16 giving a full range of 0 to 15/16. VoltLowOff: When the AvgVCell register value drops below the VoltLow threshold, RepCap begins to bend downwards by a ratio defined by the following equation. VoltLowOff has an LSb of 20mV giving a range of 0 to 620mV. (AvgVCell - VEmpty)/VoltLowOff RepLow: Sets the threshold below which RepCap begins to bend upwards. The RepLow field LSb is 2% giving a full scale range from 0% to 30%. nRippleCfg Register (1B1h) Register Type: Special Nonvolatile Restore: There is no associated restore location for this register. The nRippleCfg register configures ripple measurement and ripple compensation. The recommended value for this register is 0x0204. Table 61 shows the register format. Table 61. nRippleCfg Register (1B1h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 kDV D3 D2 D1 D0 NR NR: Sets the filter magnitude for ripple observation as defined by the following equation giving a range of 1.4 seconds to 180 seconds. Ripple Time Range = 1.4 seconds x 2NR kDV: Sets the corresponding amount of capacity to compensate proportional to the ripple. ModelGauge m5 Algorithm Additional Registers The following registers contain intermediate ModelGauge m5 data which may be useful for debugging or performance analysis. The values in these registers become value 480ms after the IC is reset. Timer Register (03Eh) Register Type: Special Nonvolatile Backup: None Initial Value: 0x0000 This register holds timing information for the fuel gauge. It is available to the user for debug purposes. The Timer register LSb is equal to 175.8ms giving a full scale range of 0 to 3.2 hours. dQAcc Register (045h) Register Type: Capacity (2mAh/LSB) Nonvolatile Backup: Translated from nFullCapNom Alternate Initial Value: 0x0017 (368mAh) This register tracks change in battery charge between relaxation points. It is available to the user for debug purposes. www.analog.com Analog Devices | 87 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication dPAcc Register (046h) Register Type: Percentage (1/16% per LSB) Nonvolatile Backup: None Initial Value: 0x0190 (25%) This register tracks change in battery state-of-charge between relaxation points. It is available to the user for debug purposes. QResidual Register (00Ch) Register Type: Capacity Nonvolatile Backup: None The QResidual register displays the calculated amount of charge in mAh that is presently inside of, but cannot be removed from the cell under present application conditions. This value is subtracted from the MixCap value to determine capacity available to the user under present conditions (AvCap). VFSOC Register (0FFh) Register Type: Percentage Nonvolatile Backup: None The VFSOC register holds the calculated present state-of-charge of the battery according to the voltage fuel gauge. VFOCV Register (0FBh) Register Type: Voltage Nonvolatile Backup: None The VFOCV register contains the calculated open-circuit voltage of the cell as determined by the voltage fuel gauge. This value is used in other internal calculations. QH Register (4Dh) Register Type: Capacity Nonvolatile Backup: None Alternate Initial Value: 0x0000 The QH register displays the raw coulomb count generated by the device. This register is used internally as an input to the mixing algorithm. Monitoring changes in QH over time can be useful for debugging device operation. AvCap Register (01Fh) Register Type: Capacity Nonvolatile Backup: None The AvCap register holds the calculated available capacity of the cell pack based on all inputs from the ModelGauge m5 algorithm including empty compensation. The register value is an unfiltered calculation. Jumps in the reported value can be caused by changes in the application such as abrupt changes in load current or temperature. See the Fuel-Gauge Empty Compensation section for details. AvSOC Register (00Eh) Register Type: Percentage Nonvolatile Backup: None The AvSOC register holds the calculated available state of charge of the cell based on all inputs from the ModelGauge m5 algorithm including empty compensation. The AvSOC percentage corresponds with AvCap and FullCapNom. The AvSOC register value is an unfiltered calculation. Jumps in the reported value can be caused by changes in the application such as abrupt changes in load current or temperature. See the Fuel-Gauge Empty Compensation section for details. www.analog.com Analog Devices | 88 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication MixSOC Register (00Dh) Register Type: Percentage Nonvolatile Backup: None The MixSOC register holds the calculated present state-of-charge of the cell before any empty compensation adjustments are performed. MixSOC corresponds with MixCap and FullCapNom. See the Fuel-Gauge Empty Compensation section for details. MixCap Register (02Bh) Register Type: Capacity Nonvolatile Backup: None The MixCap register holds the calculated remaining capacity of the cell before any empty compensation adjustments are performed. See the Fuel-Gauge Empty Compensation section for details. VFRemCap Register (04Ah) Register Type: Capacity Nonvolatile Backup: None The VFRemCap register holds the remaining capacity of the cell as determined by the voltage fuel gauge before any empty compensation adjustments are performed. See the Fuel-Gauge Empty Compensation section for details. FStat Register (03Dh) Register Type: Special Nonvolatile Backup: None The FStat register is a read-only register that monitors the status of the ModelGauge algorithm. Do not write to this register location. Table 62 is the FStat register format. Table 62. FStat Register (03Dh) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X X X X X X RelDt EDet FQ RelDt2 X X X X X DNR DNR: Data Not Ready. This bit is set to 1 at cell insertion and remains set until the output registers have been updated. Afterwards, the IC clears this bit indicating the fuel gauge calculations are now up to date. This takes between 445ms and 1.845s depending on whether the IC was in a powered state prior to the cell-insertion event. RelDt2: Long Relaxation. This bit is set to 1 whenever the ModelGauge m5 algorithm detects that the cell has been relaxed for a period of 48 to 96 minutes or longer. This bit is cleared to 0 whenever the cell is no longer in a relaxed state. See Figure 29. FQ: Full Qualified. This bit is set when all charge termination conditions have been met. See the End-of-Charge Detection section for details. www.analog.com Analog Devices | 89 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication EDet: Empty Detection. This bit is set to 1 when the IC detects that the cell empty point has been reached. This bit is reset to 0 when the cell voltage rises above the recovery threshold. See the VEmpty register for details. RelDt: Relaxed cell detection. This bit is set to a 1 whenever the ModelGauge m5 algorithm detects that the cell is in a fully relaxed state. This bit is cleared to 0 whenever a current greater than the load threshold is detected. See Figure 29. X: Don’t Care. This bit is undefined and can be logic 0 or 1. Memory The memory space of the MAX1730x/MAX1731x is divided into 32 pages each containing 16 registers where each register is 16-bits wide. Registers are addressed using an internal 9-bit range of 000h to 1FFh. Externally, registers are accessed with an 8-bit address for 2-wire communication or 16-bit address for 1-wire communication. Registers are grouped by functional block. See the functional descriptions for details of each register's functionality. Certain memory blocks can be permanently locked to prevent accidental overwrite. See the Locking Memory Blocks section for details. Table 63 shows the full memory map of the IC. Note that some individual user registers are located on RESERVED memory pages. These locations can be accessed normally while the remainder of the page is considered RESERVED. Memory locations listed as RESERVED should never be written to. Data read from RESERVED locations is not defined. Table 63. Top Level Memory Map MAX1730x REGISTER PAGE LOCK 00h 01h-04h LOCK2 05h-0Ah MAX1731x DESCRIPTION 2-WIRE SLAVE ADDRESS 2-WIRE PROTOCOL 2-WIRE EXTERNAL ADDRESS RANGE 1-WIRE EXTERNAL ADDRESS RANGE MODELGAUGE m5 DATA BLOCK 6Ch I 2C 00h-4Fh 0000h-004Fh MODELGAUGE m5 DATA BLOCK (continued) 6Ch I 2C B0h-BFh 00B0h-00BFh SHA MEMORY 6Ch I 2C C0h-CFh 00C0h-00CFh MODELGAUGE m5 DATA BLOCK (continued) 6Ch I 2C D0h-DFh 00D0h-00DFh 16h SBS 00h-7Fh 16h I 2C 80h-EFh 0180h-01EFh 16h I 2C F0h-FFh 01F0h-01FFh RESERVED 0Bh LOCK2 0Ch SHA 0Dh LOCK2 0Eh-0Fh RESERVED 10h-17h SBS DATA BLOCK 18h-19h LOCK3 MODELGAUGE m5 NONVOLATILE MEMORY BLOCK 1Ah-1Bh LOCK1 LIFE LOGGING and CONFIGURATION NONVOLATILE MEMORY BLOCK 1Ch LOCK4 CONFIGURATION NONVOLATILE MEMORY BLOCK 1Dh LOCK5 PROTECTION NONVOLATILE MEMORY BLOCK 1Eh LOCK1 USER and SBS NONVOLATILE MEMORY BLOCK 1Fh www.analog.com NONVOLATILE HISTORY Analog Devices | 90 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 64. Individual Registers MAX1730x REGISTER ADDRESS LOCK DESCRIPTION MAX1731x 2-WIRE SLAVE ADDRESS 2-WIRE PROTOCOL 2-WIRE EXTERNAL ADDRESS RANGE 1-WIRE EXTERNAL ADDRESS RANGE 060h Command REGISTER 6Ch I 2C 60h 0060h 061h CommStat REGISTER 6Ch I 2C 61h 0061h 07Fh Lock REGISTER 6Ch I 2C 7Fh 007Fh ModelGauge m5 Memory Space Registers that relate to functionality of the ModelGauge m5 fuel gauge are located on pages 00h-04h and are continued on pages 0Bh and 0Dh. See the ModelGauge m5 Algorithm section for details of specific register operation. These locations (other than page 00h) can be permanently locked by setting LOCK2. Register locations shown in gray are reserved locations and should not be written to. See Table 65. Table 65. ModelGauge m5 Register Memory Map PAGE/ 00xH 01xH 0h Status 1h VAlrtTh 2h 3h WORD 02xH 03xH 04xH 0AxH 0BxH FullCapRep TTF Reserved TTE DevName Reserved TAlrtTh QRTable00/ VCellRep QRTable10/ CurrRep SAlrtTh FullSocThr 0DxH AvgDieTemp RelaxCfg Status2 SOCHold Reserved LearnCfg Power Reserved QRTable20 QRTable30 Reserved VRipple Reserved FullCapNom Reserved Reserved Reserved AvgPower Reserved 4h AtRate RCell Reserved DieTemp Reserved MaxPeakPower Reserved AvgCell1 5h RepCap RFast Reserved FullCap dQAcc SusPeakPower TTFCfg Reserved 6h RepSOC AvgTA Reserved IAvgEmpty dPAcc PackResistance CVMixCap nVPrtTh1Bak 7h Age Cycles AIN0 Reserved Reserved SysResistance CVHalfTime Batt Reserved Reserved MinSysVoltage CGTempCo Cell1 8h MaxMinVolt DesignCap Charging Current 9h MaxMinTemp AvgVCell FilterCfg FStat2 ProtTmrStat MPPCurrent AgeForecast ProtStatus Ah MaxMinCurr VCell Charging Voltage VEmpty VFRemCap SPPCurrent Reserved Reserved Bh Config Temp MixCap Reserved Reserved Config2 FStat3 ModelCfg Ch QResidual Current Reserved Reserved Reserved IAlrtTh Reserved AtQResidual Dh MixSOC AvgCurrent Reserved FStat QH MinVolt Reserved AtTTE Eh AvSOC IChgTerm Reserved Timer Reserved MinCurr TimerH AtAvSOC Fh MiscCfg AvCap Reserved ShdnTimer Reserved Reserved Reserved AtAvCap www.analog.com Analog Devices | 91 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Nonvolatile Memory Nonvolatile Memory Map Certain ModelGauge m5 and device configuration values are stored in nonvolatile memory to prevent data loss if the IC loses power. The MAX1730x/MAX1731x internally updates page 1Ah values over time based on actual performance of the ModelGauge m5 algorithm. The host system does not need to access this memory space during operation. Nonvolatile data from other accessible register locations is internally mirrored into the nonvolatile memory block automatically. Note that non-volatile memory has a limited number of writes. User accessible configuration memory is limited to 7 writes. Internal and external updates to page 1Ah as the fuel gauge algorithm learns are limited to 100 writes. Do not exceed these write limits. Table 66 shows the nonvolatile memory register map. Table 66. Nonvolatile Register Memory Map (Slave address 0x16) PAGE/ 18xH 19xH 1AxH1 1BxH 1CxH 1DxH 1ExH 0h nXTable0 nOCVTable0 nQRTable00 nConfig nPReserved0 nVPrtTh1 nDPLimit 1h nXTable1 nOCVTable1 nQRTable10 nRippleCfg nPReserved1 nTPrtTh1 nScOcvLim 2h nXTable2 nOCVTable2 nQRTable20 nMiscCfg nPReserved2 nTPrtTh3 nAgeFcCfg 3h nXTable3 nOCVTable3 nQRTable30 nDesignCap nPReserved3 nIPrtTh1 nDesignVoltage 4h nXTable4 nOCVTable4 nCycles nSBSCfg nRGain nVPrtTh2 Reserved 5h nXTable5 nOCVTable5 nFullCapNom nPackCfg nPackResistance nTPrtTh2 nRFast 6h nXTable6 nOCVTable6 nRComp0 nRelaxCfg nFullSOCThr nProtMiscTh nManfctrDate 7h nXTable7 nOCVTable7 nTempCo nConvgCfg nTTFCfg nProtCfg nFirstUsed 8h nXTable8 nOCVTable8 nBattStatus nNVCfg0 nCGain nJEITAC nSerialNumber0 9h nXTable9 nOCVTable9 nFullCapRep nNVCfg1 nTCurve/ nCGTempCo nJEITAV nSerialNumber1 Ah nXTable10 nOCVTable10 nVoltTemp nNVCfg2 nTGain nJEITACfg nSerialNumber2 Bh nXTable11 nOCVTable11 nMaxMinCurr nHibCfg nTOff nStepChg nDeviceName0 Ch nVAlrtTh nIChgTerm nMaxMinVolt nROMID02 nManfctrName0 nDelayCfg nDeviceName1 WORD Dh nTAlrtTh nFilterCfg nMaxMinTemp nROMID12 nManfctrName1 nODSCTh nDeviceName2 Eh nIAlrtTh nVEmpty nFullCapFlt nROMID22 nManfctrName2 nODSCCfg nDeviceName3 Fh nSAlrtTh nLearnCfg nTimerH nROMID32 nRSense nCheckSum nDeviceName4 1. Locations 1A0h to 1AFh are updated automatically by the IC each time it learns. 2. The ROM ID is unique to each IC and cannot be changed by the user. www.analog.com Analog Devices | 92 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication 100 Record Life Logging Addresses 0x1A0 to 0x1AF support 100 burn entries of learned battery characteristic and other life logging if LOCK1 is unlocked. The save interval is managed automatically using a Fibonacci algorithm which provides the following benefits: 1. Lifespan autopsy/debug data to support analysis of any aged or returned battery. a. Battery Characteristic Learning/Adaptation. FullCap (nFullCapRep, nFullCapNom), empty-compensation (nQRTable00-30), resistance (nRComp0 and nTempCo) b. Permanent Failure Information (nBattStatus) c. Battery Charge/Discharge Fractional Cycle Counter (nCycles) d. 23 year Timer (nTimerH) e. Log-Interval Max/Min Voltage/Current/Temperature (nMaxMinCurr, nMaxMinVolt, nMaxMinTemp) f. Voltage/Temperature at logging moment (nVoltTemp) 2. Intelligently managed save-intervals: a. Frequent When New. When the battery is new the updates occur more frequently, since early information learned about the battery, such as full-capacity, is more critical for overall performance. b. Slower With Age. As the battery matures the update interval slows down, since changes in learned information also progresses slower. c. Faster Updates Following Power-Loss. This limits the loss of information associated with power-loss. Each time the power is lost and this learned information is restored, the rate of the next save is accelerated as shown in Table 69. This is limited to seven reset accelerations. The reset counter is also recorded (see also nCycles register). Most battery applications can proceed for longer than 1 year without interruption in power. d. Limitation on Slowest Interval. Beyond a certain cycle life, the update interval remains constant. Configure this behavior according to your expected battery lifespan using the FibMax and FibScl parameters in nNVCfg2 as follows: Table 67. Fibonacci Configuration Settings FIBONACCI SCALAR—NNVCFG2.FIBSCL Setting 00 1st and 2nd Interval Battery Cycles Record Limit 01 10 11 0.25 0.5 1 2 FibMax = 0 193 386 772 1544 FibMax = 1 310.5 621 1242 2484 FibMax = 2 496.5 993 1986 3972 FibMax = 3 795.5 1591 3182 6364 FibMax = 4 1273.25 2546.5 5093 10186 FibMax = 5 2038.75 4077.5 8155 16310 FibMax = 6 3262 6524 13048 26096 FibMax = 7 5220 10440 20880 41760 The bold settings in Table 67 are the generally recommended choices, depending on preference for update interval, slowest update rates, and lifespan. Table 68 shows the slowest update intervals associated with each configuration. Table 68. Eventual Matured Update Interval (in battery cycles) FIBONACCI SCALAR—NNVCFG2.FIBSCL Setting 1st and 2nd Interval Slowest Update Interval www.analog.com 00 01 10 11 0.25 0.5 1 2 FibMax = 0 2 4 8 16 FibMax = 1 3.25 6.5 13 26 FibMax = 2 5.25 10.5 21 42 Analog Devices | 93 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 68. Eventual Matured Update Interval (in battery cycles) (continued) FibMax = 3 8.5 17 34 68 FibMax = 4 13.75 27.5 55 110 FibMax = 5 22.25 44.5 89 178 FibMax = 6 36 72 144 288 FibMax = 7 58.25 116.5 233 466 Table 69 illustrates the saving schedule with the most preferred configurations. Table 69. Saving Schedule Example With the Most Preferred Configurations EXAMPLE CYCLE LIFE FIB MAX FIB SCL SLOWEST UPDATE 1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH 1 310.5 1 0 3.25 0.25 0.25 0.75 1.25 2 3.25 3.25 3.25 — — 2 386 0 1 4 0.5 0.5 1 1.5 2.5 4 4 4 — — — 3 496.5 2 0 5.25 0.25 0.25 0.5 0.75 1.25 2 3.25 5.25 5.25 5.25 — 4 621 1 1 6.5 0.5 0.5 1 1.5 2.5 4 6.5 6.5 6.5 — — 5 772 0 2 8 1 1 2 3 5 8 8 8 — — — 6 795.5 3 0 8.5 0.25 0.25 0.5 0.75 1.25 2 3.25 5.25 8.5 8.5 — 7 993 2 1 10.5 0.5 0.5 1 1.5 2.5 4 6.5 10.5 10.5 10.5 — 8 1242 1 2 13 1 1 2 3 5 8 13 13 13 — — 9 1273.25 4 0 13.75 0.25 0.25 0.5 0.75 1.25 2 3.25 5.25 8.5 13.75 13.75 0.5 As an example for all subsequent startups, for the configuration of example 9 from Table 69: 1st startup [0.25, 0.25, 0.5, 0.75, 1.25, 2, 3.25, 5.25, 8.5, 13.75, ...] 2nd startup [0.25, 0.5, 0.75, 1.25, 2, 3.25, 5.25, 8.5, 13.75, ...] 3rd startup [0.5, 0.75, 1.25, 2, 3.25, 5.25, 8.5, 13.75, ...] 4th startup [0.75, 1.25, 2, 3.25, 5.25, 8.5, 13.75, ...] 5th startup [1.25, 2, 3.25, 5.25, 8.5, 13.75, ...] 6th startup [2, 3.25, 5.25, 8.5, 13.75, ...] 7th startup [3.25, 5.25, 8.5, 13.75, ...] 8th startup [5.25, 8.5, 13.75, ...] nNVCfg0 Register (1B8h) Register Type: Special Nonvolatile Restore: There is no associated restore location for this register. The nNVCfg0 register manages nonvolatile memory backup of device and fuel gauge register RAM locations. Each bit of the nNVCfg0 register, when set, enables a given register location to be restored from a corresponding nonvolatile memory location after reset of the IC. If nonvolatile restore of a given register is not enabled, that location initializes to a default value after reset instead. See the individual register descriptions for details. The factory default value for nNVCfg0 register is 0x0702. Table 70 shows the nNVCfg0 register format. Table 70. nNVCfg0 Register (1B8h) Format D15 D14 D13 D12 D11 D10 D9 D8 enOCV enX enSHA 0 enCfg enFCfg enRCfg enLCfg D7 D6 D5 D4 D3 D2 D1 D0 enICT enDP enVE enDC enMC enAF — enSBS enSBS: Enable SBS. This bit enables SBS functions of the IC. When set, all registers accessed with the SBS 2-Wire www.analog.com Analog Devices | 94 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication address is regularly updated. When this bit is clear, all SBS related nonvolatile configuration register locations can be used as general purpose user memory. enAF: Enable Age Forecasting. Set this bit to enable Age Forecasting functionality. When this bit is clear, nAgeFcCfg can be used for general purpose data storage. When set, nVoltTemp becomes repurposed for Age Forecasting data. When enAF is set to 1, nNVCfg2.enVT must be 0 for proper operation. enMC: Enable MiscCfg restore. Set this bit to enable MiscCfg register to be restored after reset by the nMiscCfg register. When this bit is clear, MiscCfg restores with its alternate initialization value and nMiscCfg can be used for general purpose data storage. enDC: Enable DesignCap restore. Set this bit to enable DesignCap register to be restored after reset by the nDesignCap register. When this bit is clear, DesignCap restores with its alternate initialization value and nDesignCap can be used for general purpose data storage. enVE: Enable VEmpty restore. Set this bit to enable VEmpty register to be restored after reset by the nVEmpty register. When this bit is clear, VEmpty restores with its alternate initialization value and nVEmpty can be used for general purpose data storage. enDP: Enable Dynamic Power. Set this bit to enable Dynamic Power calculations. When this bit is set to 0, Dynamic Power calculations are disabled and registers MaxPeakPower/SusPeakPower/MPPCurrent/SPPCurrent can be used as general purpose memory. If enDP is set, enVE also needs to be set, and nVEmpty value needs to be valid. enICT: Enable IChgTerm restore. Set this bit to enable IChgTerm register to be restored after reset by the nIChgTerm register. When this bit is clear, IChgTerm restores to a value of 1/3rd of the nFullCapNom register and nIChgTerm can be used for general purpose data storage. enFCfg: Enable FilterCfg restore. Set this bit to enable FilterCfg register to be restored after reset by the nFilterCfg register. When this bit is clear, FilterCfg restores with its alternate initialization value and nFilterCfg can be used for general purpose data storage enCfg: Enable Config and Config2 restore. Set this bit to enable Config and Config2 registers to be restored after reset by the nConfig register. When this bit is clear, Config and Config2 restores with their alternate initialization values and nConfig can be used for general purpose data storage. enX: Enable XTable restore. Set this bit to enable nXTable register locations to be used for cell characterization data. When this bit is clear, the IC uses the default cell model and all nXTable register locations can be used as general purpose user memory. enOCV: Enable OCVTable restore. Set this bit to enable nOCVTable register locations to be used for cell characterization data. When this bit is clear, the IC uses the default cell model and all nOCVTable register locations can be used as general purpose user memory. enLCfg: Enable LearnCfg restore. Set this bit to enable LearnCfg register to be restored after reset by the nLearnCfg register. When this bit is clear, LearnCfg restores with its alternate initialization value and nLearnCfg can be used for general purpose data storage. enRCfg: Enable RelaxCfg restore. Set this bit to enable RelaxCfg register to be restored after reset by the nRelaxCfg register. When this bit is clear, RelaxCfg restores with its alternate initialization value and nRelaxCfg can be used for general purpose data storage. enSHA: Set to 1 to configure the MTP at address 0x1DC to 0x1DF as SHA space. Set to 0 to configure address 0x1DC to 0x1DF as user MTP. 0: Set to 0. Do not set to 1. nNVCfg1 Register (1B9h) Register Type: Special Nonvolatile Restore: There is no associated restore location for this register. The nNVCfg1 register manages nonvolatile memory restore of device and fuel gauge register RAM locations. Each bit of the nNVCfg1 register, when set, enables a given register location to be restored from a corresponding nonvolatile memory location after reset of the IC. If nonvolatile backup of a given register is not enabled, that location initializes to a default value after reset instead. See the individual register descriptions for details. Table 71 shows the nNVCfg1 register www.analog.com Analog Devices | 95 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication format. Table 71. nNVCfg1 Register (1B9h) Format D15 D14 D13 D12 D11 D10 D9 D8 enTherm enMtl enFTh enRF enODSC enJP enSC enProt D7 D6 D5 D4 D3 D2 D1 D0 enJ enProtChksm enTP enTTF enAT enCrv enCTE enDS enJ: Enable ChargingCurrent and ChargingVoltage. Set this bit to 1 to enable ChargingCurrent and ChargingVoltage update feature. enJP: Enable Protection with JIETA (temperature region dependent). Set this bit to 1 to enable JIETA Protection. Clear this bit to disable JEITA protection and make OVP and OCCP thresholds become flat. enSC: Enable Special Chemistry Model. Set this bit to 1 if a special chemistry model is used. This bit enables the use of nScOcvLim. enCTE: Enable Converge-to-Empty. Set this bit to enable the nConvgCfg register settings to affect the converge-toempty functionality of the IC. When this bit is clear, converge-to-empty is disabled and nConvgCfg can be used for general purpose data storage. enCrv: Enable Curve Correction. Set this bit to enable curvature correction on thermistor readings, improving thermistor translation performance to -40°C to +80°C (instead of -10°C to +50°C). Note that enCrv and enMtl are mutually exclusive functions. Do not set both enCrv and enMtl at the same time. enAT: Enable Alert Thresholds. Set this bit to enable IAlrtTh, VAlrtTh, TAlrtTh, and SAlrtTh registers to be restored after reset by the nIAlrtTh, nVAlrtTh, nTAlrtTh, and nSAlrtTh registers respectively. When this bit is clear, these registers restore with their alternate initialization values and the nonvolatile locations can be used for general purpose data storage. enTTF: Enable Time-to-Full Configuration. Set to 1 to enable nTTFCfg (configures CVMixCap and CVHalftime) for tuning of Time-to-Full performance. Otherwise, CVMixCap and CVHalftime restore to their alternate initialization values and nTTFCfg can be used for general purpose data storage. enODSC: Enable OD and SC Overcurrent Comparators. Set this bit to enable ODSCTh and ODSCCfg registers to be restored after reset by the nODSCTh and nODSCCfg registers. When this bit is clear, ODSCTh and ODSCCfg restore with their alternate initialization values (comparators disabled) and nODSCTh and nODSCCfg can be used for general purpose data storage. enRF: Enable RFast. Set this bit to enable RFast register to be restored after reset by the nRFast register. When this bit is clear, RFast restores with their alternate initialization values and nRFast can be used for general purpose data storage. enFTh: Enable FullSOCThr Configuration Restore. Set this bit to enable FullSOCThr register to be restored after reset by the nFullSOCThr register. When this bit is clear, FullSOCThr restores with its alternate initialization value and nFullSOCThr can be used for general purpose data storage. enMtl: Enable CGTempCo Restore. Set this bit to enable CGTempCo register to be restored after reset by the nTCurve register. When this bit is clear, CGTempCo restores with its alternate initialization value. nTCurve can be used for general purpose data storage if both enCrv and enMtl are clear. Do not set both enCrv and enMtl at the same time. enTP: Set to 1 to associate the TaskPeriod register with nTaskPeriod MTP. Otherwise, TaskPeriod restores with the POR value and the register’s address configures nRippleCfg instead of nTaskPeriod. enDS: Set to 0. Don't set to 1. enProt: Enable Protector. Set this bit to enable the protector. When this bit is clear, protector is disabled. enProtChksm: Enable Protector Checksum Function. Set this bit to enable the protector checksum function. When this bit is clear, the checksum protection is disabled. enTherm: Enable New Thermistor Calculations. (MAX17300/MAX17310 only). Set this bit to 1 to enable the new thermistor calculations which can achieve thermistor accuracy within ±0.5ºC from -40ºC to +85ºC. When this bit is clear, the original thermistor method is used for thermistor accuracy within ±3ºC from -20ºC to +70ºC. www.analog.com Analog Devices | 96 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication 0: This location must remain 0. Do not write this location to 1. nNVCfg2 Register (1BAh) Register Type: Special Nonvolatile Restore: There is no associated restore location for this register. The nNVCfg2 register manages nonvolatile memory backup and restore of device and fuel gauge register RAM locations. Each bit of the nNVCfg2 register, when set, enables a given register location to be restored from or backed up to a corresponding nonvolatile memory location after reset of the IC. If nonvolatile backup of a given register is not enabled, that location initializes to a default value after reset instead. See the individual register descriptions for details. Table 72 shows the nNVCfg2 register format. Table 72. nNVCfg2 Register (1BAh) Format D15 D14 D13 D12 D11 D10 D9 enT 0 enMMT enMMV enMMC enVT enFC D8 D7 enMet D6 D5 D4 D3 D2 FibMax D1 D0 FibScl FibMax/FibScl. Set the FibMax and FibScl "Fibonacci Saving" interval to provide recurring log-saving according to the expected battery lifespan. See the 100 Record Life Logging section for more details. enMet: Enable metal current sensing. Setting this bit to 1 enables temperature compensation of current readings for allowing copper trace current sensing. This also forces the PackCfg.TdEn bit to 1 after reset of the IC to guarantee internal temperature measurements occurs. See nNVCfg1.enMtl, which enables nTCurve register operation for adjustment of the current sensing temperature coefficient. enFC: Enable FullCap and FullCapRep backup and restore. Set this bit to enable FullCap and FullCapRep registers to be restored after reset by the nFullCapRep register and FullCapRep to backup to nFullCapRep. When this bit is clear, FullCap and FullCapRep registers restore from the nFullCapNom register. nFullCapRep can then be used as general purpose user memory. enVT: Enable Voltage and Temperature backup. Set this bit to enable storage of AvgVCell and AvgTA register information into the nVoltTemp register during save operations. There is no corresponding restore option. When this bit and nNVCfg0.enAF are clear, nVoltTemp can be used as general purpose memory. Note that enVT should not be set simultaneously with nNVCfg0.enAF (AgeForecasting). enMMC: Enable MinMaxCurr Backup. Set this bit to enable storage of MinMaxCurr register information into the nMinMaxCurr register during save operations. There is no corresponding restore option. When this bit is clear, nMinMaxCurr can be used as general purpose memory. enMMV: Enable MinMaxVolt Backup. Set this bit to enable storage of MinMaxVolt register information into the nMinMaxVolt register during save operations. There is no corresponding restore option. When this bit is clear, nMinMaxVolt can be used as general purpose memory. enMMT: Enable MinMaxTemp Backup. Set this bit to enable storage of MinMaxTemp register information into the nMinMaxTemp register during save operations. There is no corresponding restore option. When this bit is clear, nMinMaxTemp can be used as general purpose memory. enT: Enable TimerH backup and restore. Set this bit to enable TimerH register to be backed up and restored by the nTimerH register. When this bit is clear, TimerH restores with its alternate initialization value and nTimerH can be used as general purpose memory. Enabling and Freeing Nonvolatile vs. Defaults There are seven nonvolatile memory words labeled nUser that are dedicated to general purpose user data storage. Most other nonvolatile memory locations can also be used as general purpose storage if their normal function is disabled. The nNVCfg0, nNVCfg1, and nNVCfg2 registers control which nonvolatile memory functions are enabled and disabled. Table 73 shows how to free up the specific registers for user data storage. Table 74 shows which nNVCfg bits control different IC functions and the effects when the bit is set or cleared. See the nNVCfg register descriptions for complete details. Do not convert a nonvolatile register to general purpose memory space if that register's function is used by the application. Below is a summary of how many bytes can be made available for user memory and the functional trade off to free up those bytes. www.analog.com Analog Devices | 97 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication ● 156 bytes maximum freeable: The cost is to sacrifice any optional features/configuration, including no custom OCV table and protector disabled. ● 74 bytes reasonably freeable: Made available without reverting halfway to EZ or disabling protector. ● 62 bytes freeable: Made available by using half of miscellaneous configurability. ● 42 bytes easily freeable ● 34 bytes always free: If SBS mode is not enabled. ● 4 bytes always free: If SBS enabled is enabled. Table 73. Making Nonvolatile Memory Available for User Data RELATED FEATURE MAJOR FEATURE CHOICES www.analog.com BYTES REGISTERS ADDRESS COMMENTS 1 word 2 bytes “Reserved” 0x1E4 Not freeable on MAX17300/ MAX17310. Used as nMiscCfg2. 0x1B4, 0x1CC-0x1CE, 0x1E3, 0x1E8-0x1EF Generally freeable. Always Free Always SBS NVM Disable SBS and DS2438 features nNVCfg0.enSBS = 0 nNVCfg1.enDS = 0 15 words 30 bytes nSBSCfg nManfctrName[0:2] nDesignVoltage nManfctrDate nFirstUsed nSerialNumber[0:2] nDeviceName[0:4] Time-to-Full Configurability nNVCfg1.enTTF = 0 1 word 2 bytes nTTFCfg 0x1C7 Free if default nTTFCfg is acceptable. Dynamic Power nNVCfg0.enDP = 0 1 word 2 bytes nDPLimit 0x1E0 Free if feature is not used. Age Forecasting nNVCfg0.enAF = 0 1 word 2 bytes nAgeFcCfg 0x1E2 Free if feature is not used. Has additional implications with nVoltTemp. LiFePO4 nNVCfg1.enSC 1 word 2 bytes nScOcvLim 0x1E1 Free if feature is not used. 0x1D8 0x1DB Free if feature is not used. Note that nJEITAV and nJEITACfg are still required for protector functionality. Freeable when original full-capacity isn’t required to be remembered as FullCapRep ages. JEITA Charge Voltage/ Current vs. Temp MODELLING/ CHARACTERIZATION CONFIGURATION OPTIONS FREE BY: nNVCfg0.enJ = 0 nNVCfg0.enJP = 0 2 words 4 bytes nJEITAC nStepChg Design Cap + FullCapRep nNVCfg0.enDC = 0 1 word 2 bytes nDesignCap (else nFullCapRep) 0x1B3 Relaxation Configuration nNVCfg0.enRCfg = 0 nRelaxCfg 0x1B6 Misc Configuration nNVCfg0.enMC = 0 nMiscCfg 0x1B2 Converge-toEmpty NonDefault Configuration nNVCfg1.enCTE Full Detection % Threshold nNVCfg1.enFTh 6 words 12 bytes nConvgCfg 0x1B7 nFullSOCTh 0x1C6 Normally freeable. Defaults work for most applications. Analog Devices | 98 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 73. Making Nonvolatile Memory Available for User Data (continued) RFast nNVCfg1.enRFVSH nRFast 0x1E5 Filter Configuration nNVCfg0.enFC = 0 nFilterCfg 0x19D nLearnCfg nNVCfg0.en = 0 nLearnCfg 0x19F Freeable depending on modelling/ characterization. 1 word 2 bytes Misc Configuration (Pushbutton, CommShutdown, AtRateenable nNVCfg0.enCfg = 0 1 word 2 bytes nConfig 0x1B0 Needed only for: Pushbutton feature, temp-alerts, 1% alerts, AtRate, commshutdown. Empty Voltage nNVCfg0.enVE = 0 1 word 2 bytes nVEmpty 0x19E Free if targeting the fuel gauge to default 3.3V empty voltage. Charge Termination nNVCfg0.enICT = 0 1 word 2 bytes nIChgTerm 0x19C 12 words 24 bytes nXTable[0:11] 0x180-0x18B 12 words 24 bytes nCVTable[0:11] 0x190-0x19B SOC Table OCV Table Use m5 EZ model by setting nNVCfg.enOCV = 0 nNVCfg.enX = 0 Alert Startup Configuration nNVCfg1.enAT = 0 4 words 8 bytes nVAlrtTh nTAlrtTh nIAlrtTh nSAlrtTh 0x18C-0x18F Protector NVM Checksum nNVCfg1 .enProtChkSm = 0 1 word 2 bytes nCheckSum 0x1DF 16 words 32 bytes nVPrtTh1, nTPrtTh1 nTPrtTh3, nIPrtTh1 nVPrtTh2, nTPrtTh2 nProtMisTh nProtCfg, nJEITAV nJEITACfg, nDelayCfg nODSCTh, nODSCCfg nCheckSum (below if JEITA also off) nJEITAC, nStepChg OTHER Protector nNVCfg1.enProt = 0 nNVCfg1.enJP = 0 0x1D0-0x1DF With custom models/ characterization, this is not freeable. Most applications of MAX1730x/ MAX1731x use protector. However, if the protector is entirely disabled, these 32 bytes become free NVM. FET drivers and protection do not execute in this configuration. . www.analog.com Analog Devices | 99 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 74. Nonvolatile Memory Configuration Options ADDRESS REGISTER NAME FACTORY DEFAULT CONTROL BIT(S) FUNCTION WHEN CONTROL BIT IS SET FUNCTION WHEN CONTROL BIT(S) CLEARED 180h 18Bh nXTable0 through nXTable12 All 0x0000 nNVCfg0.enX 180h-18Bh Hold Custom Cell Model Information Becomes Free1, IC Uses Default EZ Cell Model 18Ch nVAlrtTh 0x0000 18Dh nTAlrtTh 0x0000 18Eh nIAlrtTh 0x0000 nNVCfg1.enAT 18Fh nSAlrtTh 0x0000 VAlrtTh, TAlrtTh, IAlrtTh, SAlrtTh initialize from nVAlrtTh, nTAlrtTh, nIAlrtTh, nSAlrtTh Becomes Free1, VAlrtTh, TAlrtTh, IAlrtTh, SAlrtTh → Disabled Threshold Values 190h 19Bh nOCVTable0 through nOCVTable12 All 0x0000 nNVCfg0.enOCV 190h-19Bh Hold Custom Cell Model Information Becomes Free1, IC Uses Default EZ Cell Model 19Ch nIChgTerm 0x0000 nNVCfg0.enICT nIChgTerm→ IChgTerm Becomes Free1, IChgTerm = FullCapRep/3 19Dh nFilterCfg 0x0000 nNVCfg0.enFCfg nFilterCfg→ FilterCfg Becomes Free1, FilterCfg = 0x0EA4 19Eh nVEmpty 0x0000 nNVCfg0.enVE nVEmpty→ VEmpty Becomes Free1, VEmpty = 0xA561 19Fh nLearnCfg 0x0000 nNVCfg0.enLCfg nLearnCfg → LearnCfg Becomes Free1, LearnCfg = 0x2687 1A0h nQRTable00 0x1080 Always QRTable Information 1A1h nQRTable10 0x2043 nQRTable00→ QRTable00 1A2h nQRTable20 0x078C nQRTable10→ QRTable10 1A3h nQRTable30 0x0880 1A4h nCycles 0x0000 Always nCycles→ Cycles 1A5h nFullCapNom 0x0BB8 Always nFullCapNom→ FullCapNom 1A6h nRComp0 0x08CC Always nRComp0→ RComp0 1A7h nTempCo 0x223E Always nTempCo→ TempCo 1A8h nBattStatus 0x0000 nNVCfg1.enProt nProtCfg.PFen Logs/Saves Permanent Failure Status Becomes Free1 1A9h nFullCapRep 0x1A90 nNVCfg2.enFC nFullCapRep→ FullCapRep Becomes Free1 nFullCapNom→ FullCapRep nNVCfg2.enVT AvgVCell→ nVoltTemp and AvgTA→ nVoltTemp at each backup event Becomes Free1, Voltage, Temperature Logging Disabled nVoltTemp stores Age Forecasting Information Becomes Free1, Age Forecasting Disabled 1AAh nVoltTemp 0x0000 nQRTable20→ QRTable20 N/A (nNVCfg0.enAF = 0) nNVCfg0.enAF (nNVCfg2.enVT = 0) nQRTable30→ QRTable30 1ABh nMaxMinCurr 0x807F nNVCfg2.enMMC MaxMinCurr→ nMaxMinCurr at each backup event Becomes Free1 1ACh nMaxMinVolt 0x00FF nNVCfg2.enMMV MaxMinVolt→ nMaxMinVolt at each backup event Becomes Free1, 1ADh nMaxMinTemp 0x807F nNVCfg2.enMMT MaxMinTemp→ nMaxMinTemp at each backup event Becomes Free1, 1AEh nFullCapFlt 0x0000 nNVCfg0.enAF nFullCapFlt stores Age Forecasting backup information Becomes Free1, Age Forecasting Disabled www.analog.com Analog Devices | 100 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 74. Nonvolatile Memory Configuration Options (continued) ADDRESS REGISTER NAME FACTORY DEFAULT CONTROL BIT(S) FUNCTION WHEN CONTROL BIT IS SET FUNCTION WHEN CONTROL BIT(S) CLEARED 1AFh nTimerH 0x0000 nNVCfg2.enT TimerH→ nTimerH at each backup event Becomes Free1, 1B0h nConfig 0x0000 nNVCfg0.enCfg 1B1h nRippleCfg 0x0204 N/A 1B2h nMiscCfg 0x0000 nNVCfg0.enMC nMiscCfg→ MiscCfg Becomes Free1, MiscCfg = 0x3870 1B3h nDesignCap 0x0000 nNVCfg0.enDC nDesignCap→ DesignCap Become Free1, FullCapRep→ DesignCap 1B4h nSBSCfg 0x0000 nNVCfg0.enSBS SBS Functions Enabled Becomes Free1 1B5h nPackCfg 0x1101 N/A 1B6h nRelaxCfg 0x0839 nNVCfg0.enRCfg nRelaxCfg→ RelaxCfg Becomes Free1, RelaxCfg = 0x2039, 1B7h nConvgCfg 0x2241 nNVCfg1.enCTE Converge-to-Empty Enabled Becomes Free1, Converge-to-Empty Disabled 1B8h nNVCfg0 0x0200 1B9h nNVCfg1 0x0986 1BAh nNVCfg2 0xFE0A 1BBh nHibCfg 0x0909 1BCh nROMID0 Varies 1BDh nROMID1 Varies 1BEh nROMID2 Varies 1BFh nROMID3 Varies 1C0h nPReserved0 0x8480 (0x00002) 1C1h nPReserved1 0x8780 (0x00002) 1C2h nPReserved2 0x0000 (0x00002) 1C3h nPReserved3 0xDE00 (0xA0002) 1C4h nRGain 0x0000 1C5h nPackResistance 0x0000 1C6h nFullSOCThr 1C7h 1C8h www.analog.com N/A nConfig→ Config nConfig→ Config2 Becomes Free1, Config = 0x2214, Config2 = 0x2058 Always nRippleCfg→ RippleCfg Always nPackCfg→ PackCfg Always Required Nonvolatile Memory Control Registers nHibCfg always applies, not optional N/A Always the Unique 64-bit ID N/A Do Not Modify without Special Guidance from Maxim nNVCfg0.enDP Used for Dynamic Power Becomes Free1, Dynamic Power Disabled 0x0000 nNVCfg1.enFTh nFullSOCThr→ FullSOCThr Becomes Free1, FullSOCThr = 0x5005 nTTFCfg 0x0000 nNVCfg1.enTTF nTTFCfg Configures Time-to-Full Calculation Becomes Free1, Time-to-Full Default Configuration nCGain 0x4000 N/A Trim for Calibrating Current-Sense Gain Analog Devices | 101 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 74. Nonvolatile Memory Configuration Options (continued) REGISTER NAME ADDRESS FACTORY DEFAULT CONTROL BIT(S) FUNCTION WHEN CONTROL BIT IS SET FUNCTION WHEN CONTROL BIT(S) CLEARED Metal Current Sense TempCo Configurable nTCurve→ CGTempCo Becomes Free1, Metal Current Sense TempCo Enabled, CGTempCo = 0x20C8 Thermistor Curvature Controlled by nTCurve Becomes Free1, Thermistor Curvature Disabled nNVCfg1.enMtl (nNVCfg2.enMet = 1) nCGTempCo/ nTCurve 1C9h 0x0025 (nNVCfg1.enCrv = 0) nNVCfg1.enCrv (nNVCfg2.enMet = 0) (default) 1CAh nTGain 0xEE56 1CBh nTOff 0x1DA4 1CCh nManfctrName0 0x0000 1CDh nManfctrName1 0x0000 1CEh nManfctrName2 0x0000 1CFh nRSense 0x03E8 1D0h nVPrtTh1 0x508C 1D1h nTPrtTh1 0x3700 1D2h nTPrtTh3 0x5528 1D3h nIPrtTh1 0x4BB5 1D4h nVPrtTh2 0xDC00 1D5h nTPrtTh2 0x2D0A 1D6h nProtMiscTh 0x7A28 1D7h nProtCfg 0x0A00 1D8h nJEITAC 0x644B 1D9h nJEITAV 0x0059 1DAh nJeitaCfg 0x5054 N/A nNVCfg0.enSBS N/A Configuration for Translating Thermistor to ºC nManfctrName[2:0]→ sManfctrName Becomes Free1 Sense Resistor Value—Helps Host Translate Currents and Capacities nNVCfg1.enProt Configures Protection Thresholds Becomes Free1 Protector Disabled 1DBh nStepChg 0xC884 1DCh nDelayCfg 0xAB3D 1DDh nODSCTh 0x0EAF 1DEh nODSCCfg 0x4345 1DFh nCheckSum 0x0017 nNVCfg1. {enProtChkSm and enProt} Holds CheckSum Value of 0x1A0-0x1AE for Validating NVM at Startup Becomes Free1 1E0h nDPLimit 0x0000 nNVCfg0.enDP Configures Dynamic Power Becomes Free1 Dynamic Power Disabled 1E1h nScOcvLim 0x0000 nNVCfg1.enSC Used for LiFePO4 Gauging Becomes Free1 LiFePO4 Disabled 1E2h nAgeFcCfg 0x0000 nNVCfg0.enAF Configures Age Forecast Becomes Free1 1E3h nDesignVoltage 0x0000 nNVCfg0.enSBS nDesignVoltage→ sDesignVolt Becomes Free1 1E4h nMiscCfg2 0x0000 N/A www.analog.com nMiscCfg2 Analog Devices | 102 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 74. Nonvolatile Memory Configuration Options (continued) ADDRESS REGISTER NAME FACTORY DEFAULT CONTROL BIT(S) FUNCTION WHEN CONTROL BIT IS SET FUNCTION WHEN CONTROL BIT(S) CLEARED 1E5h nRFast 0x0000 nNVCfg1.enRF nRFast→ RFast Becomes Free1, RFast = 0x0500 1E6h nManfctrDate 0x0000 nManfctrDate→ sManfctrDate Becomes Free1 1E7h nFirstUsed 0x0000 nFirstUsed→ sFirstUsed Becomes Free1 1E8h nSerialNumber0 0x0000 1E9h nSerialNumber1 0x0000 Becomes Free1 1EAh nSerialNumber2 0x0000 nSerialNumber[2:0]→ sSerialNumber 1EBh nDeviceName0 0x0000 1ECh nDeviceName1 0x0000 1EDh nDeviceName2 0x0000 Becomes Free1 1EEh nDeviceName3 0x0000 nDeviceName[4:0]→ sDeviceName 1EFh nDeviceName4 0x0000 nNVCfg0.enSBS Note 1: "Free" indicates the address is unused and available as general user nonvolatile. Note 2: MAX17300/MAX17310 only Shadow RAM Nonvolatile memory is never written to or read from directly by the communication interface. Instead, data is written to or read from shadow RAM memory located at the same address. Copy and recall commands are used to transfer data between the nonvolatile memory and the shadow RAM. Figure 26 describes this relationship. Nonvolatile memory recall occurs automatically at IC power-up and software POR. Shadow RAM and Nonvolatile Memory Relationship SHADOW RAM NONVOLATILE MEMORY COMMUNICATION INTERFACE 0180h 0180h DATA WRITE COPY NV BLOCK NV RECALL DATA READ 01EFh 01EFh Figure 26. Shadow RAM and Nonvolatile Memory Relationship www.analog.com Analog Devices | 103 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Nonvolatile Memory Commands The following commands are used to copy or recall data from the nonvolatile memory. All commands are written to the Command register at memory address 060h to perform the desired operation. The CommStat register can be used to track the status of the request. COPY NV BLOCK [E904h] This command copies the entire block from shadow RAM to nonvolatile memory addresses 180h to 1EFh excluding the unique ID locations of 1BCh to 1BFh. After issuing this command, the host must wait tBLOCK for the operation to complete. The configuration memory can be copied a maximum of seven times. Note that the supply voltage must be above VNVM for the operation to complete successfully. NV RECALL [E001h] This command recalls the entire block from nonvolatile memory to Shadow RAM addresses 180h to 1EFh. This is a low power operation that takes up to tRECALL to complete. Note that the supply voltage must be above VNVM for the operation to complete successfully. HISTORY RECALL [E2XXh] This command copies history data into page 1Fh of memory. After issuing this command, the host must wait tRECALL for the operation to complete before reading page 1Fh. Table 75 shows what history information can be recalled. See SHA-256, Battery Life Logging, and Determining Number of Remaining Updates sections for details on how to decode this information. Table 75. History Recall Command Functions COMMAND FUNCTION 0xE29D Recall indicator flags to determine remaining SHA-256 secret updates or clears 0xE29B Recall indicator flags to determine remaining configuration memory writes 0xE29C Recall indicator flags to determine remaining Battery Life Logging updates 0xE29C, 0xE29D Recall indicator flags to determine Battery Life Logging update errors 0xE22E to 0xE291 Recall Battery Life Logging information Nonvolatile Block Programming The host must program all nonvolatile memory locations at the same time by using the Copy NV Block command. The host first writes all desired nonvolatile memory Shadow RAM locations to their desired values, then sends the Copy NV Block command, and then waits tBLOCK for the copy to complete. Afterwards, the host should send the power-on-reset sequence to reset the IC and have the new nonvolatile settings take effect. The CommStat.NVError bit should be read to determine if the copy command executed successfully. Note that configuration memory is limited to nBLOCK total write attempts. The recommended full sequence is: 1. Write desired memory locations to new values. 2. Clear CommStat.NVError bit. 3. Write 0xE904 to the Command register 0x060 to initiate a block copy. 4. Wait tBLOCK for the copy to complete. 5. Check the CommStat.NVError bit. If set, repeat the process. If clear, continue. 6. Write 0x000F to the Command register 0x060 to POR the IC. 7. Wait 10ms for the IC to reset. 8. Write 0x8000 to Config2 register 0x0AB to reset firmware. 9. Wait for POR_CMD bit (bit 15) of the Config2 register to be cleared to indicated POR sequence is complete. Determining Number of Remaining Updates The configuration memory can only be updated seven times by the user (first update occurs during manufacturing test). www.analog.com Analog Devices | 104 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication The number of remaining updates can be calculated using the following procedure: 1. Write 0xE29B to the Command register (060h). 2. Wait tRECALL. 3. Read memory address 1FDh. 4. Decode address 1FDh data as shown in Table 76. Each block write has redundant indicator flags for reliability. Logically OR the upper and lower bytes together then count the number of 1s determine how many updates have already been used. The first update occurs in manufacturing test prior to shipping to the user. Table 76. Number of Remaining Config Memory Updates ADDRESS 1FDH DATA LOGICAL OR OF UPPER AND LOWER BYTES NUMBER OF UPDATES USED NUMBER OF UPDATES REMAINING 0000000x00000001b or 00000001b 1 7 00000011b 2 6 00000111b 3 5 00001111b 4 4 00011111b 5 3 00111111b 6 2 01111111b 7 1 11111111b 8 0 000000010000000xb 000000xx0000001xb or 0000001x000000xxb 00000xxx000001xxb or 000001xx00000xxxb 0000xxxx00001xxxb or 00001xxx0000xxxxb 000xxxxx0001xxxxb or 0001xxxx000xxxxxb 00xxxxxx001xxxxxb or 001xxxxx00xxxxxxb 0xxxxxxx01xxxxxxb or 01xxxxxx0xxxxxxxb xxxxxxxx1xxxxxxxb or 1xxxxxxxxxxxxxxxb nLearnCfg Register (19Fh) Register Type: Special Nonvolatile Restore: LearnCfg (0A1h) if nNVCfg0.enLCfg is set. Alternate Initial Value: 0x4696 The nLearnCfg register controls all functions relating to adaptation during operation. Table 77 shows the register format. Table 77. LearnCfg (0A1h)/nLearnCfg (19Fh) Register Format D15 D14 D13 D12 D11 D10 D9 D8 D7 0 1 0 0 0 1 1 0 1 D6 D5 LS D4 D3 D2 D1 D0 0 1 1 0 0: Bit must be written 0. Do not write 1. 1: Bit must be written 1. Do not write 0. LS: Learn Stage. The Learn Stage value controls the influence of the voltage fuel gauge on the mixing algorithm. Learn www.analog.com Analog Devices | 105 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Stage defaults to 0h, making the voltage fuel gauge dominate. Learn Stage then advances to 7h over the course of two full cell cycles to make the coulomb counter dominate. Host software can write the Learn Stage value to 7h to advance to the final stage at any time. Writing any value between 1h and 6h is ignored. nMiscCfg Register (1B2h) Register Type: Special Nonvolatile Restore: MiscCfg (00Fh) if nNVCfg0.enMC is set. Alternate Initial Value: 0x3070 The nMiscCfg control register enables various other functions of the device. The nMiscCfg register default values should not be changed unless specifically required by the application. Table 78 shows the register format. Table 78. MiscCfg (00Fh)/nMiscCfg (1B2h) Register Format D15 D14 D13 D12 FUS D11 D10 0 0 D9 D8 D7 D6 D5 D4 D3 D2 1 0 0 MR D1 D0 SACFG 0: Bit must be written 0. Do not write 1. 1: Bit must be written 1. Do not write 0. SACFG: SOC Alert Config. SOC Alerts can be generated by monitoring any of the SOC registers as follows. SACFG defaults to 00 at power-up: 0 0 SOC Alerts are generated based on the RepSOC register. 0 1 SOC Alerts are generated based on the AvSOC register. 1 0 SOC Alerts are generated based on the MixSOC register. 1 1 SOC Alerts are generated based on the VFSOC register. MR: Mixing Rate. This value sets the strength of the servo mixing rate after the final mixing state has been reached (> 2.08 complete cycles). The units are MR0 = 6.25μV, giving a range up to 19.375mA with a standard 0.010Ω sense resistor. Setting this value to 00000b disables servo mixing and the IC continues with time-constant mixing indefinitely. The default setting is 18.75μV or 1.875mA with a standard sense resistor. FUS: Full Update Slope. This field prevents jumps in the RepSOC and FullCapRep registers by setting the rate of adjustment of FullCapRep near the end of a charge cycle. The update slope adjustment range is from 2% per 15 minutes (0000b) to a maximum of 32% per 15 minutes (1111b). nConfig Register (1B0h) Register Type: Special Nonvolatile Restore: Config (00Bh) and Config2 (0ABh) if nNVCfg0.enCfg is set. Alternate Initial Value: 0x2214 for Config, 0x0050 for Config2 The nConfig register holds all shutdown enable, alert enable, and temperature enable control bits. Writing a bit location enables the corresponding function within one task period. Table 79, Table 80, and Table 81 show the register formats. Table 79. nConfig Register (1B0h) Format D15 ProtAlrtEn D14 D13 D12 D11 SS www.analog.com TS VS 0 D10 PBen D9 D8 1 0 D7 D6 D5 D4 D3 D2 D1 D0 AtRateEn COMMSH FastADCen 1 FTHRM Aen dSOCen TAlrtEn Analog Devices | 106 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 80. Config Register (00Bh) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 SS TS VS 0 PBen 1 0 SHDN COMMSH FastADCen 1 FTHRM Aen Bei ProtAlrtEn Table 81. Config2 Register (0ABh) Format D15 D14 D13 D12 POR_CMD 0 AtRtEn 0 D11 D10 D9 POWR D8 D7 D6 D5 D4 dSOCen TAlrtEn 0 1 D3 D2 DRCfg D1 D0 CPMode BlockDis 0: Bit must be written 0. Do not write 1. 1: Bit must be written 1. Do not write 0. PBEn: PushButton enable. Set PBEn = 1 to enable wakeup by pushbutton. This application allows a gadget to be completely sealed with battery disconnected until a shared system button is pressed. Bei: Enable alert on battery insertion when the IC is mounted host side. When Bei = 1, a battery-insertion condition, as detected by the TH pin voltage, triggers an alert. Aen: Enable alert on fuel-gauge outputs. When Aen = 1, violation of any of the alert threshold register values by temperature, voltage, or SOC triggers an alert. This bit affects the ALRT1 pin operation only. The Smx, Smn, Tmx, Tmn, Vmx, Vmn, Imx, and Imn bits of the Status register (000h) are not disabled. ProtAlrtEn: Enable alert on protection event. When ProtAlrtEn = 1 and Aen = 1, any protection event triggers an alert. This bit affects ALRT1 pin operation only. The Status.PA bit is not disabled. (MAX17300/10 Only) FTHRM: Force Thermistor Bias Switch. This allows the host to control the bias of the thermistor switch or enable fast detection of battery removal. Set FTHRM = 1 to always enable the thermistor bias switch. With a standard 10kΩ thermistor, this adds an additional ~200μA to the current drain of the circuit. FastADCen: Enable FastADC. Set to logic 1 to enable the FastADC feature. COMMSH: Communication Shutdown. Set to logic 1 to force the device to enter shutdown mode if both SDA and SCL are held low (MAX17300-MAX17303) or DQ is held low (MAX17310-MAX17313) for more than timeout of the ShdnTimer register. This also configures the device to wake up on a rising edge of any communication. Note that if COMMSH is set to 0, the device wakes up an edge of any of the DQ/SDA or OD/SCL pins. See Table 8. SHDN: I2C Shutdown Command. Write this bit to logic 1 to force a shutdown of the device after timeout of the ShdnTimer register (default 45s delay). SHDN is reset to 0 at power-up and upon exiting shutdown mode. In order to command shutdown within 45 seconds, first write HibCFG = 0x0000 to enter active mode. VS: Voltage ALRT1 Sticky. When VS = 1, voltage alerts can only be cleared through software. When VS = 0, voltage alerts are cleared automatically when the threshold is no longer exceeded. TS: Temperature ALRT1 Sticky. When TS = 1, temperature alerts can only be cleared through software. When TS = 0, temperature alerts are cleared automatically when the threshold is no longer exceeded. SS: SOC ALRT1 Sticky. When SS = 1, SOC alerts can only be cleared through software. When SS = 0, SOC alerts are cleared automatically when the threshold is no longer exceeded. POR_CMD: Firmware Restart. Set this bit to 1 to restart IC firmware operation without performing a recall of nonvolatile memory into RAM. This allows different IC configurations to be tested without changing nonvolatile memory settings. This bit is set to 0 at power-up and automatically clears itself after firmware restart. POWR: Sets the time constant for the AvgPower register. The default POR value of 0000b gives a time constant of 0.7s. The equation setting the period is: AvgPower time constant = 45s x 2(POWR-6) TAlrten: Temperature Alert Enable. Set this bit to 1 to enable temperature based alerts. Write this bit to 0 to disable temperature alerts. This bit is set to 1 at power-up. dSOCen: SOC Change Alert Enable. Set this bit to 1 to enable the Status.dSOCi bit function. Write this bit to 0 to disable the Status.dSOCi bit. This bit is set to 0 at power-up. CPMode: Constant-power mode. Set to 1 to enable constant-power mode. www.analog.com Analog Devices | 107 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication DRCfg: Deep Relax Time Configuration. 00 for 0.8 to 1.6 hours, 01 for 1.6 to 3.2 hours, 10 for 3.2 to 6.4 hours and 11 for 6.4 to 12.8 hours. BlockDis: Block Discharge. The BlockDis bit is used for managing the discharging of multiple batteries in parallel and is enabled by setting nPackCfg.ParEn = 1. Set to 1 and clear Status.AllowChgB to block discharging while allowing charging (MAX17300/MAX17310 only). nPackCfg Register (1B5h) Register Type: Special The nPackCfg register configures the voltage and temperature inputs to the A/D and also to the fuel gauge. The default factory setting for nPackCfg is 0x1101 for the MAX1730x/MAX1731x. Table 82 shows the register format. Table 82. nPackCfg Register (1B5h) Format D15 D14 D13 D12 D11 0 0 0 A1En R100 D10 D9 D8 001 D7 D6 D5 D4 0 ParEn 0 0 D3 D2 D1 D0 0001 R100: If using 100kΩ NTC, set R100 = 1; if using 10kΩ NTC, set R100 = 0. A1En: AIN1 Channel Enable. Set to 1 to enable temperature measurements on the TH pin. ParEn: Parallel Charging Functionality Enable. Set to 1 to enable parallel charging function. (MAX17300/MAX17310 only) All other bits are reserved for future usage. 0: Bit must be written 0. Do not write 1. 1: Bit must be written 1. Do not write 0. nMiscCfg2 Register (1E4h) (MAX17300/MAX17310 Only) Register Type: Special The nMiscCfg2 register configures the noiseless filter, smart-full threshold, and nMargin. The default factory setting for nMiscCfg2 is 0x0800 for the MAX17300/MAX17310. Table 83 shows the register format. Table 83. nMiscCfg2 Register (0x1E4h) Format D15 D14 D13 D12 D11 D10 D9 0 0 0 0 1 0 0 D8 D7 D6 D5 D4 D3 D2 dSmartFull D1 D0 nMargin dSmartFull: Delta Smart-Full Threshold. The smart-full threshold is set relative to ChargingVoltage (see nJEITAV). dSmartFull is a positive number with 0.625mV resolution and 80mV range. It is translated to a negative offset relative to ChargingVoltage so that smart-full threshold is calculated as: Smart-Full Threshold = ChargingVoltage – (dSmartFull x 0.625mV) Whenever VFOCV is greater than smart-full threshold, it has the same behavior as end-of-charge detection with the addition that the charge FET opens after the nDelayCfg.FullTimer expires. The release condition of smart-full is VFOCV is less than smart-full threshold - hysteresis (10mV) and discharging. To disable the smart-full functionality, set dSmartFull = 0. Factory default is 0. nMargin: Charge\Discharge Current Detection Comparator Threshold. Configure nMargin = 0. nDesignVoltage Register (1E3h) Register Type: Special Nonvolatile Restore: There is no associated restore location for this register. Table 84. nDesignVoltage Register (1E3h) Format D15 D14 D13 D12 Vminsys D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Vdesign Vminsys: (unsigned byte) = 'Minimum system voltage' specification for the design. Generates MinSysVoltage value. www.analog.com Analog Devices | 108 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Vdesign: (unsigned byte) = 'Design voltage' specification for the design. Each byte has an lsb = 20mV (resolution) giving a full scale range = 0V to 5.12V. These values are used in SBS calculations only when enSBS = 1. Vminsys 'translates' to sMinSysVoltage word, while Vdesign 'translates' to sDesignVolt word, where the lsb = 1mV. MinSysVoltage = (0xFF00 and nDesignVoltage) sMinSysVoltage = [(0xFF00 and nDesignVoltage) >> 8] x 20 (mV) sDesignVolt = (0x00FF and nDesignVoltage) x 20 (mV) Memory Locks ModelGauge m5 RAM registers and all non-volatile memory locations can be permanently locked to prevent accidental data loss in the application. Locking a memory block only prevents future writes to the locations. Reading locked locations is still allowed. Note that locking a memory location is permanent, so carefully choose all desired locks before sending the NV LOCK command. The SHA secret is stored in separate secure nonreadable memory. There is a different command for locking the SHA secret and its state is not displayed in the Lock register. See the SHA_Authentication section for details. Once a lock bit is set it can never be cleared. Table 63 shows which lock bits correspond to which memory blocks of the IC. NV LOCK [6AXXh] This command permanently locks a block or blocks of memory. To set a lock, send 6AXXh to the Command register where the lower 5 bits of the command determine which locks are set. Table 85 shows a detailed format of the NV LOCK command. Set each individual LOCK bit to 1 to LOCK the corresponding register block. Set the LOCK bit to 0 to do nothing at this time. For example, writing 6A02h to the Command register sets LOCK2. Writing 6A1Fh sets all five locks. Writing 6A00h sets no locks. Table 85. Format of LOCK Command D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 0 1 1 0 1 0 1 0 0 0 0 D4 D3 D2 D1 D0 LOCK LOCK LOCK LOCK LOCK 5 4 3 2 1 LOCK1: Locks register pages 1A, 1B, 1E (Locking disables History Life Logging) LOCK2: Locks register pages 01, 02, 03, 04, 0B, 0D LOCK3: Locks register pages 18, 19 LOCK4: Locks register pages 1C LOCK5: Locks register pages 1D Locking Memory Blocks Prior to sending the lock command, the CommStat.NVError bit should be cleared. After the command is sent, the CommStat.NVError bit should be read to determine if the lock command executed successfully. Note that locking memory blocks is a permanent operation. The recommended full sequence is: 1. Clear CommStat.NVError bit. 2. Write 0x6AXX to the Command register 0x060 to lock desired blocks. 3. Wait tUPDATE for the copy to complete. 4. Check the CommStat.NVError bit. If set, repeat the process. Reading Lock State The Lock register at address 07Fh reports the state of each lock. See Table 86 for the format of the Lock register. If a LOCK bit is set, the corresponding memory block is locked. If the LOCK bit is cleared, the corresponding memory block is unlocked. Note that the SHA-256 Secret lock state cannot be read through this register. www.analog.com Analog Devices | 109 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 86. Format of Lock Register (07Fh) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 X X X X X X X X X X X D4 D3 D2 D1 D0 LOCK LOCK LOCK LOCK LOCK 5 4 3 2 1 X: Don't Care 1: LOCK is set 0: LOCK is clear Analog Measurements The MAX1730x/MAX1731x monitors cell pack voltage, cell pack current, cell pack temperature, and the voltage of the cell. This information is provided to the fuel-gauge algorithm to predict cell capacity, trigger protection FETs in case of fault conditions, and also made available to the user. Note that ADC related register information is not maintained while the IC is in shutdown mode. The following register information is invalid until the first measurement cycle after the IC returns to active mode of operation. Voltage Measurement The MAX1730x/MAX1731x monitors the voltage at the BATT pin. VCell Register (01Ah) Register Type: Voltage Nonvolatile Backup: None Each update cycle, the lowest reading from all cell voltage measurements is placed in the VCell register. VCell is used as the voltage input to the fuel-gauge algorithm and trigger protection FETs in case of fault conditions. VCellRep Register (012h) (MAX17300/MAX17310 Only) Register Type: Voltage Nonvolatile Backup: None VCellRep reports a low-noise measurement of battery voltage as shown in Figure 27. Note: See Modes of Operation section for details to enable. AvgVCell Register (019h) Register Type: Voltage Nonvolatile Backup: None The AvgVCell register reports an average of the VCell register readings. The time period for averaging is configurable from a 12 second to 24 minute time period. See the FilterCfg register description for details on setting the time filter. The first VCell register reading after power up or exiting shutdown mode sets the starting point of the AvgVCell register. Note that when a cell relaxation event is detected, the averaging period changes to the period defined by the RelaxCfg.dt setting. The register reverts back to its normal averaging period when a charge or discharge current is detected. MaxMinVolt Register (0008h) Register Type: Special Nonvolatile Backup: Saves to nMaxMinVolt (1ACh) if nNVCfg2.enMMV is set (does not restore from nonvolatile). Initial Value: 0x00FF The MaxMinVolt register maintains the maximum and minimum of VCell register values since device reset. Each time the voltage registers update, they are compared against these values. If the new reading is larger than the maximum or less than the minimum, the corresponding value is replaced with the new reading. At power-up, the maximum voltage value is set to 00h (the minimum) and the minimum voltage value is set to FFh (the maximum). Therefore, both values are changed to the voltage register reading after the first update. Host software can reset this register by writing it to its www.analog.com Analog Devices | 110 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication power-up value of 0x00FF. The maximum and minimum voltages are each stored as 8-bit values with a 20mV resolution. Table 87 shows the register format. Table 87. MaxMinVolt (008h)/nMaxMinVolt (1ACh) Register Format D15 D14 D13 D12 D11 D10 D9 D8 MaxVCELL D7 D6 D5 D4 D3 D2 D1 D0 MinVCELL MaxVCELL: Maximum VCell register reading (20mV resolution). MinVCELL: Minimum VCell register reading (20mV resolution). MaxMinVolt is not cumulative across the entire battery lifetime. After each periodic nonvolatile-memory save, MaxMinVolt resets to 0x00FF to find the next max/min volt across the next segment of battery life. This behavior helps provide a useful log across the battery lifetime where each log segment shows the maximum and minimum voltage experienced across only that segment. MinVolt Register (0ADh) Register Type: Voltage Nonvolatile Backup: None MinVolt is doing the same job as with MaxMinVolt's minimum voltage but with a finer resolution. It is used for Intel dynamic power tests. The MinVolt register maintains the minimum BATT register value within a 45 second period or until cleared by host software. Each time the BATT register updates, it is compared against its value. If the reading is less than the minimum, the corresponding value is replaced with the new reading. At power-up, MinVolt value is set to 0xFFFF. Therefore, value is changed to the BATT register reading after the first update. Host software can reset this register by writing it to its power-up value of 0xFFFF. LSB is 1.25mV. Cell1 Register (0D8h) Register Type: Voltage Nonvolatile Backup: None In the MAX1730x/MAX1731x the Cell1 register duplicates the voltage from the VCell register (measured at the BATT pin). This register is only provided for cross-compatibility with multicell chips where a set of cell voltages is provided. AvgCell1 Register (0D4h) Register Type: Voltage Nonvolatile Backup: None The AvgCell1 register reports an 8-sample filtered average of the corresponding Cell1 register readings. Batt Register (0D7h) Register Type: Special Nonvolatile Backup: None The Batt register reports the VCell voltage on a 81.92V scale for cross-compatibility with other Maxim gauges that provide multicell functionality. This allows a generalized driver to interact both with single-cell and multicell chips. Current Measurement The MAX1730x/MAX1731x is able to monitor the current flow through the cell pack by measuring the voltage between the CSN and CSP pins over a ±51.2mV range. While in active mode, updates occur in intervals of 351.5ms. In hibernate mode, the update interval is set by the nHibCfg register. All ICs are calibrated for current-measurement accuracy at the factory. However, if the application requires, Current register readings can be adjusted by changing the nCGain register setting. If the application uses a sense resistor with a large temperature coefficient such as a copper metal board trace, current readings can be adjusted based on the temperature measured by the IC. The CGTempCo register stores a percentage www.analog.com Analog Devices | 111 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication per ºC value that are applied to current readings if the nNVCfg2.enMet bit is set. If nNVCfg1.enMtl = 0, the default temperature coefficient of copper is used for temperature adjustments. If enMt = 1, the CGTempCo register value is used for temperature adjustments. Additionally, the IC maintains a record of the minimum and maximum current measured by the IC and an average current over a time period defined by the host. Contents of the Current and AvgCurrent registers are indeterminate for the first conversion cycle time period after IC power-up. Current Measurement Timing Current measurements are always enabled regardless of nPackCfg settings. Table 88 shows the timing for current measurements made by the IC. All times in this table are considered typical. Table 88. Current Measurement Timing APPLICATION NPACKCFG SETTING Any Any REGISTER FIRST UPDATE AFTER RESET1 UPDATE RATE IN ACTIVE MODE UPDATE RATE IN HIBERNATE MODE2 Current 150ms 351ms 1.4s AvgCurrent 150ms 351ms 1.4s 1. AvgCurrent register is initialized using a single reading instead of an average. 2. Hibernate mode update times assume the recommended nHibCfg.HibScalar setting of 4 task periods. Current Register (01Ch) Register Type: Current Nonvolatile Backup: None The IC measures the voltage between the CSP and CSN pins and the result is stored as a two’s complement value in the Current register. Voltages outside the minimum and maximum register values are reported as the minimum or maximum value. The register value should be divided by the sense resistance to convert to amps. The value of the sense resistor determines the resolution and the full-scale range of the current readings. Table 89 shows range and resolution values for typical sense resistances. Table 89. Current Measurement Range and Resolution vs. Sense Resistor Value BATTERY FULL CAPACITY (mAh) SENSE RESISTOR (mΩ) nRSENSE CURRENT REGISTER RESOLUTION (μA) CURRENT REGISTER RANGE (A) CAPACITY RESOLUTION (mAh) MAXIMUM CAPACITY (mAh) > 4000 1 0064h 1562.5 ±51.2 5 144360 > 2000 2 00C8h 781.25 ±25.6 2.5 71680 > 800 5 01F4h 312.5 ±10.24 1 28672 > 400 10 03E8h 156.25 ±5.12 0.5 14336 > 200 20 07D0h 78.125 ±2.56 0.25 7168 > 80 50 1388h 31.25 ±1.02 0.1 2867 > 40 100 2710h 15.625 ±0.51 0.05 1433 CurrRep Register (022h) (MAX17300/MAX17310 Only) Register Type: Current Nonvolatile Backup: None CurrRep reports a low-noise measurement of current as shown in Figure 27. www.analog.com Analog Devices | 112 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication NOISELESS CURRENT (CURRREP) 10 0 0 10 20 30 40 50 60 70 80 CURRENT (m A) -10 -20 -30 -40 -50 -60 TIME (seconds) CURRENT CURRREP AVGCURRENT Figure 27. Noiseless Current Note: See the Modes of Operation section for details to enable. AvgCurrent Register (01Dh) Register Type: Current Nonvolatile Backup: None The AvgCurrent register reports an average of Current register readings over a configurable 0.7 second to 6.4 hour time period. See the FilterCfg register description for details on setting the time filter. The first Current register reading after returning to active mode sets the starting point of the AvgCurrent filter. MaxMinCurr Register (00Ah) Register Type: Special Nonvolatile Backup: periodically saves to nMaxMinCurr (1ABh) if nNVCfg2.enMMC is set, but does not restore from nonvolatile memory. Alternate Initial Value: 0x807F The MaxMinCurr register maintains the maximum and minimum Current register values since the last IC reset or until cleared by host software. Each time the Current register updates, it is compared against these values. If the reading is larger than the maximum or less than the minimum, the corresponding value is replaced with the new reading. At power- www.analog.com Analog Devices | 113 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication up, the maximum current value is set to 80h (the minimum) and the minimum current value is set to 7Fh (the maximum). Therefore, both values are changed to the Current register reading after the first update. Host software can reset this register by writing it to its power-up value of 0x807F. The maximum and minimum voltages are each stored as two’s complement 8-bit values with 0.4mV/RSENSE resolution. Table 90 shows the register format. Table 90. MaxMinCurr (00Ah)/nMaxMinCurr (1ABh) Register Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 MaxCurrent D4 D3 D2 D1 D0 MinCurrent MaxCurrent: Maximum Current register reading (0.40mV resolution) MinCurrent: Minimum Current register reading (0.40mV resolution) MaxMinCurr is not cumulative across the entire battery lifetime. After each periodic nonvolatile-memory save, MaxMinCurr resets to 0x807F to find the next maximum and minimum current across the next segment of battery life. This behavior helps provide a useful log across the battery lifetime where each log segment shows the maximum and minimum current experienced across only that segment. MinCurr Register (0AEh) Register Type: Current Nonvolatile Backup: None MinCurr is doing the same job as with MaxMinCurr's minimum current but with a finer resolution. It is used for Intel dynamic power tests. The MinCurr register maintains the minimum discharge Current register value within a 45 seconds period or until cleared by host software. Each time the Current register updates, it is compared against its value. If the reading is less than the minimum, the corresponding value is replaced with the new reading. At power-up, MinCurr value is set to 0 (maximum discharge current). Therefore, value is changed to the Current register reading after the first update during discharge. Host software can reset this register by writing it to its power-up value of 0. LSB is 0.0015625mV/RSense. nCGain Register (1C8h) Register Type: Special The nCGain register adjusts the gain and offset of the current measurement result. The current measurement A/D is factory trimmed to data sheet accuracy without the need for the user to make further adjustments. The recommended default for the nCGain register is 0x4000 which applies no adjustments to the Current register reading. For specific application requirements, the CGain and COff values can be used to adjust readings as follows: Current register = (current A/D reading × (CGain / 256)) + COff CGain and COff are combined into a single register formatted as shown in Table 91. Table 91. nCGain Register (1C8h) Format D15 D14 D13 D12 D11 D10 D9 CGain D8 D7 D6 D5 D4 D3 D2 D1 D0 COff COff:  COff has a range of -32 to +31 LSbs. However, It is normally not recommended to calibrate COff. COff = 0 is recommended for most applications. CGain: The recommended default value of CGain = 0x100 corresponds to a gain of 1. CGain can be calculated as follows: CGain = ((MeasuredCurrent/ReportedCurrent) x 0x0100). CGain is a signed value and can be negative. CGTempCo (0B8h)/nCGTempCo (0x1C9) Register Register Type: Special Alternate Initial Value: 0x20C8 If nNVCfg1.enCrv = 0 and nNVCfg2.enMet = 1, then CGTempCo is used to adjust current measurements for temperature. CGTempCo has a range of 0% to 3.1224% per °C with a step size of 3.1224/0x10000 percent per °C. If the nNVCfg1.enMtl bit is clear, CGTempCo defaults to a value of 0x20C8 or 0.4% per °C which is the approximate www.analog.com Analog Devices | 114 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication temperature coefficient of a copper trace. If the nNVCfg1.enMtl bit is set, CGTempCo restores from nCGTempCo (1C9h) after IC reset allowing a custom sense resistor temperature coefficient to be used. Note that nNVCfg1.enCrv and nNVCfg2.enMet cannot be enabled simultaneously. Copper Trace Current Sensing The MAX1730x/MAX1731x has the ability to measure current using a copper board trace instead of a traditional sense resistor. The main difference being the ability to adjust to the change in sense resistance over temperature. To enable copper trace current sensing, set the following configuration bits: nNVCfg1.enCrv = 0 and nNVCfg2.enMet = 1. The IC's default temperature adjustment is 0.4% per °C, but can be adjusted using the nTCurve register if nNVCfg1.enMtl = 1. Note that copper trace current sensing cannot be enabled at the same time as thermistor curve adjustment. For 1-ounce copper, a length to width ratio of 6:1 creates a 0.0035Ω sense resistor which is suitable for most applications. Table 92 summarizes the IC setting for copper trace sensing. Table 92. Copper Trace Sensing PARAMETER SETTING RESULT nNVCfg1.enCRV 0 Thermistor curve compensation disabled. nNVCfg1.enMet 1 Sense resistor temperature compensation enabled. nNVCfg2.enMlt 0 Sense resistor temperature compensation set to default of 0.4% per °C (typical copper). nRense 0x012C RSENSE Size 6:1 Sense resistor indicator to host software set to 0.0035Ω. A 6:1 length to width ratio of 1oz copper gives a resistance of 0.0035Ω. Temperature Measurement The IC can be configured to measure its own internal die temperature and an external NTC thermistor. See the nPackCfg register for details. Every 1.4s the IC biases the external thermistor with an internal trimmed pullup. After the pullup is enabled, the IC waits for a settling period of tPRE prior to making measurements on the TH pin. Measurement results are converted to a ratiometric value from 0 to 100%. The active pullup is disabled when temperature measurements are complete. This feature limits the time the external resistor-divider network is active and lowers the total amount of energy used by the system. The ratiometric results are converted to temperature using the temperature gain (nTGain), temperature offset (nTOff), and temperature curve (nTCurve) register values each time the TH pin is measured. Internal die temperature measurements are factory calibrated and are not affected by nTGain, nTOff, and nTCurve register settings. Proper nTCurve configuration is needed to achieve thermistor accuracy from -40ºC to +85ºC. For accuracy from -10ºC to +60ºC, nTCurve is not needed. The MAX17300/MAX17310 support new thermistor calculations which can achieve thermistor accuracy within ±0.5ºC from -40ºC to +85ºC. To enable the new thermistor calculations, set nNVCfg2.enTherm = 1. The ratiometric results are converted to temperature using the nThermCfg register each time the TH pin is measured. nTGain is repurposed as nThermCfg, and nTOff and nTGain can be used as general purpose data storage. Additionally, the IC maintains a record of the minimum and maximum temperature measured, and an average temperature over a time period defined by the host. Temperature Measurement Timing Temperature measurement channels are individually enabled using the nPackCfg register. A/D measurement order and firmware post processing determine when a valid reading becomes available to the user. In addition, not all channels are measured each time through the firmware task loop. Selection options for enabled channels create a large number of possible timing options. Table 93 shows the timing for all temperature measurements made by the IC for some typical pack configurations. All times in this table are considered typical. www.analog.com Analog Devices | 115 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication Table 93. Temperature Measurement Timing APPLICATION Die Temperature Only Die Temperature and Thermistor NPACKCFG SETTING nPackCfg.A1En =0 nPackCfg.A1En =1 FIRST UPDATE AFTER RESET REGISTER Temp, IntTemp, AvgIntTemp UPDATE RATE IN ACTIVE MODE1 UPDATE RATE IN HIBERNATE MODE2 351ms 550ms AvgTA 1.4s 351ms IntTemp, Temp1, Temp, AvgIntTemp, AvgTemp1 550ms AvgTA 1406ms 5.625s 351ms 1.4s 1. Not all registers update at the same time. Updates are staggered to one channel per task period. Update order is IntTemp and Temp. 2. Hibernate mode update times assume the recommended nHibCfg.HibScalar setting of 4 task periods. Temp Register (01Bh) Register Type: Temperature Nonvolatile Backup: None The Temp register is the input to the fuel gauge algorithm. The Temp register reflects the thermistor temperature if enabled, and the die-temperature if the thermistor is disabled. AvgTA Register (016h) Register Type: Temperature Nonvolatile Backup: None The AvgTA register reports an average of the readings from the Temp register. Averaging period is configurable from 6 minutes up to 12 hours as set by the FilterCfg register. The first Temp register reading after returning to active mode sets the starting point of the averaging filters. MaxMinTemp Register (009h) Register Type: Special Nonvolatile Backup: Periodically saves to nMaxMinTemp (1ADh) if nNVCfg2.enMMT is set, but does not restore from nonvolatile memory. Alternate Initial Value: 0x807F The MaxMinTemp register maintains the maximum and minimum Temp register (008h) values since the last fuel-gauge reset or until cleared by host software. Each time the Temp register updates, it is compared against these values. If the reading is larger than the maximum or less than the minimum, the corresponding values are replaced with the new reading. At power-up, the maximum value is set to 80h (minimum) and the minimum value is set to 7Fh (maximum). Therefore, both values are changed to the Temp register reading after the first update. Host software can reset this register by writing it to its power-up value of 0x807F. The maximum and minimum temperatures are each stored as two’s complement 8-bit values with 1°C resolution. Table 94 shows the format of the register. Table 94. MaxMinTemp (009h)/nMaxMinTemp (1ADh) Register Format D15 D14 D13 D12 D11 D10 D9 D8 D7 MaxTemperature D6 D5 D4 D3 D2 D1 D0 MinTemperature MaxTemperature: Maximum Temp register reading (1ºC resolution) MinTemperature: Minimum Temp register reading (1ºC resolution) MaxMinTemp is not cumulative across the entire battery lifetime. After each periodic nonvolatile memory save, MaxMinTemp resets to 0x807F to find the next maximum and minimum temperatures across the next segment of battery www.analog.com Analog Devices | 116 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication life. This behavior helps provide a useful log across the battery lifetime where each log segment shows the maximum and minimum temperature experienced across only that segment. nTCurve Register (1C9h) Register Type: Special Nonvolatile Restore: There is no associated restore location for this register If nNVCfg1.enCrv = 1 and nNVCfg2.enMet = 0, then nTCurve applies thermistor measurement curvature correction to allow thermistor measurements to be accurate over a wider temperature range. A ±3°C accuracy can be achieved over a -40°C to +85°C operating range. See Table 95 for recommended nTCurve values. If nNVCfg1.enCrv = 0 and nNVCfg2.enMet = 0, then this location can be used as general purpose data storage. nTGain (1CAh) Register/nTOff (1CBh) Register Register Type: Special External NTC thermistors generate a temperature related voltage measured at the TH pin. The nTGain, nTOff, and nTCurve registers are used to calculate temperature with an accuracy of ±3°C over a range of -40°C to +85°C. Table 95 lists the recommended nTGain, nTOff, and nTCurve register values for common NTC thermistors. Table 95. Register Settings for Common Thermistor Types R25C (kΩ) BETA RECOMMENDED NTGAIN RECOMMENDED NTOFF RECOMMENDED NTCURVE Murata NCP15XH103F03RC 10 3435 0xEE56 0x1DA4 0x0025 Fenwal 197-103LAG-A01 10 3974 0xF49A 0x16A1 0x0064 TDK Type F 10 4550 0xF284 0x18E8 0x0035 Murata NCU15WF104F6SRC 100 4250 0xEEF6 0x1BC6 0x0022 TDK NTCG064EF104FTBX 100 4225 0xEF99 0x1C31 0x001C THERMISTOR Semitec 103AT-2, nThermCfg (1CAh) (MAX17300/MAX17310 Only) External NTC thermistors generate a temperature related voltage measured at the TH pin. Set nThermCfg register to compensate the thermistor for accurate translation of temperature when nNVCfg1.enTherm = 1. If nNVCfg1.enTherm = 1, then nTOff and nTCurve locations can be used as general purpose data storage. Table 96 lists common NTC thermistors with their associated Beta value and the nThermCfg value. The thermistors in the table translate within ±0.5°C from -40°C to +85°C. For other thermistors, use the equation to translate within ±2.5°C. Table 96. Register Settings for Common Thermistor Types with New Thermistor Calculations R25C(kΩ) BETA at +25°C to +85°C nTHERMCFG Murata NCP15XH103F03RC 10 3435 71BEh Semitec 103AT-2 10 3435 91C3h TDK B57560G1103 7003 10 3610 5183h Murata NCU15WF104F6SRC 100 4250 48EBh NTC TH11-4H104F 100 4510 08D9h TDK NTCG064EF104FTBX 100 4225 58EFh THERMISTOR Other 10K 10 nThermCfg = 7000h + (3245919/Beta* - 512) Other 100K 100 nThermCfg = 3000h + (3245919/Beta* - 512) www.analog.com Analog Devices | 117 MAX17300-MAX17303/ MAX17310-MAX17313 1-Cell ModelGauge m5 EZ Fuel Gauge with Protector, Internal Self-Discharge Detection and SHA-256 Authentication *Use Beta +25°C to +85°C. DieTemp (034h) Register Register Type: Temperature Nonvolatile Backup: None This register displays temperature in degrees Celsius, ±128ºC, or 1ºC in the high-byte or 1/256ºC LSB. AvgDieTemp (040h) Register Register Type: Temperature Nonvolatile Backup: None The AvgDieTemp register reports a 4-sample filtered average of the DieTemp register. Power Power Register (0B1h) Instant power calculation from immediate current and voltage. LSB is 0.8mW. AvgPower Register (0B3h) Filtered Average Power from the power register. LSB is 0.8mW with a 10mΩ sense resistor. Filter bits locate in Config2.POWR. Status and Configuration Registers The following registers control IC operation not related to the fuel gauge such as power-saving modes, nonvolatile backup, and ALRT pin functionality. DevName Register (021h) Register Type: Special Nonvolatile Backup: None The DevName register holds device type and firmware revision information. This allows host software to easily identify the type of IC being communicated to. Table 97 shows the DevName register format. Table 97. DevName Register (021h) Format D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 Revision D5 D4 D3 D2 D1 D0 Device The DevName for each part number is listed in Table 98. Table 98. DevName For Each Part Number PART NUMBER PASS 2 DevName MAX17300/MAX17310 PASS 3 DevName 4070h MAX17301/MAX17311 4065h 4074h MAX17302/MAX17312 4066h 4078h MAX17303/MAX17313 4067h 407Ch nPReserved0/1/2/3 Registers (Addresses 1C0h-1C3h) must be set accoring to the DevName for proper operation. Table 99. nPReserved0-3 Settings Based on DevName REGISTER NAME REGISTER ADDRESS VALUE FOR DEVNAME
MAX17303X+T 价格&库存

很抱歉,暂时无法提供与“MAX17303X+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MAX17303X+T
  •  国内价格 香港价格
  • 2500+17.788962500+2.13528

库存:6325

MAX17303X+T
  •  国内价格 香港价格
  • 1+50.003001+6.00206
  • 10+33.4810310+4.01886
  • 25+29.1835725+3.50302
  • 100+24.36755100+2.92494
  • 250+22.02832250+2.64415
  • 500+20.60180500+2.47292
  • 1000+19.417011000+2.33070

库存:6325