0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX17823HGCB/V+

MAX17823HGCB/V+

  • 厂商:

    AD(亚德诺)

  • 封装:

    64-LQFP

  • 描述:

    数据采集系统(DAS) 12 b 并联 64-LQFP(10x10)

  • 数据手册
  • 价格&库存
MAX17823HGCB/V+ 数据手册
EVALUATION KIT AVAILABLE MAX17823H General Description The MAX17823H are data-acquisition systems for the management of high-voltage battery modules. The systems feature a 12-bit SAR ADC that can measure 12 cell voltages and two temperatures in 161µs. There are 12 internal switches for cell balancing and extensive built-in diagnostics. Up to 32 devices can be daisychained together to manage 384 cells and monitor 64 temperatures. Cell voltages (0 to 5V) are measured differentially over a 65V common-mode range. Cell measurements have a typical accuracy of 2mV (3.6V cell, +25°C). If oversampling is enabled, up to 128 measurements per channel can be averaged internally with 14-bit resolution. The system can shut itself down in the event of a thermal overload by measuring its own die temperature. The systems use Maxim’s battery-management UART protocol for robust communications and when used in conjunction with the MAX17880 12-channel battery monitor, they are ideal for automotive battery-management systems that require a high safety-integrity level. Applications ●● ●● ●● ●● ●● ●● ●● High-Voltage Battery Stacks Electric Vehicles (EVs) Hybrid Electric Vehicles (HEVs) Electric Bikes Battery-Backup Systems (UPS) Super-Cap Systems Battery-Powered Tools Ordering Information appears at end of data sheet. 12-Channel, High-Voltage Data-Acquisition Systems Benefits and Features ●● AECQ-100 Grade 2 Temperature Range • -40°C to +105°C ●● Operating Voltage from 9V to 65V ●● Ultra-Low Power Operation • Standby Mode: 2mA • Shutdown Mode: 2µA ●● 12 Cell-Voltage-Measurement Channels • 2mV Accuracy (3.6V, +25°C) • 5mV Accuracy (0°C to +45°C) • 10mV Accuracy (-40°C to +105°C) ●● 12 Cell-Balancing Switches • Up to 650mA per Switch • Emergency-Discharge Mode ●● Two Temperature-Measurement Channels ●● Die Temperature Measurement ●● Automatic Thermal Protection ●● 29 Voltage Threshold Alerts • 12 Overvoltage Faults • 12 Undervoltage Faults • Two Overtemperature Faults • Two Undertemperature Faults • One Cell-Mismatch Alert (Highest Cell vs. Lowest Cell) ●● Four GPIOs ●● Built-in Diagnostics to Support ASIL D and FMEA Requirements ●● Battery-Management UART Protocol • Daisy-Chain Up to 32 Devices • Communication Port Isolation • Up to 2Mbps Baud Rate (Autodetect) • 1.5µs Propagation Delay per Device • Packet-Error Checking (PEC) ●● Factory-Trimmed Oscillators • No External Crystals Required ●● 10mm x 10mm Package (64-Pin LQFP) 19-100391; Rev 0; 8/18 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Data Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Precision Internal Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Measurement Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Cell Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Block Voltage Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Auxiliary Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 THRM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Computing Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Temperature Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Die Temperature Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Acquisition Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Acquisition Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Scan Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Measurement Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Double-buffer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Measurement Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Voltage Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Cell Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Cell Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Temperature Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Cell-Balancing Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 www.maximintegrated.com Maxim Integrated │  2 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems TABLE OF CONTENTS (CONTINUED) Maximum Cell-Balancing Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Cell-Balancing Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Emergency-Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 HV Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Device ID Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Power-On and Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Power-On Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Shutdown Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Shutdown Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 UART Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 UART Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 UART Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 UART RX Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 UART Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 External Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Internal Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Baud-Rate Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Battery-Management UART Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Command Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Preamble Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Data Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Stop Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 UART Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 UART Communication Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Command Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Command Byte Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Register Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Register Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Data-Check Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 PEC Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Alive-Counter Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Fill Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 www.maximintegrated.com Maxim Integrated │  3 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems TABLE OF CONTENTS (CONTINUED) Battery-Management UART Protocol Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 HELLOALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 WRITEALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 WRITEDEVICE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 READALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 READDEVICE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ROLLCALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ALTREF Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 VAA Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 LSAMP Offset Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Zero-Scale ADC Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Full-Scale ADC Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 BALSW Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 BALSW Short Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 BALSW Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Even/Odd Sense-Wire Open Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Diagnostic Test Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Shutdown Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HVMUX Switch Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 HVMUX Switch Shorted Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 HVMUX Test Source Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Cn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Cn Shorted to SWn Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Cn Leakage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Cell Overvoltage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Cell Undervoltage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ALRTHVUV Comparator Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ALU Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Calibration ROM Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Vehicle Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Battery Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Daisy-Chain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Distributed-Module Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 www.maximintegrated.com Maxim Integrated │  4 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems TABLE OF CONTENTS (CONTINUED) Combining MAX17823H and MAX17880 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Acquisition Latency for Daisy-Chain Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Power-Supply Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Connecting Cell Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 External Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 External Cell-Balancing Using FET Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 External Cell Balancing Using BJT Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 External Cell-Balancing Short-Circuit Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 High-Z Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 UART Supplemental ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Single-Ended RX Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 UART Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 UART Transformer Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 UART Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Device Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 PEC Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Version Register (address 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 ADDRESS Register (address 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 STATUS Register (address 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 FMEA1 Register (address 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 ALRTCELL Register (address 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ALRTOVCELL Register (address 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ALRTUVCELL Register (address 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ALRTBALSW Register (address 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 MINMAXCELL Register (address 0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 FMEA2 Register (address 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ID1 Register (address 0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ID2 Register (address 0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 DEVCFG1 Register (address 0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 GPIO Register (address 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 MEASUREEN Register (address 0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 SCANCTRL Register (address 0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 ALRTOVEN Register (address 0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 www.maximintegrated.com Maxim Integrated │  5 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems TABLE OF CONTENTS (CONTINUED) ALRTUVEN Register (address 0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 WATCHDOG Register (address 0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 ACQCFG Register (address 0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 BALSWEN Register (address 0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 DEVCFG2 Register (address 0x1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 BALDIAGCFG1 Register (address 0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 BALSWDCHG Register (address 0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 TOPCELL Register (address 0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 CELLn Register (addresses 0x20 to 0x2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 VBLOCK Register (address 0x2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 AIN1 Register (address 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 AIN2 Register (address 0x2E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 TOTAL Register (address 0x2F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 OVTHCLR Register (address 0x40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 OVTHSET Register (address 0x42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 UVTHCLR Register (address 0x44) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 UVTHSET Register (address 0x46) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 MSMTCH Register (address 0x48) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 AINOT Register (address 0x49) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 AINUT Register (address 0x4A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 BALSHRTTHR Register (address 0x4B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 BALLOWTHR Register (address 0x4C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 BALHIGHTHR Register (address 0x4D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 DIAG Register (address 0x50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 DIAGCFG Register (address 0x51) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 CTSTEN Register (address 0x52) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 ADCTEST1A Register (address 0x57) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 ADCTEST1B Register (address 0x58) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 ADCTEST2A Register (address 0x59) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 ADCTEST2B Register (address 0x5A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 CALx Registers (addresses 0xC0–0xCA, 0xCF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 www.maximintegrated.com Maxim Integrated │  6 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems LIST OF FIGURES Figure 1. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 2. ESD Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 3. Analog Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 4. VBLKP Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 5. Auxiliary Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 6. Auxiliary Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 7. Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 8. Acquisition Mode Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 9. Acquisition, OVSAMP[2:0] = 0h and SCANMODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 10. Acquisition, OVSAMP[2:0] > 0 and SCANMODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 11. Measurement Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 12. Double-Buffer Mode DATAMOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 13. Double-Buffer Mode Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 14. Cell Voltage Alert Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 15. Internal Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 16. Cell-Balancing Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 17. Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 18. HV Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 19. SHDNL Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 20. Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 21. Shutdown Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 22. Power-On and Shutdown Timing (UART Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 23. Shutdown Timing (Software Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 24. UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 25. UART Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 26. UART Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 27. Command Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 28. Preamble Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 29. Data Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 30. Stop Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 31. Communication Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 32. ALTREF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 33. VAA Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 34. LSAMP Offset Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 35. Zero-Scale ADC Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 36. Full-Scale ADC Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 37. Balancing Switch Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 www.maximintegrated.com Maxim Integrated │  7 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems LIST OF FIGURES (CONTINUED) Figure 38. BALSW Short Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 39. BALSW Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 40. Cell Sense-Wire Open Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 41. Sense-Wire Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 42. Test Current Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 43. Shutdown Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 44. HVMUX Switch Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Figure 45. SWn to Cn Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 46. SWn-1 to Cn Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 47. Redundant HVMUX Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 48. HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 49. HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 50. ALU Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Figure 51. AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Figure 52. AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Figure 53. Electric Vehicle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 54. Daisy-Chain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 55. Distributed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Figure 56. Power-Supply Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 57. External Balancing (FET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Figure 58. External Cell Balancing (BJT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Figure 59. UART Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Figure 60. High-Z Idle Mode Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 61. External ESD Protection for UART TX Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 62. External ESD Protection for UART RX Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 63. Application Circuit for Single-Ended Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 64. UART Transformer Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Figure 65. UART Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 66. Device Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 67. CRC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Figure 68. PEC Calculation Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 www.maximintegrated.com Maxim Integrated │  8 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems LIST OF TABLES Table 1. System Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 2. Numeric Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 3. Data Acquisition Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 4. Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 5. THRM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6. AINTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 7. Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 8. Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 9. Acquisition Time Examples (with AINCFG[5:0] = 00h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 10. Measurement Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 11. Maximum Allowed Balancing Current per Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 12. Cell-Balancing Watchdog Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 13. Emergency-Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 14. Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 15. Low-Voltage Regulator Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 16. HV Charge-Pump Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 17. Oscillator Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 18. Shutdown Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 19. UART RX Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 20. Data Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 21. Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 22. Command-Packet Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 23. Command-Byte Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 24. Data-Check Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 25. HELLOALL Sequencing (z = Total Number of Devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 26. WRITEALL Sequencing (Unchanged by Daisy-Chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 27. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 28. READALL Command Sequencing (z = no. of devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 29. READDEVICE Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 30. Summary of Built-In Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 www.maximintegrated.com Maxim Integrated │  9 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems LIST OF TABLES (CONTINUED) Table 31. BALSW Short-Diagnostic Auto Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 32. BALSW Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 33. BALSW Open-Diagnostic Auto Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 34. Odd Sense-Wire Open-Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 35. Even Sense-Wire Open-Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 36. Sense-Wire Open-Diagnostic Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 37. HVMUX Output Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 38. Shutdown Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 39. HVMUX Switch Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 40. HVMUX Test Source Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 41. Cn Pin Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 42. CRC Bit Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 43. FET Balancing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 44. BJT Balancing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 www.maximintegrated.com Maxim Integrated │  10 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Simplified Operating Circuit TO MODULE n+1 R81 100Ω BUS BAR VBAT+ D91 R32 CELL12 R80 10Ω C80 2.2µF 100V R13 R12 C81 4.7µF 50V C13 D82 BAV70 C12 R31 C11 C32 R30 C10 C31 R29 C9 C30 R28 C8 C29 R27 15-WIRE BATTERY PACK C7 C28 R26 C6 C27 R25 CELL5 C5 C26 R24 C4 C25 R23 C3 C24 R22 C2 C23 R21 C1 C22 VBATBUS BAR D90 C83 1.0µF 16V VDDL1 C84 0.47µF 16V GNDL1 VDDL2 C7 GNDL2 VDDL3 C6 GNDL3 SHDNL C5 AGND CTG C85 0.47µF 16V C86 0.47µF 16V C87 1.0nF 25V GPIO0 GPIO1 GPIO2 GPIO3 C4 C3 C0 C21 C20 1µF TXLP TXLN RXLP RXLN C2 C1 THRM AGND C0 SW0 TO / FROM HOST (IF USED) MODULE n-1 OR HOST SW1 R0 R20 C82 0.1µF 100V AGND C8 SW2 R1 CELL1 CPN VAA SW3 R2 CELL2 CPP C9 SW4 R3 CELL3 C10 SW5 R4 CELL4 C11 SW6 R5 RXLP RXLN TXLP TXLN UART INTERFACE NOTES: 1. CAPACITOR RATINGS SHOWN IN THIS DATASHEET ARE BASED ON EXPECTED CONDITIONS AND MAY BE MODIFIED BASED ON APPLICATIONS REQUIREMENTS. 2. D90, D91 (OPTIONAL) PROVIDE DEVICE POWER THROUGH SENSE WIRES IF ANY VBAT SUPPLY WIRE IS OPEN. 3. SEE APPLICATIONS SECTION FOR UART INTERFACE. 4. R0 – R13: 1kΩ (APPLICATION DEPENDENT) 5. R20 – R32: 12Ω (APPLICATION DEPENDENT) 5. C0 – C12, C21 – C32: 100nF (APPLICATION DEPENDENT) 6. C13: 470nF (APPLICATION DEPENDENT) SW7 R6 CELL6 C12 SW8 R7 CELL7 VBLKP SW9 R8 CELL8 TXUP TXUN RXUP RXUN SW10 R9 CELL9 DCIN SW11 R10 CELL10 MODULE n+1 SW12 R11 CELL11 MAX17823H HV RXUP RXUN TXUP TXUN UART INTERFACE C62 100pF R60 10k R61 10k AUXIN1 AUXIN2 AGND C60 T 100pF RT1 10k C61 T 100pF RT1 10k TO MODULE n-1 www.maximintegrated.com Maxim Integrated │  11 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Absolute Maximum Ratings HV to AGND............................................................. -0.3 to +80V DCIN, SWn, VBLKP, Cn to AGND............................ -0.3V to min (VHV + 0.3V, 72V) Cn to Cn-1...............................................................-72V to +72V SWn to SWn-1.........................................................-0.3V to +9V VAA to AGND........................................................... -0.3v to +4V VDDL1 to GNDL1......................................................-0.3V to +4V VDDL2 to GNDL2......................................................-0.3V to +6V VDDL3 to GNDL3......................................................-0.3V to +6V VAA to VDDL1, VDDL2, VDDL3...............................-0.3V to +0.3V AGND to GNDL1, GNDL2, GNDL3.......................-0.3V to +0.3V AUXIN1, AUXIN2, THRM to AGND.............. -0.3V to VAA + 0.3V SHDNL to AGND.........................................-0.3 to VDCIN + 0.3V CTG to AGND...........................................................-0.3V to +6V RXLP, RXLN, RXUP, RXUN to AGND.....................-30V to +30V TXLP, TXLN to GNDL2.............................................-0.3V to +6V TXUP, TXUN to GNDL3...........................................-0.3V to +6V CPP to AGND........................................ VDCIN - 1V to VHV + 1V CPN to AGND.......................................... -0.3V to VDCIN + 0.3V GPIO0, GPIO1, GPIO2, GPIO3 to GNDL1................................. -0.3V to VDDL1 + 0.3V Maximum Continuous Current into Any Pin (Note 1).....................................................±20mA Maximum Continuous Current into SWn Pin (Note 2).................................................±650mA Maximum Average Power for ESD Diodes (Note 3)................................................. 14.4W/√τ Package Continuous Power (Note 4).............................2000mW Package Junction to Ambient Thermal Resistance, θJA.......40°C/W Operating Temperature Range.......................... -40°C to +105°C Storage Temperature Range............................. -55°C to +150°C Junction Temperature (continuous).................................... 150°C Soldering Lead Temperature (10s, max)............................ 300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note 1: Balancing switches disabled. Note 2: One balancing switch enabled, 60s maximum. Note 3: Average power for time period τ where τ is the time constant (in µs) of the transient diode current during hot-plug event. For, example, if τ is 330µs, the maximum average power is 0.793W. Peak current must never exceed 2A. Actual average power during hot-plug must be calculated from the diode current waveform for the application circuit and compared to the maximum rating. Note 4: Multilayer board. For TA > 70ºC derate 25mW/°C. Electrical Characteristics (VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at TA = +25°C. Operation is with the recommended application circuit.) (Note 5) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 65 V 0.1 2 µA POWER REQUIREMENTS Supply Voltage VDCIN 9 DCIN Current, Shutdown Mode IDCSHDN VSHDNL= 0V DCIN Current, Standby Mode (Note 16) IDCSTBY VSHDNL > 1.8V, UART in idle mode, not in acquisition mode, BALSWEN, CTSTEN = 0000h 1.4 2.0 2.6 mA DCIN Current, Acquisition Mode (Note 16) IDCMEAS MEASUREEN = 0FFFh, acquisition mode 3.5 5.4 8.5 mA Incremental DCIN Current, Communication Mode (Note 16) IDCCOMM Baud rate = 2Mb/s (0% idle time preambles mode), 200pF load on TXUP, 200pF on TXUN, TXL not active, not in acquisition mode, BALSWEN, CTSTEN = 0000h 1.5 3 mA HV Current, Acquisition Mode IHVMEAS Acquisition mode, MEASUREEN = 0FFFh, VHV = VDCIN + 5.5V 1.1 1.3 mA www.maximintegrated.com 0.9 Maxim Integrated │  12 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Electrical Characteristics (continued) (VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at TA = +25°C. Operation is with the recommended application circuit.) (Note 5) PARAMETER SYMBOL Incremental HV Current, Cell-Balancing Mode IHVBAL CONDITIONS VHV = VDCIN + 5.5V, n balancing switches enabled MIN TYP MAX UNITS (n+1) x5 (n+1) x 15.5 (n+1) x 26 µA CELL VOLTAGE INPUTS (Cn, VBLKP) Unipolar mode 0.2 4.8 V Bipolar mode -2.3 +2.3 V 0 65 V ±10 +200 nA 4.5 10 20 MΩ CTSTDAC[3:0] = Fh 1.7 3.3 5 kΩ VSW0 = 0V, VSWn = 5V, VSWn-1 = 0V -1 +1 µA BALSWEN[n-1] = 1, ISWn = 100mA 0.2 0.6 Ω Differential Input Range (Note 11) VCELLn Common-Mode Input Range VCnCM Not connected to SWn inputs Input Leakage Current ILKG_Cn Not in acquisition mode, VCn = 65V -200 VBLKP Input Resistance RVBLKP VBLKP = VDCIN = 57.6V HVMUX Switch Resistance RHVMUX ILKG_SW CELL-BALANCING INPUTS (SWn) Leakage Current Resistance, SWn to SWn-1 Maximum Allowed Balancing Current (Note 15) RSW IBAL_MAX TJ = 105°C, 25% average duty cycle per switch 0.35 650 mA AUXILIARY INPUTS (AUXIN1, AUXIN2) Input Voltage Range Input Leakage Current VAUXIN ILKG_AUX 0 Not in acquisition mode, VAUXINn = 1.65V -400 VTHRM V 10 +400 nA 25 70 Ω 1 µA THRM OUTPUT Switch Resistance, VAA to THRM Leakage Current RTHRM ILKG_THRM VTHRM = 3.3V -1 MEASUREMENT ACCURACY Unipolar mode, VCELLn = 3.6V ±2 Bipolar mode, VCELLn = 1.1V Total Measurement Error, HVMUX Inputs (Note 12) VCELLnERR Unipolar mode 0.2V ≤ VCELLn ≤ 4.3V, 0°C ≤ TA ≤ 45°C ±3.6 +5 mV Unipolar mode, 0.2V ≤ VCELLn ≤ 4.8V Bipolar mode, -2.3V ≤ VCELLn ≤ 2.3V, SWn inputs not connected www.maximintegrated.com -5 -10 +10 Maxim Integrated │  13 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Electrical Characteristics (continued) (VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at TA = +25°C. Operation is with the recommended application circuit.) (Note 5) PARAMETER SYMBOL CONDITIONS MIN Unipolar mode, VCELL = 3.6V Total Measurement Error, ALTMUX Inputs (Note 12) Unipolar mode, 0.2V ≤ VCELLn ≤ 4.8V Bipolar mode, 0V ≤ VCELLn ≤ 2.3V Channel Noise (Note 7) VCELLNOISE Total Measurement Error, VBLKP Input VBLKPERR Offset Error, AUXINn Inputs UNITS mV -10 No oversampling 9V ≤ VBLKP ≤ 57.6V, VDCIN = 57.6V, average of 64 acquisitions MAX ±2 Bipolar mode, VCELLn = 1.1V VSWnERR TYP +10 1.1 mVRMS -180 +180 mV VOS_AUX -3 +3 mV Gain Error, AUXINn Inputs AV_AUX -0.3 -0.3 % Total Measurement Error, Die Temperature (Note 7) TDIE_ERR +5 °C Differential Nonlinearity (Any Conversion) TJ = -40ºC to 105ºC, no oversampling DNL ±3 ±1.0 ADC Resolution Level-Shifting Amplifier Offset (Note 14) -5 LSbs 12 VOS_LSAMP DIAGSEL[2:0] = 011b -200 bits -10 +200 mV 0.6 V SHDNL INPUT AND CHARGE PUMP Input Low Voltage VIL_SHDNL Input High Voltage VIH_SHDNL Regulated Voltage VSHDNLIMIT Pulldown Resistance RFORCEPOR Input Leakage Current ILKG_SHDNL Charge-Pump Current (Note 10) ISHDNL www.maximintegrated.com 1.8 VDCIN ≥ 12V 8 VDCIN = 9V FORCEPOR = 1 V 9.5 6.7 2.5 4.7 VSHDNL = 65V 15 V V 8 kΩ 1 µA 40 75 µA 117 350 µA VSHDNL = 3.3V VSHDNL < VSHDNLIMIT, baud rate = 2Mbps 12 Maxim Integrated │  14 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Electrical Characteristics (continued) (VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at TA = +25°C. Operation is with the recommended application circuit.) (Note 5) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 0.8 V GENERAL-PURPOSE I/O (GPIOn) Input Low Voltage VIL_GPIO Input High Voltage VIH_GPIO 2.4 GPIO[15:12] = 0h (input) 0.5 V Pulldown Resistance RGPIO 2 7.5 MΩ Output Low Voltage VOL_GPIO ISINK = 3mA 0.4 V Output High Voltage VOH_GPIO ISOURCE = 3mA VDDL1 - 0.4 VAA 0 ≤ IAA < 10mA 3.2 3.3 3.4 V VAA shorted to AGND 10 20 70 mA 2.85 2.95 3.02 V 3.0 3.1 V V REGULATOR Output Voltage Short-Circuit Current POR Threshold POR Hysteresis Thermal-Shutdown Temperature (Note 7) Thermal-Shutdown Hysteresis (Note 7) IAASC VPORFALL VAA falling VPORRISE VAA rising VPORHYS TSHDN Temperature rising THYS 40 mV 145 °C 15 °C HV CHARGE PUMP Output Voltage (VHV–VDCIN) Charge Pump Efficiency (Note 18) HV Headroom (VHV–VC12) VHV-DCIN 9V ≤ VDCIN ≤ 12V, ILOAD = 1.5mA 5 5.5 6 12V ≤ VDCIN ≤ 65V, ILOAD = 3mA 5 5.5 6 VDCIN = 57.6V VHVHDRM ALRTHVHDRM = 0 38 V % 4.7 V OSCILLATORS 32kHz Oscillator Frequency fOSC_32K 32.11 32.768 33.42 kHz 16MHz Oscillator Frequency fOSC_16M 15.68 16 16.32 MHz CTSTDAC[3:0] = Fh, VCn < VAA – 1.4V, VAA = 3.3V 80 100 120 CTSTDAC[3:0] = 6h, VCn < VAA – 1.4V, VAA = 3.3V 36 45 54 CTSTDAC[3:0] = 6h, VCn > VAGND + 1.4V -54 -45 -36 CTSTDAC[3:0] = Fh, VCn > VAGND + 1.4V -120 -100 -80 DIAGNOSTIC TEST SOURCES Cell Test-Source Current www.maximintegrated.com ITSTCn µA Maxim Integrated │  15 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Electrical Characteristics (continued) (VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at TA = +25°C. Operation is with the recommended application circuit.) (Note 5) PARAMETER HVMUX Test-Source Current AUXIN Test-Source Current SYMBOL ITSTMUX ITSTAUXIN CONDITIONS MIN TYP MAX CTSTDAC[3:0] = Fh, VCn < VHV - 1.4V, VHV = 53.5V 40 50 60 CTSTDAC[3:0] = 6h, VCn < VHV - 1.4V, VHV = 53.5V 18 22.5 27 CTSTDAC[3:0] = Fh, VAUXINn < VAA - 1.4V, VAA = 3.3V 80 100 120 CTSTDAC[3:0] = 6h, VAUXINn < VAA - 1.4V, VAA = 3.3V 36 45 54 CTSTDAC[3:0] = 6h VAUXINn > VAGND + 1.4V -54 -45 -36 CTSTDAC[3:0] = Fh, VAUXINn > VAGND + 1.4V -120 -100 -80 DIAGSEL[2:0] = 001b 1.23 1.242 1.254 UNITS µA µA DIAGNOSTIC REFERENCES ALTREF Voltage (Note 14) VALTREF ALTREF Temperature Coefficient (ΔVALTREF/ΔT) (Note 7) AALTREF ±25 ppm/°C 1.2 V PTAT Output Voltage (Note 7) VPTAT PTAT Temperature Coefficient (ΔVPTAT/ΔT) (Note 7) AV_PTAT 3.07 mV/°C TOS_PTAT 0 °C PTAT Temperature Offset (Note 7) TJ = 120°C V ALERTS ALRTVDDLn Threshold VVDDL_OC VAA = 3.3V 3 3.15 3.25 V ALRTGNDLn Threshold VGNDL_OC AGND = 0V 0.05 0.15 0.3 V ALRTHVUV Threshold VHVUV VHV–VDCIN falling 3.8 4.1 4.25 V ALRTHVOV Threshold VHVOV VHV–VDCIN rising 7 8.5 10 V 115 120 125 °C ALRTTEMP Threshold (Note 7) ALRTTEMP Hysteresis (Note 7) www.maximintegrated.com TALRTTEMP TALRTTEMPHYS 2 °C Maxim Integrated │  16 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Electrical Characteristics (continued) (VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at TA = +25°C. Operation is with the recommended application circuit.) (Note 5) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 0.4 V UART OUTPUTS (TXLP, TXLN, TXUP, TXUN) Output Low Voltage VOL ISINK = 20mA Output High Voltage (TXLP, TXLN) VOH ISOURCE = 20mA VDDL2 - 0.4 V Output High Voltage (TXUP, TXUN) VOH ISOURCE = 20mA VDDL3 - 0.4 V Leakage Current ILKG_TX VTX = 1.5V -1 +1 µA +25 V UART INPUTS (RXLP, RXLN, RXUP, RXUN) Input Voltage Range VRX -25 Receiver High-Comparator Threshold (Notes 9, 13) VCH VDDL/2 - 0.4 VDDL/2 VDDL/2 + 0.4 V Receiver Zero-CrossingComparator Threshold (Note 9) VZC -0.4 0 +0.4 V Receiver Low-Comparator Threshold (Notes 9, 13) VCL 75 mV VHYS_RX VDDL/3 V VCM ±1.0 µA 4 pF Receiver Comparator Hysteresis (Note 9) Receiver Common-Mode Voltage Bias (Notes 9, 13) Leakage Current ILKG_RX VRX = 1.5V Input Capacitance (RXLP, RXLN) CRXL 2 pF Input Capacitance (RXUP, RXUN) CRXU 75 mV UART TIMING Bit Period (Note 17) RX Idle to START Setup Time (Notes 6, 7) STOP Hold Time to Idle (Notes 6, 7) RX Minimum Idle Time (STOP Bit to START Bit) (Note 6, 7) tBIT tRXSTSU Baud rate = 2Mb/s 8 Baud rate = 1Mb/s 16 Baud rate = 0.5Mb/s 32 0 tSPHD tRXIDLESPST 1/fOSC_16M 1 tBIT 0.5 tBIT 1 tBIT RX Fall Time (Notes 7, 8) tFALL 0.5 tBIT RX Rise Time (Notes 7, 8) tRISE 0.5 tBIT www.maximintegrated.com Maxim Integrated │  17 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Electrical Characteristics (continued) (VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at TA = +25°C. Operation is with the recommended application circuit.) (Note 5) PARAMETER Propagation Delay (RX Port to TX Port) Startup Time from SHNDL High and VAA = 0V, to RXUP/RXUN Valid SYMBOL CONDITIONS MIN TYP MAX UNITS tPROP 2.5 3 tBIT tSTARTUP 1 ms Note 5: Unless otherwise noted, limits are 100% production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Note 6: Maximum limited by application circuit. Note 7: Guaranteed by design and not production tested. Note 8: Fall time measured 90% to 10%; rise time measured 10% to 90%. Note 9: Differential signal (VRXP - VRXN) where VRXP and VRXN do not exceed a common-mode voltage range of ±25V. Note 10: ISHDNL measured with VSHDNL = 0.3V, STOP characters, zero idle time, VRX_PEAK = 3.3V Note 11: VCELLn = VCn - VCn-1, range over which measurement settling time and accuracy is guaranteed. Note 12: VCELLn = VCn - VCn-1, VCELLn = VCELLn-1, and VDCIN = 12 x │VCELLn │ (9V min). No oversampling enabled (OVSAMPL[2:0] = 0). Average of 64 acquisitions. Note 13: VDDL = VDDL2 for lower port and VDDL = VDDL3 for upper port. Note 14: As measured during specified diagnostic mode. Note 15: Not production tested. See the Cell-Balancing section for details on the maximum allowed balancing current. Duty cycle is calculated for a 10-year device lifetime. Note 16: Acquisition mode (ADC conversions) is entered when the SCAN bit is set and ends when SCANDONE is set. With the typical acquisition duty cycle very low, the average current (IDCIN) is much less than IDCMEAS. Total supply current during communication IDCIN = IDCCOMM + IDCSTBY. Note 17: In daisy-chain applications, the bit time of the second stop bit may be less than specified to account for clock-rate variation and sampling error between devices. Note 18: Charge-pump efficiency = ΔILOAD/ΔISUPPLY, where ILOAD is applied from HV to AGND, ΔILOAD = 5mA, and ΔISUPPLY = IDCIN (for ILOAD = 5mA) - IDCIN (for ILOAD = 0). CHARGE PER PREAMBLE BYTE KEEP ALIVE OPERATION 1.200 MAX17823A-B DS toc01 CHARGE TRANSFERED (NANO COULOMBS) Typical Operating Characteristics UART = 500kbps 1.000 0.800 0.600 UART = 1Mbps 0.400 0.200 0.000 UART = 2Mbps 2.60 3.10 3.60 COMMUNICATIONS VOLTAGE (VOLTS Pk) www.maximintegrated.com Maxim Integrated │  18 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems CPP DCIN HV N.C. VBLKP C12 SW12 C11 SW11 C10 SW10 C9 SW9 C8 SW8 TOP VIEW CPN Pin Configuration 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 + N.C. 1 48 C7 AGND 2 47 SW7 SHDNL 3 46 C6 AGND 4 45 SW6 VAA 5 44 C5 TXUN 6 43 SW5 TXUP 7 42 C4 GNDL1 8 41 SW4 VDDL1 9 40 C3 GNDL3 10 39 SW3 VDDL3 11 38 C2 RXUN 12 37 SW2 RXUP 13 36 C1 GPIO3 14 35 SW1 GPIO2 15 34 C0 GPIO1 16 33 SW0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 GPIO0 N.C. N.C. TXLP TXLN VDDL2 GNDL2 RXLP RXLN N.C. N.C. CTG AUXIN2 AUXIN1 AGND THRM MAX17823H LQFP www.maximintegrated.com Maxim Integrated │  19 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Pin Description PIN NAME FUNCTION 1 N.C. N.C. 2 AGND Ground DESCRIPTION Not Connected. Connect to ground or leave unconnected. Analog Ground. Connect to negative terminal of cell 1 and ground plane. Shutdown Active-Low Input. Drive > 1.8V to enable operation, and drive < 0.6V to reset device and place in shutdown mode. +72V tolerant. If not driven externally, this input can be controlled solely through UART communication and software control. Bypass with a 1nF capacitor to AGND. For single-ended UART, SHDNL must be driven externally. 3 SHDNL Input 4 AGND Ground Analog Ground. Connect to negative terminal of cell 1 and ground plane. 5 VAA Power 3.3V Regulator Output Used to Supply VDDL1, VDDL2, and VDDL3. Bypass with a 1µF capacitor to ground. 6 TXUN Output Negative Output for Upper-Port Transmitter. Driven between VDDL3 and GNDL3. 7 TXUP Output Positive Output for Upper-Port Transmitter. Driven between VDDL3 and GNDL3. 8 GNDL1 Ground Digital Ground. Connect to ground plane. 9 VDDL1 Power 3.3V Digital Supply. Connect externally to VAA and bypass with 0.47µF capacitor to GNDL1. 10 GNDL3 Ground Ground for Upper-Port Transmitter. Connect to ground plane. 11 VDDL Power 3.3V Supply for Upper-Port Transmitter. Connect externally to VAA and bypass with 0.47µF capacitor to GNDL3. 12 RXUN Input Negative Input for Upper-Port Receiver. Tolerates ±30V. 13 RXUP Input Positive Input for Upper-Port Receiver. Tolerates ±30V. Connect to ground for single-ended operation. 14 GPIO3 I/O General-Purpose I/O 3. Driven between VDDL1 and GNDL1. 2MΩ internal pulldown. 15 GPIO2 I/O General-Purpose I/O 2. Driven between VDDL1 and GNDL1. 2MΩ internal pulldown. 16 GPIO1 I/O General-Purpose I/O 1. Driven between VDDL1 and GNDL1. 2MΩ internal pulldown. 17 GPIO0 I/O General-Purpose I/O 0. Driven between VDDL1 and GNDL1. 2MΩ internal pulldown. 18 N.C. N.C. Not Connected. Connect to ground or leave unconnected. 19 N.C. N.C. Not Connected. Connect to ground or leave unconnected. 20 TXLP Output Positive output for lower port transmitter. Driven between VDDL2 and GNDL2. 21 TXLN Output Negative Output for Lower-Port Transmitter. Driven between VDDL2 and GNDL2. 22 VDDL2 Power 3.3V Supply for Lower-Port Transmitter. Connect externally to VAA and bypass with 0.47µF capacitor to GNDL2. 23 GNDL2 Ground Ground for Lower-Port Transmitter. Connect to ground plane. 24 RXLP Input www.maximintegrated.com Positive Input for Lower-Port Receiver. Tolerates ±30V. Connect to ground for single-ended operation. Maxim Integrated │  20 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Pin Description (continued) PIN NAME FUNCTION 25 RXLN Input Negative Input for Lower-Port Receiver. Tolerates ±30V. 26 N.C. N.C. Not Connected. Connect to ground or leave unconnected. 27 N.C. N.C. Not Connected. Connect to ground or leave unconnected. 28 CTG Input Reserved for Factory Use. Connect to ground. 29 AUXIN2 Input Auxiliary Voltage Input 2 to Measure External Temperature. Connect to a voltage-divider consisting of a 10kΩ pullup to THRM and 10kΩ NTC thermistor to ground. If not used, connect to the pullup only. 30 AUXIN1 Input Auxiliary Voltage Input 1 to Measure External Temperature. Connect to a voltage-divider consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to ground. If not used, connect to the pullup only. 31 AGND Ground Analog Ground. Connect to negative terminal of cell 1 and ground plane. 32 THRM Power 3.3V Switched Output Used to Supply the Voltage-Dividers for the Auxiliary Inputs. The output is enabled only during measurements, or as configured by THRMMODE[1:0]. This output can source up to 2mA. 33 SW0 Input Balance Input for Cell 1 Negative 34 C0 Input Voltage Input for Cell 1 Negative. Connect to AGND. 35 SW1 Input Balance Input for Cell 1 Positive (Cell 2 Negative) 36 C1 Input Voltage Input for Cell 1 Positive (Cell 2 Negative) 37 SW2 Input Balance Input for Cell 2 Positive (Cell 3 Negative) 38 C2 Input Voltage Input for Cell 2 Positive (Cell 3 Negative) 39 SW3 Input Balance Input for Cell 3 Positive (Cell 4 Negative) 40 C3 Input Voltage Input for Cell 3 Positive (Cell 4 Negative) 41 SW4 Input Balance Input for Cell 4 Positive (Cell 5 Negative) 42 C4 Input Voltage Input for Cell 4 Positive (Cell 5 Negative) 43 SW5 Input Balance Input for Cell 5 Positive (Cell 6 Negative) 44 C5 Input Voltage Input for Cell 5 Positive (Cell 6 Negative) 45 SW6 Input Balance Input for Cell 6 Positive (Cell 7 Negative) 46 C6 Input Voltage Input for Cell 6 Positive (Cell 7 Negative) 47 SW7 Input Balance Input for Cell 7 Positive (Cell 8 Negative) 48 C7 Input Voltage Input for Cell 7 Positive (Cell 8 Negative) 49 SW8 Input Balance Input for Cell 8 Positive (Cell 9 Negative) www.maximintegrated.com DESCRIPTION Maxim Integrated │  21 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Pin Description (continued) PIN NAME FUNCTION 50 C8 Input Voltage Input for Cell 8 Positive (Cell 9 Negative) 51 SW9 Input Balance Input for Cell 9 Positive (Cell 10 Negative) 52 C9 Input Voltage Input for Cell 9 Positive (Cell 10 Negative) 53 SW10 Input Balance Input for Cell 10 Positive (Cell 11 Negative) 54 C10 Input Voltage Input for Cell 10 Positive (Cell 11 Negative) 55 SW11 Input Balance Input for Cell 11 Positive (Cell 12 Negative) 56 C11 Input Voltage Input for Cell 11 Positive (Cell 12 Negative) 57 SW12 Input Balance Input for Cell 12 Positive 58 C12 Input Voltage Input for Cell 12 Positive 59 VBLKP Input Block Voltage Positive Input. Internal 10MΩ pulldown during measurement. 60 NC NC 61 HV Power Decoupling-Capacitor Connection for the HV Charge Pump. VHV = VDCIN + 5.5V (typ). Bypass with a 50V, 4.7μF capacitor to DCIN. 62 DCIN Power DC Supply for the Low-Voltage Regulator, HV Charge Pump, and SHDNL Charge Pump. Connect to a voltage source between 9V and 65V through a 100Ω series resistor. Bypass with a 100V, 2.2μF capacitor to ground. 63 CPP Power Positive Capacitor Connection for the HV Charge Pump. Connect a 100V, 0.1µF capacitor from CPP to CPN. 64 CPN Power Negative Capacitor Connection for the HV Charge Pump www.maximintegrated.com DESCRIPTION Not Connected. Connect to ground or leave unconnected. Maxim Integrated │  22 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Detailed Description The MAX17823H data-acquisition systems consist of the major blocks shown in Figure 1 and described in Table 1. Table 1. System Blocks BLOCK DESCRIPTION ADC Analog-to-digital converter. Uses a 12-bit successive-approximation register (SAR) with a reference voltage of 2.307V and supplied by VAA. HVMUX 12-channel, high-voltage (65V) differential multiplexer for Cn inputs. HV CHARGE PUMP High-voltage charge-pump supply (VDCIN + 5.5V) for the HVMUX, ALTMUX, BALSW, and LSAMP circuits, which must switch high-voltage signals. Supplied by DCIN. LSAMP Level-shifting amplifier with a gain of 6/13. The result is that a 5V differential signal is attenuated to 2.307V, which is the reference voltage for the ADC. LVMUX Multiplexes various low-voltage signals including the level-shifted signals and temperature signals to the ADC for subsequent A-to-D conversion. ALTMUX 12-channel, high-voltage differential multiplexer for SWn inputs. BALSW Cell-balancing switches. LINREG 3.3V (VAA) linear regulator used to power the ADC and digital logic. Supplied by DCIN (9V to 65V). REF 2.307V precision reference voltage for ADC and LINREG. Temperature compensated. ALTREF 1.242V precision reference voltage used for diagnostics. 16MHz OSC 16MHz oscillator with 2% accuracy for clocking state-machines and UART timing. 32kHz OSC 32,768Hz oscillator for driving charge pumps and timers. LOWER PORT Differential UART for communication with host or downstack devices. Auto-detects baud rates of 0.5Mbps, 1Mbps, or 2Mbps. UPPER PORT Differential UART for communication with upstack devices. CONTROL AND STATUS ALUs, control logic, and data registers DIE TEMP A proportional-to-absolute-temperature (PTAT) voltage source used to measure the die temperature. www.maximintegrated.com Maxim Integrated │  23 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems DCIN VAA +9V TO +65V THRM HV VBLKP C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 AGND AUXIN2 AUXIN1 MAX17823H REF 2.307V LINREG ALTREF +3.3V HV CHARGE PUMP POR DIE TEMP 16MHz OSC 32kHz OSC HV CPP CPN HVMUX + LSAMP LVMUX - CONTROL AND STATUS ADC TXUP UPPER PORT VAA FAULTDETECTION SUPPORT CIRCUITRY AGND RXLP RXLN TXLP LOWER PORT BALSW TXLN VDDL GNDL GPIO3 GPIO2 GPIO1 SHDNL GPIO0 SW12 SW11 SW10 SW9 SW8 SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0 RXUP RXUN ALTMUX HV TXUN Figure 1. Functional Block Diagram www.maximintegrated.com Maxim Integrated │  24 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems RXUP, RXUN, RXLP, RXLN HV MAX17823H CPP CTG VAA THRM, AUXINn DCIN SHDNL, CPN VDDL3 SW12 TXUP, TXUN SW11 GNDL3 VDDL2 SWn SW1 TXLP, TXLN SW0 GNDL2 VDDL1 Cn, VBLKP AGND HV VAA GPIOn GNDL1 NOTES: 1. ALL DIODES ARE RATED FOR ESD CLAMPING CONDITIONS. THEY ARE NOT INTENDED TO ACCURATELY CLAMP DC VOLTAGE. 2. ALL DIODES HAVE A PARASITIC DIODE, FROM AGND TO THEIR CATHODE, THAT IS OMITTED FOR CLARITY. THESE PARASITIC DIODES HAVE THEIR ANODE AT AGND. Figure 2. ESD Diodes www.maximintegrated.com Maxim Integrated │  25 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems HVMUX VBLKP VBLKP/26 INPUT TEST SOURCES C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 AGND SOURCE C12 EVEN ODD SOURCE C11 THRM REF SOURCE C10 SOURCE C9 SOURCE C8 SOURCE C7 + + LSAMP SOURCE C6 - - SOURCE C5 12-BIT ADC SOURCE C4 SOURCE C3 SOURCE C2 LV MUX SOURCE C1 SOURCE C0 VAA DIE TEMPERATURE ALTREF REF HVMUX TEST SOURCES AUXIN2 AUXIN1 SOURCE AUX2 SOURCE AUX1 Figure 3. Analog Front-End www.maximintegrated.com Maxim Integrated │  26 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Data Conventions Representation of data follows the conventions shown in Table 2. All registers are 16-bit words. Data Acquisition A data acquisition is composed of the distinct processes defined in Table 3 and controlled by various configuration registers described in this section. Configuration changes should be made prior to the acquisition in which the changes are to be effected. Precision Internal Voltage References The measurement system uses two precision, temperature-compensated voltage references. The references are completely internal to the device and do not require any external components. The primary voltage refer- ence, or REF, is used to derive the linear regulator output voltage and to supply the ADC reference. An alternate, independent reference, ALTREF, can be used to verify the primary reference voltage as described in the Diagnostics section. Measurement Calibration The acquisition system is calibrated at the factory and cannot be changed afterwards. The calibration parameters are stored in a ROM consisting of 12 read-only registers, CAL0–CAL10 and CAL15. ROMCRC[8:0] is an 8-bit CRC value based on the calibration ROM and is stored in ID2[15:8] at the factory. ROMCRC[8:0] can be used to check the integrity of the calibration as described in the Diagnostics section. Table 2. Numeric Conventions DESCRIPTION CONVENTION EXAMPLE Binary number 0b prefix 0b01100001 = 61h Hexadecimal address 0x prefix 0x61 Hexadecimal data h suffix 61h Register bit Register name [x] STATUS[15] = 1 Register field Field name [x:y] DA[4:0] = 0b01100 = 0Ch Concatenated numbers {xxxx, yyyy} {DA[4:0], 0b001} = 61h Table 3. Data Acquisition Processes PROCESS DESCRIPTION Conversion The ADC samples a single input channel, converts it into a 12-bit binary value, and stores it in an ALU register. Scan The ADC sequentially performs conversions on all enabled cell input channels. Measurement cycle or Sample The ADC performs two scans for the purpose of minimizing error. The conversions (two for each input channel) are averaged together to form a single 14-bit binary value called a measurement. Note: The auxiliary inputs are only scanned once to create the auxiliary measurements. Acquisition or Acquisition mode If oversampling is enabled, the ADC takes sequential measurements and averages them together to form one 14-bit binary value for each input channel sampled. If there is no oversampling, the acquisition is essentially a single measurement cycle. Note: The auxiliary inputs are never oversampled and are stored as 12-bit values. www.maximintegrated.com Maxim Integrated │  27 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Cell Inputs vice-versa). To convert the measurement value in register CELLn to a voltage, convert the 14-bit hexadecimal value to a decimal value and then convert to voltage as follows: VCELLn = CELLn[15:2] x 5V/16384 = CELLn[15:2] x 305.176µV. Up to 12 voltage measurements can be sampled differentially from the 13 cell inputs. The differential signal VCELLn is defined as VCn - VCn-1 for n = 1 to 12. The cells to be measured are selected by MEASUREEN[11:0]. During the scan, each selected signal is multiplexed into the level-shifting amplifier (LSAMP) as shown in Figure 3. Since the common-mode range of the input signals is 0V to 65V, the signal must be level-shifted to the common-mode range of the amplifier. The amplifier has a gain of 6/13 so that a 5V differential signal will be attenuated to 2.307V, which is the ADC reference voltage. Input Range The input range in unipolar mode is nominally 0V to 5V. However, the ADC has reduced linearity at its range extents and so accuracy is specified for the input range 0.2V to 4.8V. Some applications may require specified accuracy below 0.2V or even below 0V. To this end, the bipolar mode (POLARITY = 1) has a nominal input range of -2.5V to 2.5V as shown in Table 4 with accuracy specified from -2.3V to 2.3V. Once the signal is properly conditioned the ADC can start the conversion. The 12-bit conversion is stored in an ALU register where it can be averaged with subsequent conversions. The ALU output is a 14-bit value and is ultimately stored in a 16-bit register with the two least-significant bits zero. Disabled channels result in a measurement value of 0000h. Unless stated otherwise, measurement values are assumed to be 14-bit values. The 16-bit register values can be converted to 14-bit values by dividing by 4 (and The input range can effectively be extended from -2.5V to 5V by taking one bipolar measurement and one unipolar measurement. Any bipolar measurements over 2.3V should be replaced with the unipolar measurement. Note: Conversions for some diagnostic modes automatically use either bipolar or unipolar mode regardless of the POLARITY bit value. Table 4. Input Range CELL INPUT VOLTAGE CELLn[15:2] (14 BITS) BIPOLAR MODE UNIPOLAR MODE HEXADECIMAL DECIMAL CELLn[15:0] (16 BITS) -2.5V 0V 0000h 0d 0000h 0V 2.5V 2000h 8192d 8000h 2.5V 5V 3FFFh 16383d FFFCh VBLKP R1 = 10MΩ - R2 VBLKP/26 R2 = 384.5kΩ VREF VTHRM LV MUX + ADC - AGND Figure 4. VBLKP Measurement www.maximintegrated.com Maxim Integrated │  28 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Block Voltage Input The VBLKP input (total module voltage) is selected for measurement by MEASUREEN[14]. The measurement is stored in the VBLOCK register with a full-scale value of 60V (3.662mV/bit). It can be compared to the sum of the cell voltages as a diagnostic. To pre-condition VBLKP for conversion it is voltage-divided by a factor of 26. The divider is disconnected by default to minimize power consumption. The divider is connected by setting MEASUREEN[15] (BLKCONNECT = 1) with sufficient settling time prior to the acquisition. For high acquisition rates, BLKCONNECT can remain enabled to reduce cycle time. Auxiliary Inputs The AUXIN1 and AUXIN2 inputs can be used to measure external temperatures by enabling MEASUREEN[13:12]. These inputs have a common-mode input range of 0V to VAA. For these measurements, the ADC reference voltage is VTHRM which is switched from VAA as shown in Figure 5. The auxiliary inputs are not oversampled even if oversampling is enabled; they are measured only once and stored as 12-bit values in the AIN1 and AIN2 registers. To measure external temperature the auxiliary input is connected to a voltage divider consisting of a 10KΩ pullup to THRM and a 10KΩ NTC thermistor to ground as shown in Figure 6. VAA CONVERSIONS IN PROGRESS THRM VREF AUXIN1 + AUXIN2 LV MUX ADC - AGND Figure 5. Auxiliary Measurement THRM R60 10kΩ R61 10kΩ C60 100pF C61 100pF AUXIN1 AUXIN2 C62 100pF t AGND RTH1 10kΩ t RTH2 10kΩ THERMISTOR WIRE HARNESS Figure 6. Auxiliary Application Circuit www.maximintegrated.com Maxim Integrated │  29 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems THRM Output The THRM output has 2 modes of operation, automatic and manual as shown in Table 5. The automatic mode minimizes power consumption, but after the THRM output is enabled, the AUXIN voltages must be allowed to settle before the conversion. Since the auxiliary inputs are the last inputs measured, the duration of the measurement cycle itself may provide sufficient settling time depending on what measurements are enabled and the time constants for the auxiliary input circuit. Up to 384µs of additional settling time, if required, can be configured by ACQCFG[5:0] as shown in Table 6 or by utilizing the manual mode. The ability to configure the settling time allows for a range of time constants to be considered in designing the auxiliary application circuit. Computing Temperature In Figure 6, VAUXINn = VTHRM x RTH/(10KΩ+RTH) and this measurement is stored in the AINn register. The thermistor resistance can then be solved for as follows: RTH = (VTHRM x 10KΩ)/(VTHRM - VAUXINn) where VTHRM = 3.3V nominally The resistance of an NTC thermistor increases as the temperature decreases and is typically specified by its resistance R0 at T0 = +25°C = 298.15K and a material constant β (3400K typical). To the first order, the resistance RTH is at a temperature T in Kelvin can be computed as follows: R = R0e(β(1/T-1/T0)) The temperature T of the thermistor (in °C) can then be calculated as follows: T (in °C) = (β/ln((RTH/10KΩ) + (β/298.15K)) – 273.15K Table 5. THRM Output MODE Manual DESCRIPTION 00b 01b THRM output enabled at the beginning of the acquisition and disabled at the end of the acquisition. 10b THRM output is enabled 11b THRM output is disabled www.maximintegrated.com Auxiliary voltage measurements can be directly compared to pre-calculated voltages in the AINUT and AINOT registers that correspond to specific over- and undertemperature thresholds. When a measurement exceeds the AINUT or AINOT threshold level, the ALRTCOLD or ALRTHOT bits respectively are set in the STATUS register. An alert is cleared only by a new measurement that is within threshold. Die Temperature Measurement The die temperature measurement allows the host to compute the device temperature (TDIE) as it relates to the acquisition accuracy and allows the device to automatically shut itself down when TDIE>145°C. The measurement employs a source whose voltage, VPTAT, is proportional to absolute temperature (PTAT) as shown in Figure 7. The VPTAT measurement is enabled by setting DIAGSEL[2:0] to 0b110 and the 14-bit measurement is stored in DIAG[15:2]. The die temperature measurement requires a settling time of 50us from the start of the measurement cycle until the diagnostic conversion. As long as 2 or more cell measurements are enabled, there will be sufficient settling time for this measurement. Refer to Figure 9 and Table 8 for a detailed view of this timing. The PTAT voltage is computed as follows: VPTAT = (DIAG[15:2] / 16384d) x VREF Where VREF = 2.307V. The measured voltage can be converted into °C as follows: TDIE (in °C) = (VPTAT/AV_PTAT) + TOS_PTAT - 273°C Refer to the Electrical Characteristics table for AV_PTAT and TOS_PTAT values. Table 6. AINTIME ACQCFG[9:8] Automatic Temperature Alerts ACQCFG[5:0] (AINTIME) ADDITIONAL SETTLING TIME PER ENABLED AUXILIARY CHANNEL = 6µs + (AINTIME x 6µs) 00h 6μs 01h 12μs 02h 18μs … … 1Fh 384 μs Maxim Integrated │  30 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Die Temperature Alert The ALRTTEMP bit is updated at the end of each measurement cycle for which DIAGSEL[2:0] = 0b110. If ALRTTEMP is set, it signifies that TDIE > TALRTTEMP or that the diagnostic measurement did not have sufficient settling time (< 50µs) and therefore may not be accurate. If ALRTTEMP is set, the host should consider the possibility that the acquisition does not meet the expected accuracy specification, or that the die temperature measurement itself may be inaccurate due to insufficient settling time (< 2 cell measurements enabled). ALRTTEMP 1.230V VREF VTHRM + VPTAT - + LV MUX ADC - AGND Acquisition Mode The host enters the acquisition mode by writing a logicone to the SCAN bit in the SCANCTRL register. This write is actually an automatic strobe of the bit since SCAN always reads logic-zero. In daisy-chained devices, acquisitions in upstack devices are delayed by the propagation delay, tPROP, of the command packet through each device. The acquisition is complete when the device sets the SCANDONE bit. The basic acquisition process is outlined below with a detailed flowchart in Figure 8. 1) Disable HV charge pump 2) VBLKP conversion, if enabled 3) All enabled cell conversions (first) a. ascending order (1 through 12) if pyramid mode or b. descending order (12 through 1) if top-down mode 4) All enabled cell conversions (second) a. descending order (12 through 1) 5) VBLKP conversion (second), if enabled 6) Diagnostic conversion (first), if enabled 7) Diagnostic conversion (second) if enabled 8) Enable HV charge pump for recovery period unless a. OVSAMP[2:0] = 0 (no oversampling) or b. all oversample measurements are complete 9) Repeat steps 1 through 8 until all oversamples are done 10) All enabled auxiliary conversions, ascending order (AUXIN1, AUXIN2) 11) Set SCANDONE bit www.maximintegrated.com Figure 7. Die Temperature Measurement Oversampling Oversampling mode performs multiple measurement cycles in a single acquisition and averages the samples in the ALU to reduce the measurement noise and effectively increase the resolution of each measurement result. In oversampling mode, acquisition times are proportional to the number of oversamples as shown in Table 8. The number of oversamples can be configured from 4 to 128 by OVSAMPL[2:0] as shown in Table 7. The AUXIN measurements are never oversampled, even in oversampling mode. To add n bits of measurement resolution requires at least 22n oversamples. Since the ADC resolution is 12 bits, 13-bit resolution requires at least 4 oversamples and to achieve the maximum 14-bit resolution requires at least 16 oversamples. Therefore with no oversampling, only the higher 12-bits of the measurement are statistically significant and with 4 or 8 oversamples, only the higher 13 bits are statistically significant. Taking more than 16 oversamples further reduces the measurement variation. Of course with no oversampling, measurements can be averaged externally to achieve increased resolution but at a higher computational cost for the host. Acquisition Watchdog Timeout If the acquisition does not finish within a predetermined time interval, the SCANTIMEOUT bit is set, the ADC logic is reset, the ALU registers are cleared, and the measurement data registers are also cleared. In double-buffer mode (DBLBUF = 1), the data registers are not cleared, however, once data is moved from the ALU registers to the data registers, either automatically or manually (with the DATAMOVE bit), then data registers are cleared as a consequence of the ALU register having been cleared. The acquisition watchdog timeout interval depends on the oversampling configuration as shown in Table 7. Maxim Integrated │  31 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Table 7. Oversampling OVSAMPL[2:0] OVERSAMPLES THEORETICAL RESOLUTION ACQUISITION WATCHDOG TIMEOUT 000b (default) 0 12 bits 1.10ms 001b 4 13 bits 2.08ms 010b 8 13 bits 3.36ms 011b 16 14 bits 5.92ms 100b 32 14 bits 10.99ms 101b 64 14 bits 21.18ms 110b 128 14 bits 41.56ms 111b 128 14 bits 41.56ms STANDBY MODE NO SCAN BIT SET? LATCH-ACQUISITION CONFIGURATION; DISABLE HV CHARGE PUMP YES CONVERT AUXINn INPUTS IF ENABLED; USE AINCFG SETTLING TIME SET ADC STATE-MACHINE TIMEOUT PERIOD DISABLE DATAMOVE COMPARE AUXINn MEASUREMENT TO THRESHOLDS, UPDATE ALERTS YES DBLBUF SET? NO COMPARE MEASUREMENTS TO THRESHOLDS AND UPDATE ALERTS MOVE ALU DATA TO DATA REGISTERS; SET DATARDY = 1 DBLBUF SET? YES NO MOVE ALU DATA TO DATA REGISTERS; SET DATARDY = 1 CLEAR ALL ALU REGISTERS PERFORM MEASUREMENT SCANS FOR VBLKP, CELLn, DIAG PER MEASUREEN ENABLE HV CHARGE PUMP FOR 100.3µs SET SCANDONE, UNBLOCK DATAMOVE ENABLE HV CHARGE PUMP ALL SAMPLES DONE? NO STANDBY MODE YES Figure 8. Acquisition Mode Flowchart www.maximintegrated.com Maxim Integrated │  32 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Scan Modes reference-induced errors. The two conversions are then offset corrected and averaged in the ALU. The cell, block, and diagnostic measurement cycle consists of two conversion phases. In each phase, the ADC scans through the enabled input channels. There are two scan modes configured by the SCANMODE bit. If SCANMODE = 0, the mode is pyramid mode as shown in Figure 9. If SCANMODE = 1, the mode is top-down mode. In pyramid mode, the ADC scans first ascending and then descending. In top-down mode, the ADC scans descending in both phases. In the second scan, the amplifier inputs are inverted to effectively chop out any offset and After the cell and block scans are complete, the diagnostic conversions are made, if enabled, and finally, the auxiliary inputs, if enabled, are converted. The auxiliary inputs are measured using a single conversion and stored in the AIN1 and AIN2 registers. Any extra settling time, if configured by AINCFG[5:0], is implemented just before the conversion for each AUXIN channel and so if both inputs are enabled, the extra settling time occurs twice. Figure 9. Acquisition, OVSAMP[2:0] = 0h and SCANMODE = 0 C10+ C6+ 100.3µs C3- DIAG- C1- DIAG+ C1+ BLK- C2- C5- C4+ C4- C3+ PUMP TO REFRESH HV C3- C2+ BLK+ C4- C2+ C6- C5+ C5- C3+ C7- C6+ C6- C4+ C8- C7+ C7- C5+ C9- C8+ C8- C7+ C10- C9+ C9- C11- C2- C1+ C1- DIAG- C10- C9+ C12- C11+ C11- C8+ BLK+ C12+ C12- C10+ DIAG+ C12+ C11+ DELAY TIME TO SWITCH REF AMP TO CHOP SAMPLING POINT BLK- DELAY TIME TO SWITCH REF AMP TO CHOP SAMPLING POINT SAMPLE n SAMPLE 1 SAMPLE 2 Figure 10. Acquisition, OVSAMP[2:0] > 0 and SCANMODE = 0 www.maximintegrated.com Maxim Integrated │  33 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Acquisition Time The total acquisition time can calculated by summing all the required processes as shown in Table 8 and Table 9. There is one measurement cycle per oversample. Measurement Data Transfer By default, all ALU data is automatically transferred to the data registers (CELLn, VBLOCK, AIN1, AIN2, DIAG, MINMAXCELL and TOTAL) at the end of each acquisition. The transfer occurs in parallel, that is, all data registers are loaded at the same time. When this occurs, the DATARDY bit is set and the host can read out the data. In the simplest, sequential approach, the host will initiate the acquisition by setting SCAN, wait for the acquisition to complete (SCANDONE = 1), read the data registers, and then repeat the cycle. Table 8. Acquisition Time PROCESS TIME (ΜS) CONDITION Initialization 13 Always VBLKP measurement 27 If VBLKP is enabled Cell scan setup Cell scans Diagnostic measurement (if enabled) If cell input(s) enabled & VBLKP enabled 20 If cell input(s) enabled & VBLKP disabled 9xn For n = # of enabled cell inputs 11.4 If zero-scale ADC output diagnostic enabled 11.4 If full-scale ADC output diagnostic enabled 86.2 If VALTREF diagnostic enabled 22.9 If any other diagnostic mode enabled 6µs x AINCFG[5:0] 10 6µs x AINCFG[5:0] HV recovery (if oversampling enabled) Once per acquisition 12.5 10 AUXIN measurement (if enabled) FREQUENCY 100.3 x m Every measurement cycle If AUXIN1 is enabled Once per acquisition If AUXIN2 is enabled After every measurement cycle except last For m = # of oversamples Table 9. Acquisition Time Examples (with AINCFG[5:0] = 00h) NO OVERSAMPLING 4 OVERSAMPLES 8 OVERSAMPLES 12 cells ENABLED MEASUREMENTS 141.0µs 825.9µs 1739.1µs 12 cells, VBLKP 160.5µs 903.9µs 1895.1µs 12 cells, AUXIN1&2 161.0µs 845.9µs 1759.1µs 12 cells, VBLKP, AUXIN1&2 180.5µs 923.9µs 1915.1µs 12 cells, VBLKP, die temperature, AUXIN1&2 203.4µs 1015.5µs 2098.3µs www.maximintegrated.com Maxim Integrated │  34 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Double-buffer Mode If the first acquisition data is needed before starting the second acquisition, the host can perform a manual data transfer by setting DATAMOVE. The manual transfer cannot occur in acquisition mode so the host may first verify that SCANDONE = 1. Flowcharts for operation of doublebuffer mode are shown in Figure 12 and Figure 13. The double-buffer mode (DBLBUFEN = 1) enables reduced cycle times by allowing the host to read out data registers during the acquisition mode. In this mode, the automatic transfer of measurement results from the ALU to the data registers is delayed until the start of the next acquisition. This delay allows the host to start reading out the first acquisition data while the second acquisition is taking place and to finish reading out the first acquisition even as the second acquisition completes. The host can then start a new acquisition and repeat the cycle. Note: An alternate double-buffer mode may be enabled (DBLBUFSEL = 1) that offers an even higher degree of pipelining but at the cost of increased complexity in the application code. Contact Maxim Applications for details regarding the alternate double-buffer mode. DATA REGISTERS ALU REGISTERS 12 12 DIAG ALU + ADC BLOCK ALU 12 ALU1 12 ALUn 14 14 14 14 AIN1 REGISTER AIN2 REGISTER DIAG REGISTER VBLOCK REGISTER CELL1 REGISTER CELLn REGISTER 12 ALU12 ADCTSTEN RESET 12 12 12 12 12 ADC_CHOP ADCTEST1A[11:0] ADCTEST1B[11:0] ADCTEST2A[11:0] 14 CELL12 REGISTER DATAMOVE TRIGGER LOAD UART COMMUNICATION ADCTEST2B[11:0] OVSAMP_EVEN_ODD Figure 11. Measurement Data Flow www.maximintegrated.com Maxim Integrated │  35 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems MAX178xx COMM IDLE; DBLBUF=1 WRITE DATARDY = 0 READ SCANDONE SET? NO READ ALL USER MEASUREMENT REGISTERS YES DATARDY = 0 PROCESS EXISTING USER REGISTER DATA FIRST NO YES NO FAULT CONDITION; NEW DATA SHOULD NOT BE AVAILBLE YES WRITE SCANDONE = 0 DATAMOVE = 1 READ DATARDY = 1 DATAMOVE = 0? DATARDY = 0? MAX178xx COMM IDLE FAULT CONDITION; RETRY; POSSIBLE SCAN IN PROGRESS NO YES Figure 12. Double-Buffer Mode DATAMOVE MAX178xx COMM IDLE; DBLBUF = 1 DATARDY = 1? READ SCANDONE SET? NO FAULT CONDITION; DATA SHOULD BE AVAILBLE YES YES DATARDY = 0 NO WRITE DATARDY = 0 NO PROCESS EXISTING USER REGISTER DATA FIRST YES READ ALL USER MEASUREMENT REGISTERS WRITE SCANDONE = 0 WRITE SCAN = 1 TO START SCAN DATARDY = 0? NO FAULT CONDITION; NEW DATA SHOULD NOT BE AVAILABLE YES MAX178xx COMM IDLE Figure 13. Double-Buffer Mode Register Read www.maximintegrated.com Maxim Integrated │  36 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Measurement Alerts After the measurement cycle, the ALU compares the enabled measurements to the various configured thresholds (see Table 10), and sets the alert bits before the ALU data is transferred to the data registers. In oversampling mode, the alert status is updated after the last oversample. The alerts are updated whether or not the data is moved from the ALU registers to the data registers and are only updated for those measurements enabled in the MEASUREEN register. Voltage Alerts Use the ALRTOVEN and ALRTUVEN registers to enable voltage alerts for the cell and auxiliary inputs. If a cell voltage alert is enabled, the cell input voltage is compared against the programmable overvoltage and undervoltage thresholds after every acquisition as shown in Figure 14. Separate thresholds for setting the alert and for clearing the alert provide hysteresis. Configure the set thresholds for cell undervoltage (VUVTHSET) and overvoltage (VOVTHSET) using the OVTHSET and UVTHSET registers. Configure the clear thresholds for cell undervoltage (VUVTHCLR) and cell overvoltage (VOVTHCLR) using the OVTHCLR and UVTHCLR registers. Alert flags in the ALRTOVCELL register are set, if enabled, when the acquired cell voltage is over VOVTHSET. Alerts in the ALRTUVCELL register are set, if enabled, when the acquired cell voltage is under VUVTHSET. The alerts are cleared when the cell voltage moves in the opposite direction and crosses the clear threshold. The voltage must cross the threshold; if it is equal to a threshold, the alert flag does not change. Therefore, setting the overvoltage-set threshold to full scale, or setting the undervoltage-set threshold to zero scale, effectively disables voltage alerts. The ALRTOV and ALRTUV bits in the STATUS register are set when any alert flag is set in the ALRTOVCELL or ALRTUVCELL registers, respectively. ALRTCELLn is the logical OR of ALROVCELLn and ALRTUVCELLn. Cell Mismatch Enable the mismatch alert to signal when the minimum and maximum cell voltages differ by more than a specified voltage. The MSMTCH register sets the 14-bit threshold (VMSMTCH) for the mismatch alert (ALRTMSMTCH). Whenever VMAX - VMIN > VMSMTCH, then ALRTMSMTCH = 1. The alert bit is cleared when a new acquisition does not exceed the threshold condition. To disable the alert, write FFCH to the MSMTCH register (default value). Cell Statistics The cell numbers with the lowest and highest voltages are stored in the MINMAXCELL register. When multiple cells have the same minimum or same maximum voltage, only the highest cell position having that voltage is reported. The sum of all enabled cell voltages is stored in the TOTAL register as a 16-bit value. For acquisitions with no enabled cell inputs, the MINMAXCELL and TOTAL registers are not updated. Table 10. Measurement Alerts DESCRIPTION CONDITION OR RESULT ALERT BIT LOCATION Cell overvoltage (OV) VCn - VCn-1 > VVOVTHSET ALRTOV, ALRTOVn STATUS, ALRTOVCELL Cell undervoltage (UV) VCn - VCn-1 < VUVTHSET ALRTUV, ALRTUVn STATUS, ALRTUVCELL Cell Mismatch VMAX - VMIN > VMSMTCH ALRTMSMTCH STATUS Cell with minimum voltage n where VCELLn = VMIN None MINMAXCELL Cell with maximum voltage n where VCELLn = VMAX None MINMAXCELL Total of all cell voltages Σ VCELLn for n = 1 to 12 None TOTAL AUXINx overvoltage (undertemperature) VAUXINx > VAINUT ALTRTCOLD, ALRTOVAINx STATUS, ALRTOVCELL AUXINx undervoltage (overtemperature) VAUXINx < VAINOT ALRTHOT, ALRTUVAINx STATUS, ALRTUVCELL www.maximintegrated.com Maxim Integrated │  37 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Temperature Alerts Temperature alerts, if enabled, occur when the acquired AUXINn input voltages fall outside the thresholds configured by the AINOT and AINUT registers. Unlike the cell-voltage alerts, the temperature thresholds do not have the hysteresis afforded by separate set and clear thresholds. V OVERVOLTAGE SET AND CLEAR THRESHOLDS POR DEFAULT VALUE (+5.0V) Cell Balancing Cell-Balancing Switches Cell balancing can be performed using any of the 12 internal cell-balancing switches to discharge cells. The cell-balancing current is limited by the external balancing resistors and the internal balancing-switch resistance (RSW). Enabling adjacent balancing switches simultaneously may increase the balancing current significantly, so care must be taken to not exceed the device’s maximum operating conditions. Fault detection is described in the Diagnostics section. OVERVOLTAGE ALERT SET OVERVOLTAGE SET THRESHOLD (OVTHRSET) OVERVOLTAGE CLEAR THRESHOLD (OVTHRCLR) OVERVOLTAGE ALERT CLEARED UNDERVOLTAGE ALERT CLEARED CELLn VOLTAGE UNDERVOLTAGE CLEAR THRESHOLD (UVTHCLR) UNDERVOLTAGE SET THRESHOLD (UVTHRSET) UNDERVOLTAGE ALERT SET UNDERVOLTAGE SET AND CLEAR THRESHOLDS POR DEFAULT VALUE (+0.0V) t Figure 14. Cell Voltage Alert Thresholds TO CELLn+1 SENSE WIRE RFILTER RBALANCE Cn TO HVMUX CFILTER SWn TO ALTMUX BALSWEN RBALANCE FILTER CELLn RBALANCE SENSE WIRE BALANCING SWITCH (n) SWn-1 RFILTER Cn-1 CFILTER TO CELLn+1 HV TO ALTMUX TO HVMUX AGND Figure 15. Internal Cell Balancing www.maximintegrated.com Maxim Integrated │  38 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Maximum Cell-Balancing Current contents of the BALSWEN register. Use the WATCHDOG register to configure the timeout value from 1s to 3840s (64min), as shown in Table 12. The pre-divider configuration, CBPDIV[2:0], effectively sets the rate at which the CBTIMER[3:0] counts down (see Figure 16). The power dissipation must not exceed the absolute maximum rating of the package, nor should the die temperature go outside the range specified for the desired level of measurement accuracy. Higher die temperatures and higher average duty cycles increase the probability of internal electromigration, so the maximum balancing current is lowered accordingly for an assumed 10-year device lifetime, as shown in Table 11. The host should periodically update CBTIMER to ensure that it does not count down to zero. If the countdown timer is allowed to reach zero, the cell-balancing switches are disabled until the timer is either disabled or refreshed by writing a non-zero value. The maximum balancing current is limited by package power dissipation, average die temperature, average duty cycle of the switch, and the number of switches conducting current at any one time. Cell-Balancing Watchdog Even if the host fails to disable the cell-balancing mode, the cell-balancing watchdog can automatically disable the cellbalancing switches, regardless of the BALSWEN configuration. The cell-balancing watchdog does not modify the To allow timed balancing with no host interaction, the GPIO3 pin is configured to output a logic-high level while the timer is counting using the GPIO3TMR configuration bit of the GPIO register. An external diode is connected from GPIO3 to SHDNL to prevent shutdown while the timer is counting. Once the timer expires, the device shuts down. The host may intervene prior to the timer expiring to keep the device active and to reconfigure the device. Table 11. Maximum Allowed Balancing Current per Switch AVERAGE LIFETIME DUTY CYCLE (10 YEARS) T DIE = 85°C T DIE = 105°C T DIE = 125°C 15% 650mA 650mA 650mA 20% 650mA 650mA 650mA 25% 650mA 650mA 650mA CBPDIV2 CBPDIV1 CBPDIV0 32.768kHz BIT 3 BIT 2 BIT 1 BIT 0 CBPDIV CBTIMER CBTIMER ENABLE TIMER ZERO FLAG CELL BALANCING SWITCH ENABLE BALSWEN Figure 16. Cell-Balancing Watchdog Table 12. Cell-Balancing Watchdog Configuration RANGE OF CBTIMER[3:0] CBPDIV[2:0] TIMER LSB PERIOD 000b Timer Disabled 001b 1s 1s 15s 010b 4s 4s 60s MINIMUM MAXIMUM Timer Disabled 011b 16s 16s 240s 100b 64s 64s 960s 101b 128s 128s 1920s 110b 256s 256s 3840s www.maximintegrated.com Maxim Integrated │  39 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Emergency-Discharge Mode The emergency-discharge mode performs cell balancing in a controlled manner so that the cells can be discharged to a safe level in the event of an emergency. The BALSWDCHG and DEVCFG2 registers provide control for this mode. A timeout value for the mode is configured by DISCHGTIME[7:0] as shown in Table 13. The emergency-discharge mode alternates between a 1-minute discharge cycle for odd cells and a 1-minute discharge cycle for even cells. There is a 62.5ms minimum off time at the end of each discharge cycle to ensure no overlap between even and odd discharge cycles. The duty cycle of each discharge cycle can be configured by DCHGWIN[2:0], as shown in Table 13. The emergency-discharge mode is activated by setting the EMGCYDCHG bit with DCHGTIME[7:0] ≠ 00h. In emergency-discharge mode the following occurs: By clearing EMGCYDCHG, the emergency-discharge mode terminates and the following occurs: 1) The discharge timer is reset. 1) The CBTIMER[3:0] is cleared to prevent the cellbalancing watchdog from disabling the cell-balancing. 2) Control of the cell-balancing switches reverts to the BALSWEN register. 2) Cell-balancing switches are controlled by BALSWDCHG, not BALSWEN. 3) Control of GPIO3 reverts to the GPIO register. 3) The discharge timer starts to countdown. 4) The read-only counter DCHGCNTR[3:0] increments at a 2Hz rate with periodic roll-over at Fh. The host can read this counter periodically to confirm that the mode is active. 5) The GPIO3 pin is driven high while the countdown is active. The emergency-discharge mode also terminates if DCHGTIME[7:0] = 0h, or the discharge time has reached the configured timeout. To prevent the emergency-discharge mode from terminating prematurely due to a device shutdown (which could occur due to an extended lapse in host communications), connect an external diode from GPIO3 to SHDNL to keep SHDNL high while the timer is counting. Table 13. Emergency-Discharge Mode FUNCTION REGISTER FIELD DCHGWIN[2:0] 7.5s/bit Duty cycle Timeout DCHGTIME[7:0] 2 hours/bit CONFIGURATION 0h Switches on for 7.5s, off for 52.5s 1h Switches on for 15s, off for 45s … … 7h Switches on for 59.94s, off for 62.5ms 00h Discharge mode disabled 01h Discharge mode disabled after 4 hours 02h Discharge mode disabled after 6 hours … FFh www.maximintegrated.com BEHAVIOR … Discharge mode disabled after 512 hours Maxim Integrated │  40 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Low-Voltage Regulator An internal linear regulator supplies low-voltage power (VAA) for the ADC and digital logic. The regulator is disabled when SHDNL is active-low or when the die temperature (TDIE) exceeds 145°C, as shown in Table 14. Once VAA decays below 2.95V (typ), an internal power-on reset (POR) is generated (see Figure 22). This event can Table 14. Low-Voltage Regulator INPUT: INPUT VOLTAGE: 9V to 65V VAA OUTPUT VOLTAGE: 3.3V DISABLE: The low-voltage regulator is continuously monitored for undervoltage, as described in Table 15. Table 15. Low-Voltage Regulator Diagnostic DCIN OUTPUT: be detected with the ALRTRST bit, as shown in Table 15. After a thermal shutdown, the regulator is not enabled until TDIE < 130°C due to hysteresis. FAULT CONDITION ALERT LOCATION VAA undervoltage VAA < 2.95V ALRTRST STATUS15 VSHNDL < 0.6V or TDIE > 145°C RDCIN DCIN LINEAR REGULATOR VAA REGULATOR ENABLE THERMAL SHUTDOWN + TO SHDNL CHARGE PUMP SHDNL CDCIN CVAA + CSHDNL 3.0V AGND - INTERNAL POR + - Figure 17. Low-Voltage Regulator www.maximintegrated.com Maxim Integrated │  41 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems HV Charge Pump the C12 input, there is insufficient headroom to guarantee that the HVMUX switch resistance is sufficiently low for an accurate acquisition of the channel. To properly identify this fault condition, if VHV - VC12 is too low during the acquisition, the HV headroom alert flag (ALRTHVHDRM) is set in the FMEA2 register. The HV undervoltage and HV headroom alert functions can be verified by disabling the HV charge pump (HVCPDIS = 1) and allowing VHV to decay while in acquisition mode. An overvoltage comparator disables the charge pump in the case where VHV - VDCIN exceeds 8.5V. This condition is indicated by the ALRTHVOV bit in the FMEA2 register. The ALRTHVOV alert does not necessarily indicate a condition that affects measurement accuracy. HV chargepump diagnostics are summarized in Table 16. The high-voltage multiplexers must be powered by a supply higher than any monitored voltage. To this end, an internal charge pump draws power from the DCIN input to provide a high-voltage supply (VHV), which is regulated to VDCIN + 5.5V (nominal). When the charge pump achieves regulation, charge pumping stops until the voltage drops by 20mV. The charge pump is automatically disabled during shutdown and during the measurement cycle to eliminate charge-pump noise. The charge pump can also be disabled manually by setting the HVCPDIS bit in the DEVCFG2 register. If VHV - VDCIN drops below VHVUV, the HV undervoltage flag (ALRTHVUV) is set. If VHV drops too low relative to Table 16. HV Charge-Pump Diagnostics FAULT CONDITION ALERT BIT LOCATION VHV undervoltage VHV - VDCIN < VHVUV ALRTHVUV FMEA1[3] VHV overvoltage VHV - VDCIN > VHVOV ALRTHVOV FMEA2[0] VHV - VC12 < VHVHDRM (min.) ALRTHVHDRM FMEA2[2] VHV low headroom HVOV TO ALRTHVOV + RHV CHV HV + - 4.1V + - 20mV HYSTERESIS CPP 5.5V RDCIN TO ALRTHVUV + 8.5V DCIN SWITCH LOGIC + - INTERNAL POR 32kHz DISABLE MEASURING DISABLE CCP CPN + DEVCFG2. HVCPDIS CDCIN HVOV AGND 15mA Figure 18. HV Charge Pump www.maximintegrated.com Maxim Integrated │  42 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Oscillators Two factory-trimmed oscillators provide all timing requirements: a 16MHz oscillator for the UART and control logic, and a 32.768kHz oscillator for HV charge pump and timers. A special diagnostic counter clocked by the 16MHz signal is employed to check the 32kHz oscillator. Every two periods of the 32kHz clock, the counter is sampled. If the count varies more than 5% from the expected value the ALRTOSC1 bit is set, as shown in Table 17. A redundant alert bit (ALRTOSC2) increases the integrity level. If the 16MHz oscillator varies by more than 5%, communication errors will be indicated Device ID Number The ID1[15:0] register together with ID2[7:0] contain a 24-bit manufacturing identification number, DEVID[23:0]. The ID combined with the manufacturing date provides a means of uniquely identifying each device. A device ID of zero is invalid. Power-On and Shutdown Applications that remain connected continuously to the power source rely on the SHDNL input to shut down and reset the device. When VSHDNL < 0.6V, the regulator is disabled, the POR signal asserted, and the device goes into an ultra-low-power shutdown mode. When VSHDNL > 1.8V, POR is deasserted, the regulator enabled, and the device becomes fully operational in the standby mode. Power-On Method The SHNDL input can be driven externally or it can be controlled using UART communication only. In differential mode, the signaling on the lower-port receiver drives an internal charge pump that charges up the external 1nF capacitor connected to the SHDNL input (see Figure 19). VSHDNL reaches 1.8V in 200µs (typ). The charge pump then self-regulates to VSHDNLIMIT and can maintain VSHDNL at a logic-one, even with the UART idle 98% of the time. Table 17. Oscillator Diagnostics FAULT CONDITION ALERT BIT LOCATION 32.768kHz oscillator 31.129kHz > fosc_32k > 34.406kHz ALRTOSC1 FMEA1[15] 32.768kHz oscillator 31.129kHz > fosc_32k > 34.406kHz ALRTOSC2 FMEA1[14] 15MHz > fosc_32k > 17MHz ALRTMAN or ALRTPAR STATUS[4], or STATUS[2] 16MHz oscillator DCIN FROM DEVICE (n-1) TRANSMITTER CIRCUIT C42 2nF 600V R40 4.7kΩ C43 2nF 600V R41 4.7kΩ R42 100kΩ C40 15pF RXLP TO RECEIVER RXLN TO RECEIVER C41 15pF R43 100kΩ GNDL SHDNL C44 1nF (CSHDNL) 10MΩ FORCEPOR Figure 19. SHDNL Charge Pump www.maximintegrated.com Maxim Integrated │  43 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Power-On Sequence Once VSHNDL > 1.8V, the regulator is enabled. After VAA reaches 3V (typ), the POR signal is deasserted, the oscillators enabled, and the HV charge pump enabled. Once the HV charge pump is stable, the logic is enabled. The device is fully operational (standby mode) within 1ms from the time communication is first received in the shutdown mode. The poweron sequence is shown in Figure 20. REGULATOR DISABLED POR CLEARED VOLTAGE APPLIED TO DCIN 32kHz OSCILLATOR ENABLED DIE TEMP > 145°C CHECK DIE TEMPERATURE 470µsec DELAY SHUTDOWN MODE SHDN\ ACTIVE CHARGE PUMP AND DIGITAL LOGIC ENABLED CHECK SHDN\ ALRTRST BIT SET REGULATOR ENABLED 3ms DELAY VAA < VPOR_RISING CHECK VAA CHARGE PUMP SETTLED STANDBY MODE DIE TEMP > 145°C YES SHDN\ ACTIVE YES REGULATOR DISABLED Figure 20. Power-On Sequence www.maximintegrated.com Maxim Integrated │  44 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Shutdown Mode If only a reset is required, the host can issue a soft-reset by setting the SPOR bit. This resets the device registers and disables high-voltage operation, but low-voltage operation remains enabled (the regulator is not disabled). The quickest shutdown can be achieved by driving SHDNL externally with a driver pulldown impedance not exceeding 1kΩ. If SHDNL is not driven externally, the host can discharge CSHDNL under software control by setting the FORCEPOR bit. This will enable a pulldown (4.7kΩ nominal) to discharge the capacitor with a 4.7µs time constant. Note: For single-ended communication, SHDNL must be driven externally since the charge-pump operation requires a differential signal. Shutdown is performed by bringing VSHDNL < 0.6V. Table 18 summarizes the methods by which this can be achieved. Shutdown Sequence The shutdown sequence and timing is shown in Figure 21, Figure 22, and Figure 23. The ALRTSHDNL status bit is set and the low-voltage regulator disabled as soon as VSHDNL < 0.6V. When the VAA and VDDL decoupling capacitors discharge below the POR threshold (2.95V typ), the device registers are reset and the HV charge pump is disabled. The device is then in an ultralow-power state until VSHDNL > 1.8V. The slowest method is for the host to simply cease communication. With the UART idle, there is no charge pumping and the capacitor discharges through an internal 10MΩ resistor with a 10ms time constant. If shutdown faster than 10ms is desired when power is disconnected from the device, a 200kΩ resistor can be connected externally from SHDNL to AGND to create a 200µs time constant. Table 18. Shutdown Timing SHUTDOWN METHOD RPULLDOWN 1. Host drives SHDNL pin low 1kΩ External 2. Host sets FORCEPOR bit 5kΩ Internal 3. Disconnect DCIN 200kΩ External 4. Host places UART in idle mode 10MΩ Internal CSHDNL RC 1µs 1nF 5µs 200µs 10,000µs POR INACTIVE VAA > VPOR_RISING CHECK VAA VAA < VPOR_FALLING POR ACTIVE OSCILLATOR, CHARGE PUMP, DIGITAL LOGIC DISABLED Figure 21. Shutdown Sequence www.maximintegrated.com Maxim Integrated │  45 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems RXLP RXLN VSHDNLIMIT VSHDNL VIH tRXRU-VAA tRXFD-VAA VPORRISE VAA VIL VPORFALL tVAAFD-POR tVAARU-POR POR tPORUP-TX TXUP TXUN Figure 22. Power-On and Shutdown Timing (UART Control) RXLP RXLN FORCEPOR VSHDNL tFRPOR VIH VIL tRXFD-VAA VPORFALL VAA tVAAFD-POR POR Figure 23. Shutdown Timing (Software Control) www.maximintegrated.com Maxim Integrated │  46 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems UART Interface Each device first receives data at its lower RX port and immediately retransmits data from its upper TX port to the lower RX port of the next upstack device. The last device transmits data from its upper TX port directly into its upper RX port and then immediately retransmits the data from its lower TX port to the upper RX port of the next downstack device. The protocol supports fixed baud rates of 2Mb/s, 1Mb/s, or 0.5Mb/s. The baud rate is set by the host and is automatically detected by the device. The battery-management UART protocol allows up to 32 devices to be connected in daisy-chain fashion (see Figure 24). The host initiates all communication with the daisy-chain devices through a UART interface such as the MAX17841B. The data flow is always unidirectional from the host, up the daisy-chain (upstack) and then loops back down the daisy-chain (downstack) to the host (see Figure 24). Figure 24. UART Interface www.maximintegrated.com Maxim Integrated │  47 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems UART Ports Two UART ports are utilized, a lower port (RXL/TXL) and an upper port (RXU/TXU). Each port consists of a differential line driver and differential line receiver. DC-blocking capacitors or transformers can be used to isolate daisychained devices that are operating at different commonmode voltages. During communication, the character encoding provides a balanced signal (50% duty cycle) that ensures charge neutrality on the isolation capacitors. VDDL[2,3] TX[U,L]IDLEHIZ (UARTSTATE=IDLE?) When no data is being transmitted by the UART, the differential outputs must be driven to a common level to maintain a neutral charge difference between the AC-coupling capacitors or to avoid saturation of the isolation transformers. In the default idle mode (low-Z), the transmitter drives both outputs to a logic-low level to balance the charge on the capacitors; this also works well with transformer coupling. The high-Z idle mode (TXLHIZIDLE, TXUHIZIDLE = 1) places the TX pins in a high-Z state in idle mode, which may be desirable to minimize the effects of charging and discharging the isolation capacitors. The idle mode for the upper and lower ports can be controlled independently through the TXLHIZIDLE and TXUHIZIDLE configuration bits. UART Receiver The UART receiver has a wide common-mode input range to tolerate harsh EMC conditions. It can be operated in differential mode or single-ended mode per Table 19. By default, the UART receivers are configured for differential mode. In single-ended mode, the RXP input is grounded and the RXN input receives inverse data as described in the Applications Information section (see Figure 64). In single-ended mode, the receiver input threshold is negative so that a zero differential voltage (VRXP, VRXN = 0V) is considered to be a logic-one and a negative differential voltage (VRXN high) is a logic-zero. DRIVE HIGH TX[U,L][P,N] UART Transmitter ESD CLAMP DRIVE LOW GNDL[2,3] Figure 25. UART Transmitter 30kΩ 4pF VDDL/60 1.18MΩ HIGH COMPARATOR + - RXP 41.6kΩ VCM = VDDL/3 DIGITAL CORE + - GNDL ZERO CROSSING COMPARATOR LOW COMPARATOR 41.6kΩ 1.18MΩ + - RXN 4pF VDDL/60 30kΩ Figure 26. UART Receiver www.maximintegrated.com Maxim Integrated │  48 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems UART RX Modes During the first preamble received after a reset, the receiver automatically detects if the received signal is single-ended and if so, places the receiver in single-ended mode; therefore, the device must be reset for any change in the RX-mode hardware configuration to be detected. The receiver mode is indicated by the ALRTCOMMSEL bit (for lower port) and ALRTCOMMSEU bit (for upper port) of the FMEA1 register, as shown in Table 19. If the RXP input is open circuit, the RX-mode detection places the UART in single-ended mode so the port can still operate, albeit with reduced noise immunity. The host can diagnose this condition by checking ALRTCOMMSEL and ALRTCOMMSEU after any POR event. Any other faults result in communication errors. UART Loopback For the last device in the stack, the data must be looped back from the upper transmitter to the upper receiver. This is known as loopback and can be configured externally (default) or internally. External Loopback Mode External loopback mode (default) uses a two-wire cable to connect the upper transmitter (TXU) to the upper receiver (RXU). The external loopback has two advantages: 1) It is quicker to determine device count for applications where the host does not assume what the device count is. 2) It helps to match the supply current of the last device to that of the other daisy-chained devices (because the hardware configuration is identical). Internal Loopback Mode Internal loopback mode (LASTLOOP = 1) routes the upperport transmit data internally to the upper-port receiver. Any signal present on the upper-port receiver input pins is ignored in the internal loopback mode; therefore, when LASTLOOP is set, the write command that was forwarded to any upstack devices is interrupted in the downstack direction. The host should expect this and read the LASTLOOP bit to verify that the write was successful. If the MAX17841B interface is used, its receive buffer should be cleared before changing LASTLOOP, and cleared again after changing the loopback configuration because the communication was interrupted. Internal loopback mode is useful to diagnose the location of a daisy-chain signal break by enabling the internal loopback mode on the first device, checking communication, then moving the loopback mode to the next device, and continuing up the stack until communication is lost. Baud-Rate Detection The UART can operate at a baud rate of 2Mb/s (default), 1Mb/s, or 0.5Mb/s. The baud rate is controlled by the host and is automatically detected by the device when the first preamble character is received after reset. If the host changes the baud rate after reset, it must issue another reset (which can be done by setting the SPOR bit) and resend a minimum of 2 x n preambles (where n is the number of devices). The 2 x n preambles are necessary since the transmitter for the upper port will not transmit data until the lower-port receiver has detected the baud rate and likewise, the transmitter on the lower port will not transmit data until the upper-port receiver has detected the baud rate. A simple way to do this is for the host to start transmitting preambles and stop when a preamble has been received back at the host RX port. Table 19. UART RX Modes RXP RXN ALRTCOMMSEn Connected to data Connected to inverse data 0 Differential mode (normal) Grounded Connected to inverse data 1 Single-ended mode (normal) Open circuit (fault) Connected to inverse data 1 Single-ended mode (low noise immunity) Connected to data Open circuit (fault) 0 Differential mode (communication errors) www.maximintegrated.com RX MODE Maxim Integrated │  49 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Battery-Management UART Protocol UART is idle for a specified period of time. The host must periodically transmit data to prevent shutdown unless the SHDNL input is driven externally. The battery-management UART protocol uses the following features to maximize the integrity of the communications: Command Packet ●● All transmitted data bytes are Manchester-encoded, where each data bit is transmitted twice, with the second bit inverted (G.E. Thomas convention). A command packet is defined as a sequence of UART characters originating at the host. Each packet starts with a preamble character, followed by data characters, and ending with a stop character (see Figure 27). After sending a packet, the host either goes into idle mode or sends another packet. ●● Every transmitted character contains 12 bits that include a start bit, a parity bit, and two stop bits. ●● Read/write packets contain a CRC-8 packet-error checking (PEC) byte Preamble Character ●● Each packet is framed by a preamble character and stop character. The preamble is a framing character that signals the beginning of a command packet. It is transmitted as an unencoded 15h with a logic-one parity bit and a balanced duty cycle. If any bit(s) other than the stop bits deviate from the unique preamble sequence, the character is not interpreted as a valid preamble, but rather as a data character. ●● Read packets contain a data-check byte for verifying the integrity of the transmission. The protocol is also designed to minimize power-consumption by allowing slave devices to shut down if the PREAMBLE IDLE TXP-TXN MESSAGE STOP IDLE Figure 27. Command Packet OPTIONAL IDLE IDLE DISABLE S 1 0 1 0 1 0 0 0 E=1 P P OPTIONAL IDLE IDLE ENABLE Figure 28. Preamble Character www.maximintegrated.com Maxim Integrated │  50 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Data Characters The parity is even, which means that the parity bit’s value should always result in an even number of logic-one bits in the character. Given that the data is Manchesterencoded and there are two stop bits, the parity bit for data characters is always transmitted as a logic-zero. If the UART detects a parity error in any received data character, it sets the ALRTPAR bit in the STATUS register. Table 20 provides a list of data character descriptions. Each data character contains a single-nibble (4-bit) payload, so two characters must be transmitted for each byte of data. All data is transmitted least-significant bit, least-significant nibble, and least-significant byte first (see Figure 29). The data itself is Manchester-encoded, which means that each data bit is followed by its complement. If the UART detects a Manchester-encoding error in any received data character, it sets the ALRTMAN bit in the STATUS register. Table 20. Data Characters BIT NAME SYMBOL 1 Start S DESCRIPTION 2 Data0 Least-significant bit of data nibble (true) 3 Data0/ Least-significant bit of data nibble (inverted) 4 Data1 Data bit 1 (true) 5 Data1/ Data bit 1 (inverted) 6 Data2 Data bit 2 (true) 7 Data2/ Data bit 2 (inverted) 8 Data3 Most-significant bit of data nibble (true) 9 Data3/ Most-significant bit of data nibble (inverted) 10 Parity E Always logic-zero (even parity) 11 Stop P Always logic-one 12 Stop P Last bit in character, always logic-one First bit in character, always logic-zero DATA NIBBLE = 0h OPTIONAL IDLE 0 S 0 0 1 0 0 1 0 0 1 0 1 E=0 P P IDLE DISABLE OPTIONAL IDLE IDLE ENABLE DATA NIBBLE = Ah OPTIONAL IDLE IDLE DISABLE 0 S 0 1 1 1 0 0 0 1 1 1 0 E=0 P P OPTIONAL IDLE IDLE ENABLE Figure 29. Data Characters www.maximintegrated.com Maxim Integrated │  51 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Stop Character command packet is sent or it goes into keep-alive mode, sending periodic stop characters to prevent the daisychained device(s) from going into shutdown. The stop character is a framing character that signals the end of a command packet (see Figure 30). It is transmitted as an unencoded 54h with a logic-one parity bit and a balanced duty cycle. UART Communication Mode When transitioning from idle mode to communication mode, the TXP pin must be pulled high (logic-one) prior to signaling the start bit (logic-zero) (see Figure 31). The duration of the logic-one is minimized to maintain a balanced duty cycle while still meeting the timing specification. When transitioning from the stop bit back to idle mode, the delay, if any, is also minimized. UART Idle Mode In the low-Z (default) idle mode, the transmitter outputs are both driven to 0V (see Figure 31). In the high-Z idle mode, the transmitter outputs are not driven by the UART. The MAX17841B interface automatically places its transmitter in idle mode immediately after each command packet and remains in idle mode until either the next OPTIONAL IDLE S 0 0 1 0 1 0 1 0 IDLE DISABLE E=1 P P OPTIONAL IDLE IDLE ENABLE Figure 30. Stop Character IDLE PREAMBLE IDLE TXnP TXnN tSTSU TXnP-TXnN Figure 31. Communication Mode www.maximintegrated.com Maxim Integrated │  52 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Data Types Command Byte Encoding The battery-management UART protocol employs several different data types, as described in Table 21. Command bytes encoding is described in Table 23. For READDEVICE and WRITEDEVICE commands, the device address is encoded in the command byte. The device ignores those commands containing a device address other than its own. Command Bytes The battery-management UART protocol supports six command types, which are summarized in Table 22. Table 21. Data Types DATA TYPE DESCRIPTION A byte defining the command-packet type, generally either a read or a write. Command byte Register address A byte defining the register address to be read or written. Register data bytes being read or written. Register data Data-check byte An error and alert status byte sent and returned with all reads. A packet-error checking byte sent and returned with every packet except HELLOALL. PEC byte A byte functioning as a device counter on all reads and writes, if ALIVECNTEN = 1. Alive counter Bytes transmitted in READALL command packets for clocking purposes only. Fill byte Table 22. Command-Packet Types COMMAND DESCRIPTION DATA CHECK PEC ALIVE COUNTER PACKET SIZE (CHARACTERS) HELLOALL Writes a unique device address to each device in the daisy-chain. Required for system initialization. No No No 8 WRITEALL Writes a specified register in all devices. No Yes Yes 14 Writes a specified register in a single device. No Yes Yes 14 Reads a specific register from all devices. Yes Yes Yes 12 + (4z) Reads a specified register from a single device. Yes Yes Yes 16 Reads the ADDRESS register for 32 devices. Yes Yes Yes 138 WRITEDEVICE READALL READDEVICE ROLLCALL Note: z = Total number of devices, ALIVECNTEN = 1, packet size includes framing characters. Table 23. Command-Byte Encoding COMMAND BYTE* 7 6 5 4 3 2 1 0 HELLOALL 57h 0 1 0 1 0 1 1 1 ROLLCALL 01h 0 0 0 0 0 0 0 1 WRITEDEVICE 04h DA4 3 DA2 DA1 DA0 1 0 0 WRITEALL 02h 0 0 0 0 0 0 1 0 READDEVICE 05h DA4 DA3 DA2 DA1 DA0 1 0 1 0 1 1 03h 0 0 0 0 0 READALL *Assumes DA[4:0] = 0x00, where DA[4:0] is the device address in the ADDRESS register. www.maximintegrated.com Maxim Integrated │  53 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Register Addresses All register addresses are single-byte quantities and are defined in the Register Map. In general, if the register or device address in a received command is not a valid address for the device, the device will ignore the read or write and simply pass through the packet to the next device. Register Data All registers are 16-bit words (two data bytes) and are defined in the Register Map. Data-Check Byte The host uses the returned data-check byte to promptly determine if any communication errors occurred during the packet transmission and to check if alert flags are set in any devices, as shown in Table 24. The data-check byte is returned by the READALL and READDEVICE commands. For READDEVICE, the data-check byte is updated only by the addressed device. The data-check byte sent by the host is a seed value normally set to 00h, although non-zero values can be used as a diagnostic. Each device logically ORs the received data-check byte with its own status and transmits it to the next device. A PEC error detected by any device will set the ALRTPEC bit in the STATUS register, and by extension, the ALRTPEC and ALRTSTATUS bits in the data-check byte. PEC Byte The PEC byte is a CRC-8 packet-error check sent by the host with all read and write commands. If any device receives an invalid PEC byte, it sets the ALRTPEC bit in the STATUS register. During any write transaction, a device does not execute the write command internally unless the received PEC matches the expected calculated value. For read commands, the device must return its own calculated PEC byte based on the returned data. The host should verify that the received PEC byte matches the calculated value; if an error is indicated, the data should be discarded. See the Applications Information section for details on the PEC calculation. Alive-Counter Byte The alive-counter byte is the last data byte of the command packets (except HELLOALL) if the ALIVECNTEN bit is set in the DEVCFG1 register. The host typically transmits the alive-counter seed value as 00h, but any value is permitted. For WRITEALL or READALL commands, each device retransmits the alive counter incremented by one. For WRITEDEVICE or READDEVICE commands, only the addressed device increments it. The alive counter is not used in the HELLOALL command. If the alive counter reaches FFh, the next device increments it to 00h. Since the alive counter comes after the PEC byte, an incorrect PEC value will not affect the incrementing of the alive-counter byte. Also, the PEC calculation does not include the alive-counter byte. The host should verify that the alive counter equals the original seed value + the number of devices, considering that if the alive counter reaches FFh, the next device increments it to 00h. Fill Bytes In the READALL command, the host sends two fill bytes for each device in the daisy-chain. The fill bytes are the locations within the packet and are used by the device to place the read data. The fill-byte values transmitted by the MAX17841B interface alternates between C2h and D3h. As the command packet propagates through the device, the device overwrites the appropriate fill bytes with the register data. The device uses the ADDRESS register to determine which specific fill bytes in the packet should be overwritten. For a READDEVICE command, only two fill bytes are required since only one device responds (returning two data bytes). Also, fill bytes are not required for write commands because the data received is exactly the same as the data retransmitted. Table 24. Data-Check Byte BIT NAME 7 ALRTPEC DESCRIPTION ALRTPEC is set. 6 ALRTFMEA 5 ALRTSTATUS 4 CHECK Check bit. Value that is received is forwarded. 3 CHECK Check bit. Value that is received is forwarded. 2 ALRTOV ALRTOV is set. 1 ALRTUV ALRTUV is set. 0 CHECK Check bit. Value that is received is forwarded. www.maximintegrated.com ALRTFMEA1 or ALRTFMEA2 is set. STATUS bit other than ALRTFMEA1, ALRTFMEA2, ALRTOV, and ALRTUV is set. Maxim Integrated │  54 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Battery-Management UART Protocol Commands HELLOALL Command The purpose of the HELLOALL command is to initialize the device addresses of all daisy-chained devices. The device address is stored in the DA[4:0] bits of the ADDRESS register. The highest address possible is 0x1F, so a maximum of 32 devices can be addressed. The command must be issued after POR to reinitialize all device addresses. When the HELLOALL command is first sent by the host, the address specified in the HELLOALL command is stored to the DA[4:0] bits of the ADDRESS register in the first daisy-chained device. The command is then forwarded to the next device in the chain with the DA[4:0] bits of the address byte incremented by 1, as shown in Table 25. This continues in the upstack direction for each device. The downstack communication path does not increment the address. The advantage of the host choosing a first address of 0x00 is that it is not necessary to write the first address (FA[4:0]) to all the devices since the default value of FA[4:0] is 0x00. Note: The host should set the first address so no assigned device address increments from 0x1F to 0x00 during the HELLOALL. The DA[4:0] value returned to the host is one greater than the address assigned to the last device. Once this last address is known, the host can determine how many devices are in the daisy-chain, which is required for subsequent READALL commands. A READALL command should be used to verify the ADDRESS registers. Special considerations exist if the host wants to use internal loopback instead of external loopback. The first HELLOALL command is not returned to the host because the internal loopback bit for the top device has not yet been written. If the number of devices is known to the host, the host can use a WRITEDEVICE to set the internal loopback bit on the last device and then verify with a READALL. If the number of devices is unknown, the internal loopback bit must be set on the first device, verified and then cleared. It can then be set on the second device and verified, and so on incrementally until there is no response (end of stack). With the number of devices known, the loopback bit can be reset on the last device and all ADDRESS registers verified. When a device receives a valid HELLOALL command, it clears the ADDRUNLOCK bit of the DEVCFG1 register. When this bit is 0, HELLOALL commands are ignored to prevent inadvertently changing any device address. In order to reconfigure the device address, the ADDRUNLOCK bit must first be set to ‘1’ or a POR event must occur. After configuring the device addresses, they should be verified using the READALL or ROLLCALL commands. WRITEALL Command The WRITEALL command writes a 16-bit value to a specified register in all daisy-chained devices. Since most configuration information is common to all the devices, this command allows faster setup than writing to each device individually. If the register address is not valid for the device, the command is ignored. The command sequence is shown in Table 26. The register value is written immediately after the valid PEC byte is received or, if NOPEC is set, after the last byte is received. If the received PEC byte does not match the internal calculation, the command is not executed, but is still forwarded to the next device. The PEC is calculated from the first 4 bytes of the command starting after the preamble. A PEC error will generate a PEC alert in the device STATUS register. Table 25. HELLOALL Sequencing (z = Total Number of Devices) HOST TX DEVICE (n) RXL DEVICE (n) TXU HOST RX Preamble Preamble Preamble Preamble 57h 57h 57h 57h 00h 00h 00h 00h {0b000,ADDR[4:0]} {0b000,ADDR[4:0]+n-1} {0b000,ADDR[4:0]+n} {0b000,ADDR[4:0]+z} Stop Stop Stop Stop www.maximintegrated.com Maxim Integrated │  55 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems WRITEDEVICE Command The WRITEDEVICE command writes a 16-bit value to the specified register in the addressed device only. If the register address is not valid for the device, the command is ignored. The command sequence is shown in Table 27. The register value is written immediately after the valid PEC byte is received or, if NOPEC is set, after the last byte is received. If the received PEC byte does not match the internal calculation, the command is not executed, but is still forwarded to the next device. The PEC is calculated from the first 4 bytes of the command starting after the preamble. A PEC error sets the ALRTPEC bit in the STATUS register. A PEC error can only occur in the addressed device. READALL Command The READALL command returns register data from the specified register for all daisy-chained devices. The data for the first device (connected to the host) is returned last. The command sequence is shown in Table 28. If the received PEC byte does not match the calculated value, the ALRTPEC bit of the data-check byte and ALRTPEC bit of the STATUS register are set, but the command proceeds. A Manchester error immediately switches the data propagation from read mode to write (pass-through) mode, ensuring that the Manchester error is propagated through the daisy-chain and back to the host. The fill byte values transmitted by the MAX17841B interface alternate between C2h and D3h as shown. As the packet propagates through the device, the device retransmits it in the order shown in the sequencing table (device TXU column). The device knows which bytes to overwrite since its ADDRESS register contains the first device address and its own device address; therefore, it knows where in the data stream it belongs. Table 26. WRITEALL Sequencing (Unchanged by Daisy-Chain) HOST TX DEVICE (n) RXL DEVICE (n) TXU HOST RX Preamble Preamble Preamble Preamble 02h 02h 02h 02h [REG ADDR] [REG ADDR] [REG ADDR] [REG ADDR] [DATA LSB] [DATA LSB] [DATA LSB] [DATA LSB] [DATA MSB] [DATA MSB] [DATA MSB] [DATA MSB] [PEC] [PEC] [PEC] [PEC] [ALIVE]* [ALIVE]* [ALIVE]* [ALIVE]* Stop Stop Stop Stop *If alive-counter mode is enabled. Table 27. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain) HOST TX DEVICE(n) RXL DEVICE(n) TXU HOST RX Preamble Preamble Preamble Preamble {(DA[4:0]),0b100} {(DA[4:0]),0b100} {(DA[4:0]),0b100} {(DA[4:0]),0b100} [REG ADDR] [REG ADDR] [REG ADDR] [REG ADDR] [DATA LSB] [DATA LSB] [DATA LSB] [DATA LSB] [DATA MSB] [DATA MSB] [DATA MSB] [DATA MSB] [PEC] [PEC] [PEC] [PEC] [ALIVE]* [ALIVE]* [ALIVE]* [ALIVE]* Stop Stop Stop Stop *If alive-counter mode is enabled. www.maximintegrated.com Maxim Integrated │  56 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Table 28. READALL Command Sequencing (z = no. of devices) HOST TX DEVICE(n) RXL DEVICE(n) TXU HOST RX Preamble Preamble Preamble Preamble 03h 03h 03h 03h [REG ADDR] [REG ADDR] [DATA ADDR] [REG ADDR] [DC] = 0x00 [DATA LSB(n-1)] [DATA LSB(n)] [DATA LSB(z)] [PEC] [DATA MSB(n-1)] [DATA MSB(n)] [DATA MSB(z)] [ALIVE]* … … [DATA LSB(z-1)] [FD(1) C2h] … … [DATA MSB(z-1)] [FD(1) D3h] [DATA LSB(1)] [DATA LSB(1)] … [FD(2) C2h] [DATA MSB(1)] [DATA MSB(1)] … [FD(2) D3h] [DC] [DC] … … [PEC] [PEC] … … [ALIVE]* [ALIVE]* … … [FD(1) C2h] [FD(1) C2h] … … [FD(1) D3h] [FD(1) D3h] [DATA LSB(1)] … … … [DATA MSB(1)] … … … [DC] [FD(z) C2h] [FD(z-n) C2h] [FD(z-n-1) C2h] [PEC] [FD(z) D3h] [FD(z-n) D3h] [FD(z-n-1) D3h] [ALIVE]* Stop Stop Stop Stop 12 + (4 x z) characters 12 + (4 x z) characters 12 + (4 x z) characters 12 + (4 x z) characters *If alive-counter mode is enabled. READDEVICE Command The READDEVICE command returns a 16-bit word read from the specified register in the addressed device only. If the register address is not valid for the device, the command is ignored. The command sequence is shown in Table 29. The command packet is forwarded up the daisy-chain until it reaches the addressed device. The addressed device overwrites the received fill bytes with the 2 bytes of register data and forwards the packet to the next device. The alive-counter byte is only incremented by the addressed device. A Manchester error immediately switches the data propagation from read mode to write (pass-through) www.maximintegrated.com mode, ensuring that the Manchester error is propagated through the daisy-chain and back to the host. ROLLCALL Command While not required for system initialization, the ROLLCALL command (01h) can be used to verify that all devices are responding, regardless of the value of FA[4:0]. The response of each device is identical to that of a READALL command of the ADDRESS register, where the first device address (FA[4:0]) is 00h, and there are 32 devices; therefore, the ROLLCALL command is sent with 64 fill bytes and each device places the data-check and PEC bytes after the 32nd register data word. This ensures that each device can return its ADDRESS register data. Maxim Integrated │  57 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Diagnostics Built-in diagnostics support ISO 26262 (ASIL) requirements by detecting specific fault conditions, as shown in Table 30. The device automatically performs some of the diagnostics while the host performs others during initialization (e.g., at key-on), or periodically during operation, as required by the application. Diagnostics performed automatically by the device are previously described in the relevant functional sections. A description of the diagnostics requiring specific configurations are provided in this section. Table 29. READDEVICE Sequencing HOST TX DEVICE RXL DEVICE TXU HOST RX Preamble Preamble Preamble Preamble {DA[4:0], 0b101} {DA[4:0], 0b101} {DA[4:0], 0b101} {DA[4:0], 0b101} [REG ADDR] [REG ADDR] [REG ADDR] [REG ADDR] [DC] [DC] [DATA LSB] [DATA LSB] [PEC] [PEC] [DATA MSB] [DATA MSB] [ALIVE]* [ALIVE]* [DC] [DC] [FD(1) C2h] [FD(1) C2h] [PEC] [PEC] [FD(1) D3h] [FD(1) D3h] [ALIVE]* [ALIVE]* Stop Stop Stop Stop 16 characters 16 characters 16 characters 16 characters *If alive-counter mode is enabled. Table 30. Summary of Built-In Diagnostics DIAGNOSTICS PERFORMED AUTOMATICALLY BY DEVICE WITH NO HOST INTERVENTION FAULT DIAGNOSTIC PROCEDURE OUTPUT VAA undervoltage Continuous voltage comparison ALRTRST VHV undervoltage Continuous voltage comparison ALRTHVUV VHV overvoltage Continuous voltage comparison ALRTHVOV VHV low headroom Voltage comparison (updated during measurement) ALRTHVHDRM 32kHz oscillator fault Continuous frequency comparison ALRTOSC1, ALRTOSC2 16MHz oscillator fault Communication error checking ALRTMAN, ALRTPAR Communication fault Communication error checking ALRTPEC, ALRTMAN, ALRTPAR RX pin open/short Verify RX mode after POR ALRTCOMMSEUn/ALRTCOMMSELn VDDLn pin open/short Continuous voltage comparison ALRTVDDLx GNDLn pin open/short Continuous voltage comparison ALRTGNDLx Die overtemperature Temperature comparison (updated after measurement) ALRTTEMP www.maximintegrated.com Maxim Integrated │  58 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Table 30. Summary of Built-In Diagnostics (continued) DIAGNOSTICS PERFORMED DURING ACQUISITION MODE AS SELECTED BY DIAGSEL OR BALSWDIAG FAULT DIAGNOSTIC PROCEDURE DIAGSEL[2:0] OUTPUT Reference voltage fault ALTREF diagnostic DIAGSEL = 1h DIAG[15:0] (ALTREF voltage) VAA voltage fault VAA diagnostic DIAGSEL = 2h DIAG[15:0] (VAA voltage) LSAMP Offset too high LSAMP offset diagnostic DIAGSEL = 3h DIAG[15:0] (LSAMP offset voltage) ADC bit stuck high Zero-Scale ADC diagnostic DIAGSEL = 4h DIAG[15:0] (Zero scale) ADC bit stuck low Full-Scale ADC diagnostic DIAGSEL = 5h DIAG[15:0] (Full scale) VPTAT or ALRTTEMP fault Die Temperature diagnostic DIAGSEL = 6h DIAG[15:0] (VPTAT voltage), ALRTTEMP Balancing switch short BALSW diagnostic mode BALSWDIAG = 1h ALRTBALSW Balancing switch open BALSW diagnostic mode BALSWDIAG = 2h ALRTBALSW Odd sense-wire open BALSW diagnostic mode BALSWDIAG = 5h ALRTBALSW Even sense-wire open BALSW diagnostic mode BALSWDIAG = 6h ALRTBALSW PROCEDURAL DIAGNOSTICS FAULT DIAGNOSTIC PROCEDURE OUTPUT SHDNL stuck high Idle mode ALRTSHDNL HVMUX switch open Acquisition with HVMUX test sources ALRTOV, ALRTUV HVMUX switch short ALTREF diagnostic DIAG[15:0] HVMUX test sources Acquisition with HVMUX test sources CELLn Cn pin open Acquisition with cell test sources ALRTOV, ALRTUV Cn short to SWn Acquisition with balancing switches CELLn Cn pin leakage ALTMUX vs. HVMUX acquisition CELLn Voltage comparator fault ALTMUX acquisition with balancing switches CELLn Voltage comparator fault ALTMUX acquisition with balancing switches CELLn ALRTHVUV comparator Acquisition with HV charge pump disabled ALRTHVUV HVMUX sequencer Acquisition with cell test sources CELLn ALU Data Path Acquisition with ADCTEST = 1 CELLn, VBLKP, DIAG, and AUXINn AUXINn Pin Open Acquisition with AUXIN test sources AUXINn Calibration corruption Read CALx, IDx, perform CRC ID2 Note: Pin faults such as an open pin or adjacent pins shorted to each other must be detectable. Pin faults do not result in device damage but have a specific device response such as a communication error, or are detectable through a built-in diagnostic. Analyzing the effect of pin faults is referred to as a pin FMEA. Contact Maxim Applications to obtain pin FMEA results. www.maximintegrated.com Maxim Integrated │  59 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ALTREF Diagnostic Measurement The ALTREF diagnostic measurement (DIAGSEL[2:0] = 0b001) checks the primary voltage reference of the ADC by measuring the alternate reference voltage (VALTREF). The result is available in the DIAG register after a normal acquisition. See Figure 32. The ALTREF voltage is computed from the result in the DIAG register as follows: VALTREF = (DIAG[15:2]/16384d ) x 5V Since 1.23V < VALTREF < 1.254V and VALTREF = 1.242V nominally, the expected range for DIAG[15:2] is (1.23V/5V) x 16384d = 4030d to (1.254V/5V) x 16384 = 4109d; therefore, 0FBEh ≤ DIAG[15:2] ≤ 100Dh. To use the 16-bit register value, the 14-bit values must be shifted or multiplied by 4 so that 3EF8h ≤ DIAG[15:0] ≤ 4034h. VAA Diagnostic Measurement The VAA diagnostic measurement (DIAGSEL[2:0] = 0b010) verifies that VAA is within specification. This diagnostic measures VREF, but using VTHRM as the ADC reference. See Figure 33. The voltage into the ADC is computed from the result in the DIAG register as follows: (6/13) x VREF = (DIAG[15:2]/16384d ) x VTHRM Assuming VTHRM = VAA, then VAA is given by: VAA = (6/13) x VREF x 16384d/DIAG[15:2], where VREF = 2.307V The result for VAA should fall within the range provided in the Electrical Characteristics table for VAA. HVMUX BUS REF + THRM G = 6/13 LSAMP ADC IN + LV MUX - ADC IN - ADC ADC AUTOMATICALLY IN UNIPOLAR MODE ALTREF AGND Figure 32. ALTREF Diagnostic HVMUX BUS VREF VTHRM G = 6/13 + LSAMP ADC IN + LV MUX - REF ADC ADC IN - ADC AUTOMATICALLY IN UNIPOLAR MODE AGND Figure 33. VAA Diagnostic www.maximintegrated.com Maxim Integrated │  60 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems LSAMP Offset Diagnostic Measurement The LSAMP diagnostic measurement (DIAGSEL[2:0] = 0b011) measures the level-shift amplifier offset by shorting the LSAMP inputs during the diagnostic portion of the acquisition. The result is available in the DIAG register after a normal acquisition. For this measurement, the ADC polarity is automatically set to bipolar mode to allow accurate measurement of voltages near zero. This measurement eliminates the chopping phase to preserve the offset error. If the diagnostic measurement exceeds the valid range for VOS_LSAMP, as specified in the Electrical Characteristics table, the chopping function may not be able to cancel out all the offset error, and acquisition accuracy could be degraded accordingly. See Figure 34. The LSAMP offset is computed from the result in the DIAG register as follows: LSAMP Offset = (|DIAG[15:2] - 2000h |/16384d ) x 5V The validity of measurements through LSAMP is further confirmed by the ALTREF and VAA diagnostics, and comparison of the VBLKP measurement to the sum of the cell measurements. Zero-Scale ADC Diagnostic Measurement Stuck ADC output bits can be verified with a combination of the zero-scale and full-scale diagnostics. The zeroscale ADC diagnostic measurement (DIAGSEL[2:0] = 0b100) verifies that the ADC conversion results in 000h when its input is at -VAA in bipolar mode (since for an input ≤ -2.5V, DIAG[15:0] = 0000h). For this measurement, the ADC is automatically set to bipolar mode. See Figure 35. G = 6/13 ADC IN + + HVMUX BUS LV MUX LSAMP - ADC ADC IN ADC AUTOMATICALLY IN BIPOLAR MODE Figure 34. LSAMP Offset Diagnostic REF THRM VAA ADC IN + LV MUX ADC ADC IN - AGND ADC AUTOMATICALLY IN BIPOLAR MODE AGND Figure 35. Zero-Scale ADC Diagnostic www.maximintegrated.com Maxim Integrated │  61 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Full-Scale ADC Diagnostic Measurement Stuck ADC output bits can be verified with a combination of the zero-scale and full-scale diagnostics. The full-scale ADC diagnostic measurement (DIAGSEL[2:0] = 0b101) verifies that the ADC conversion results in FFFh when its input is at VAA in bipolar mode (since for an input ≥ 2.5V, DIAG[15:0] = FFF0h). For this measurement, the ADC is automatically set to bipolar mode. See Figure 36. BALSW Diagnostics Four balancing switch-diagnostic modes are available to facilitate the following diagnostics: ●● Balancing switch shorted (BALSWDIAG[2:0] = 0b001) ●● Balancing switch open (BALSWDIAG[2:0] = 0b010) ●● Odd sense wire open (BALSWDIAG[2:0] = 0b101) ●● Even sense wire open (BALSWDIAG[2:0] = 0b110) Enabling any of these modes automatically preconfigures the acquisition (e.g., enables the ALTMUX measurement path). The host must initiate the acquisition, but the diagnostic mode automatically compares the measurements to the specific thresholds and sets any corresponding alerts. The host presets the thresholds, as determined by the minimum and maximum resistance of the switch (RSW) specified in the Electrical Characteristics table and the intended cell-balancing current. During any balancing switch-diagnostic mode, ALRTOV, ALRTUV, and ALRTMSMTCH comparisons are disabled. After BALSWDIAG[2:0] is cleared, the modified configurations automatically return to their prior setting. The same configurations and comparisons could be implemented manually but at the expense of more host operations. BALSW Short Diagnostic A short-circuit fault in the balancing path could be a short between SWn and SWn-1 (see Figure 37) or that the balancing FET is stuck in the conducting state. In the short-circuit state, the voltage between SWn and SWn-1 (switch voltage) is less than the voltage between Cn and Cn-1 (cell voltage). When enabled, the balancing switch short-diagnostic mode (BALSWDIAG[2:0] = 0b001) functions as follows: ●● Disables the balancing switches automatically ●● Configures the acquisition using ALTMUX path automatically ●● Host initiates the acquisition ●● Compares the measurement to the BALSHRTTHR threshold value automatically (Table 32) ●● If outside the threshold, sets the corresponding flag in ALRTBALSW automatically For the best sensitivity to leakage current, set the threshold value based on the minimum cell voltage minus a small noise margin (100mV), then update the threshold value periodically or every time a measurement is taken, depending on how fast the cell voltages are expected to change. REF CN THRM SWn TO ALTMUX VAA BALSWEN ADC IN + LV MUX ADC ADC IN - AGND ADC AUTOMATICALLY IN BIPOLAR MODE AGND Figure 36. Full-Scale ADC Diagnostic www.maximintegrated.com TO HVMUX SHORT CIRCUIT BALANCING SWITCH (n) SWn-1 Cn-1 HV TO ALTMUX TO HVMUX AGND Figure 37. Balancing Switch Short Maxim Integrated │  62 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems MAX178xx FULLY FUNCTIONAL AND INITIALIZED ENSURE BALSHRTTHR SET TO DESIRED VALUE SET BALSWDIAG[2:0] TO 0b001 WAIT 100µs START ADC MEASUREMENT YES SCANDONE = 1 ALRTFMEA DATACHECK BIT SHOWS RESULT NO CLEAR BALSWDIAG[2:0] AND SCANDONE BALSW SHORT CIRCUIT CHECK INVALID CHECK ALRTBALSW OR CELLn REGISTERS FOR DETAILED RESULT BALSW SHORT CIRCUIT CHECK DONE Figure 38. BALSW Short Diagnostic Table 31. BALSW Short-Diagnostic Auto Configuration CONFIGURATION BITS AUTOMATIC SETTING PURPOSE MEASUREEN[14:12] 0b000 Disable AUXIN and VBLKP measurements BALSWEN[11:0] 000h Disable all balancing switches DIAGCFG.ALTMUXSEL 1 Enable ALTMUX measurement path www.maximintegrated.com Maxim Integrated │  63 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems BALSW Open Diagnostic ●● Host initiates acquisition The BALSW open diagnostic (BALSWDIAG[2:0] = 0b010) verifies that each enabled balancing switch is conducting (not open) as follows: ●● Automatically compares measurement to the threshold value BALLOWTHR and BALHIGHTHR (Table 32) ●● If outside the threshold, automatically sets the corresponding flag in ALRTBALSW ●● Automatically configures acquisition for bipolar mode (for measuring voltages near zero) Set the thresholds by taking into account the minimum and maximum RSW of the switch itself, as specified in the Electrical Characteristics table and the balancing current for the application. See Figure 39 and Table 33. ●● Automatically configures acquisition for ALTMUX path ●● Automatically configures acquisition to measure switch voltages for those switches enabled by BALSWEN Table 32. BALSW Diagnostics BALSW V SWn FAULT INDICATED? POSSIBLE FAULT CONDITION > V(BALHIGHTHR) Yes Switch open circuit, or overcurrent No None Yes Path open circuit or short circuit > V(BALLOWTHR) On < V(BALHIGHTHR) < V(BALLOWTHR) Off > V(BALSHRTTHR) No None < V(BALSHRTTHR) Yes Short circuit or leakage current Table 33. BALSW Open-Diagnostic Auto Configuration CONFIGURATION BITS AUTOMATIC SETTING PURPOSE MEASUREEN[14:12] 0b000 Disable AUXINn and VBLKP measurements MEASUREEN[11:0] BALSWEN[11:0] Measure only active switch positions DIAGCFG.ALTMUXSEL 1 Enable ALTMUX measurement path SCANCTRL.POLARITY 1 Enable bipolar mode www.maximintegrated.com Maxim Integrated │  64 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems MAX178xx FULLY FUNCTIONAL AND INITIALIZED ENSURE BALLOWTHR AND BALHIGHTHR SET TO DESIRED VALUE SET BALSWDIAG[2:0] TO 0b010 START ADC MEASUREMENT SCANDONE = 1? YES ALRTFMEA DATACHECK BIT SHOWS RESULT NO BALSW OPEN CHECK INVALID CLEAR BALSWDIAG[2:0] AND SCANDONE CHECK ALRTBALSW OR CELLn REGISTERS FOR DETAILED RESULT BALSW OPEN CHECK DONE Figure 39. BALSW Open Diagnostic www.maximintegrated.com Maxim Integrated │  65 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Even/Odd Sense-Wire Open Diagnostics ●● Host waits 100μs for settling and then initiates the acquisition If enabled, the sense-wire open-diagnostic modes detect if a cell-sense wire is disconnected as follows: ●● Automatically compares result to the BALHIGHTHR and BALLOWTHR register ●● Automatically closes nonadjacent switches (even or odd) ●● If outside thresholds, automatically sets flags in ALRTBALSW ●● Automatically configures acquisition to use the ALTMUX path See Figure 40, Figure 41, Table 34, Table 35, and Table 36. TO CELL n+1 SENSE WIRE RFILTER RBALANCE Cn TO HVMUX CFILTER SWn TO ALTMUX BALSWEN DETECT BREAK IN DASHEDLINE PATH CELL n RBALFILTER RBALANCE SENSE WIRE BALANCING SWITCH (n) SWn-1 RFILTER Cn-1 CFILTER TO CELL n-1 HV TO ALTMUX TO HVMUX AGND Figure 40. Cell Sense-Wire Open Diagnostics www.maximintegrated.com Maxim Integrated │  66 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Table 34. Odd Sense-Wire Open-Measurement Result SENSE WIRE OPEN FAULT LOCATION C0 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 0V 0V NC NC NC NC NC NC NC NC NC NC NC Cell2 NC cell1+ cell2 cell2+ cell3 NC NC NC NC NC NC NC NC NC NC Cell3 NC NC 0V 0V NC NC NC NC NC NC NC NC NC Cell4 NC NC NC cell3+ cell4 cell4+ cell5 NC NC NC NC NC NC NC NC Cell5 NC NC NC NC 0V 0V NC NC NC NC NC NC NC cell6+ cell7 NC NC NC NC NC NC Cell1 CELL MEASUREMENT CHANGE C1 Cell6 NC NC NC NC NC cell5+ cell6 Cell7 NC NC NC NC NC NC 0V 0V NC NC NC NC NC Cell8 NC NC NC NC NC NC NC cell7+ cell8 cell8+ cell9 NC NC NC NC Cell9 NC NC NC NC NC NC NC NC 0V 0V NC NC NC cell10+ cell11 NC NC Cell10 NC NC NC NC NC NC NC NC NC cell9+ cell10 Cell11 NC NC NC NC NC NC NC NC NC NC 0V 0V NC Cell12 NC NC NC NC NC NC NC NC NC NC NC cell11+ cell12 UD Note: NC = No Change; UD = Undefined; Maximum result is 5V. Table 35. Even Sense-Wire Open-Measurement Result CELL MEASUREMENT CHANGE SENSE WIRE OPEN FAULT LOCATION C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Cell1 UD cell1+ cell2 NC NC NC NC NC NC NC NC NC NC NC Cell2 NC 0V 0V NC NC NC NC NC NC NC NC NC NC Cell3 NC NC Cell2+ cell3 cell3+ cell4 NC NC NC NC NC NC NC NC NC Cell4 NC NC NC 0V 0V NC NC NC NC NC NC NC NC cell5+ cell6 NC NC NC NC NC NC NC Cell5 NC NC NC NC cell4+ cell5 Cell6 NC NC NC NC NC 0V 0V NC NC NC NC NC NC Cell7 NC NC NC NC NC NC cell6+ cell7 cell7+ cell8 NC NC NC NC NC Cell8 NC NC NC NC NC NC NC 0V 0V NC NC NC NC cell9+ cell10 NC NC NC 0V 0V NC NC cell11+ cell12 NC 0V 0V Cell9 NC NC NC NC NC NC NC NC cell8+ cell9 Cell10 NC NC NC NC NC NC NC NC NC Cell11 NC NC NC NC NC NC NC NC NC NC cell10+ cell11 Cell12 NC NC NC NC NC NC NC NC NC NC NC Note: NC = No Change; UD = Undefined; Maximum result is 5V. www.maximintegrated.com Maxim Integrated │  67 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems MAX178xx FULLY FUNCTIONAL AND INITIALIZED ENSURE BALLOWTHR AND BALHIGHTHR SET TO DESIRED VALUE SET BALSWDIAG[2:0] 0b101 FOR ODD SWITCHES 0b110 FOR EVEN SWITCHES WAIT 100µs START ADC MEASUREMENT YES SCANDONE = 1? ALRTFMEA DATACHECK BIT SHOWS RESULT NO CLEAR BALSWDIAG[2:0] AND SCANDONE BALSW CONDUCTING CHECK INVALID CHECK ALRTBALSW OR CELLn REGISTERS FOR DETAILED RESULT BALSW CONDUCTING CHECK DONE Figure 41. Sense-Wire Open Diagnostic Table 36. Sense-Wire Open-Diagnostic Configurations CONFIGURATION BIT(S) CONFIGURATION STATE TASK 555h (BALSWDIAG = 0b101) or Enable odd switches AAAh (BALSWDIAG = 0b110) Enable even switches MEASUREEN[14:12] 0b000 Disable AUXINn and VBLKP measurements MEASUREEN[11:0] BALSWEN[11:0] Measure only active switch positions DIAGCFG.ALTMUXSEL 1 Enable ALTMUX measurement path SCANCTRL.POLARITY 1 Enable bipolar mode BALSWEN[11:0] www.maximintegrated.com Maxim Integrated │  68 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Diagnostic Test Sources ●● The test current ranges from 3.125µA up to 50µA per CTSTDAC[3:0] (applies to all enabled sources) Diagnostic test current sources (see Figure 42) can be enabled prior to the acquisition mode for detecting both internal and external hardware faults in the measurement path. One set of test sources is connected to the HVMUX input side and another set is connected to the HVMUX output side. The basic premise in these diagnostics is for a symmetrical measurement channel with no faults, the test currents can be applied symmetrically to the differential channel and there should only be almost no change in the channel measurement. On the other hand, if an asymmetric fault exists on the channel, the resulting change will indicate the nature of the fault (e.g., an open or shorted pin). ●● The test current, by default, is applied to both HVMUX outputs (even and odd outputs); however, if MUXDIAGPAIR is set, the test current is applied to only one of the output lines per MUXDIAGBUS. This mode is used to test the test sources themselves (see Table 37 for HVMUX output assignments) Table 37. HVMUX Output Assignment INPUT SIGNAL HVMUX OUTPUT C12 Even bus For the 15 test current sources on the input channels (13 Cn and 2 AUXINn): C11 Odd bus C10 Even bus ●● The test currents are individually enabled per CTSTEN[12:0] and AUXINTSTEN[2:1] C9 Odd bus C8 Even bus ●● The test current ranges from 6.25µA up to 100µA per CTSTDAC[3:0] (applies to all enabled sources) ●● The test current sources from VAA or sinks to AGND per the CTSTSRC bit (applies to all enabled sources) For the two test current sources on the HVMUX output side: ●● The test currents are enabled by the MUXDIAGEN bit ●● The test current always sources from the HV supply VAA RFILTER Cn RHVMUX X AGND AGND CELL n VAA RFILTER Cn-1 HV CELL TEST CURRENT SOURCE Odd bus C6 Even bus C5 Odd bus C4 Even bus C3 Odd bus C2 Even bus C1 Odd bus C0 Even bus REF Odd bus ALTREF Odd bus AGND Even bus HV HVMUX TEST SOURCES CONTROLLED BY: MUXDIAGEN MUXDIAGPAIR MUXDIAGBUS CTSTDAC CELL TEST SOURCES CONTROLLED BY: CTSTENn CTSTSRC CTSTDAC CELL TEST CURRENT SOURCE RHVMUX X X C7 X + LSAMP AGND AGND TO ADC - Figure 42. Test Current Sources www.maximintegrated.com Maxim Integrated │  69 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Shutdown Diagnostic The shutdown diagnostic, as shown in Table 38, verifies that no hardware fault is preventing the device from shutting down, such as the SHDNL input being stuck at logic-one. To perform the diagnostic, the host attempts a shutdown. The timing shown in Figure 43 is for a UART idle-mode shutdown. Once VSHNDL < 0.6V, the ALRTSHDNL bit is set in the STATUS register and the regulator is disabled; however, the STATUS register may still be read as long as VAA has not decayed below 2.95V (typ), which takes about 1ms. The host should verify that ALRTSHDNL is set. By reading the bit, the charge pump drives VSHDNL > 1.8V in about 200µs and enables the regulator. The host must clear the ALRTSHDNL bit to complete the diagnostic. The ALRTSHDNLRT bit is a real-time version of ALRTSHDNL, which automatically clears when VSHDNL > 1.8V. Table 38. Shutdown Diagnostic FAULT COMPARISON ALERT BIT LOCATION SHDNL input stuck VSHDNL < 0.6V? ALRTSHDNL STATUS[12] SHDNL input stuck VSHDNL < 0.6V? ALRTSHNDRT STATUS[11] Figure 43. Shutdown Diagnostic Timing www.maximintegrated.com Maxim Integrated │  70 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems HVMUX Switch Open Diagnostic Since an open HVMUX switch causes the measured voltage to go to either zero or full scale, it is possible to execute the test by looking for an overvoltage or undervoltage alert following the diagnostic measurement, without analyzing the measurement data. It is possible to read all voltage measurements and let the host compare the results by splitting the test into several segments. The procedure in Figure 44 is quick and efficient. For higher sensitivity to faults, each cell-voltage measurement in the diagnostic mode can be compared to a threshold of 100mV by the host to determine if the HVMUX path is working correctly. The threshold is derived from the worstcase HVMUX resistance mismatch and the worst-case diagnostic current-source value variation. See Table 39 for the HVMUX switch open-fault locations MAX178xx FULLY FUNCTIONAL AND INITIALIZED; MUXDIAGPAIR = 0 DBLBUF = 0 STORE MEASUREMENT VALUES IN HOST ENABLE VALID CELLS FOR MEASUREMENT SET TEST CURRENT SOURCE VALUE CTSTDAC[3:0] = 0xF START ADC MEASUREMENT ENABLE MUX TEST CURRENT SOURCE MUXDIAGEN = 1 START ADC MEASUREMENT NO ALRTOV OR ALRTUV? ALL MUX SWITCHES AND PATHS FUNCTIONING YES MUX SWITCH PAIR IS MALFUNCTIONING Figure 44. HVMUX Switch Open Diagnostic Table 39. HVMUX Switch Open Diagnostic HVMUX SWITCH OPEN-FAULT LOCATION Cell1 CELL MEASUREMENT Cell2 Cell3 Cell4 Cell5 Cell6 Cell7 Cell8 Cell9 Cell10 Cell11 Cell12 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V NC NC NC NC NC NC NC NC NC NC NC NC 0V 5V Note: NC = No change. www.maximintegrated.com Maxim Integrated │  71 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems HVMUX Switch Shorted Diagnostic A shorted mux switch is detectable in two ways based on corrupted measurement values. First, the ALTREF diagnostic will report a large error. Also, during normal cell measurements, a shorted HVMUX switch will cause the LSAMP to saturate, which is also easily detectable. HVMUX Test Source Diagnostic The two current sources attached to the HVMUX even bus and the HVMUX odd bus can be enabled independently instead of as a pair setting the MUXDIAGPAIR bit. MUXDIAGBUS controls which source is enabled (MUXDIAGBUS = 1 for odd bus source). This causes every measurement to have a definable change as the sources are enabled and disabled. By taking measurements while alternating which current source is enabled, it is possible to verify that each current source is working (see Table 40). Table 40. HVMUX Test Source Diagnostic EVEN TEST SOURCE SHORTED TO HV EVEN TEST SOURCE OPEN CIRCUIT ODD TEST SOURCE SHORTED TO HV ODD TEST SOURCE OPEN CIRCUIT Cell1: 0V -I x R 5V IxR Cell2: 5V IxR 0V -I x R Cell3: 0V -I x R 5V IxR Cell4: 5V IxR 0V -I x R Cell5: 0V -I x R 5V IxR Cell6: 5V IxR 0V -I x R Cell7: 0V -I x R 5V IxR Cell8: 5V IxR 0V -I x R Cell9: 0V -I x R 5V IxR Cell10: 5V IxR 0V -I x R Cell11: 0V -I x R 5V IxR Cell12: 5V IxR 0V -I x R CELL MEASUREMENT CHANGE HVMUX TEST SOURCE FAULT: Note: I = Test source current, R = HVMUX resistance. www.maximintegrated.com Maxim Integrated │  72 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Cn Open Diagnostic If the cell is disconnected from the input, the corresponding cell test source (sinking to AGND) will pull the cell input voltage toward 0V (except for C0, where source to VAA current source will pull the cell input voltage to VAA) A new measurement is taken with the current sources enabled, and a change in measurement value is detected. If no open circuit exists, then the measurement value will change by only the value of the test current across the application circuit series resistor to the Cn pin. See Table 41. Table 41. Cn Pin Open Diagnostic CELL MEASUREMENT Cn PIN OPEN FAULT LOCATION C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Cell1 Cell13.3V 0V NC NC NC NC NC NC NC NC NC NC NC Cell2 NC Cell2+ Cell1 0V NC NC NC NC NC NC NC NC NC NC Cell3 NC NC Cell3+ Cell2 0V NC NC NC NC NC NC NC NC NC Cell4 NC NC NC Cell4+ Cell3 0V NC NC NC NC NC NC NC NC Cell5 NC NC NC NC Cell5+ Cell4 0V NC NC NC NC NC NC NC Cell6 NC NC NC NC NC Cell6+ Cell5 0V NC NC NC NC NC NC Cell7 NC NC NC NC NC NC Cell7+ Cell6 0V NC NC NC NC NC Cell8 NC NC NC NC NC NC NC Cell8+ Cell7 0V NC NC NC NC Cell9 NC NC NC NC NC NC NC NC Cell9+ Cell8 0V NC NC NC Cell10 NC NC NC NC NC NC NC NC NC Cell10+ Cell9 0V NC NC Cell11 NC NC NC NC NC NC NC NC NC NC Cell11+ Cell10 0V NC Cell12 NC NC NC NC NC NC NC NC NC NC NC Cell12+ Cell11 0V Note: NC = no change. www.maximintegrated.com Maxim Integrated │  73 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Cn Shorted to SWn Diagnostic pin is shorted to the Cn pin, then the measured value will change by approximately 40-50% when the balancing switch is turned on based on the values of RBALANCE, and the balancing switch resistance. A short circuit from SWn to Cn-1 produces the same effect. By comparing both the VCELLn measurement value along with the VCELLn+1 and VCELLn-1 values, it is possible to determine exactly where the short circuit is located. Short circuits between the SWn pins and the cell input pins are detectable. A shorted SWn pin can be detected by an acquisition with the relevant cell balancing switch off and then again with it on. If the SWn pin is not shorted to an adjacent cell input pin, no change in the measured value should be observed for the two cases. If the SWn RFILTER RBALANCE CELL #n RFILTER RBALANCE TEST FOR SWn TO Cn SHORT CIRCUIT CONDITION Cn SWn HV CONTROLLED BY BALSWEN[n-1] Cn-1 SWn-1 Figure 45. SWn to Cn Short RFILTER RBALANCE CELL #n RFILTER RBALANCE TEST FOR SWn TO Cn SHORT CIRCUIT CONDITION Cn SWn Cn-1 HV CONTROLLED BY BALSWEN[n-1] SWn-1 Figure 46. SWn-1 to Cn Short www.maximintegrated.com Maxim Integrated │  74 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Cn Leakage Diagnostic Leakage at the Cn inputs can cause the voltage seen by the ADC to be different than that at the voltage source due to the resistance of the external filter circuit. By utilizing an alternate measurement path, any voltage errors as a result of Cn pin leakage may be detected. The SWn pins are connected to the cell sources through an alternate path. Implementing an HVMUX connection from the SWn pins to the LSAMP completes the redundant measurement path. This alternate measurement path for the cell measurements can be enabled by setting the ALTMUXSEL bit of the DIAGCFG register. When this bit is set and a measurement cycle is started, all cell measurements are taken using the alternate path instead of the Cn pin HVMUX connections. Measurements taken with the normal and alternate paths can be compared and should be nearly identical for a system with no faults. Since the SWn pins typically have a smaller external filter time constant than the Cn pins, increasing the oversampling setting for this diagnostic measurement may be beneficial for reducing measurement noise when the measurement is taken while the cells are exposed to transient loads. Cell Overvoltage Diagnostic Enabling balancing switches can be used to generate a voltage up to 2 x VCELL at the ALTMUX inputs to test the input range capability, assuming the cell is sufficiently charged. A cell-position input voltage is elevated by approximately 1.5 x VCELLn turning on either BALSWn+1 or BALSWn-1. When the adjacent switch is turned on, the SWn pin shared with the switch is moved by 0.5 x VCELL, which causes VCELLn to increase by that amount when measured with the ALTMUX path. For the topmost cell position, BALSWn-1 must be used, and for the bottom cell position, BALSWn+1 must be used. By turning on two adjacent switches instead of one, such as BALSWn+1 and BALSWn+2, the measured voltage is approximately 2 x VCELL, assuming all cells are at approximately the same voltage. This technique can create an input voltage that exceeds the overvoltage threshold to verify the higher end of the input range and the overvoltage alert function. Input range can also be verified by using the cell-test sources to induce a higher cell channel voltage. If the change is as expected, it shows that the system can measure voltages above the present nominal input voltage. TO CELL n+1 SENSE WIRE RFILTER Cn CFILTER RBALANCE SWn CELL n + LSAMP RBALFILTER SWn-1 RBALANCE SENSE WIRE TO ADC RFILTER CFILTER TO CELL n-1 Cn-1 AGND HVMUX BUS HVMUX BUS ALTMUX ALTMUX BUS BUS Figure 47. Redundant HVMUX Paths www.maximintegrated.com Maxim Integrated │  75 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Cell Undervoltage Diagnostic 1) Perform an acquisition. Turning on the balancing switch can be used to generate a near-zero voltage at any input channel to the ALTMUX path. By successfully measuring this near-zero voltage, the diagnostic verifies the lower-end of the input range and the undervoltage alert function. Input range can also be verified by using the cell-test sources to induce a lower-cell channel voltage. If the change is as expected, it shows that the system can measure voltages below the present nominal input voltage. ALRTHVUV Comparator Diagnostic The ALRTHVUV comparator functionality can be verified by setting the CPEN bit (to disable the HV charge pump) and then discharging the external HV capacitor by performing an acquisition for 5ms (such as 12 cells, 32 oversamples), or by enabling using one or more of the cell-test current sources for an appropriate amount of time. The ALRTHVUV bit should be set after the voltage has decayed. HVMUX Sequencer Diagnostic The HVMUX control sequence can be checked using the sources attached to the Cn pins. The sources are controlled by the CTSTEN bits of the CTSTCFG register. The basic test method is as follows: 2) Turn on a cell-test source. 3) Wait for sufficient settling time. 4) Perform an acquisition. 5) Check that the cell(s) sharing the pin whose current source was turned on had the expected measurement change and other cells had no changes. 6) Repeat steps 1–5 for other pins to confirm there are no logic errors in the HVMUX control sequencer. The cell-test sources can be turned on for individual pins to create a detectable measurement variation that is determined by the current source value and the series resistance of the cell input filter circuit. The settling time needed for a certain change in measurement value depends on the size of the external filter capacitors and the amplitude of the test-current source. A longer settling time gives the full-voltage change, while a shorter settling time saves test time and should still produce an easily detectable voltage difference. By detecting the expected measurement variation for a given cell input pair and running a sequence of tests to cover all cases, the HVMUX sequencer operation is verified. VAA TEST SOURCE RFILTER RHVMUX Cn TEST SOURCES CONTROLLED BY: CTSTENn CTSTSRC AGND CTSTDAC AGND CELL n VAA TEST SOURCE RFILTER RHVMUX Cn-1 + LSAMP AGND AGND TO ADC - Figure 48. HVMUX Sequencer Diagnostic www.maximintegrated.com Maxim Integrated │  76 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems STANDBY MODE; DBLBUF = 0 STORE MEASUREMENT VALUES ENABLE VALID CELLS FOR MEASUREMENT SET TEST SOURCE CURRENT CTSTDAC[3:0] = 0xF INITIATE ACQUISITION SET TEST SOURCE POLARITY CTSTSRC = 0 FOR AGND n = 12 n = n-1 ENABLE CELL TEST CURRENT SOURCE n CTSTENn = 1 WAIT FOR SETTLING TIME ONE APPS CIRCUIT R*C TIME INITIATE ACQUISITION COMPARE ALL CELL MEASUREMENTS TO SAVED VALUES CTSTENn = 0 NO CHANGE EXCEPT VCELLn, VCELLn-1 YES DISABLE CELL TEST CURRENT SOURCE NO n = 1? YES PASS NO FAIL Figure 49. HVMUX Sequencer Diagnostic www.maximintegrated.com Maxim Integrated │  77 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ALU Diagnostic The ADCTEST1x registers are used for all odd-numbered samples in oversampling mode as well as in singlesample acquisitions. The ADCTEST2x registers are used for all even-numbered samples (in oversampling mode). The A registers are used in lieu of the first conversion of each measurement and the B registers are used in lieu of the second conversion. After the acquisition, the host can read the measurement data registers and the alert registers and compare the data to expected values to verify the ALU functionality. The ALU diagnostic utilizes the ADC test mode (ADCTSTEN = 1) to feed data from specific test registers directly into the ALU instead of from the ADC conversion. The host can write different data combinations to the test registers in this mode to provide test coverage for all ALU and data registers (CELLn, VBLKP, DIAG, and AUXINn) as well as all alerts that are based on the measurement data and the corresponding thresholds (e.g., overvoltage alerts). USER REGISTER MAP ALU REGISTERS 12 12 DIAG ALU ADC IN + BLOCK ALU 12 ADC ALU1 ADC IN 12 ALUn 14 14 14 14 AIN1 REGISTER AIN2 REGISTER DIAG REGISTER VBLOCK REGISTER CELL1 REGISTER CELLn REGISTER 12 ALU12 ADCTSTEN RESET 12 12 12 12 12 ADC_CHOP ADCTEST1A[11:0] 14 CELL12 REGISTER DATAMOVE TRIGGER LOAD ADCTEST1B[11:0] ADCTEST2A[11:0] UART COMMUNICATION ADCTEST2B[11:0] OVSAMP_EVEN_ODD Figure 50. ALU Diagnostic www.maximintegrated.com Maxim Integrated │  78 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems AUXINn Open Diagnostic The AUXINn open diagnostic can be used to detect if the AUXINn pin is open circuit. The diagnostic procedure is shown in Figure 51 and Figure 52. VTHRM RRATIO THERMISTOR t TEST THIS NODE FOR AN OPEN CIRCUIT RFILTER VAA SET BY CTSTDAC[3:0] CONTROLLED BY AUXINNTSTEN AND CTSTSRC TO LVMUX AUXINn CFILTER AGND AGND Figure 51. AUXINn Open Diagnostic MAX178xx FULLY FUNCTIONAL AND INITIALIZED ENABLE APPROPRIATE INPUTS FOR MEASUREMENT START ADC MEASUREMENT SAVE ADC MEASUREMENT RESULT SET CTSTDAC[3:0] CURRENT SOURCE VALUE TESTED INPUTS OK; REPEAT PROCEDURE FOR OTHER INPUTS YES ALL VOLTAGES WITHIN THRESHOLD ? NO OUT OF TOLERANCE INPUT HAS OPEN CIRCUIT COMPARE ADC MEASUREMENT TO SAVED VALUE SELECT CTSTSRC TO SOURCE OR SINK CURRENT DETERMINE VOLTAGE CHANGE THRESHOLD BASED ON CURRENT AND INPUT FILTER SET AUXINNTSTEN TO ENABLE SOURCE START ADC MEASUREMENT Figure 52. AUXINn Open Diagnostic www.maximintegrated.com Maxim Integrated │  79 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Calibration ROM Diagnostic The CRC for the calibration ROM can be independently computed by the host. Any mismatch between the calculated CRC and the factory CRC indicates that the measurement accuracy may be compromised. The factory CRC, ROMCRC[7:0], is stored in the ID2 register. The CRC for the calibration ROM uses the same polynomial as the CRC-8 PEC byte and is performed on addresses C0h to CAh, CFh, ID1, and ID2 and processed in the order shown in Table 42, least-significant bit first. Registers CAL11, CAL12, CAL13, and CAL14 are excluded from the calculation. Also, certain ROM bits must be zeroed prior to performing the calculation using the bitwise AND masks in Table 42. Table 42. CRC Bit Mask ORDER ADDRESS NAME BIT-WISE AND MASK 1 0xC0 CAL0 0x003F 2 0xC1 CAL1 0x007F 3 0xC2 CAL2 0x3FFF 4 0xC3 CAL3 0xFFFF 5 0xC4 CAL4 0xFFFF 6 0xC5 CAL5 0xFFFF 7 0xC6 CAL6 0xFFFF 8 0xC7 CAL7 0x3F3F 9 0xC8 CAL8 0x003F 10 0xC9 CAL9 0x3FFF 11 0xCA CAL10 0x0003 12 0xCF CAL15 0x007F 13 0x0D ID1 0xFFFF 14 0x0E ID2 0x00FF www.maximintegrated.com Maxim Integrated │  80 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Applications Information Vehicle Applications Battery cells can use various chemistries such as NiMH, Li-ion, SuperCap, or Lead-Acid. SuperCap cells are used in fast-charge applications such as energy storage for regenerative braking. An electric vehicle system may require a high-voltage battery pack containing up to 200 Li-ion cells or up to 500 NiMH cells. A battery module is a number of cells connected in series that can be connected with other modules to build a high-voltage battery pack (see Figure 53). The modularity allows for economy, configurability, quick assembly, and serviceability. The minimum number of cells connected to any one device is limited by the device’s minimum operating voltage. The 9V minimum for VDCIN usually requires at least two Li-ion, six NiMH, or six SuperCap cells per module. BATTERY PACK PLUG MAIN HV+ CONTACTOR PHASE 1 M PHASE 2 PHASE 3 INVERTER COMM BUS VEHICLE 12V PWR VEHICLE CONTROL SYSTEM (VCS) VEHICLE GND COMM BUS PLUG BATTERY MANAGEMENT SYSTEM (BMS) CELL STACK MAIN HVCONTACTOR CHASSIS GROUND Figure 53. Electric Vehicle System www.maximintegrated.com Maxim Integrated │  81 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Battery Management Systems Daisy-Chain System A daisy-chain system employs a single data link between the host and all the battery modules. The daisy-chain method reduces cost and requires only a single isolator between the lowest module and the host. INVERTER+ MAIN HV+ CONTACTOR BATTERY MODULE SLAVE MONITOR AND CONTROL TEMP BATTERY MODULE SLAVE MONITOR AND CONTROL TEMP BATTERY PACK HVAC MASTER CONTROLLER COMMUNICATION ISOLATION VEHICLE COMM BUS TEMP MAIN HVCONTACTOR INVERTER- GROUND FAULT CHECK BATTERY MODULE SLAVE MONITOR AND CONTROL MICRO-Ω SHUNT CHASSIS GROUND Figure 54. Daisy-Chain System www.maximintegrated.com Maxim Integrated │  82 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Distributed-Module Communication A distributed-module system employs a separate data link and isolator between each battery module and the host with an associated increase in cost. INVERTER+ PACK SWITCHES ISOLATOR BATTERY MODULE SLAVE MONITOR AND CONTROL TEMP ISOLATOR BATTERY MODULE SLAVE MONITOR AND CONTROL TEMP ISOLATOR BATTERY MODULE SLAVE MONITOR AND CONTROL TEMP MASTER CONTROLLER VEHICLE GND COMM BUS INVERTER- ISOLATOR FAULT CHECK PACK SWITCHES BATTERY MODULE SLAVE MONITOR AND CONTROL TEMP CURRENT SENSE Figure 55. Distributed System www.maximintegrated.com Maxim Integrated │  83 MAX17823H Combining MAX17823H and MAX17880 Devices The MAX17823H can be used stand-alone or in conjunction with the MAX17880. For systems containing both types of devices, the simplest implementation is to segregate them into two separate daisy chains. The separate daisy-chains increase the reliability and simplify device addressing. However, if the system employs only a single daisy-chain, the companion devices must coexist in the same daisychain. To mitigate any potential addressing conflicts, the battery-management UART protocol allows the host to create a separate address space for each type of device. The host creates the separate address spaces during initialization of the daisy-chain. The host issues separate HELLOALL commands for each type of device using 57h for MAX17823H and A7h for MAX17880. Each type of device will ignore the HELLOALL command intended for the other type. While it does not matter which HELLOALL command is issued first, the host must ascertain the address returned from the first HELLOALL command, which is the last device address incremented by one. That value can then be used as the first address sent with the second HELLOALL command. In this manner, separate address spaces are created for each type of device. Acquisition Latency for Daisy-Chain Systems A maximum 3-bit delay (1.5µs at 2Mbps) is incurred as any command propagates through each daisy-chained device. For example, for an 8-device stack, a maximum 12µs delay is incurred. This allows all eight acquisitions to occur within 12µs of each other. 12-Channel, High-Voltage Data-Acquisition Systems The external protection circuit shown in Figure 56 filters and clamps the DCIN input. During negative voltage transients, the filter capacitor maintains power to the device through the transient. For maximum measurement accuracy, dedicated wires separate from the cell-sense wires should be used for the power-supply connection (Kelvin sense). This is to eliminate voltage drops in the sense wires induced by supply current. If the application can tolerate the induced error, the supply wires can serve as the sense wires to reduce the wire count. Connecting Cell Inputs If the battery stack contains less than 12 cells, the lowestorder inputs (e.g., C1 and C0) should be utilized first and connected to the lowest common-mode signals. Any unused cell inputs should be shorted together and any unused switch inputs should be shorted together. The TOPCELL register must also be configured for stacks with less than 12 cells to mask out any false alerts corresponding to the unused channels. External Cell Balancing The cell-balancing current can be switched by external transistors if more power dissipation is required. The internal switches can be used to switch the external transistors; the power is limited by external current-limiting resistors. MODULE+ R80 100Ω Power-Supply Connection Both internal and external protection circuits permit the device to derive its supply directly from the battery module voltage. The circuits protect against transients such as those that occur when the battery voltage is first connected to the device, when the vehicle inverter is connected to the battery stack, or during charge/discharge transitions such as regenerative braking. The internal circuits include 72V-tolerant battery inputs and a high noise rejection ratio (PSRR) for the internal low-voltage regulator. www.maximintegrated.com DCIN C80 2.2µF 100V D80 SMCJ58A Figure 56. Power-Supply Connection Maxim Integrated │  84 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems External Cell-Balancing Using FET Switches An application circuit for cell-balancing that employs FET switches is shown in Figure 57. QBALANCE is selected for low VT that meets the minimum VCELLn requirements of the application during balancing. DGATE protects QBALANCE from reverse VGS voltage during a hot-plug event. RGATE protects the device by limiting the hot-plug inrush current. CGATE can be added to attenuate transient noise coupled from the drain to the gate to maintain the transistor bias. The cellbalancing current is limited by RBALANCE. A list of FET balancing components is shown in Table 43. TO CELL n+1 RFILTER SENSE WIRE Cn TO HVMUX CFILTER RBIAS SWn TO ALTMUX BALSWn RBALANCE CBALFILTER CELL n RGATE QBALANCE DGATE SENSE WIRE BALANCING SWITCH (n) HV CGATE RBIAS SWn-1 RFILTER TO ALTMUX Cn-1 TO HVMUX CFILTER AGND TO CELL n-1 Figure 57. External Balancing (FET) Table 43. FET Balancing Components COMPONENT NAME TYPICAL VALUE OR PART RBIAS 1kΩ Voltage-divider for transistor bias RGATE 100Ω Hot-plug current-limiting resistor DGATE S1B Reverse-voltage gate protection CGATE 1nF Transient VGS suppression RBALANCE per application QBALANCE SQ2310ES www.maximintegrated.com FUNCTION Balancing current-limiting resistor External switch Maxim Integrated │  85 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems External Cell Balancing Using BJT Switches An application circuit for cell balancing that employs BJT switches is shown in Figure 58. QBALANCE is selected for power dissipation based on the IB drive current available and the cell-balancing current. DBASE protects QBALANCE from negative VGS during hot-plug events. RBASE protects the device by limiting the hot-plug inrush current. The cell-balancing current is limited by RBALANCE. A list of BJT balancing components is shown in Table 44. TO CELL n+1 SENSE WIRE RFILTER Cn TO HVMUX CFILTER RBIAS SWn TO ALTMUX BALSWn RBALANCE CBALFILTER CELL n RBASE QBALANCE DBASE SENSE WIRE BALANCING SWITCH (n) HV CBASE RBIAS SWn-1 RFILTER TO ALTMUX Cn-1 TO HVMUX CFILTER AGND TO CELL n-1 Figure 58. External Cell Balancing (BJT) Table 44. BJT Balancing Components COMPONENT NAME TYPICAL VALUE OR PART RBIAS 22Ω Voltage-divider for transistor bias RBASE 15Ω Hot-plug current-limiting resistor DBASE S1B Reverse emitter-base voltage protection Transient VBE suppression CBASE 1nF RBALANCE per balancing current requirements QBALANCE NST489AMT1 www.maximintegrated.com FUNCTION Balancing current-limiting resistor External switch Maxim Integrated │  86 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems External Cell-Balancing Short-Circuit Detection UART Interface A short-circuit fault in the external balancing path results in continuous current flow through RBALANCE and QBALANCE. To detect this fault, the voltage drop across the sense-wire parasitic resistance must be measurable. A very small series resistor can added for this purpose. The UART pins also employ both internal and external circuits to protect against noise. The recommended external filters are shown in Figure 59. ESD protection is shown in Figure 59 and Figure 60. DAISY-CHAIN DEVICE (n) RXLP RXLN C40 15pF C41 15pF R43 100kΩ R40 1.5kΩ C42 2.2nF 600V R50 47Ω R41 1.5kΩ C43 2.2nF 600V R51 47Ω R42 100kΩ GNDL TXUP TXUN SIGNAL TRACES OR WIRE HARNESS R44 47Ω C50 2.2nF 600V R54 1.5kΩ R45 47Ω C51 2.2nF 600V R55 1.5kΩ TXLP TXLN DAISY-CHAIN DEVICE (n-1) SIGNAL TRACES OR WIRE HARNESS R52 100kΩ C52 15pF RXUP C53 15pF R53 100kΩ RXUN GNDL Figure 59. UART Connection www.maximintegrated.com Maxim Integrated │  87 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems High-Z Idle Mode ferred for ports driving inductive loads to minimize ringing. See Figure 60 for a high-Z idle mode application circuit. The high-Z idle mode lowers radiated emissions from wire harnesses by minimizing the charging and discharging of the AC-coupling capacitors when entering and exiting the idle mode. The application circuit shown in Figure 61 uses a weak resistor-divider to bias the TX lines to VDDL during the high-Z idle period and pnp transistor clamps to limit the maximum voltage at the TX pins during high noise injection. The resistor-divider and pnp clamps are not needed for applications utilizing only the low-Z mode. The low-Z and high-Z idle modes both exhibit a similar immunity to noise injection. Low-Z mode may be pre- UART Supplemental ESD Protection The UART ports may require supplemental protection to meet IEC 61000-4-2 requirements for contact discharge. The recommended circuits to meet ±8kV protection levels are shown in Figure 61 and Figure 62. The protection components should be placed as near as possible to the signal’s entry point on the PCB. VDDL[2,3] FMB3906 VAA R46 10kΩ R48 10kΩ TX[U,L]P R44 47Ω R45 47Ω TX[U,L]N R47 10kΩ TO REST OF TX CIRCUIT OR RX CIRCUIT R49 10kΩ GNDL[2,3] Figure 60. High-Z Idle Mode Application Circuit TXP TXN 47Ω 47Ω TO RECEIVER PESD1CAN GNDL Figure 61. External ESD Protection for UART TX Ports www.maximintegrated.com Maxim Integrated │  88 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems 2.2nF 600V FROM TRANSMITTER 2.2nF 600V 1.5kΩ 100Ω 1.5kΩ 100Ω 100kΩ 15pF 50V RXP RXN 15pF 50V 100kΩ PESD1CAN GNDL Figure 62. External ESD Protection for UART RX Ports Single-Ended RX Mode To configure the lower port for single-ended RX mode, the RXLP input is connected to digital ground and the RXLN input receives the inverted signal, just as it does for differential mode. If the host cannot transmit inverted data then the signal must be inverted as shown in Figure 63. Transmitter operation is not affected. If the upstack device is single-ended then only the TXUN signal is required. Note: In single-ended mode, SHDNL must be driven externally. ISOLATED OR NON-ISOLATED INVERTING LOGIC DRIVER UART DATA RXLP Rf 1.5kΩ RXLN Cf 15pF GNDL Figure 63. Application Circuit for Single-Ended Mode www.maximintegrated.com Maxim Integrated │  89 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems UART Isolation circuit locations where extremely large common-mode noise is present, such as between vehicle chassis and the high-voltage battery pack terminals. The UART is expected to communicate reliably in noisy high-power battery environments where both high dV/dt supply noise and common-mode current injection induced by electromagnetic fields are prevalent. Common-mode currents can also be induced by parasitic coupling of the system to a reference node such as a battery or vehicle chassis. The daisy-chain physical layer is designed for maximum noise immunity. The AC-coupled differential communication architecture has a ±30V common-mode range and +6V differential swing. This range is in addition to the static commonmode voltage across the AC-coupling capacitors between modules. Transmitter drivers have low internal impedance and are source-terminated by the application circuit so that impedances are well-matched in the high- and low-driver states. This architecture minimizes differential noise induced by common-mode current injection. The receiver inputs are filtered above the fundamental communication frequency to prevent high-frequency noise from entering the device. The system is designed for use with isolation transformers or optocouplers to provide an even higher degree of common-mode noise rejection in Since a mid-pack service-disconnect safety switch is present in many battery packs, the device is designed to communicate with the entire daisy-chain whether the service-disconnect switch is engaged or open. This is possible with daisy-chains that employ capacitor isolation. UART Transformer Isolation The UART ports can be transformer-coupled because of their DC-balanced differential design (see Figure 64). Transformer coupling between the MAX17841B interface and the MAX17823H provide excellent isolation and common-mode noise rejection. The center-tap of a signal transformer can be used to enhance commonmode rejection by AC-coupling the node to local ground. Common-mode currents that are able to pass through the parasitic coupling of the primary and secondary are shunted to ground to make a very effective commonmode noise filter. MAX17841 DAISY-CHAIN DEVICE 1 47Ω 1.5kΩ 15pF TXP RXLP 1.5kΩ RXLN TXN 47Ω SIGNAL TRACES OR WIRE HARNESS 1nF 15pF GNDL GNDL Figure 64. UART Transformer Isolation www.maximintegrated.com Maxim Integrated │  90 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems UART Optical Isolation The daisy-chain can use optical isolation instead of transformer or capacitor isolation (see Figure 65). Device Initialization Sequence Immediately after reset, all device addresses are set to 0x00 and the UART baud rate and receive modes have not been auto-detected; therefore, the following initialization sequence is recommended after every reset or after any change to the hardware configuration (see Figure 66): VAA FROM UART DATA SOURCE RXLP RFILTER 4.7kΩ RXLN CFILTER 15pF ACPL-M72T GNDL 3.3V ROPTO TXLN TO UART DATA SOURCE ACPL-M72T Figure 65. UART Optical Isolation DEVICE COMMUNICATION INITIALIZED DEVICE(s) IN SHUTDOWN MODE YES HOST SENDS PREAMBLES FOR 2ms PER DEVICE TO WAKE UP DAISY-CHAIN ADDRESSING ERROR NO ADDRESSES AS EXPECTED? NO HOST RECEIVED PREAMBLE? NO FAULT OR NOT ENOUGH PREAMBLES SENT COMMUNICATION FAULT OR ADDRESSING ERROR YES PEC ERRORS? YES HOST SELECTS FIRST ADDRESS AND SENDS HELLOALL RETURN ADDRESS AS EXPECTED? READALL ADDRESS REGISTERS NO FAULT OR DEVICE COUNT ERROR WRITEALL FA[4:0] (IF FIRST ADDRESS USED ≠ 0) YES Figure 66. Device Initialization Sequence www.maximintegrated.com Maxim Integrated │  91 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems After the daisy-chain is initialized, each device should be configured for operation as follows: 1) Perform a READALL of the status registers. • The ALRTRST bit should be set in all devices to signify that a reset occurred. • Check for other unexpected alerts. 2) Clear the ALRTRST bit on each device so that future unintended resets can be detected. 3) Change configuration registers as necessary with WRITEALL commands: • Configure the alert enables and alert thresholds as required by the application. • Configure the acquisition mode. 4) Perform all necessary key-on diagnostics. 5) Start the acquisition cycle. 6) Continuously monitor diagnostic and alert status bits. 7) Periodically perform additional required by the application. diagnostics, Error Checking as Data integrity is provided by Manchester encoding, parity, character framing, and packet-error checking (PEC). The combination of these features verify stage-to-stage communication both in the write and read directions with a hamming distance(HD) value of 6 for commands with a length up to 247 bits (counted prior to Manchester encoding and character framing). This is equivalent to the longest possible command packet for a daisy-chain of up to 13 devices. The data-check byte is present in the READALL and READDEVICE commands to verify the entire command propagated without errors. Using the BIT0 BIT1 BIT2 data-check and PEC bytes, complete transaction integrity for READALL and READDEVICE command packets can be verified. PEC Errors If the device receiver receives an invalid PEC byte, the ALRTPEC bit is set in the STATUS register. A device does not execute any write command unless the received PEC matches the calculated PEC, so to verify the write command execution, the host should perform a READALL to verify the contents of the written register. For returned read packets, the host should store the received data, perform the PEC calculation, and compare the results to the received PEC byte before considering the data to be valid. To support PEC, the host must implement a CRC-8 (8-bit cyclic redundancy check) encoding and decoding algorithm based on the following polynomial: P(x) = x8 + x6 + x3 + x2 + 1 The host uses the algorithm to process all bytes received in the command packet prior to the PEC byte itself. Neither the PEC nor the alive-counter bytes are part of the calculation. The bits are processed in the order they are received, LSB first. A byte-wise pseudocode algorithm is shown in Figure 68, but lookup table solutions are also possible to reduce host calculation time. For commonly issued command packets, the host can pre-calculate (hard-code) the PEC byte. For commonly used partial packets, the CRC value of a partial calculation can be used as the initial value for a subsequent runtime calculation (see Figure 67). BIT3 BIT4 BIT5 BIT6 BIT7 INPUT DATA BITSTREAM (LSB FIRST) Figure 67. CRC Calculation www.maximintegrated.com Maxim Integrated │  92 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Function PEC_Calculation(ByteList(), NumberOfBytes, CRCByte) { // CRCByte is initialized to 0 for each ByteList in this implementation, where // ByteList contains all bytes of a single command. It is passed into the // function in case a partial ByteList calculation is needed. // Data is transmitted and calculated in LSb first format // Polynomial = x^8+x^6+x^3+x^2+1 POLY = &HB2 // 10110010b for LSb first //Loop once for each byte in the ByteList For ByteCounter = 0 to (NumberOfBytes – 1) ( //Bitwise XOR the current CRC value with the ByteList byte CRCByte = CRCByte XOR ByteList(Counter1) //Process each of the 8 CRCByte remainder bits For BitCounter = 1 To 8 ( // The LSb should be shifted toward the highest order polynomial // coefficient. This is a right shift for data stored LSb to the right // and POLY having high order coefficients stored to the right. // Determine if LSb = 1 prior to right shift If (CRCByte AND &H01) = 1 Then // When LSb = 1, right shift and XOR CRCByte value with 8 LSbs // of the polynomial coefficient constant. “/ 2” must be a true right // shift in the target CPU to avoid rounding problems. CRCByte = ((CRCByte / 2) XOR POLY) Else //When LSb = 0, right shift by 1 bit. “/ 2” must be a true right // shift in the target CPU to avoid rounding problems. CRCByte = (CRCByte / 2) End If //Truncate the CRC value to 8 bits if necessary CRCByte = CRCByte AND &HFF ) ) } //Proceed to the next bit Next BitCounter //Operate on the next data byte in the ByteList Next ByteCounter // All calculations done; CRCByte value is the CRC byte for ByteList() and // the initial CRCByte value Return CRCByte Figure 68. PEC Calculation Pseudocode www.maximintegrated.com Maxim Integrated │  93 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Register Map ADDRESS POR 0x00 8236h VERSION Device model and version 0x01 0000h ADDRESS Device addresses 0x02 8000h STATUS Status flags 0x03 0000h FMEA1 Failure mode flags 1 0x04 0000h ALRTCELL Voltage-fault alert flags 0x05 0000h ALRTOVCELL Overvoltage alert flags 0x07 0000h ALRTUVCELL Undervoltage alert flags 0x08 0000h ALRTBALSW Balancing switch alert flags 0x0A 0F0Fh MINMAXCELL Cell number for the highest and lowest voltages measured 0x0B 0000h FMEA2 0x0D XXXXh ID1 Device ID 1 0x0E XXXXh ID2 Device ID 2 0x10 0002h DEVCFG1 0x11 0000h GPIO 0x12 0000h MEASUREEN 0x13 0000h SCANCTRL Acquisition control and status 0x14 0000h ALRTOVEN Overvoltage-alert enables 0x15 0000h ALRTUVEN Undervoltage-alert enables 0x18 0000h TIMERCFG Timer configuration 0x19 0000h ACQCFG Acquisition configuration 0x1A 0000h BALSWEN Balancing-switch enables 0x1B 0000h DEVCFG2 Device configuration 2 0x1C 0000h BALDIAGCFG Balancing diagnostic configuration 0x1D 0000h BALSWDCHG Balancing-switch discharge configuration 0x1E 000Ch TOPCELL 0x20 0000h CELL1 Cell 1 measurement result 0x21 0000h CELL2 Cell 2 measurement result 0x22 0000h CELL3 Cell 3 measurement result 0x23 0000h CELL4 Cell 4 measurement result 0x24 0000h CELL5 Cell 5 measurement result 0x25 0000h CELL6 Cell 6 measurement result 0x26 0000h CELL7 Cell 7 measurement result www.maximintegrated.com NAME DESCRIPTION Failure mode flags 2 Device configuration 1 GPIO status and configuration Measurement enables Top-cell configuration Maxim Integrated │  94 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Register Map (continued) ADDRESS POR NAME DESCRIPTION 0x27 0000h CELL8 Cell 8 measurement result 0x28 0000h CELL9 Cell 9 measurement result 0x29 0000h CELL10 Cell 10 measurement result 0x2A 0000h CELL11 Cell 11 measurement result 0x2B 0000h CELL12 Cell 12 measurement result 0x2C 0000h BLOCK Block-measurement result 0x2D 0000h AIN1 AUXIN1 measurement result 0x2E 0000h AIN2 AUXIN2 measurement result 0x2F 0000h TOTAL Sum of all cell measurements 0x40 FFFCh OVTHCLR Cell overvoltage-clear threshold 0x42 FFFCh OVTHSET Cell overvoltage-set threshold 0x44 0000h UVTHCLR Cell undervoltage-clear threshold 0x46 0000h UVTHSET Cell undervoltage-set threshold 0x48 FFFCh MSMTCH Cell-mismatch threshold 0x49 0000h AINOT AUXIN overtemperature threshold AUXIN undertemperature threshold 0x4A FFF0h AINUT 0x4B 0000h BALSHRTTHR Balancing switch diagnostic, short-circuit threshold 0x4C 0000h BALLOWTHR Balancing switch diagnostic, on-state low threshold 0x4D 0000h BALHIGHTHR Balancing switch diagnostic, on-state high threshold 0x50 0000h DIAG 0x51 0000h DIAGCFG Diagnostic configuration 0x52 0000h CTSTCFG Test-source configuration 0x57 0000h ADCTEST1A User-specified data for ALU diagnostic 0x58 0000h ADCTEST1B User-specified data for ALU diagnostic 0x59 0000h ADCTEST2A User-specified data for ALU diagnostic 0x5A 0000h ADCTEST2B User-specified data for ALU diagnostic www.maximintegrated.com Diagnostic measurement result Maxim Integrated │  95 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Version Register (address 0x00) BIT POR NAME 823h MOD[11:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 Model number. Always reads 823h. D8 D7 D6 D5 D4 D3 Die version per table below: D2 VERSION VER[3:0] D1 MAX17823H 7h MAX17823B 6h MAX17823A 5h MAX17823A 4h MAX17823 3h MAX17823 2h MAX17823 1h 7h VER[3:0] D0 www.maximintegrated.com Maxim Integrated │  96 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ADDRESS Register (address 0x01) BIT POR NAME 0 Reserved DESCRIPTION D15 D14 Always reads logic-zero. D13 D12 D11 D10 0 FA[4:0] 0 Reserved D9 D8 Address of the device connected to the host (first address). If the host uses a first address other than 0x00 in the HELLOALL command, then the host must write that first address to all devices in the daisy-chain with a WRITEALL command. READALL commands require that FA[4:0] and DA[4:0] be correct in order for the data check and PEC features to function as intended. D7 D6 Always reads logic-zero. D5 D4 D3 D2 0 DA[4:0] D1 Device address written by the HELLOALL command as it propagates up the daisy-chain and is automatically incremented for each device. The host must choose a first address so that the last device address will not exceed the maximum address of 0x1F during the HELLOALL command. Writing has no effect except with a HELLOALL command while ADDRUNLOCK = 1. D0 www.maximintegrated.com Maxim Integrated │  97 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems STATUS Register (address 0x02) BIT POR NAME D15 1 ALRTRST Indicates a power-on-reset event occurred. Clear after power-on and after a successful HELLOALL to detect future resets. Writing to a logic-one has no effect. D14 0 ALRTOV Bit-wise logical OR of ALRTOVCELL[15:0]. Read-only. D13 0 ALRTUV Bit-wise logical OR of ALRTUVCELL[15:0]. Read-only. D12 0 ALRTSHDNL Indicates VSHDNL < VIL. Read during shutdown diagnostic when VAA > VPORFALL. Cleared by writing to logic-zero or POR. Writing to a logic-one has no effect. D11 0 ALRTSHDNLRT Indicates VSHDNL < VIL. Read during shutdown diagnostic when VAA > VPORFALL. Read-only. D10 0 ALRTMSMTCH Indicates VMAX - VMIN > VMSMTCH. Cleared at next acquisition if the condition is false. Read-only. D9 0 ALRTTCOLD Logical OR of ALRTOVAIN0 and ALRTOVAIN1. Read-only. D8 0 ALRTTHOT Logical OR of ALRTUVAIN0 and ALRTUVAIN1. Read-only. D7 0 ALRTPEC Indicates a received character contained a PEC error. Cleared only by writing to logiczero. Writing to a logic-one has no effect. 0 Reserved Always reads logic-zero. D4 0 ALRTMAN Indicates that a character received by the lower UART contained a Manchester error. Cleared only by writing to logic-zero. Writing to a logic-one has no effect. D3 0 0 D2 0 ALRTPAR D1 0 ALRTFMEA2 Bit-wise logical OR of FMEA2[15:0]. Read-only. D0 0 ALRTFMEA1 Bit-wise logical OR of FMEA1[15:0]. Read-only. D6 D5 www.maximintegrated.com DESCRIPTION Write ignored, Read back ‘0’. Indicates that a character received by the lower UART contained a parity error. Cleared only by writing to logic-zero. Writing to logic-one has no effect. Maxim Integrated │  98 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems FMEA1 Register (address 0x03) BIT POR NAME D15 0 ALRTOSC1 Indicates that the 32kHz oscillator frequency is not within ±5% of its expected value. The status is updated every two cycles (32kHz). Cleared only by writing to logic-zero. Writing to a logic-one has no effect. D14 0 ALRTOSC2 Same as ALRTOSC1 (redundant alert). Cleared only by writing to logic-zero. Writing to a logic-one has no effect. D13 0 0 D12 0 ALRTCOMMSEU1 Indicates that the UART has placed the upper-port receiver in single-ended mode based on the first preamble received after POR. This bit is not set until the ALRTRST bit is cleared. Read-only. D11 0 ALRTCOMMSEL1 Indicates that the UART has placed the lower-port receiver in single-ended mode based on the first preamble received after POR. This bit is not set until the ALRTRST bit is cleared. Read-only. D10 0 ALRTCOMMSEU2 Same as ALRTCOMMSEU1 (redundant alert) except that it sets before ALRTRST is cleared. Read-only. D9 0 ALRTCOMMSEL2 Same as ALRTCOMMSEL2 (redundant alert) except that it sets before ALRTRST is cleared. Read-only. D8 0 ALRTVDDL3 Indicates VDDL3 < VVDDL_OC. This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect. D7 0 ALRTVDDL2 Indicates VDDL2 < VVDDL_OC. This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect. D6 0 ALRTGNDL2 Indicates an open circuit on the GNDL2 pin. This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect. D5 0 ALRTBALSW Bit-wise logical OR of ALRTBALSW[15:0]. Read-only. D4 0 ALRTTEMP Indicates that TDIE > 115°C (120°C typical) or that the diagnostic measurement did not have sufficient settling time (< 50µs) and therefore may not be accurate. Cleared only by writing to logic-zero. Writing to a logic-one has no effect. D3 0 ALRTHVUV Indicates VHV < VHVUV. This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to logic-one has no effect. D2 0 ALRTGNDL3 Indicates an open circuit on the GNDL3 pin. This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect. D1 0 ALRTVDDL1 Indicates VDDL1 < VVDDL_OC. This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect. D0 0 ALRTGNDL1 Indicates an open circuit on the GNDL1 pin. This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect. www.maximintegrated.com DESCRIPTION Always reads logic-zero. Maxim Integrated │  99 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ALRTCELL Register (address 0x04) BIT POR NAME 0 Reserved Always reads logic-zero. D13 0 ALRTAIN1 Logical OR of ALRTOVAIN1 and ALRTUVAIN1. Read-only. D12 0 ALRTAIN0 Logical OR of ALRTOVAIN0 and ALRTUVAIN0. Read-only. 0 ALRTCELL [12:1] ALRTCELL[n] is the logical OR of ALROVCELL[n] and ALRTUVCELL[n]. Read-Only. D15 D14 DESCRIPTION D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ALRTOVCELL Register (address 0x05) BIT POR NAME 0 Reserved D13 0 ALRTOVAIN1 Indicates VAIN1 > AINUT (cold). Cleared at next acquisition if the condition is false. Read-only. D12 0 ALRTOVAIN0 Indicates VAIN0 > AINUT (cold). Cleared at next acquisition if the condition is false. Read-only. 0 ALRTOV[12:1] ALRTOV[n] indicates VCELLN > VOV (OVTHRSET threshold) if ALRTOVEN[n] = 1. Cleared at next acquisition if the condition is false. Read-only. D15 D14 DESCRIPTION Always reads logic-zero. D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  100 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ALRTUVCELL Register (address 0x07) BIT POR NAME 0 Reserved D13 0 ALRTUVAIN1 Indicates VAIN1 < AINOT (hot). Cleared at next acquisition if the condition is false. Read-only. D12 0 ALRTUVAIN0 Indicates VAIN0 < AINOT (hot). Cleared at next acquisition if the condition is false. Read-only. 0 ALRTUV[12:1] ALRTUV[n] indicates VCELLn < VUV (UVTHRSET threshold) if ALRTUVEN[n] = 1. Cleared at next acquisition if the condition is false. Read-only. D15 D14 DESCRIPTION Always reads logic-zero. D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ALRTBALSW Register (address 0x08) BIT POR NAME 0 Reserved 0 ALRTBALSW [11:0] DESCRIPTION D15 D14 D13 Always reads logic-zero. D12 D11 D10 D9 D8 D7 D6 D5 D4 ALRTBALSW[n] indicates the corresponding measurement result exceeds the threshold specified by BALSWDIAG[2:0]. Cleared at next acquisition if the condition is false. Read-only. D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  101 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems MINMAXCELL Register (address 0x0A) BIT POR NAME 0 Reserved Fh MAXCELL[3:0] 0 Reserved Fh MINCELL[3:0] DESCRIPTION D15 D14 D13 Always reads logic-zero. D12 D11 D10 D9 D8 Cell number of the maximum cell voltage currently in the measurement registers. If multiple cells have the same maximum value, this field contains the highest cell number with that measurement. Read-only. D7 D6 D5 Always reads logic-zero. D4 D3 D2 D1 D0 Cell number of the minimum cell voltage currently in the measurement registers. If multiple cells have the same minimum value, this field contains the highest cell number with that measurement. Read-only. FMEA2 Register (address 0x0B) BIT POR NAME 0 Reserved D2 0 ALRTHVHDRM D1 0 Reserved D0 0 ALRTHVOV DESCRIPTION D15 D14 D13 D12 D11 D10 D9 Always reads logic-zero. D8 D7 D6 D5 D4 D3 www.maximintegrated.com Indicates that VHV - VC12 was too low during the acquisition for an accurate measurement. Cleared only by writing to logic-zero. Writing to a logic-one has no effect. Always reads logic-zero. Indicates that VHV - VDCIN > VHVOV. This bit is not set until the ALRTRST bit is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect. Maxim Integrated │  102 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ID1 Register (address 0x0D) BIT POR NAME xxxxh DEVID[15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 The two least-significant bytes of the 24-bit factory-programmed device ID. A valid device ID has two or more bits set to logic-one. Read-only. D6 D5 D4 D3 D2 D1 D0 ID2 Register (address 0x0E) BIT POR NAME DESCRIPTION xxh ROMCRC[7:0] 8-bit CRC value computed from the onboard read-only memory. Read-only. xxh DEVID[23:16] Most-significant byte of the 24-bit factory-programmed device ID. A valid device ID has two or more bits set to logic-one. Read-only. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  103 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems DEVCFG1 Register (address 0x10) BIT POR NAME DESCRIPTION 0 Reserved D7 0 FORCEPOR D6 0 ALIVECNTEN D5 0 ADCTSTEN Enables the ALU test mode. This mode feeds 12-bit data from the ADCTEST registers directly into the ALU instead of from the ADC conversion. D4 0 SCANTODIS Disables the acquisition watchdog but does not clear the SCANTIMEOUT flag in the SCANCTRL register if it is set. Enables the double-buffer mode. This mode automatically transfers data from the ALU to the data registers at the start of the next acquisition instead of at the end of the acquisition. This mode can be used in conjunction with the DATAMOVE bit so the host can start an acquisition and then start reading the previous acquisition (during the current acquisition), even if the read cycle takes longer than the acquisition. D15 D14 D13 D12 D11 Reads back the written value. D10 D9 D8 Enables hard POR by pulling down SHDNL internally. If cleared before the POR occurs, it will disable the active pulldown on SHDNL. Enables inclusion of alive-counter byte at end of all write and read packets. D3 0 DBLBUFEN D2 0 NOPEC D1 1 ADDRUNLOCK Disables write-protection of device address DA[4:0]. Cleared only by HELLOALL command (write-protected). D0 0 SPOR Enables soft POR. Writing to a logic-zero has no effect. Always reads logic-zero. www.maximintegrated.com Disables packet-error checking (PEC). Maxim Integrated │  104 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems GPIO Register (address 0x11) BIT POR NAME DESCRIPTION 0 DIR[3:0] Setting DIR[n] enables GPIOn as an output. Default state is high-impedance input. 0 RD[3:0] Indicates the current logic state of each GPIOn pin input buffer. The logic state is sampled at the end of the parity bit of the register address byte during a read of this register. Read-only. D15 D14 D13 D12 D11 D10 D9 D8 D7 Enables the GPIO3 timer mode. This mode overrides DIR[3] and DRV[3] and drives GPIO3 to logic-one when the timer is counting, and drives to logic-zero when the timer times out. Emergency-discharge mode (EMGCYDCHG=1) automatically enables the GPIO3 timer mode. 0 GPIO3TMR 0 Reserved Always reads logic-zero. 0 DRV[3:0] Setting DRV[n] sets GPIOn to logic-one if DIR[n] is set. D6 D5 D4 D3 D2 D1 D0 MEASUREEN Register (address 0x12) BIT POR NAME DESCRIPTION D15 0 BLKCONNECT D14 0 BLOCKEN Enables measurement of the VBLKP input in the acquisition mode. D13 0 AIN2EN D12 0 AIN1EN Enables measurement of the AUXIN2 input in the acquisition mode. 0 CELLEN[12:1] Connects the voltage-divider to the VBLKP pin. Must be enabled prior to the VBLOCK measurement. Enables measurement of the AUXIN1 input in the acquisition mode. D11 D10 D9 D8 D7 D6 D5 Enables measurement of the respective cell in the acquisition mode. Disabled channels result in a measurement value of 0000h. D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  105 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems SCANCTRL Register (address 0x13) BIT POR NAME D15 0 SCANDONE D14 D13 D12 D11 0 SCANTIMEOUT Indicates the acquisition has completed. Cleared only by writing it to logic-zero to detect completion of the next acquisition. Writing to logic-one has no effect. A new acquisition will not commence if this bit is set. Indicates the acquisition did not complete in the expected period of time. The timeout depends on the oversampling configuration. Cleared only by writing it to logic-zero to allow detection of future timeout events. The acquisition watchdog can be disabled by setting SCANTOEN in the DEVCFG1 register. 0 DATARDY Indicates the measurement data from the acquisition has been transferred from the ALU to the data registers and may now be read. Data for all measurement registers and MIN/MAX/TOTAL is transferred at the same time. Cleared by writing it to logic-zero to allow detection of the next data transfer. Writing to logic-one has no effect. 0 Reserved Always reads logic-zero. D10 Configures the cell-balancing switch diagnostic modes per table below. When selected, these modes effectively override the BALSWEN, MEASUREEN, ALTMUXSEL, and POLARITY configurations during the acquisition mode and update the ALRTBALSW register per the BALHIGHTHR and BALLOWTHR thresholds. Refer to Diagnostic section for details. D9 0 D8 D7 DESCRIPTION 0 BALSWDIAG [2:0] POLARITY www.maximintegrated.com BALSWDIAG[2:0] DIAGNOSTIC TEST 000 None 001 Balancing Switch Short 010 Balancing Switch Open 011 None 100 None 101 Cell Sense Open Odds 110 Cell Sense Open Evens 111 None Enables bipolar mode for ADC (input range is -2.5V to 2.5V). Default is unipolar mode (input range is 0 to 5V) Maxim Integrated │  106 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems SCANCTRL Register (address 0x13) (continued) BIT POR NAME D6 DESCRIPTION Configures for the number oversamples in the acquisition per table below: D5 0 OVSAMPL[2:0] D4 OVSAMPL [2:0] OVERSAMPLES 000 1 001 4 010 8 011 16 100 32 101 64 110 128 111 128 D3 0 0 Always reads logic-zero. D2 0 SCANMODE Enables top-down scan mode. Default is pyramid scan mode. D1 0 DATAMOVE Initiates transfer of measurement data from ALU to data registers (manual transfer) and sets DATARDY. ALU data is preserved until a new acquisition is started. Always reads logic-zero. Ignored in acquisition mode. D0 0 SCAN Enables the acquisition mode and (if in double-buffer mode) transfers previous acquisition data from ALU to data registers. Acts as a strobe bit and therefore does not need to be cleared. Always reads logic-zero. Ignored in acquisition mode. ALRTOVEN Register (address 0x14) BIT POR NAME 0 Reserved D13 0 AINOVALRTEN1 Enables the AIN1 overvoltage alert D12 0 AINOVALRTEN0 Enables the AIN0 overvoltage alert 0 OVALRTEN [12:1] D15 D14 DESCRIPTION Always reads logic-zero. D11 D10 D9 D8 D7 D6 D5 Enables the overvoltage alert for the respective cell. Clearing also clears the associated cell alert. D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  107 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ALRTUVEN Register (address 0x15) BIT POR NAME 0 Reserved D13 0 AINUVALRTEN1 Enables the AIN1 undervoltage alert D12 0 AINUVALRTEN0 Enables the AIN0 undervoltage alert 0 UVALRTEN [12:1] D15 D14 DESCRIPTION Always reads logic-zero. D11 D10 D9 D8 D7 D6 D5 Enables the undervoltage alert for the respective cell. Clearing also clears the associated cell alert. D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  108 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems WATCHDOG Register (address 0x18) BIT POR NAME D15 0 Reserved D14 DESCRIPTION Always reads logic-zero. Sets the step size of the cell-balancing timer LSB per table below: D13 0 CBPDIV[2:0] D12 D11 D10 D9 0 CBTIMER[3:0] D8 CBPDIV[2:0] STEP SIZE TIMEOUT RANGE 000 Disabled No timeout 001 1s 1–15s 010 4s 4–60s 011 16s 16–240s 100 64s 64–960s 101 128s 128–1920s 110 256s 256–3840s 111 256s 256–3840s Watchdog timer for the cell-balancing switches. The timer counts down at a rate set by CBPDIV. When the timer reaches 0, all cell-balancing switches are disabled by a signal separate from the BALSWEN bits. The timer should be periodically rewritten with a timeout value to keep the cell balancing switches enabled. When the timer value is read, the value reported is latched during the stop bit time following the ACQCFG UART register address of the READALL command. If the GPIO3TMR configuration is enabled, the GPIO3 pin is driven high while CBTIMER[3:0] is nonzero and is driven low when the timer value is zero. The cell-balancing timer is reset to zero when EMGCYDCHG =1. D7 D6 D5 D4 D3 0 Reserved Always reads logic-zero. D2 D1 D0 www.maximintegrated.com Maxim Integrated │  109 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ACQCFG Register (address 0x19) BIT POR NAME 0 Reserved DESCRIPTION D15 D14 D13 D12 Always reads logic-zero. D11 D10 D9 D8 D7 D6 Sets the step size of the cell-balancing timer LSB per table below: 0 THRMMODE [1:0] THRMMODE[1:0] OPERATION 00 Auto mode (on in acquisition mode) 01 Auto mode (on in acquisition mode) 10 Manual mode, THRM switch off 11 Manual mode, THRM switch on 0 Reserved Always reads logic-zero. 0 AINTIME [5:0] Configures the pre-conversion settling time for each enabled AUXIN input from 6µs (default) up to 384µs (6µs/bit). This is to allow extra settling time if the application circuit requires it since the THRM voltage is not driven out until the start of the acquisition (in auto mode). D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  110 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems BALSWEN Register (address 0x1A) BIT POR NAME 0 Reserved 0 BALSWEN [11:0] DESCRIPTION D15 D14 D13 Always reads logic-zero. D12 D11 D10 D9 D8 D7 D6 D5 BALSWEN[n-1] enables the balancing switch (conducting) between SWn and SWn-1. D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  111 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems DEVCFG2 Register (address 0x1B) BIT D15 POR NAME DESCRIPTION Enables UART loopback mode, which internally connects upper-port transmitter to upper-port receiver. The loopback mode allows the host to locate a break in daisy-chain communication whether or not the last daisy-chained device uses an external wire loopback wire or the internal loopback. 0 LASTLOOP 0 Reserved D12 0 DBLBUFSEL Enables alternate double-buffer mode. Contact Maxim Applications for details; otherwise, leave in default state. D11 0 TXLIDLEHIZ Enables High-Z idle mode, which causes the TX drivers of the lower UART to idle in the high-Z state instead of idling in the logic-zero state (default mode). Leave in default state for normal operation. D10 0 TXUIDLEHIZ Enables High-Z idle mode, which causes the TX drivers of the upper UART to idle in the high-Z state instead of idling in the logic-zero state (default mode). Leave in default state for normal operation. D9 0 RESERVED Reserved for future use. Reads the written value. D8 0 EMGCYDCHG 0 Reserved Always reads logic-zero. 0 HVCPDIS Disables the HV charge pump. Used for ALRTHVUV diagnostic. If the HV charge pump is disabled in normal operation, measurement errors will result due to VHV undervoltage. D14 D13 Always reads logic-zero. Set to enable emergency-discharge mode (configured by BALSWDCHG). D7 D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  112 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems BALDIAGCFG1 Register (address 0x1C) BIT POR NAME 0 Reserved D13 0 ALTMUXSEL_M D12 0 POLARITY_M 0 CELLEN_M [12:1] D15 D14 DESCRIPTION Always reads logic-zero. Mirror for ALTMUXSEL bit. Mirror for POLARITY bit. D11 D10 D9 D8 D7 D6 D5 Mirror for CELLEN[12:1] in the MEASUREEN register. Writing to this field also updates CELLEN[12:1]. Reading this field reflects CELLEN[12:1]. D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  113 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems BALSWDCHG Register (address 0x1D) BIT POR NAME D15 Configuration for emergency-discharge mode (EMGCYDCHG = 1). Sets the duty cycle for each discharge cycle (even or odd) per the table below: D14 0 D13 D12 DCHGWIN [2:0] 0 Reserved 0 DCHGCNTR [3:0] D11 D10 D9 DESCRIPTION D8 D7 DCHGWIN[2:0] (LSb = 7.5s) BEHAVIOR 0h Switches on for 7.5s, off for 52.5s 1h Switches on for 15s, off for 45s … … 7h Switches on for 59.94s, off for 62.5ms Always reads logic-zero. Discharge counter that can be read to verify operation of the emergency-discharge mode (EMGCYDCHG = 1). During the emergency-discharge mode, the discharge counter counts at 2Hz rolling over at Fh to 0h and continuing until the emergencydischarge mode terminates. Read-only. Write to set the timeout value of the emergency-discharge mode (EMGCYDCHG = 1) per the table below. Writing to 00h disables the timer and terminates the emergency-discharge mode. The timer starts when EMGCYDCHG = 1 (and DCHGTIME[7:0] ≠ 00h) and stops when it reaches the timeout. The timer is reset when EMGCYDCHG = 0. D6 D5 DCHGTIME[7:0] (LSb = 2 hours) TIMEOUT 00h Discharge mode disabled D2 01h Discharge mode disabled after 4 hours D1 02h Discharge mode disabled after 6 hours … … FFh Discharge mode disabled after 512 hours D4 D3 0 DCHGTIME [7:0] D0 www.maximintegrated.com Maxim Integrated │  114 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems TOPCELL Register (address 0x1E) BIT POR NAME 0 Reserved Ch TOPCELL[3:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 Always reads logic-zero. D8 D7 D6 D5 D4 D3 D2 D1 D0 Configures the top-cell position if less than 12 channels are used. This is to properly mask the ALRTBALSW diagnostic alerts. TOPCELL[3:0] = 0h is not a valid configuration and is identical to the default, Ch (12d). CELLn Register (addresses 0x20 to 0x2B) BIT POR NAME 0 CELLn[15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 CELLn[15:2] contains the 14-bit measurement result for CELLn. CELLn[1:0] always reads logic-zero. Read-only. D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  115 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems VBLOCK Register (address 0x2C) BIT POR NAME 0 VBLOCK[15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 VBLOCK[15:2] contains the 14-bit measurement result for VBLKP. VBLOCK[1:0] always reads logic-zero. Read-only. D6 D5 D4 D3 D2 D1 D0 AIN1 Register (address 0x2D) BIT POR NAME 0 AIN1[15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 AIN1[15:4] contains the 12-bit measurement result for AUXIN1. AIN1[3:0] always reads logic-zero. Read-only. D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  116 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems AIN2 Register (address 0x2E) BIT POR NAME 0 AIN2[15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 AIN2[15:4] contains the 12-bit measurement result for AUXIN2. AIN2[3:0] always reads logic-zero. Read-only. D6 D5 D4 D3 D2 D1 D0 TOTAL Register (address 0x2F) BIT POR NAME 0 SUM[15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 16-bit sum of all cell voltages CELLn[15:4] that are enabled by MEASUREEN. Read-only. D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  117 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems OVTHCLR Register (address 0x40) BIT POR NAME FFFCh OVTHCLR [15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 14-bit overvoltage-clear threshold. UVTHCLR[1:0] always reads logic-zero. D6 D5 D4 D3 D2 D1 D0 OVTHSET Register (address 0x42) BIT POR NAME FFFCh OVTHSET [15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 14-bit overvoltage-set threshold. UVTHCLR[1:0] always reads logic-zero. D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  118 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems UVTHCLR Register (address 0x44) BIT POR NAME 0 UVTHCLR [15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 14-bit undervoltage-clear threshold. UVTHCLR[1:0] always reads logic-zero. D6 D5 D4 D3 D2 D1 D0 UVTHSET Register (address 0x46) BIT POR NAME 0 UVTHSET [15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 14-bit undervoltage-set threshold. UVTHSET[1:0] always reads logic-zero. D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  119 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems MSMTCH Register (address 0x48) BIT POR NAME FFFCh MSMTCH [15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 14-bit voltage threshold for ALRTMSMTCH. MSMTCH[1:0] always reads logic-zero. D6 D5 D4 D3 D2 D1 D0 AINOT Register (address 0x49) BIT POR NAME 0 AINOT [15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 12-bit undervoltage (overtemperature) threshold for AUXIN alerts. AINOT[3:0] always reads logic-zero. D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  120 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems AINUT Register (address 0x4A) BIT POR NAME DESCRIPTION FFF0h AINUT[15:0] 12-bit overvoltage (undertemperature) threshold for AUXIN alerts. AINUT[3:0] always reads logic-zero. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 BALSHRTTHR Register (address 0x4B) BIT POR NAME DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 0 BALSHRTTHR [15:0] D6 D5 14-bit voltage threshold for the balancing-switch short-circuit diagnostic test. The ADC results in this test mode are compared against the threshold. If any result is below the threshold, it is flagged as a balancing-switch alert. Results above the threshold are considered normal. The threshold should be set by the system controller prior to making a diagnostic measurement. BALSHRTTHR[1:0] always reads logic-zero. D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  121 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems BALLOWTHR Register (address 0x4C) BIT POR NAME DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 0 BALLOWTHR [15:0] D6 D5 14-bit low-voltage threshold for the balancing-switch conducting and cell-sense wire diagnostic tests. The ADC results in this test mode are compared against the threshold. If any result is below the threshold, it is flagged as a balancing-switch alert. Results above the threshold are considered normal. The threshold should be set by the system controller prior to making a diagnostic measurement. BALLOWTHR[1:0] always reads logic-zero. D4 D3 D2 D1 D0 BALHIGHTHR Register (address 0x4D) BIT POR NAME DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 0 BALHIGHTHR [15:0] D6 D5 14-bit high-voltage threshold for the balancing-switch conducting and cell-sense wire diagnostic tests. The ADC results in this test mode are compared against the threshold. If any result is above the threshold, it is flagged as a balancing-switch alert. Results below the threshold are considered normal. The threshold should be set by the system controller prior to making a diagnostic measurement. BALHIGHTHR[1:0] always reads logic-zero. D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  122 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems DIAG Register (address 0x50) BIT POR NAME 0 DIAG[15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 DIAG[15:2] contains the 14-bit measurement result for the diagnostic selected by DIAGCFG[2:0]. DIAG[1:0] always reads logic-zero. Read-only. D6 D5 D4 D3 D2 D1 D0 DIAGCFG Register (address 0x51) BIT POR NAME D15 DESCRIPTION Configures the current level for all enabled test sources per the table below (either 6.25µA or 3.125µA per bit): D14 CTSTDAC{3:0] D13 0 CTSTDAC[3:0] D12 TEST-SOURCE CURRENT Cn, AUXINn HVMUX 0h 6.25µA 3.125µA 1h 12.5µA 6.25µA 2h 18.75µA 9.375µA … …. … Dh 87.5µA 43.75µA Eh 93.75µA 46.875µA Fh 100µA 50µA D11 0 CTSTSRC Configures the cell-input test-current sources to either source current from VAA (logic-one), or sink current to AGND (logic-zero). D10 0 Reserved Always reads logic-zero. www.maximintegrated.com Maxim Integrated │  123 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems DIAGCFG Register (address 0x51) (continued) BIT POR NAME D9 0 D8 0 AUXINTSTEN [2:1] DESCRIPTION Enables the test-current sources connected to the corresponding AUXIN input for diagnostic testing. The current level is configured by the CTSTDAC[3:0] and the current direction is configured by CTSTSRC. Selects the HVMUX output to which the HVMUX test-current source is connected, if MUXDIAGPAIR is enabled, as shown below: D7 0 MUXDIAGBUS MUXDIAGBUS HVMUX OUTPUT 0 Output used for even cells, C0, and AGND 1 Output used for odd cells and REF, and ALTREF Configures a single HVMUX test-current source to be connected to only one HVMUX output (as selected by MUXDIAGBUS). In the default configuration (MUXDIAGPAIR = 0), both HVMUX test-current sources are connected to both HVMUX outputs. D6 0 MUXDIAGPAIR D5 0 Reserved D4 0 MUXDIAGEN Enables the HVMUX test-current source(s). The current level is configured by CSTDAC[3:0] and the connectivity is configured by MUXDIAGPAIR, and MUXDIAGBUS D3 0 ALTMUXSEL Enables cell measurements on the SWn inputs (ALTMUX data path) instead of the Cn inputs (HVMUX data path). Refer to the Diagnostics section. D2 Always reads logic-zero. Selects the diagnostic measurement for the acquisition per table below: DIAGSEL[2:0] D1 0 D0 www.maximintegrated.com DIAGSEL [2:0] DIAGNOSTIC MEASUREMENT 0b000 No measurement 0b001 VALTREF 0b010 VAA (with ADC reference = VTHRM) 0b011 LSAMP Offset 0b100 Zero-scale ADC output (000h) 0b101 Full-scale ADC output (FFFh) 0b110 Die temperature 0b111 No measurement Maxim Integrated │  124 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems CTSTEN Register (address 0x52) BIT POR NAME DESCRIPTION 0 Reserved Always reads logic-zero. 0 CTSTEN [12:0] Enables the current sources connected to the corresponding cell input for diagnostic testing. The current level is configured by the CTSTDAC[3:0] and the current direction is configured by CTSTSRC in the DIAGCFG register. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ADCTEST1A Register (address 0x57) BIT POR NAME 0 Reserved DESCRIPTION D15 D14 D13 Always reads logic-zero. D12 D11 D10 D9 D8 D7 D6 D5 ADCTEST1A [11:0] User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into the ALU during the first conversion of odd-numbered samples (e.g., first sample). D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  125 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ADCTEST1B Register (address 0x58) BIT POR NAME 0 Reserved 0 ADCTEST1B [11:0] DESCRIPTION D15 D14 D13 Always reads logic-zero. D12 D11 D10 D9 D8 D7 D6 D5 User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into the ALU during the second conversion of odd-numbered samples (e.g., first sample). D4 D3 D2 D1 D0 ADCTEST2A Register (address 0x59) BIT POR NAME 0 Reserved 0 ADCTEST2A [11:0] DESCRIPTION D15 D14 D13 Always reads logic-zero. D12 D11 D10 D9 D8 D7 D6 D5 User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into the ALU during the first conversion of even-numbered samples in oversampling mode. D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  126 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems ADCTEST2B Register (address 0x5A) BIT POR NAME 0 Reserved 0 ADCTEST2B [11:0] DESCRIPTION D15 D14 D13 Always reads logic-zero. D12 D11 D10 D9 D8 D7 D6 D5 User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into the ALU during the second conversion of even-numbered samples in oversampling mode. D4 D3 D2 D1 D0 CALx Registers (addresses 0xC0–0xCA, 0xCF) BIT POR NAME xxh CALx[15:0] DESCRIPTION D15 D14 D13 D12 D11 D10 D9 D8 D7 Contains factory-calibration data. Read-only. D6 D5 D4 D3 D2 D1 D0 www.maximintegrated.com Maxim Integrated │  127 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Ordering Information PART TEMP RANGE MAX17823HGCB/V+ -40°C to +105°C Package Information PINPACKAGE 64 LQFP +Denotes a lead(Pb)-free/RoHS-compliant package. /V denotes an automotive-qualified part. www.maximintegrated.com For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 64 LQFP C64+13 21-0083 90-0141 Maxim Integrated │  128 MAX17823H 12-Channel, High-Voltage Data-Acquisition Systems Revision History REVISION NUMBER REVISION DATE 0 8/18 DESCRIPTION Initial release PAGES CHANGED — For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2018 Maxim Integrated Products, Inc. │  129
MAX17823HGCB/V+ 价格&库存

很抱歉,暂时无法提供与“MAX17823HGCB/V+”相匹配的价格&库存,您可以联系我们找货

免费人工找货