EVALUATION KIT AVAILABLE
MAX17823H
General Description
The MAX17823H are data-acquisition systems for the
management of high-voltage battery modules. The
systems feature a 12-bit SAR ADC that can measure
12 cell voltages and two temperatures in 161µs. There
are 12 internal switches for cell balancing and extensive
built-in diagnostics. Up to 32 devices can be daisychained together to manage 384 cells and monitor 64
temperatures.
Cell voltages (0 to 5V) are measured differentially over
a 65V common-mode range. Cell measurements have a
typical accuracy of 2mV (3.6V cell, +25°C). If oversampling is enabled, up to 128 measurements per channel
can be averaged internally with 14-bit resolution. The system can shut itself down in the event of a thermal overload
by measuring its own die temperature.
The systems use Maxim’s battery-management UART
protocol for robust communications and when used in
conjunction with the MAX17880 12-channel battery monitor, they are ideal for automotive battery-management
systems that require a high safety-integrity level.
Applications
●●
●●
●●
●●
●●
●●
●●
High-Voltage Battery Stacks
Electric Vehicles (EVs)
Hybrid Electric Vehicles (HEVs)
Electric Bikes
Battery-Backup Systems (UPS)
Super-Cap Systems
Battery-Powered Tools
Ordering Information appears at end of data sheet.
12-Channel, High-Voltage
Data-Acquisition Systems
Benefits and Features
●● AECQ-100 Grade 2 Temperature Range
• -40°C to +105°C
●● Operating Voltage from 9V to 65V
●● Ultra-Low Power Operation
• Standby Mode: 2mA
• Shutdown Mode: 2µA
●● 12 Cell-Voltage-Measurement Channels
• 2mV Accuracy (3.6V, +25°C)
• 5mV Accuracy (0°C to +45°C)
• 10mV Accuracy (-40°C to +105°C)
●● 12 Cell-Balancing Switches
• Up to 650mA per Switch
• Emergency-Discharge Mode
●● Two Temperature-Measurement Channels
●● Die Temperature Measurement
●● Automatic Thermal Protection
●● 29 Voltage Threshold Alerts
• 12 Overvoltage Faults
• 12 Undervoltage Faults
• Two Overtemperature Faults
• Two Undertemperature Faults
• One Cell-Mismatch Alert
(Highest Cell vs. Lowest Cell)
●● Four GPIOs
●● Built-in Diagnostics to Support ASIL D and
FMEA Requirements
●● Battery-Management UART Protocol
• Daisy-Chain Up to 32 Devices
• Communication Port Isolation
• Up to 2Mbps Baud Rate (Autodetect)
• 1.5µs Propagation Delay per Device
• Packet-Error Checking (PEC)
●● Factory-Trimmed Oscillators
• No External Crystals Required
●● 10mm x 10mm Package (64-Pin LQFP)
19-100391; Rev 0; 8/18
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
TABLE OF CONTENTS
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Simplified Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Data Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Precision Internal Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Measurement Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Cell Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Block Voltage Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Auxiliary Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
THRM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Computing Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Temperature Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Die Temperature Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Acquisition Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Acquisition Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Scan Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Measurement Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Double-buffer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Measurement Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Voltage Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Cell Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Cell Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Temperature Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Cell-Balancing Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
www.maximintegrated.com
Maxim Integrated │ 2
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
TABLE OF CONTENTS (CONTINUED)
Maximum Cell-Balancing Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Cell-Balancing Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Emergency-Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
HV Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Device ID Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Power-On and Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Power-On Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Shutdown Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Shutdown Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
UART Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
UART Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
UART Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
UART RX Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
UART Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
External Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Internal Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Baud-Rate Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Battery-Management UART Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Command Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Preamble Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Data Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Stop Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
UART Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
UART Communication Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Command Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Command Byte Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Register Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Register Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Data-Check Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
PEC Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Alive-Counter Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Fill Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
www.maximintegrated.com
Maxim Integrated │ 3
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
TABLE OF CONTENTS (CONTINUED)
Battery-Management UART Protocol Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
HELLOALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
WRITEALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
WRITEDEVICE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
READALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
READDEVICE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ROLLCALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ALTREF Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
VAA Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
LSAMP Offset Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Zero-Scale ADC Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Full-Scale ADC Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
BALSW Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
BALSW Short Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
BALSW Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Even/Odd Sense-Wire Open Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Diagnostic Test Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Shutdown Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
HVMUX Switch Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HVMUX Switch Shorted Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
HVMUX Test Source Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Cn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Cn Shorted to SWn Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Cn Leakage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Cell Overvoltage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Cell Undervoltage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ALRTHVUV Comparator Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ALU Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Calibration ROM Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Vehicle Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Battery Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Daisy-Chain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Distributed-Module Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
www.maximintegrated.com
Maxim Integrated │ 4
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
TABLE OF CONTENTS (CONTINUED)
Combining MAX17823H and MAX17880 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Acquisition Latency for Daisy-Chain Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Power-Supply Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Connecting Cell Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
External Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
External Cell-Balancing Using FET Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
External Cell Balancing Using BJT Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
External Cell-Balancing
Short-Circuit Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
High-Z Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
UART Supplemental ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Single-Ended RX Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
UART Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
UART Transformer Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
UART Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Device Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
PEC Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Version Register (address 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ADDRESS Register (address 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
STATUS Register (address 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
FMEA1 Register (address 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ALRTCELL Register (address 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ALRTOVCELL Register (address 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ALRTUVCELL Register (address 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ALRTBALSW Register (address 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
MINMAXCELL Register (address 0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
FMEA2 Register (address 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ID1 Register (address 0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
ID2 Register (address 0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DEVCFG1 Register (address 0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
GPIO Register (address 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
MEASUREEN Register (address 0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SCANCTRL Register (address 0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ALRTOVEN Register (address 0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
www.maximintegrated.com
Maxim Integrated │ 5
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
TABLE OF CONTENTS (CONTINUED)
ALRTUVEN Register (address 0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
WATCHDOG Register (address 0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
ACQCFG Register (address 0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
BALSWEN Register (address 0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
DEVCFG2 Register (address 0x1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
BALDIAGCFG1 Register (address 0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
BALSWDCHG Register (address 0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
TOPCELL Register (address 0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
CELLn Register (addresses 0x20 to 0x2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
VBLOCK Register (address 0x2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
AIN1 Register (address 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
AIN2 Register (address 0x2E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
TOTAL Register (address 0x2F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
OVTHCLR Register (address 0x40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
OVTHSET Register (address 0x42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
UVTHCLR Register (address 0x44) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
UVTHSET Register (address 0x46) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
MSMTCH Register (address 0x48) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
AINOT Register (address 0x49) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
AINUT Register (address 0x4A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
BALSHRTTHR Register (address 0x4B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
BALLOWTHR Register (address 0x4C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
BALHIGHTHR Register (address 0x4D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DIAG Register (address 0x50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
DIAGCFG Register (address 0x51) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
CTSTEN Register (address 0x52) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
ADCTEST1A Register (address 0x57) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
ADCTEST1B Register (address 0x58) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
ADCTEST2A Register (address 0x59) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
ADCTEST2B Register (address 0x5A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
CALx Registers (addresses 0xC0–0xCA, 0xCF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
www.maximintegrated.com
Maxim Integrated │ 6
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
LIST OF FIGURES
Figure 1. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 2. ESD Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 3. Analog Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4. VBLKP Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 5. Auxiliary Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 6. Auxiliary Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 7. Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 8. Acquisition Mode Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 9. Acquisition, OVSAMP[2:0] = 0h and SCANMODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 10. Acquisition, OVSAMP[2:0] > 0 and SCANMODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 11. Measurement Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 12. Double-Buffer Mode DATAMOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 13. Double-Buffer Mode Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 14. Cell Voltage Alert Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 15. Internal Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 16. Cell-Balancing Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 17. Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 18. HV Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 19. SHDNL Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 20. Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 21. Shutdown Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 22. Power-On and Shutdown Timing (UART Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 23. Shutdown Timing (Software Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 24. UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 25. UART Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 26. UART Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 27. Command Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 28. Preamble Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 29. Data Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 30. Stop Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 31. Communication Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 32. ALTREF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 33. VAA Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 34. LSAMP Offset Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 35. Zero-Scale ADC Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 36. Full-Scale ADC Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 37. Balancing Switch Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
www.maximintegrated.com
Maxim Integrated │ 7
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
LIST OF FIGURES (CONTINUED)
Figure 38. BALSW Short Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 39. BALSW Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 40. Cell Sense-Wire Open Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 41. Sense-Wire Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 42. Test Current Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 43. Shutdown Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 44. HVMUX Switch Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 45. SWn to Cn Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 46. SWn-1 to Cn Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 47. Redundant HVMUX Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 48. HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 49. HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 50. ALU Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 51. AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 52. AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 53. Electric Vehicle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 54. Daisy-Chain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 55. Distributed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 56. Power-Supply Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 57. External Balancing (FET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 58. External Cell Balancing (BJT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 59. UART Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 60. High-Z Idle Mode Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 61. External ESD Protection for UART TX Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 62. External ESD Protection for UART RX Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 63. Application Circuit for Single-Ended Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 64. UART Transformer Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 65. UART Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 66. Device Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 67. CRC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 68. PEC Calculation Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
www.maximintegrated.com
Maxim Integrated │ 8
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
LIST OF TABLES
Table 1. System Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 2. Numeric Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 3. Data Acquisition Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 4. Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 5. THRM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6. AINTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 9. Acquisition Time Examples (with AINCFG[5:0] = 00h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 10. Measurement Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 11. Maximum Allowed Balancing Current per Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 12. Cell-Balancing Watchdog Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 13. Emergency-Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 14. Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 15. Low-Voltage Regulator Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 16. HV Charge-Pump Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 17. Oscillator Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 18. Shutdown Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 19. UART RX Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 20. Data Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 21. Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 22. Command-Packet Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 23. Command-Byte Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 24. Data-Check Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 25. HELLOALL Sequencing (z = Total Number of Devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 26. WRITEALL Sequencing (Unchanged by Daisy-Chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 27. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 28. READALL Command Sequencing (z = no. of devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 29. READDEVICE Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 30. Summary of Built-In Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
www.maximintegrated.com
Maxim Integrated │ 9
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
LIST OF TABLES (CONTINUED)
Table 31. BALSW Short-Diagnostic Auto Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 32. BALSW Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 33. BALSW Open-Diagnostic Auto Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 34. Odd Sense-Wire Open-Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 35. Even Sense-Wire Open-Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 36. Sense-Wire Open-Diagnostic Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 37. HVMUX Output Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 38. Shutdown Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 39. HVMUX Switch Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 40. HVMUX Test Source Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 41. Cn Pin Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 42. CRC Bit Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 43. FET Balancing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 44. BJT Balancing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
www.maximintegrated.com
Maxim Integrated │ 10
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Simplified Operating Circuit
TO MODULE n+1
R81
100Ω
BUS BAR
VBAT+
D91
R32
CELL12
R80 10Ω
C80
2.2µF 100V
R13
R12
C81
4.7µF
50V
C13
D82
BAV70
C12
R31
C11
C32
R30
C10
C31
R29
C9
C30
R28
C8
C29
R27
15-WIRE
BATTERY
PACK
C7
C28
R26
C6
C27
R25
CELL5
C5
C26
R24
C4
C25
R23
C3
C24
R22
C2
C23
R21
C1
C22
VBATBUS BAR
D90
C83 1.0µF
16V
VDDL1
C84 0.47µF
16V
GNDL1
VDDL2
C7
GNDL2
VDDL3
C6
GNDL3
SHDNL
C5
AGND
CTG
C85 0.47µF
16V
C86 0.47µF
16V
C87 1.0nF
25V
GPIO0
GPIO1
GPIO2
GPIO3
C4
C3
C0
C21
C20
1µF
TXLP
TXLN
RXLP
RXLN
C2
C1
THRM
AGND
C0
SW0
TO / FROM HOST
(IF USED)
MODULE n-1 OR HOST
SW1
R0
R20
C82 0.1µF
100V
AGND
C8
SW2
R1
CELL1
CPN
VAA
SW3
R2
CELL2
CPP
C9
SW4
R3
CELL3
C10
SW5
R4
CELL4
C11
SW6
R5
RXLP
RXLN
TXLP
TXLN
UART
INTERFACE
NOTES:
1. CAPACITOR RATINGS SHOWN IN THIS DATASHEET ARE
BASED ON EXPECTED CONDITIONS AND MAY BE MODIFIED
BASED ON APPLICATIONS REQUIREMENTS.
2. D90, D91 (OPTIONAL) PROVIDE DEVICE POWER THROUGH
SENSE WIRES IF ANY VBAT SUPPLY WIRE IS OPEN.
3. SEE APPLICATIONS SECTION FOR UART INTERFACE.
4. R0 – R13: 1kΩ (APPLICATION DEPENDENT)
5. R20 – R32: 12Ω (APPLICATION DEPENDENT)
5. C0 – C12, C21 – C32: 100nF (APPLICATION DEPENDENT)
6. C13: 470nF (APPLICATION DEPENDENT)
SW7
R6
CELL6
C12
SW8
R7
CELL7
VBLKP
SW9
R8
CELL8
TXUP
TXUN
RXUP
RXUN
SW10
R9
CELL9
DCIN
SW11
R10
CELL10
MODULE n+1
SW12
R11
CELL11
MAX17823H
HV
RXUP
RXUN
TXUP
TXUN
UART
INTERFACE
C62
100pF
R60
10k
R61
10k
AUXIN1
AUXIN2
AGND
C60 T
100pF
RT1
10k
C61 T
100pF
RT1
10k
TO MODULE n-1
www.maximintegrated.com
Maxim Integrated │ 11
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Absolute Maximum Ratings
HV to AGND............................................................. -0.3 to +80V
DCIN, SWn, VBLKP,
Cn to AGND............................ -0.3V to min (VHV + 0.3V, 72V)
Cn to Cn-1...............................................................-72V to +72V
SWn to SWn-1.........................................................-0.3V to +9V
VAA to AGND........................................................... -0.3v to +4V
VDDL1 to GNDL1......................................................-0.3V to +4V
VDDL2 to GNDL2......................................................-0.3V to +6V
VDDL3 to GNDL3......................................................-0.3V to +6V
VAA to VDDL1, VDDL2, VDDL3...............................-0.3V to +0.3V
AGND to GNDL1, GNDL2, GNDL3.......................-0.3V to +0.3V
AUXIN1, AUXIN2, THRM to AGND.............. -0.3V to VAA + 0.3V
SHDNL to AGND.........................................-0.3 to VDCIN + 0.3V
CTG to AGND...........................................................-0.3V to +6V
RXLP, RXLN, RXUP, RXUN to AGND.....................-30V to +30V
TXLP, TXLN to GNDL2.............................................-0.3V to +6V
TXUP, TXUN to GNDL3...........................................-0.3V to +6V
CPP to AGND........................................ VDCIN - 1V to VHV + 1V
CPN to AGND.......................................... -0.3V to VDCIN + 0.3V
GPIO0, GPIO1, GPIO2,
GPIO3 to GNDL1................................. -0.3V to VDDL1 + 0.3V
Maximum Continuous Current
into Any Pin (Note 1).....................................................±20mA
Maximum Continuous Current
into SWn Pin (Note 2).................................................±650mA
Maximum Average Power for
ESD Diodes (Note 3)................................................. 14.4W/√τ
Package Continuous Power (Note 4).............................2000mW
Package Junction to Ambient Thermal Resistance, θJA.......40°C/W
Operating Temperature Range.......................... -40°C to +105°C
Storage Temperature Range............................. -55°C to +150°C
Junction Temperature (continuous).................................... 150°C
Soldering Lead Temperature (10s, max)............................ 300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Note 1: Balancing switches disabled.
Note 2: One balancing switch enabled, 60s maximum.
Note 3: Average power for time period τ where τ is the time constant (in µs) of the transient diode current during hot-plug event. For,
example, if τ is 330µs, the maximum average power is 0.793W. Peak current must never exceed 2A. Actual average power
during hot-plug must be calculated from the diode current waveform for the application circuit and compared to the maximum
rating.
Note 4: Multilayer board. For TA > 70ºC derate 25mW/°C.
Electrical Characteristics
(VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at
TA = +25°C. Operation is with the recommended application circuit.) (Note 5)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
65
V
0.1
2
µA
POWER REQUIREMENTS
Supply Voltage
VDCIN
9
DCIN Current, Shutdown Mode
IDCSHDN
VSHDNL= 0V
DCIN Current, Standby Mode
(Note 16)
IDCSTBY
VSHDNL > 1.8V, UART in idle
mode, not in acquisition mode,
BALSWEN, CTSTEN = 0000h
1.4
2.0
2.6
mA
DCIN Current, Acquisition
Mode (Note 16)
IDCMEAS
MEASUREEN = 0FFFh,
acquisition mode
3.5
5.4
8.5
mA
Incremental DCIN Current,
Communication Mode
(Note 16)
IDCCOMM
Baud rate = 2Mb/s (0% idle time
preambles mode), 200pF load on
TXUP, 200pF on TXUN, TXL not
active, not in acquisition mode,
BALSWEN, CTSTEN = 0000h
1.5
3
mA
HV Current, Acquisition Mode
IHVMEAS
Acquisition mode, MEASUREEN
= 0FFFh, VHV = VDCIN + 5.5V
1.1
1.3
mA
www.maximintegrated.com
0.9
Maxim Integrated │ 12
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Electrical Characteristics (continued)
(VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at
TA = +25°C. Operation is with the recommended application circuit.) (Note 5)
PARAMETER
SYMBOL
Incremental HV Current,
Cell-Balancing Mode
IHVBAL
CONDITIONS
VHV = VDCIN + 5.5V, n balancing
switches enabled
MIN
TYP
MAX
UNITS
(n+1)
x5
(n+1)
x 15.5
(n+1)
x 26
µA
CELL VOLTAGE INPUTS (Cn, VBLKP)
Unipolar mode
0.2
4.8
V
Bipolar mode
-2.3
+2.3
V
0
65
V
±10
+200
nA
4.5
10
20
MΩ
CTSTDAC[3:0] = Fh
1.7
3.3
5
kΩ
VSW0 = 0V, VSWn = 5V,
VSWn-1 = 0V
-1
+1
µA
BALSWEN[n-1] = 1, ISWn = 100mA
0.2
0.6
Ω
Differential Input Range
(Note 11)
VCELLn
Common-Mode Input Range
VCnCM
Not connected to SWn inputs
Input Leakage Current
ILKG_Cn
Not in acquisition mode,
VCn = 65V
-200
VBLKP Input Resistance
RVBLKP
VBLKP = VDCIN = 57.6V
HVMUX Switch Resistance
RHVMUX
ILKG_SW
CELL-BALANCING INPUTS (SWn)
Leakage Current
Resistance, SWn to SWn-1
Maximum Allowed Balancing
Current (Note 15)
RSW
IBAL_MAX
TJ = 105°C, 25% average duty
cycle per switch
0.35
650
mA
AUXILIARY INPUTS (AUXIN1, AUXIN2)
Input Voltage Range
Input Leakage Current
VAUXIN
ILKG_AUX
0
Not in acquisition mode,
VAUXINn = 1.65V
-400
VTHRM
V
10
+400
nA
25
70
Ω
1
µA
THRM OUTPUT
Switch Resistance,
VAA to THRM
Leakage Current
RTHRM
ILKG_THRM
VTHRM = 3.3V
-1
MEASUREMENT ACCURACY
Unipolar mode, VCELLn = 3.6V
±2
Bipolar mode, VCELLn = 1.1V
Total Measurement Error,
HVMUX Inputs
(Note 12)
VCELLnERR
Unipolar mode
0.2V ≤ VCELLn ≤ 4.3V,
0°C ≤ TA ≤ 45°C
±3.6
+5
mV
Unipolar mode,
0.2V ≤ VCELLn ≤ 4.8V
Bipolar mode,
-2.3V ≤ VCELLn ≤ 2.3V,
SWn inputs not connected
www.maximintegrated.com
-5
-10
+10
Maxim Integrated │ 13
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Electrical Characteristics (continued)
(VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at
TA = +25°C. Operation is with the recommended application circuit.) (Note 5)
PARAMETER
SYMBOL
CONDITIONS
MIN
Unipolar mode, VCELL = 3.6V
Total Measurement Error,
ALTMUX Inputs
(Note 12)
Unipolar mode,
0.2V ≤ VCELLn ≤ 4.8V
Bipolar mode,
0V ≤ VCELLn ≤ 2.3V
Channel Noise (Note 7)
VCELLNOISE
Total Measurement Error,
VBLKP Input
VBLKPERR
Offset Error, AUXINn Inputs
UNITS
mV
-10
No oversampling
9V ≤ VBLKP ≤ 57.6V,
VDCIN = 57.6V, average of 64
acquisitions
MAX
±2
Bipolar mode, VCELLn = 1.1V
VSWnERR
TYP
+10
1.1
mVRMS
-180
+180
mV
VOS_AUX
-3
+3
mV
Gain Error, AUXINn Inputs
AV_AUX
-0.3
-0.3
%
Total Measurement Error,
Die Temperature (Note 7)
TDIE_ERR
+5
°C
Differential Nonlinearity
(Any Conversion)
TJ = -40ºC to 105ºC,
no oversampling
DNL
±3
±1.0
ADC Resolution
Level-Shifting Amplifier Offset
(Note 14)
-5
LSbs
12
VOS_LSAMP
DIAGSEL[2:0] = 011b
-200
bits
-10
+200
mV
0.6
V
SHDNL INPUT AND CHARGE PUMP
Input Low Voltage
VIL_SHDNL
Input High Voltage
VIH_SHDNL
Regulated Voltage
VSHDNLIMIT
Pulldown Resistance
RFORCEPOR
Input Leakage Current
ILKG_SHDNL
Charge-Pump Current
(Note 10)
ISHDNL
www.maximintegrated.com
1.8
VDCIN ≥ 12V
8
VDCIN = 9V
FORCEPOR = 1
V
9.5
6.7
2.5
4.7
VSHDNL = 65V
15
V
V
8
kΩ
1
µA
40
75
µA
117
350
µA
VSHDNL = 3.3V
VSHDNL < VSHDNLIMIT,
baud rate = 2Mbps
12
Maxim Integrated │ 14
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Electrical Characteristics (continued)
(VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at
TA = +25°C. Operation is with the recommended application circuit.) (Note 5)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
0.8
V
GENERAL-PURPOSE I/O (GPIOn)
Input Low Voltage
VIL_GPIO
Input High Voltage
VIH_GPIO
2.4
GPIO[15:12] = 0h (input)
0.5
V
Pulldown Resistance
RGPIO
2
7.5
MΩ
Output Low Voltage
VOL_GPIO
ISINK = 3mA
0.4
V
Output High Voltage
VOH_GPIO
ISOURCE = 3mA
VDDL1
- 0.4
VAA
0 ≤ IAA < 10mA
3.2
3.3
3.4
V
VAA shorted to AGND
10
20
70
mA
2.85
2.95
3.02
V
3.0
3.1
V
V
REGULATOR
Output Voltage
Short-Circuit Current
POR Threshold
POR Hysteresis
Thermal-Shutdown
Temperature (Note 7)
Thermal-Shutdown
Hysteresis (Note 7)
IAASC
VPORFALL
VAA falling
VPORRISE
VAA rising
VPORHYS
TSHDN
Temperature rising
THYS
40
mV
145
°C
15
°C
HV CHARGE PUMP
Output Voltage (VHV–VDCIN)
Charge Pump Efficiency
(Note 18)
HV Headroom (VHV–VC12)
VHV-DCIN
9V ≤ VDCIN ≤ 12V, ILOAD = 1.5mA
5
5.5
6
12V ≤ VDCIN ≤ 65V, ILOAD = 3mA
5
5.5
6
VDCIN = 57.6V
VHVHDRM
ALRTHVHDRM = 0
38
V
%
4.7
V
OSCILLATORS
32kHz Oscillator Frequency
fOSC_32K
32.11
32.768
33.42
kHz
16MHz Oscillator Frequency
fOSC_16M
15.68
16
16.32
MHz
CTSTDAC[3:0] = Fh,
VCn < VAA – 1.4V, VAA = 3.3V
80
100
120
CTSTDAC[3:0] = 6h,
VCn < VAA – 1.4V, VAA = 3.3V
36
45
54
CTSTDAC[3:0] = 6h,
VCn > VAGND + 1.4V
-54
-45
-36
CTSTDAC[3:0] = Fh,
VCn > VAGND + 1.4V
-120
-100
-80
DIAGNOSTIC TEST SOURCES
Cell Test-Source Current
www.maximintegrated.com
ITSTCn
µA
Maxim Integrated │ 15
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Electrical Characteristics (continued)
(VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at
TA = +25°C. Operation is with the recommended application circuit.) (Note 5)
PARAMETER
HVMUX Test-Source Current
AUXIN Test-Source Current
SYMBOL
ITSTMUX
ITSTAUXIN
CONDITIONS
MIN
TYP
MAX
CTSTDAC[3:0] = Fh,
VCn < VHV - 1.4V, VHV = 53.5V
40
50
60
CTSTDAC[3:0] = 6h,
VCn < VHV - 1.4V, VHV = 53.5V
18
22.5
27
CTSTDAC[3:0] = Fh,
VAUXINn < VAA - 1.4V, VAA = 3.3V
80
100
120
CTSTDAC[3:0] = 6h,
VAUXINn < VAA - 1.4V, VAA = 3.3V
36
45
54
CTSTDAC[3:0] = 6h
VAUXINn > VAGND + 1.4V
-54
-45
-36
CTSTDAC[3:0] = Fh,
VAUXINn > VAGND + 1.4V
-120
-100
-80
DIAGSEL[2:0] = 001b
1.23
1.242
1.254
UNITS
µA
µA
DIAGNOSTIC REFERENCES
ALTREF Voltage (Note 14)
VALTREF
ALTREF Temperature
Coefficient (ΔVALTREF/ΔT)
(Note 7)
AALTREF
±25
ppm/°C
1.2
V
PTAT Output Voltage (Note 7)
VPTAT
PTAT Temperature Coefficient
(ΔVPTAT/ΔT) (Note 7)
AV_PTAT
3.07
mV/°C
TOS_PTAT
0
°C
PTAT Temperature Offset
(Note 7)
TJ = 120°C
V
ALERTS
ALRTVDDLn Threshold
VVDDL_OC
VAA = 3.3V
3
3.15
3.25
V
ALRTGNDLn Threshold
VGNDL_OC
AGND = 0V
0.05
0.15
0.3
V
ALRTHVUV Threshold
VHVUV
VHV–VDCIN falling
3.8
4.1
4.25
V
ALRTHVOV Threshold
VHVOV
VHV–VDCIN rising
7
8.5
10
V
115
120
125
°C
ALRTTEMP Threshold (Note 7)
ALRTTEMP Hysteresis
(Note 7)
www.maximintegrated.com
TALRTTEMP
TALRTTEMPHYS
2
°C
Maxim Integrated │ 16
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Electrical Characteristics (continued)
(VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at
TA = +25°C. Operation is with the recommended application circuit.) (Note 5)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
0.4
V
UART OUTPUTS (TXLP, TXLN, TXUP, TXUN)
Output Low Voltage
VOL
ISINK = 20mA
Output High Voltage
(TXLP, TXLN)
VOH
ISOURCE = 20mA
VDDL2
- 0.4
V
Output High Voltage
(TXUP, TXUN)
VOH
ISOURCE = 20mA
VDDL3
- 0.4
V
Leakage Current
ILKG_TX
VTX = 1.5V
-1
+1
µA
+25
V
UART INPUTS (RXLP, RXLN, RXUP, RXUN)
Input Voltage Range
VRX
-25
Receiver High-Comparator
Threshold (Notes 9, 13)
VCH
VDDL/2
- 0.4
VDDL/2
VDDL/2
+ 0.4
V
Receiver Zero-CrossingComparator Threshold (Note 9)
VZC
-0.4
0
+0.4
V
Receiver Low-Comparator
Threshold (Notes 9, 13)
VCL
75
mV
VHYS_RX
VDDL/3
V
VCM
±1.0
µA
4
pF
Receiver Comparator
Hysteresis (Note 9)
Receiver Common-Mode
Voltage Bias (Notes 9, 13)
Leakage Current
ILKG_RX
VRX = 1.5V
Input Capacitance
(RXLP, RXLN)
CRXL
2
pF
Input Capacitance
(RXUP, RXUN)
CRXU
75
mV
UART TIMING
Bit Period (Note 17)
RX Idle to START Setup Time
(Notes 6, 7)
STOP Hold Time to Idle
(Notes 6, 7)
RX Minimum Idle Time (STOP
Bit to START Bit) (Note 6, 7)
tBIT
tRXSTSU
Baud rate = 2Mb/s
8
Baud rate = 1Mb/s
16
Baud rate = 0.5Mb/s
32
0
tSPHD
tRXIDLESPST
1/fOSC_16M
1
tBIT
0.5
tBIT
1
tBIT
RX Fall Time (Notes 7, 8)
tFALL
0.5
tBIT
RX Rise Time (Notes 7, 8)
tRISE
0.5
tBIT
www.maximintegrated.com
Maxim Integrated │ 17
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Electrical Characteristics (continued)
(VDCIN = +48V, TA = TMIN to TMAX, unless otherwise noted, where TMIN = -40°C and TMAX = +105°C. Typical values are at
TA = +25°C. Operation is with the recommended application circuit.) (Note 5)
PARAMETER
Propagation Delay
(RX Port to TX Port)
Startup Time from SHNDL High
and VAA = 0V, to RXUP/RXUN
Valid
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
tPROP
2.5
3
tBIT
tSTARTUP
1
ms
Note 5: Unless otherwise noted, limits are 100% production tested at TA = +25°C. Limits over the operating temperature range
and relevant supply voltage range are guaranteed by design and characterization.
Note 6: Maximum limited by application circuit.
Note 7: Guaranteed by design and not production tested.
Note 8: Fall time measured 90% to 10%; rise time measured 10% to 90%.
Note 9: Differential signal (VRXP - VRXN) where VRXP and VRXN do not exceed a common-mode voltage range of ±25V.
Note 10: ISHDNL measured with VSHDNL = 0.3V, STOP characters, zero idle time, VRX_PEAK = 3.3V
Note 11: VCELLn = VCn - VCn-1, range over which measurement settling time and accuracy is guaranteed.
Note 12: VCELLn = VCn - VCn-1, VCELLn = VCELLn-1, and VDCIN = 12 x │VCELLn │ (9V min). No oversampling enabled
(OVSAMPL[2:0] = 0). Average of 64 acquisitions.
Note 13: VDDL = VDDL2 for lower port and VDDL = VDDL3 for upper port.
Note 14: As measured during specified diagnostic mode.
Note 15: Not production tested. See the Cell-Balancing section for details on the maximum allowed balancing current. Duty cycle is
calculated for a 10-year device lifetime.
Note 16: Acquisition mode (ADC conversions) is entered when the SCAN bit is set and ends when SCANDONE is set. With the
typical acquisition duty cycle very low, the average current (IDCIN) is much less than IDCMEAS. Total supply current during
communication IDCIN = IDCCOMM + IDCSTBY.
Note 17: In daisy-chain applications, the bit time of the second stop bit may be less than specified to account for clock-rate
variation and sampling error between devices.
Note 18: Charge-pump efficiency = ΔILOAD/ΔISUPPLY, where ILOAD is applied from HV to AGND, ΔILOAD = 5mA, and
ΔISUPPLY = IDCIN (for ILOAD = 5mA) - IDCIN (for ILOAD = 0).
CHARGE PER PREAMBLE BYTE
KEEP ALIVE OPERATION
1.200
MAX17823A-B DS toc01
CHARGE TRANSFERED (NANO COULOMBS)
Typical Operating Characteristics
UART = 500kbps
1.000
0.800
0.600
UART = 1Mbps
0.400
0.200
0.000
UART = 2Mbps
2.60
3.10
3.60
COMMUNICATIONS VOLTAGE (VOLTS Pk)
www.maximintegrated.com
Maxim Integrated │ 18
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
CPP
DCIN
HV
N.C.
VBLKP
C12
SW12
C11
SW11
C10
SW10
C9
SW9
C8
SW8
TOP VIEW
CPN
Pin Configuration
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
+
N.C.
1
48
C7
AGND
2
47
SW7
SHDNL
3
46
C6
AGND
4
45
SW6
VAA
5
44
C5
TXUN
6
43
SW5
TXUP
7
42
C4
GNDL1
8
41
SW4
VDDL1
9
40
C3
GNDL3
10
39
SW3
VDDL3
11
38
C2
RXUN
12
37
SW2
RXUP
13
36
C1
GPIO3
14
35
SW1
GPIO2
15
34
C0
GPIO1
16
33
SW0
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
GPIO0
N.C.
N.C.
TXLP
TXLN
VDDL2
GNDL2
RXLP
RXLN
N.C.
N.C.
CTG
AUXIN2
AUXIN1
AGND
THRM
MAX17823H
LQFP
www.maximintegrated.com
Maxim Integrated │ 19
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Pin Description
PIN
NAME
FUNCTION
1
N.C.
N.C.
2
AGND
Ground
DESCRIPTION
Not Connected. Connect to ground or leave unconnected.
Analog Ground. Connect to negative terminal of cell 1 and ground plane.
Shutdown Active-Low Input. Drive > 1.8V to enable operation, and drive < 0.6V to reset
device and place in shutdown mode. +72V tolerant. If not driven externally, this input can
be controlled solely through UART communication and software control. Bypass with a 1nF
capacitor to AGND. For single-ended UART, SHDNL must be driven externally.
3
SHDNL
Input
4
AGND
Ground
Analog Ground. Connect to negative terminal of cell 1 and ground plane.
5
VAA
Power
3.3V Regulator Output Used to Supply VDDL1, VDDL2, and VDDL3. Bypass with a 1µF
capacitor to ground.
6
TXUN
Output
Negative Output for Upper-Port Transmitter. Driven between VDDL3 and GNDL3.
7
TXUP
Output
Positive Output for Upper-Port Transmitter. Driven between VDDL3 and GNDL3.
8
GNDL1
Ground
Digital Ground. Connect to ground plane.
9
VDDL1
Power
3.3V Digital Supply. Connect externally to VAA and bypass with 0.47µF capacitor to GNDL1.
10
GNDL3
Ground
Ground for Upper-Port Transmitter. Connect to ground plane.
11
VDDL
Power
3.3V Supply for Upper-Port Transmitter. Connect externally to VAA and bypass with 0.47µF
capacitor to GNDL3.
12
RXUN
Input
Negative Input for Upper-Port Receiver. Tolerates ±30V.
13
RXUP
Input
Positive Input for Upper-Port Receiver. Tolerates ±30V. Connect to ground for single-ended
operation.
14
GPIO3
I/O
General-Purpose I/O 3. Driven between VDDL1 and GNDL1. 2MΩ internal pulldown.
15
GPIO2
I/O
General-Purpose I/O 2. Driven between VDDL1 and GNDL1. 2MΩ internal pulldown.
16
GPIO1
I/O
General-Purpose I/O 1. Driven between VDDL1 and GNDL1. 2MΩ internal pulldown.
17
GPIO0
I/O
General-Purpose I/O 0. Driven between VDDL1 and GNDL1. 2MΩ internal pulldown.
18
N.C.
N.C.
Not Connected. Connect to ground or leave unconnected.
19
N.C.
N.C.
Not Connected. Connect to ground or leave unconnected.
20
TXLP
Output
Positive output for lower port transmitter. Driven between VDDL2 and GNDL2.
21
TXLN
Output
Negative Output for Lower-Port Transmitter. Driven between VDDL2 and GNDL2.
22
VDDL2
Power
3.3V Supply for Lower-Port Transmitter. Connect externally to VAA and bypass with 0.47µF
capacitor to GNDL2.
23
GNDL2
Ground
Ground for Lower-Port Transmitter. Connect to ground plane.
24
RXLP
Input
www.maximintegrated.com
Positive Input for Lower-Port Receiver. Tolerates ±30V. Connect to ground for single-ended
operation.
Maxim Integrated │ 20
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Pin Description (continued)
PIN
NAME
FUNCTION
25
RXLN
Input
Negative Input for Lower-Port Receiver. Tolerates ±30V.
26
N.C.
N.C.
Not Connected. Connect to ground or leave unconnected.
27
N.C.
N.C.
Not Connected. Connect to ground or leave unconnected.
28
CTG
Input
Reserved for Factory Use. Connect to ground.
29
AUXIN2
Input
Auxiliary Voltage Input 2 to Measure External Temperature. Connect to a voltage-divider
consisting of a 10kΩ pullup to THRM and 10kΩ NTC thermistor to ground. If not used,
connect to the pullup only.
30
AUXIN1
Input
Auxiliary Voltage Input 1 to Measure External Temperature. Connect to a voltage-divider
consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to ground. If not used,
connect to the pullup only.
31
AGND
Ground
Analog Ground. Connect to negative terminal of cell 1 and ground plane.
32
THRM
Power
3.3V Switched Output Used to Supply the Voltage-Dividers for the Auxiliary Inputs.
The output is enabled only during measurements, or as configured by THRMMODE[1:0].
This output can source up to 2mA.
33
SW0
Input
Balance Input for Cell 1 Negative
34
C0
Input
Voltage Input for Cell 1 Negative. Connect to AGND.
35
SW1
Input
Balance Input for Cell 1 Positive (Cell 2 Negative)
36
C1
Input
Voltage Input for Cell 1 Positive (Cell 2 Negative)
37
SW2
Input
Balance Input for Cell 2 Positive (Cell 3 Negative)
38
C2
Input
Voltage Input for Cell 2 Positive (Cell 3 Negative)
39
SW3
Input
Balance Input for Cell 3 Positive (Cell 4 Negative)
40
C3
Input
Voltage Input for Cell 3 Positive (Cell 4 Negative)
41
SW4
Input
Balance Input for Cell 4 Positive (Cell 5 Negative)
42
C4
Input
Voltage Input for Cell 4 Positive (Cell 5 Negative)
43
SW5
Input
Balance Input for Cell 5 Positive (Cell 6 Negative)
44
C5
Input
Voltage Input for Cell 5 Positive (Cell 6 Negative)
45
SW6
Input
Balance Input for Cell 6 Positive (Cell 7 Negative)
46
C6
Input
Voltage Input for Cell 6 Positive (Cell 7 Negative)
47
SW7
Input
Balance Input for Cell 7 Positive (Cell 8 Negative)
48
C7
Input
Voltage Input for Cell 7 Positive (Cell 8 Negative)
49
SW8
Input
Balance Input for Cell 8 Positive (Cell 9 Negative)
www.maximintegrated.com
DESCRIPTION
Maxim Integrated │ 21
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Pin Description (continued)
PIN
NAME
FUNCTION
50
C8
Input
Voltage Input for Cell 8 Positive (Cell 9 Negative)
51
SW9
Input
Balance Input for Cell 9 Positive (Cell 10 Negative)
52
C9
Input
Voltage Input for Cell 9 Positive (Cell 10 Negative)
53
SW10
Input
Balance Input for Cell 10 Positive (Cell 11 Negative)
54
C10
Input
Voltage Input for Cell 10 Positive (Cell 11 Negative)
55
SW11
Input
Balance Input for Cell 11 Positive (Cell 12 Negative)
56
C11
Input
Voltage Input for Cell 11 Positive (Cell 12 Negative)
57
SW12
Input
Balance Input for Cell 12 Positive
58
C12
Input
Voltage Input for Cell 12 Positive
59
VBLKP
Input
Block Voltage Positive Input. Internal 10MΩ pulldown during measurement.
60
NC
NC
61
HV
Power
Decoupling-Capacitor Connection for the HV Charge Pump. VHV = VDCIN + 5.5V (typ).
Bypass with a 50V, 4.7μF capacitor to DCIN.
62
DCIN
Power
DC Supply for the Low-Voltage Regulator, HV Charge Pump, and SHDNL Charge Pump.
Connect to a voltage source between 9V and 65V through a 100Ω series resistor.
Bypass with a 100V, 2.2μF capacitor to ground.
63
CPP
Power
Positive Capacitor Connection for the HV Charge Pump. Connect a 100V, 0.1µF capacitor
from CPP to CPN.
64
CPN
Power
Negative Capacitor Connection for the HV Charge Pump
www.maximintegrated.com
DESCRIPTION
Not Connected. Connect to ground or leave unconnected.
Maxim Integrated │ 22
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Detailed Description
The MAX17823H data-acquisition systems consist of the major blocks shown in Figure 1 and described in Table 1.
Table 1. System Blocks
BLOCK
DESCRIPTION
ADC
Analog-to-digital converter. Uses a 12-bit successive-approximation register (SAR) with a reference
voltage of 2.307V and supplied by VAA.
HVMUX
12-channel, high-voltage (65V) differential multiplexer for Cn inputs.
HV CHARGE PUMP
High-voltage charge-pump supply (VDCIN + 5.5V) for the HVMUX, ALTMUX, BALSW, and LSAMP
circuits, which must switch high-voltage signals. Supplied by DCIN.
LSAMP
Level-shifting amplifier with a gain of 6/13. The result is that a 5V differential signal is attenuated to
2.307V, which is the reference voltage for the ADC.
LVMUX
Multiplexes various low-voltage signals including the level-shifted signals and temperature signals
to the ADC for subsequent A-to-D conversion.
ALTMUX
12-channel, high-voltage differential multiplexer for SWn inputs.
BALSW
Cell-balancing switches.
LINREG
3.3V (VAA) linear regulator used to power the ADC and digital logic. Supplied by DCIN (9V to 65V).
REF
2.307V precision reference voltage for ADC and LINREG. Temperature compensated.
ALTREF
1.242V precision reference voltage used for diagnostics.
16MHz OSC
16MHz oscillator with 2% accuracy for clocking state-machines and UART timing.
32kHz OSC
32,768Hz oscillator for driving charge pumps and timers.
LOWER PORT
Differential UART for communication with host or downstack devices. Auto-detects baud rates of
0.5Mbps, 1Mbps, or 2Mbps.
UPPER PORT
Differential UART for communication with upstack devices.
CONTROL AND STATUS
ALUs, control logic, and data registers
DIE TEMP
A proportional-to-absolute-temperature (PTAT) voltage source used to measure the die temperature.
www.maximintegrated.com
Maxim Integrated │ 23
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
DCIN
VAA
+9V TO +65V
THRM
HV
VBLKP
C12
C11
C10
C9
C8
C7
C6
C5
C4
C3
C2
C1
C0
AGND
AUXIN2
AUXIN1
MAX17823H
REF
2.307V
LINREG
ALTREF
+3.3V
HV
CHARGE
PUMP
POR
DIE TEMP
16MHz
OSC
32kHz
OSC
HV
CPP
CPN
HVMUX
+
LSAMP
LVMUX
-
CONTROL
AND
STATUS
ADC
TXUP
UPPER PORT
VAA
FAULTDETECTION
SUPPORT
CIRCUITRY
AGND
RXLP
RXLN
TXLP
LOWER PORT
BALSW
TXLN
VDDL
GNDL
GPIO3
GPIO2
GPIO1
SHDNL
GPIO0
SW12
SW11
SW10
SW9
SW8
SW7
SW6
SW5
SW4
SW3
SW2
SW1
SW0
RXUP
RXUN
ALTMUX
HV
TXUN
Figure 1. Functional Block Diagram
www.maximintegrated.com
Maxim Integrated │ 24
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
RXUP, RXUN,
RXLP, RXLN
HV
MAX17823H
CPP
CTG
VAA
THRM, AUXINn
DCIN
SHDNL, CPN
VDDL3
SW12
TXUP, TXUN
SW11
GNDL3
VDDL2
SWn
SW1
TXLP, TXLN
SW0
GNDL2
VDDL1
Cn, VBLKP
AGND
HV
VAA
GPIOn
GNDL1
NOTES:
1. ALL DIODES ARE RATED FOR ESD CLAMPING CONDITIONS. THEY ARE NOT INTENDED TO
ACCURATELY CLAMP DC VOLTAGE.
2. ALL DIODES HAVE A PARASITIC DIODE, FROM AGND TO THEIR CATHODE, THAT IS OMITTED
FOR CLARITY. THESE PARASITIC DIODES HAVE THEIR ANODE AT AGND.
Figure 2. ESD Diodes
www.maximintegrated.com
Maxim Integrated │ 25
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
HVMUX
VBLKP
VBLKP/26
INPUT TEST
SOURCES
C12
C11
C10
C9
C8
C7
C6
C5
C4
C3
C2
C1
C0
AGND
SOURCE C12
EVEN
ODD
SOURCE C11
THRM
REF
SOURCE C10
SOURCE C9
SOURCE C8
SOURCE C7
+
+
LSAMP
SOURCE C6
-
-
SOURCE C5
12-BIT
ADC
SOURCE C4
SOURCE C3
SOURCE C2
LV
MUX
SOURCE C1
SOURCE C0
VAA
DIE
TEMPERATURE
ALTREF
REF
HVMUX TEST
SOURCES
AUXIN2
AUXIN1
SOURCE AUX2
SOURCE AUX1
Figure 3. Analog Front-End
www.maximintegrated.com
Maxim Integrated │ 26
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Data Conventions
Representation of data follows the conventions shown in
Table 2. All registers are 16-bit words.
Data Acquisition
A data acquisition is composed of the distinct processes
defined in Table 3 and controlled by various configuration
registers described in this section. Configuration changes
should be made prior to the acquisition in which the
changes are to be effected.
Precision Internal Voltage References
The measurement system uses two precision, temperature-compensated voltage references. The references
are completely internal to the device and do not require
any external components. The primary voltage refer-
ence, or REF, is used to derive the linear regulator output
voltage and to supply the ADC reference. An alternate,
independent reference, ALTREF, can be used to
verify the primary reference voltage as described in the
Diagnostics section.
Measurement Calibration
The acquisition system is calibrated at the factory and
cannot be changed afterwards. The calibration parameters are stored in a ROM consisting of 12 read-only
registers, CAL0–CAL10 and CAL15. ROMCRC[8:0] is
an 8-bit CRC value based on the calibration ROM and is
stored in ID2[15:8] at the factory. ROMCRC[8:0] can be
used to check the integrity of the calibration as described
in the Diagnostics section.
Table 2. Numeric Conventions
DESCRIPTION
CONVENTION
EXAMPLE
Binary number
0b prefix
0b01100001 = 61h
Hexadecimal address
0x prefix
0x61
Hexadecimal data
h suffix
61h
Register bit
Register name [x]
STATUS[15] = 1
Register field
Field name [x:y]
DA[4:0] = 0b01100 = 0Ch
Concatenated numbers
{xxxx, yyyy}
{DA[4:0], 0b001} = 61h
Table 3. Data Acquisition Processes
PROCESS
DESCRIPTION
Conversion
The ADC samples a single input channel, converts it into a 12-bit binary value, and stores it in
an ALU register.
Scan
The ADC sequentially performs conversions on all enabled cell input channels.
Measurement cycle
or Sample
The ADC performs two scans for the purpose of minimizing error. The conversions (two for each
input channel) are averaged together to form a single 14-bit binary value called a measurement.
Note: The auxiliary inputs are only scanned once to create the auxiliary measurements.
Acquisition or
Acquisition mode
If oversampling is enabled, the ADC takes sequential measurements and averages them together
to form one 14-bit binary value for each input channel sampled. If there is no oversampling,
the acquisition is essentially a single measurement cycle. Note: The auxiliary inputs are never
oversampled and are stored as 12-bit values.
www.maximintegrated.com
Maxim Integrated │ 27
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Cell Inputs
vice-versa). To convert the measurement value in register CELLn to a voltage, convert the 14-bit hexadecimal
value to a decimal value and then convert to voltage as
follows: VCELLn = CELLn[15:2] x 5V/16384 = CELLn[15:2]
x 305.176µV.
Up to 12 voltage measurements can be sampled differentially from the 13 cell inputs. The differential signal
VCELLn is defined as VCn - VCn-1 for n = 1 to 12.
The cells to be measured are selected by
MEASUREEN[11:0]. During the scan, each selected signal
is multiplexed into the level-shifting amplifier (LSAMP) as
shown in Figure 3. Since the common-mode range of the
input signals is 0V to 65V, the signal must be level-shifted
to the common-mode range of the amplifier. The amplifier
has a gain of 6/13 so that a 5V differential signal will be
attenuated to 2.307V, which is the ADC reference voltage.
Input Range
The input range in unipolar mode is nominally 0V to 5V.
However, the ADC has reduced linearity at its range
extents and so accuracy is specified for the input range
0.2V to 4.8V. Some applications may require specified
accuracy below 0.2V or even below 0V. To this end,
the bipolar mode (POLARITY = 1) has a nominal input
range of -2.5V to 2.5V as shown in Table 4 with accuracy
specified from -2.3V to 2.3V.
Once the signal is properly conditioned the ADC can start
the conversion. The 12-bit conversion is stored in an ALU
register where it can be averaged with subsequent conversions. The ALU output is a 14-bit value and is ultimately
stored in a 16-bit register with the two least-significant bits
zero. Disabled channels result in a measurement value of
0000h. Unless stated otherwise, measurement values are
assumed to be 14-bit values. The 16-bit register values
can be converted to 14-bit values by dividing by 4 (and
The input range can effectively be extended from -2.5V
to 5V by taking one bipolar measurement and one unipolar measurement. Any bipolar measurements over 2.3V
should be replaced with the unipolar measurement.
Note: Conversions for some diagnostic modes automatically use either bipolar or unipolar mode regardless of the
POLARITY bit value.
Table 4. Input Range
CELL INPUT VOLTAGE
CELLn[15:2] (14 BITS)
BIPOLAR MODE
UNIPOLAR MODE
HEXADECIMAL
DECIMAL
CELLn[15:0]
(16 BITS)
-2.5V
0V
0000h
0d
0000h
0V
2.5V
2000h
8192d
8000h
2.5V
5V
3FFFh
16383d
FFFCh
VBLKP
R1 = 10MΩ - R2
VBLKP/26
R2 = 384.5kΩ
VREF
VTHRM
LV
MUX
+
ADC
-
AGND
Figure 4. VBLKP Measurement
www.maximintegrated.com
Maxim Integrated │ 28
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Block Voltage Input
The VBLKP input (total module voltage) is selected for
measurement by MEASUREEN[14]. The measurement
is stored in the VBLOCK register with a full-scale value of
60V (3.662mV/bit). It can be compared to the sum of the
cell voltages as a diagnostic. To pre-condition VBLKP for
conversion it is voltage-divided by a factor of 26. The divider is disconnected by default to minimize power consumption. The divider is connected by setting MEASUREEN[15]
(BLKCONNECT = 1) with sufficient settling time prior to
the acquisition. For high acquisition rates, BLKCONNECT
can remain enabled to reduce cycle time.
Auxiliary Inputs
The AUXIN1 and AUXIN2 inputs can be used to measure
external temperatures by enabling MEASUREEN[13:12].
These inputs have a common-mode input range of 0V
to VAA. For these measurements, the ADC reference
voltage is VTHRM which is switched from VAA as shown
in Figure 5. The auxiliary inputs are not oversampled even
if oversampling is enabled; they are measured only once
and stored as 12-bit values in the AIN1 and AIN2 registers.
To measure external temperature the auxiliary input is
connected to a voltage divider consisting of a 10KΩ pullup
to THRM and a 10KΩ NTC thermistor to ground as shown
in Figure 6.
VAA
CONVERSIONS IN
PROGRESS
THRM
VREF
AUXIN1
+
AUXIN2
LV
MUX
ADC
-
AGND
Figure 5. Auxiliary Measurement
THRM
R60
10kΩ
R61
10kΩ
C60
100pF
C61
100pF
AUXIN1
AUXIN2
C62
100pF
t
AGND
RTH1
10kΩ
t
RTH2
10kΩ
THERMISTOR
WIRE HARNESS
Figure 6. Auxiliary Application Circuit
www.maximintegrated.com
Maxim Integrated │ 29
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
THRM Output
The THRM output has 2 modes of operation, automatic
and manual as shown in Table 5.
The automatic mode minimizes power consumption, but
after the THRM output is enabled, the AUXIN voltages
must be allowed to settle before the conversion. Since the
auxiliary inputs are the last inputs measured, the duration
of the measurement cycle itself may provide sufficient
settling time depending on what measurements are
enabled and the time constants for the auxiliary input circuit.
Up to 384µs of additional settling time, if required, can be
configured by ACQCFG[5:0] as shown in Table 6 or by
utilizing the manual mode. The ability to configure the
settling time allows for a range of time constants to be
considered in designing the auxiliary application circuit.
Computing Temperature
In Figure 6, VAUXINn = VTHRM x RTH/(10KΩ+RTH) and
this measurement is stored in the AINn register. The
thermistor resistance can then be solved for as follows:
RTH = (VTHRM x 10KΩ)/(VTHRM - VAUXINn) where
VTHRM = 3.3V nominally
The resistance of an NTC thermistor increases as the
temperature decreases and is typically specified by its
resistance R0 at T0 = +25°C = 298.15K and a material constant β (3400K typical). To the first order, the
resistance RTH is at a temperature T in Kelvin can be
computed as follows:
R = R0e(β(1/T-1/T0))
The temperature T of the thermistor (in °C) can then be
calculated as follows:
T (in °C) = (β/ln((RTH/10KΩ) + (β/298.15K)) – 273.15K
Table 5. THRM Output
MODE
Manual
DESCRIPTION
00b
01b
THRM output enabled at the
beginning of the acquisition
and disabled at the end of
the acquisition.
10b
THRM output is enabled
11b
THRM output is disabled
www.maximintegrated.com
Auxiliary voltage measurements can be directly compared to pre-calculated voltages in the AINUT and AINOT
registers that correspond to specific over- and undertemperature thresholds. When a measurement exceeds
the AINUT or AINOT threshold level, the ALRTCOLD or
ALRTHOT bits respectively are set in the STATUS register. An alert is cleared only by a new measurement that is
within threshold.
Die Temperature Measurement
The die temperature measurement allows the host to
compute the device temperature (TDIE) as it relates to
the acquisition accuracy and allows the device to automatically shut itself down when TDIE>145°C. The measurement employs a source whose voltage, VPTAT, is
proportional to absolute temperature (PTAT) as shown in
Figure 7. The VPTAT measurement is enabled by setting
DIAGSEL[2:0] to 0b110 and the 14-bit measurement is
stored in DIAG[15:2]. The die temperature measurement
requires a settling time of 50us from the start of the measurement cycle until the diagnostic conversion. As long
as 2 or more cell measurements are enabled, there will
be sufficient settling time for this measurement. Refer to
Figure 9 and Table 8 for a detailed view of this timing.
The PTAT voltage is computed as follows:
VPTAT = (DIAG[15:2] / 16384d) x VREF
Where VREF = 2.307V. The measured voltage can be
converted into °C as follows:
TDIE (in °C) = (VPTAT/AV_PTAT) + TOS_PTAT - 273°C
Refer to the Electrical Characteristics table for AV_PTAT
and TOS_PTAT values.
Table 6. AINTIME
ACQCFG[9:8]
Automatic
Temperature Alerts
ACQCFG[5:0]
(AINTIME)
ADDITIONAL SETTLING TIME
PER ENABLED AUXILIARY
CHANNEL = 6µs + (AINTIME x 6µs)
00h
6μs
01h
12μs
02h
18μs
…
…
1Fh
384 μs
Maxim Integrated │ 30
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Die Temperature Alert
The ALRTTEMP bit is updated at the end of each measurement cycle for which DIAGSEL[2:0] = 0b110. If
ALRTTEMP is set, it signifies that TDIE > TALRTTEMP or
that the diagnostic measurement did not have sufficient
settling time (< 50µs) and therefore may not be accurate.
If ALRTTEMP is set, the host should consider the possibility that the acquisition does not meet the expected
accuracy specification, or that the die temperature measurement itself may be inaccurate due to insufficient settling time (< 2 cell measurements enabled).
ALRTTEMP
1.230V
VREF
VTHRM
+
VPTAT
-
+
LV
MUX
ADC
-
AGND
Acquisition Mode
The host enters the acquisition mode by writing a logicone to the SCAN bit in the SCANCTRL register. This write
is actually an automatic strobe of the bit since SCAN
always reads logic-zero. In daisy-chained devices, acquisitions in upstack devices are delayed by the propagation delay, tPROP, of the command packet through each
device. The acquisition is complete when the device sets
the SCANDONE bit. The basic acquisition process is outlined below with a detailed flowchart in Figure 8.
1) Disable HV charge pump
2) VBLKP conversion, if enabled
3) All enabled cell conversions (first)
a. ascending order (1 through 12) if pyramid mode or
b. descending order (12 through 1) if top-down mode
4) All enabled cell conversions (second)
a. descending order (12 through 1)
5) VBLKP conversion (second), if enabled
6) Diagnostic conversion (first), if enabled
7) Diagnostic conversion (second) if enabled
8) Enable HV charge pump for recovery period unless
a. OVSAMP[2:0] = 0 (no oversampling) or
b. all oversample measurements are complete
9) Repeat steps 1 through 8 until all oversamples are
done
10) All enabled auxiliary conversions, ascending order
(AUXIN1, AUXIN2)
11) Set SCANDONE bit
www.maximintegrated.com
Figure 7. Die Temperature Measurement
Oversampling
Oversampling mode performs multiple measurement cycles
in a single acquisition and averages the samples in the ALU
to reduce the measurement noise and effectively increase
the resolution of each measurement result. In oversampling
mode, acquisition times are proportional to the number of
oversamples as shown in Table 8. The number of oversamples can be configured from 4 to 128 by OVSAMPL[2:0]
as shown in Table 7. The AUXIN measurements are never
oversampled, even in oversampling mode.
To add n bits of measurement resolution requires at least
22n oversamples. Since the ADC resolution is 12 bits,
13-bit resolution requires at least 4 oversamples and to
achieve the maximum 14-bit resolution requires at least
16 oversamples. Therefore with no oversampling, only
the higher 12-bits of the measurement are statistically
significant and with 4 or 8 oversamples, only the higher
13 bits are statistically significant. Taking more than 16
oversamples further reduces the measurement variation.
Of course with no oversampling, measurements can be
averaged externally to achieve increased resolution but
at a higher computational cost for the host.
Acquisition Watchdog Timeout
If the acquisition does not finish within a predetermined
time interval, the SCANTIMEOUT bit is set, the ADC logic
is reset, the ALU registers are cleared, and the measurement data registers are also cleared. In double-buffer
mode (DBLBUF = 1), the data registers are not cleared,
however, once data is moved from the ALU registers to
the data registers, either automatically or manually (with
the DATAMOVE bit), then data registers are cleared as
a consequence of the ALU register having been cleared.
The acquisition watchdog timeout interval depends on the
oversampling configuration as shown in Table 7.
Maxim Integrated │ 31
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Table 7. Oversampling
OVSAMPL[2:0]
OVERSAMPLES
THEORETICAL RESOLUTION
ACQUISITION WATCHDOG TIMEOUT
000b (default)
0
12 bits
1.10ms
001b
4
13 bits
2.08ms
010b
8
13 bits
3.36ms
011b
16
14 bits
5.92ms
100b
32
14 bits
10.99ms
101b
64
14 bits
21.18ms
110b
128
14 bits
41.56ms
111b
128
14 bits
41.56ms
STANDBY MODE
NO
SCAN BIT SET?
LATCH-ACQUISITION
CONFIGURATION; DISABLE
HV CHARGE PUMP
YES
CONVERT AUXINn INPUTS
IF ENABLED; USE AINCFG
SETTLING TIME
SET ADC STATE-MACHINE
TIMEOUT PERIOD
DISABLE DATAMOVE
COMPARE AUXINn
MEASUREMENT TO
THRESHOLDS, UPDATE ALERTS
YES
DBLBUF SET?
NO
COMPARE MEASUREMENTS
TO THRESHOLDS AND
UPDATE ALERTS
MOVE ALU DATA TO DATA
REGISTERS;
SET DATARDY = 1
DBLBUF SET?
YES
NO
MOVE ALU DATA TO DATA
REGISTERS; SET DATARDY = 1
CLEAR ALL ALU REGISTERS
PERFORM MEASUREMENT
SCANS FOR VBLKP, CELLn,
DIAG PER MEASUREEN
ENABLE HV
CHARGE PUMP
FOR 100.3µs
SET SCANDONE, UNBLOCK
DATAMOVE
ENABLE HV CHARGE PUMP
ALL SAMPLES DONE?
NO
STANDBY MODE
YES
Figure 8. Acquisition Mode Flowchart
www.maximintegrated.com
Maxim Integrated │ 32
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Scan Modes
reference-induced errors. The two conversions are then
offset corrected and averaged in the ALU.
The cell, block, and diagnostic measurement cycle consists of two conversion phases. In each phase, the ADC
scans through the enabled input channels. There are
two scan modes configured by the SCANMODE bit. If
SCANMODE = 0, the mode is pyramid mode as shown in
Figure 9. If SCANMODE = 1, the mode is top-down mode.
In pyramid mode, the ADC scans first ascending and then
descending. In top-down mode, the ADC scans descending in both phases. In the second scan, the amplifier
inputs are inverted to effectively chop out any offset and
After the cell and block scans are complete, the diagnostic conversions are made, if enabled, and finally, the
auxiliary inputs, if enabled, are converted. The auxiliary
inputs are measured using a single conversion and stored
in the AIN1 and AIN2 registers. Any extra settling time,
if configured by AINCFG[5:0], is implemented just before
the conversion for each AUXIN channel and so if both
inputs are enabled, the extra settling time occurs twice.
Figure 9. Acquisition, OVSAMP[2:0] = 0h and SCANMODE = 0
C10+
C6+
100.3µs
C3-
DIAG-
C1-
DIAG+
C1+
BLK-
C2-
C5-
C4+
C4-
C3+
PUMP TO
REFRESH HV
C3-
C2+
BLK+
C4-
C2+
C6-
C5+
C5-
C3+
C7-
C6+
C6-
C4+
C8-
C7+
C7-
C5+
C9-
C8+
C8-
C7+
C10-
C9+
C9-
C11-
C2-
C1+
C1-
DIAG-
C10-
C9+
C12-
C11+
C11-
C8+
BLK+
C12+
C12-
C10+
DIAG+
C12+
C11+
DELAY TIME TO SWITCH
REF AMP TO CHOP
SAMPLING POINT
BLK-
DELAY TIME TO SWITCH
REF AMP TO CHOP
SAMPLING POINT
SAMPLE n
SAMPLE 1
SAMPLE 2
Figure 10. Acquisition, OVSAMP[2:0] > 0 and SCANMODE = 0
www.maximintegrated.com
Maxim Integrated │ 33
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Acquisition Time
The total acquisition time can calculated by summing all
the required processes as shown in Table 8 and Table 9.
There is one measurement cycle per oversample.
Measurement Data Transfer
By default, all ALU data is automatically transferred to
the data registers (CELLn, VBLOCK, AIN1, AIN2, DIAG,
MINMAXCELL and TOTAL) at the end of each acquisition. The transfer occurs in parallel, that is, all data registers are loaded at the same time. When this occurs, the
DATARDY bit is set and the host can read out the data.
In the simplest, sequential approach, the host will initiate
the acquisition by setting SCAN, wait for the acquisition to
complete (SCANDONE = 1), read the data registers, and
then repeat the cycle.
Table 8. Acquisition Time
PROCESS
TIME (ΜS)
CONDITION
Initialization
13
Always
VBLKP measurement
27
If VBLKP is enabled
Cell scan setup
Cell scans
Diagnostic
measurement
(if enabled)
If cell input(s) enabled & VBLKP enabled
20
If cell input(s) enabled & VBLKP disabled
9xn
For n = # of enabled cell inputs
11.4
If zero-scale ADC output diagnostic enabled
11.4
If full-scale ADC output diagnostic enabled
86.2
If VALTREF diagnostic enabled
22.9
If any other diagnostic mode enabled
6µs x AINCFG[5:0]
10
6µs x AINCFG[5:0]
HV recovery
(if oversampling
enabled)
Once per acquisition
12.5
10
AUXIN measurement
(if enabled)
FREQUENCY
100.3 x m
Every measurement cycle
If AUXIN1 is enabled
Once per acquisition
If AUXIN2 is enabled
After every measurement
cycle except last
For m = # of oversamples
Table 9. Acquisition Time Examples (with AINCFG[5:0] = 00h)
NO OVERSAMPLING
4 OVERSAMPLES
8 OVERSAMPLES
12 cells
ENABLED MEASUREMENTS
141.0µs
825.9µs
1739.1µs
12 cells, VBLKP
160.5µs
903.9µs
1895.1µs
12 cells, AUXIN1&2
161.0µs
845.9µs
1759.1µs
12 cells, VBLKP, AUXIN1&2
180.5µs
923.9µs
1915.1µs
12 cells, VBLKP, die temperature, AUXIN1&2
203.4µs
1015.5µs
2098.3µs
www.maximintegrated.com
Maxim Integrated │ 34
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Double-buffer Mode
If the first acquisition data is needed before starting the
second acquisition, the host can perform a manual data
transfer by setting DATAMOVE. The manual transfer cannot occur in acquisition mode so the host may first verify
that SCANDONE = 1. Flowcharts for operation of doublebuffer mode are shown in Figure 12 and Figure 13.
The double-buffer mode (DBLBUFEN = 1) enables
reduced cycle times by allowing the host to read out data
registers during the acquisition mode. In this mode, the
automatic transfer of measurement results from the ALU
to the data registers is delayed until the start of the next
acquisition. This delay allows the host to start reading
out the first acquisition data while the second acquisition
is taking place and to finish reading out the first acquisition even as the second acquisition completes. The host
can then start a new acquisition and repeat the cycle.
Note: An alternate double-buffer mode may be enabled
(DBLBUFSEL = 1) that offers an even higher degree of
pipelining but at the cost of increased complexity in the
application code. Contact Maxim Applications for details
regarding the alternate double-buffer mode.
DATA REGISTERS
ALU REGISTERS
12
12
DIAG ALU
+
ADC
BLOCK ALU
12
ALU1
12
ALUn
14
14
14
14
AIN1 REGISTER
AIN2 REGISTER
DIAG REGISTER
VBLOCK REGISTER
CELL1 REGISTER
CELLn REGISTER
12
ALU12
ADCTSTEN
RESET
12
12
12
12
12
ADC_CHOP
ADCTEST1A[11:0]
ADCTEST1B[11:0]
ADCTEST2A[11:0]
14
CELL12 REGISTER
DATAMOVE
TRIGGER
LOAD
UART COMMUNICATION
ADCTEST2B[11:0]
OVSAMP_EVEN_ODD
Figure 11. Measurement Data Flow
www.maximintegrated.com
Maxim Integrated │ 35
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
MAX178xx COMM
IDLE; DBLBUF=1
WRITE
DATARDY = 0
READ
SCANDONE
SET?
NO
READ ALL USER
MEASUREMENT
REGISTERS
YES
DATARDY = 0
PROCESS EXISTING
USER REGISTER DATA
FIRST
NO
YES
NO
FAULT CONDITION;
NEW DATA SHOULD
NOT BE AVAILBLE
YES
WRITE
SCANDONE = 0
DATAMOVE = 1
READ
DATARDY = 1
DATAMOVE = 0?
DATARDY = 0?
MAX178xx COMM
IDLE
FAULT CONDITION;
RETRY; POSSIBLE
SCAN IN PROGRESS
NO
YES
Figure 12. Double-Buffer Mode DATAMOVE
MAX178xx COMM
IDLE; DBLBUF = 1
DATARDY = 1?
READ
SCANDONE
SET?
NO
FAULT CONDITION;
DATA SHOULD BE
AVAILBLE
YES
YES
DATARDY = 0
NO
WRITE
DATARDY = 0
NO
PROCESS EXISTING
USER REGISTER DATA
FIRST
YES
READ ALL USER
MEASUREMENT
REGISTERS
WRITE
SCANDONE = 0
WRITE SCAN = 1 TO
START SCAN
DATARDY = 0?
NO
FAULT CONDITION;
NEW DATA SHOULD
NOT BE AVAILABLE
YES
MAX178xx COMM
IDLE
Figure 13. Double-Buffer Mode Register Read
www.maximintegrated.com
Maxim Integrated │ 36
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Measurement Alerts
After the measurement cycle, the ALU compares the
enabled measurements to the various configured thresholds (see Table 10), and sets the alert bits before the ALU
data is transferred to the data registers. In oversampling
mode, the alert status is updated after the last oversample. The alerts are updated whether or not the data
is moved from the ALU registers to the data registers and
are only updated for those measurements enabled in the
MEASUREEN register.
Voltage Alerts
Use the ALRTOVEN and ALRTUVEN registers to enable
voltage alerts for the cell and auxiliary inputs. If a
cell voltage alert is enabled, the cell input voltage is
compared against the programmable overvoltage and
undervoltage thresholds after every acquisition as shown
in Figure 14. Separate thresholds for setting the alert and
for clearing the alert provide hysteresis. Configure the set
thresholds for cell undervoltage (VUVTHSET) and overvoltage (VOVTHSET) using the OVTHSET and UVTHSET
registers. Configure the clear thresholds for cell undervoltage (VUVTHCLR) and cell overvoltage (VOVTHCLR) using
the OVTHCLR and UVTHCLR registers.
Alert flags in the ALRTOVCELL register are set, if enabled,
when the acquired cell voltage is over VOVTHSET. Alerts
in the ALRTUVCELL register are set, if enabled, when
the acquired cell voltage is under VUVTHSET. The alerts
are cleared when the cell voltage moves in the opposite
direction and crosses the clear threshold. The voltage
must cross the threshold; if it is equal to a threshold,
the alert flag does not change. Therefore, setting the
overvoltage-set threshold to full scale, or setting the
undervoltage-set threshold to zero scale, effectively
disables voltage alerts.
The ALRTOV and ALRTUV bits in the STATUS register
are set when any alert flag is set in the ALRTOVCELL or
ALRTUVCELL registers, respectively. ALRTCELLn is the
logical OR of ALROVCELLn and ALRTUVCELLn.
Cell Mismatch
Enable the mismatch alert to signal when the minimum
and maximum cell voltages differ by more than a specified
voltage. The MSMTCH register sets the 14-bit threshold
(VMSMTCH) for the mismatch alert (ALRTMSMTCH).
Whenever VMAX - VMIN > VMSMTCH, then ALRTMSMTCH
= 1. The alert bit is cleared when a new acquisition does
not exceed the threshold condition. To disable the alert,
write FFCH to the MSMTCH register (default value).
Cell Statistics
The cell numbers with the lowest and highest voltages
are stored in the MINMAXCELL register. When multiple
cells have the same minimum or same maximum voltage, only the highest cell position having that voltage is
reported. The sum of all enabled cell voltages is stored
in the TOTAL register as a 16-bit value. For acquisitions
with no enabled cell inputs, the MINMAXCELL and TOTAL
registers are not updated.
Table 10. Measurement Alerts
DESCRIPTION
CONDITION OR RESULT
ALERT BIT
LOCATION
Cell overvoltage (OV)
VCn - VCn-1 > VVOVTHSET
ALRTOV, ALRTOVn
STATUS, ALRTOVCELL
Cell undervoltage (UV)
VCn - VCn-1 < VUVTHSET
ALRTUV, ALRTUVn
STATUS, ALRTUVCELL
Cell Mismatch
VMAX - VMIN > VMSMTCH
ALRTMSMTCH
STATUS
Cell with minimum voltage
n where VCELLn = VMIN
None
MINMAXCELL
Cell with maximum voltage
n where VCELLn = VMAX
None
MINMAXCELL
Total of all cell voltages
Σ VCELLn for n = 1 to 12
None
TOTAL
AUXINx overvoltage
(undertemperature)
VAUXINx > VAINUT
ALTRTCOLD, ALRTOVAINx
STATUS, ALRTOVCELL
AUXINx undervoltage
(overtemperature)
VAUXINx < VAINOT
ALRTHOT, ALRTUVAINx
STATUS, ALRTUVCELL
www.maximintegrated.com
Maxim Integrated │ 37
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Temperature Alerts
Temperature alerts, if enabled, occur when the acquired
AUXINn input voltages fall outside the thresholds
configured by the AINOT and AINUT registers. Unlike
the cell-voltage alerts, the temperature thresholds do not
have the hysteresis afforded by separate set and clear
thresholds.
V
OVERVOLTAGE SET AND CLEAR THRESHOLDS
POR DEFAULT VALUE (+5.0V)
Cell Balancing
Cell-Balancing Switches
Cell balancing can be performed using any of the
12 internal cell-balancing switches to discharge cells.
The cell-balancing current is limited by the external
balancing resistors and the internal balancing-switch
resistance (RSW). Enabling adjacent balancing switches simultaneously may increase the balancing current
significantly, so care must be taken to not exceed the
device’s maximum operating conditions. Fault detection
is described in the Diagnostics section.
OVERVOLTAGE ALERT
SET
OVERVOLTAGE SET THRESHOLD (OVTHRSET)
OVERVOLTAGE CLEAR THRESHOLD (OVTHRCLR)
OVERVOLTAGE
ALERT CLEARED
UNDERVOLTAGE
ALERT CLEARED
CELLn VOLTAGE
UNDERVOLTAGE CLEAR THRESHOLD (UVTHCLR)
UNDERVOLTAGE SET THRESHOLD (UVTHRSET)
UNDERVOLTAGE ALERT
SET
UNDERVOLTAGE SET AND CLEAR THRESHOLDS
POR DEFAULT VALUE (+0.0V)
t
Figure 14. Cell Voltage Alert Thresholds
TO CELLn+1
SENSE WIRE
RFILTER
RBALANCE
Cn
TO HVMUX
CFILTER
SWn
TO ALTMUX
BALSWEN
RBALANCE
FILTER
CELLn
RBALANCE
SENSE WIRE
BALANCING
SWITCH (n)
SWn-1
RFILTER
Cn-1
CFILTER
TO CELLn+1
HV
TO ALTMUX
TO HVMUX
AGND
Figure 15. Internal Cell Balancing
www.maximintegrated.com
Maxim Integrated │ 38
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Maximum Cell-Balancing Current
contents of the BALSWEN register. Use the WATCHDOG
register to configure the timeout value from 1s to 3840s
(64min), as shown in Table 12. The pre-divider configuration, CBPDIV[2:0], effectively sets the rate at which the
CBTIMER[3:0] counts down (see Figure 16).
The power dissipation must not exceed the absolute
maximum rating of the package, nor should the die temperature go outside the range specified for the desired
level of measurement accuracy. Higher die temperatures
and higher average duty cycles increase the probability
of internal electromigration, so the maximum balancing
current is lowered accordingly for an assumed 10-year
device lifetime, as shown in Table 11.
The host should periodically update CBTIMER to ensure
that it does not count down to zero. If the countdown timer
is allowed to reach zero, the cell-balancing switches are
disabled until the timer is either disabled or refreshed by
writing a non-zero value.
The maximum balancing current is limited by package
power dissipation, average die temperature, average duty
cycle of the switch, and the number of switches conducting current at any one time.
Cell-Balancing Watchdog
Even if the host fails to disable the cell-balancing mode, the
cell-balancing watchdog can automatically disable the cellbalancing switches, regardless of the BALSWEN configuration. The cell-balancing watchdog does not modify the
To allow timed balancing with no host interaction, the
GPIO3 pin is configured to output a logic-high level while
the timer is counting using the GPIO3TMR configuration
bit of the GPIO register. An external diode is connected
from GPIO3 to SHDNL to prevent shutdown while the
timer is counting. Once the timer expires, the device shuts
down. The host may intervene prior to the timer expiring
to keep the device active and to reconfigure the device.
Table 11. Maximum Allowed Balancing Current per Switch
AVERAGE LIFETIME DUTY CYCLE
(10 YEARS)
T DIE = 85°C
T DIE = 105°C
T DIE = 125°C
15%
650mA
650mA
650mA
20%
650mA
650mA
650mA
25%
650mA
650mA
650mA
CBPDIV2 CBPDIV1 CBPDIV0
32.768kHz
BIT 3 BIT 2 BIT 1 BIT 0
CBPDIV
CBTIMER
CBTIMER ENABLE
TIMER ZERO
FLAG
CELL BALANCING
SWITCH ENABLE
BALSWEN
Figure 16. Cell-Balancing Watchdog
Table 12. Cell-Balancing Watchdog Configuration
RANGE OF CBTIMER[3:0]
CBPDIV[2:0]
TIMER LSB PERIOD
000b
Timer Disabled
001b
1s
1s
15s
010b
4s
4s
60s
MINIMUM
MAXIMUM
Timer Disabled
011b
16s
16s
240s
100b
64s
64s
960s
101b
128s
128s
1920s
110b
256s
256s
3840s
www.maximintegrated.com
Maxim Integrated │ 39
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Emergency-Discharge Mode
The emergency-discharge mode performs cell balancing in a controlled manner so that the cells can be discharged to a safe level in the event of an emergency. The
BALSWDCHG and DEVCFG2 registers provide control for
this mode. A timeout value for the mode is configured by
DISCHGTIME[7:0] as shown in Table 13.
The emergency-discharge mode alternates between a
1-minute discharge cycle for odd cells and a 1-minute
discharge cycle for even cells. There is a 62.5ms minimum
off time at the end of each discharge cycle to ensure no
overlap between even and odd discharge cycles. The
duty cycle of each discharge cycle can be configured by
DCHGWIN[2:0], as shown in Table 13.
The emergency-discharge mode is activated by setting
the EMGCYDCHG bit with DCHGTIME[7:0] ≠ 00h. In
emergency-discharge mode the following occurs:
By clearing EMGCYDCHG, the emergency-discharge
mode terminates and the following occurs:
1) The discharge timer is reset.
1) The CBTIMER[3:0] is cleared to prevent the cellbalancing watchdog from disabling the cell-balancing.
2) Control of the cell-balancing switches reverts to the
BALSWEN register.
2) Cell-balancing switches are controlled by BALSWDCHG, not BALSWEN.
3) Control of GPIO3 reverts to the GPIO register.
3) The discharge timer starts to countdown.
4) The read-only counter DCHGCNTR[3:0] increments
at a 2Hz rate with periodic roll-over at Fh. The host
can read this counter periodically to confirm that the
mode is active.
5) The GPIO3 pin is driven high while the countdown is
active.
The emergency-discharge mode also terminates if
DCHGTIME[7:0] = 0h, or the discharge time has reached
the configured timeout.
To prevent the emergency-discharge mode from terminating prematurely due to a device shutdown (which could
occur due to an extended lapse in host communications),
connect an external diode from GPIO3 to SHDNL to keep
SHDNL high while the timer is counting.
Table 13. Emergency-Discharge Mode
FUNCTION
REGISTER FIELD
DCHGWIN[2:0]
7.5s/bit
Duty cycle
Timeout
DCHGTIME[7:0]
2 hours/bit
CONFIGURATION
0h
Switches on for 7.5s, off for 52.5s
1h
Switches on for 15s, off for 45s
…
…
7h
Switches on for 59.94s, off for 62.5ms
00h
Discharge mode disabled
01h
Discharge mode disabled after 4 hours
02h
Discharge mode disabled after 6 hours
…
FFh
www.maximintegrated.com
BEHAVIOR
…
Discharge mode disabled after 512 hours
Maxim Integrated │ 40
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Low-Voltage Regulator
An internal linear regulator supplies low-voltage power
(VAA) for the ADC and digital logic. The regulator is
disabled when SHDNL is active-low or when the die temperature (TDIE) exceeds 145°C, as shown in Table 14.
Once VAA decays below 2.95V (typ), an internal power-on
reset (POR) is generated (see Figure 22). This event can
Table 14. Low-Voltage Regulator
INPUT:
INPUT VOLTAGE:
9V to 65V
VAA
OUTPUT VOLTAGE:
3.3V
DISABLE:
The low-voltage regulator is continuously monitored for
undervoltage, as described in Table 15.
Table 15. Low-Voltage Regulator
Diagnostic
DCIN
OUTPUT:
be detected with the ALRTRST bit, as shown in Table 15.
After a thermal shutdown, the regulator is not enabled until
TDIE < 130°C due to hysteresis.
FAULT
CONDITION
ALERT
LOCATION
VAA
undervoltage
VAA < 2.95V
ALRTRST
STATUS15
VSHNDL < 0.6V or TDIE > 145°C
RDCIN
DCIN
LINEAR
REGULATOR
VAA
REGULATOR
ENABLE
THERMAL
SHUTDOWN
+
TO SHDNL
CHARGE
PUMP
SHDNL
CDCIN
CVAA
+
CSHDNL
3.0V
AGND
-
INTERNAL
POR
+
-
Figure 17. Low-Voltage Regulator
www.maximintegrated.com
Maxim Integrated │ 41
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
HV Charge Pump
the C12 input, there is insufficient headroom to guarantee
that the HVMUX switch resistance is sufficiently low for an
accurate acquisition of the channel. To properly identify
this fault condition, if VHV - VC12 is too low during the
acquisition, the HV headroom alert flag (ALRTHVHDRM)
is set in the FMEA2 register. The HV undervoltage and
HV headroom alert functions can be verified by disabling the HV charge pump (HVCPDIS = 1) and allowing
VHV to decay while in acquisition mode. An overvoltage
comparator disables the charge pump in the case
where VHV - VDCIN exceeds 8.5V. This condition is
indicated by the ALRTHVOV bit in the FMEA2 register.
The ALRTHVOV alert does not necessarily indicate a
condition that affects measurement accuracy. HV chargepump diagnostics are summarized in Table 16.
The high-voltage multiplexers must be powered by a supply higher than any monitored voltage. To this end, an
internal charge pump draws power from the DCIN input to
provide a high-voltage supply (VHV), which is regulated to
VDCIN + 5.5V (nominal). When the charge pump achieves
regulation, charge pumping stops until the voltage drops
by 20mV. The charge pump is automatically disabled
during shutdown and during the measurement cycle to
eliminate charge-pump noise. The charge pump can also
be disabled manually by setting the HVCPDIS bit in the
DEVCFG2 register.
If VHV - VDCIN drops below VHVUV, the HV undervoltage
flag (ALRTHVUV) is set. If VHV drops too low relative to
Table 16. HV Charge-Pump Diagnostics
FAULT
CONDITION
ALERT BIT
LOCATION
VHV undervoltage
VHV - VDCIN < VHVUV
ALRTHVUV
FMEA1[3]
VHV overvoltage
VHV - VDCIN > VHVOV
ALRTHVOV
FMEA2[0]
VHV - VC12 < VHVHDRM (min.)
ALRTHVHDRM
FMEA2[2]
VHV low headroom
HVOV
TO ALRTHVOV
+
RHV
CHV
HV
+
-
4.1V
+
-
20mV HYSTERESIS
CPP
5.5V
RDCIN
TO ALRTHVUV
+
8.5V
DCIN
SWITCH
LOGIC
+
-
INTERNAL POR
32kHz
DISABLE
MEASURING DISABLE
CCP
CPN
+
DEVCFG2.
HVCPDIS
CDCIN
HVOV
AGND
15mA
Figure 18. HV Charge Pump
www.maximintegrated.com
Maxim Integrated │ 42
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Oscillators
Two factory-trimmed oscillators provide all timing requirements: a 16MHz oscillator for the UART and control logic,
and a 32.768kHz oscillator for HV charge pump and
timers. A special diagnostic counter clocked by the
16MHz signal is employed to check the 32kHz oscillator. Every two periods of the 32kHz clock, the counter
is sampled. If the count varies more than 5% from the
expected value the ALRTOSC1 bit is set, as shown in
Table 17. A redundant alert bit (ALRTOSC2) increases the
integrity level. If the 16MHz oscillator varies by more than
5%, communication errors will be indicated
Device ID Number
The ID1[15:0] register together with ID2[7:0] contain a
24-bit manufacturing identification number, DEVID[23:0].
The ID combined with the manufacturing date provides a
means of uniquely identifying each device. A device ID of
zero is invalid.
Power-On and Shutdown
Applications that remain connected continuously to the
power source rely on the SHDNL input to shut down and
reset the device. When VSHDNL < 0.6V, the regulator is
disabled, the POR signal asserted, and the device goes
into an ultra-low-power shutdown mode. When VSHDNL >
1.8V, POR is deasserted, the regulator enabled, and the
device becomes fully operational in the standby mode.
Power-On Method
The SHNDL input can be driven externally or it can be
controlled using UART communication only. In differential
mode, the signaling on the lower-port receiver drives an
internal charge pump that charges up the external 1nF
capacitor connected to the SHDNL input (see Figure 19).
VSHDNL reaches 1.8V in 200µs (typ). The charge pump
then self-regulates to VSHDNLIMIT and can maintain
VSHDNL at a logic-one, even with the UART idle 98% of
the time.
Table 17. Oscillator Diagnostics
FAULT
CONDITION
ALERT BIT
LOCATION
32.768kHz oscillator
31.129kHz > fosc_32k > 34.406kHz
ALRTOSC1
FMEA1[15]
32.768kHz oscillator
31.129kHz > fosc_32k > 34.406kHz
ALRTOSC2
FMEA1[14]
15MHz > fosc_32k > 17MHz
ALRTMAN or ALRTPAR
STATUS[4], or STATUS[2]
16MHz oscillator
DCIN
FROM DEVICE (n-1)
TRANSMITTER CIRCUIT
C42
2nF 600V
R40
4.7kΩ
C43
2nF 600V
R41
4.7kΩ
R42
100kΩ
C40
15pF
RXLP
TO RECEIVER
RXLN
TO RECEIVER
C41
15pF
R43
100kΩ
GNDL
SHDNL
C44
1nF
(CSHDNL)
10MΩ
FORCEPOR
Figure 19. SHDNL Charge Pump
www.maximintegrated.com
Maxim Integrated │ 43
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Power-On Sequence
Once VSHNDL > 1.8V, the regulator is enabled. After VAA reaches 3V (typ), the POR signal is deasserted, the oscillators
enabled, and the HV charge pump enabled. Once the HV charge pump is stable, the logic is enabled. The device is fully
operational (standby mode) within 1ms from the time communication is first received in the shutdown mode. The poweron sequence is shown in Figure 20.
REGULATOR
DISABLED
POR CLEARED
VOLTAGE
APPLIED TO DCIN
32kHz OSCILLATOR
ENABLED
DIE TEMP >
145°C
CHECK DIE
TEMPERATURE
470µsec
DELAY
SHUTDOWN
MODE
SHDN\
ACTIVE
CHARGE PUMP AND
DIGITAL LOGIC
ENABLED
CHECK SHDN\
ALRTRST BIT SET
REGULATOR ENABLED
3ms DELAY
VAA <
VPOR_RISING
CHECK VAA
CHARGE PUMP
SETTLED
STANDBY
MODE
DIE TEMP > 145°C
YES
SHDN\ ACTIVE
YES
REGULATOR
DISABLED
Figure 20. Power-On Sequence
www.maximintegrated.com
Maxim Integrated │ 44
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Shutdown Mode
If only a reset is required, the host can issue a soft-reset
by setting the SPOR bit. This resets the device registers
and disables high-voltage operation, but low-voltage
operation remains enabled (the regulator is not disabled).
The quickest shutdown can be achieved by driving
SHDNL externally with a driver pulldown impedance not
exceeding 1kΩ. If SHDNL is not driven externally, the
host can discharge CSHDNL under software control by
setting the FORCEPOR bit. This will enable a pulldown
(4.7kΩ nominal) to discharge the capacitor with a 4.7µs
time constant.
Note: For single-ended communication, SHDNL must
be driven externally since the charge-pump operation
requires a differential signal.
Shutdown is performed by bringing VSHDNL < 0.6V.
Table 18 summarizes the methods by which this can be
achieved.
Shutdown Sequence
The shutdown sequence and timing is shown in
Figure 21, Figure 22, and Figure 23. The ALRTSHDNL
status bit is set and the low-voltage regulator disabled
as soon as VSHDNL < 0.6V. When the VAA and VDDL
decoupling capacitors discharge below the POR threshold (2.95V typ), the device registers are reset and the HV
charge pump is disabled. The device is then in an ultralow-power state until VSHDNL > 1.8V.
The slowest method is for the host to simply cease
communication. With the UART idle, there is no charge
pumping and the capacitor discharges through an internal
10MΩ resistor with a 10ms time constant. If shutdown faster than 10ms is desired when power is disconnected from
the device, a 200kΩ resistor can be connected externally
from SHDNL to AGND to create a 200µs time constant.
Table 18. Shutdown Timing
SHUTDOWN METHOD
RPULLDOWN
1.
Host drives SHDNL pin low
1kΩ
External
2.
Host sets FORCEPOR bit
5kΩ
Internal
3.
Disconnect DCIN
200kΩ
External
4.
Host places UART in idle mode
10MΩ
Internal
CSHDNL
RC
1µs
1nF
5µs
200µs
10,000µs
POR INACTIVE
VAA > VPOR_RISING
CHECK VAA
VAA < VPOR_FALLING
POR ACTIVE
OSCILLATOR, CHARGE PUMP,
DIGITAL LOGIC DISABLED
Figure 21. Shutdown Sequence
www.maximintegrated.com
Maxim Integrated │ 45
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
RXLP
RXLN
VSHDNLIMIT
VSHDNL
VIH
tRXRU-VAA
tRXFD-VAA
VPORRISE
VAA
VIL
VPORFALL
tVAAFD-POR
tVAARU-POR
POR
tPORUP-TX
TXUP
TXUN
Figure 22. Power-On and Shutdown Timing (UART Control)
RXLP
RXLN
FORCEPOR
VSHDNL
tFRPOR
VIH
VIL
tRXFD-VAA
VPORFALL
VAA
tVAAFD-POR
POR
Figure 23. Shutdown Timing (Software Control)
www.maximintegrated.com
Maxim Integrated │ 46
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
UART Interface
Each device first receives data at its lower RX port and
immediately retransmits data from its upper TX port to the
lower RX port of the next upstack device. The last device
transmits data from its upper TX port directly into its upper
RX port and then immediately retransmits the data from
its lower TX port to the upper RX port of the next downstack device. The protocol supports fixed baud rates of
2Mb/s, 1Mb/s, or 0.5Mb/s. The baud rate is set by the host
and is automatically detected by the device.
The battery-management UART protocol allows up to
32 devices to be connected in daisy-chain fashion (see
Figure 24). The host initiates all communication with the
daisy-chain devices through a UART interface such as
the MAX17841B. The data flow is always unidirectional
from the host, up the daisy-chain (upstack) and then loops
back down the daisy-chain (downstack) to the host (see
Figure 24).
Figure 24. UART Interface
www.maximintegrated.com
Maxim Integrated │ 47
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
UART Ports
Two UART ports are utilized, a lower port (RXL/TXL) and
an upper port (RXU/TXU). Each port consists of a differential line driver and differential line receiver. DC-blocking
capacitors or transformers can be used to isolate daisychained devices that are operating at different commonmode voltages. During communication, the character
encoding provides a balanced signal (50% duty cycle)
that ensures charge neutrality on the isolation capacitors.
VDDL[2,3]
TX[U,L]IDLEHIZ
(UARTSTATE=IDLE?)
When no data is being transmitted by the UART, the
differential outputs must be driven to a common level
to maintain a neutral charge difference between the
AC-coupling capacitors or to avoid saturation of the
isolation transformers. In the default idle mode (low-Z),
the transmitter drives both outputs to a logic-low level
to balance the charge on the capacitors; this also works
well with transformer coupling. The high-Z idle mode
(TXLHIZIDLE, TXUHIZIDLE = 1) places the TX pins in a
high-Z state in idle mode, which may be desirable to minimize the effects of charging and discharging the isolation
capacitors. The idle mode for the upper and lower ports
can be controlled independently through the TXLHIZIDLE
and TXUHIZIDLE configuration bits.
UART Receiver
The UART receiver has a wide common-mode input range
to tolerate harsh EMC conditions. It can be operated in
differential mode or single-ended mode per Table 19. By
default, the UART receivers are configured for differential
mode. In single-ended mode, the RXP input is grounded
and the RXN input receives inverse data as described in
the Applications Information section (see Figure 64). In
single-ended mode, the receiver input threshold is negative so that a zero differential voltage (VRXP, VRXN = 0V)
is considered to be a logic-one and a negative differential
voltage (VRXN high) is a logic-zero.
DRIVE HIGH
TX[U,L][P,N]
UART Transmitter
ESD CLAMP
DRIVE LOW
GNDL[2,3]
Figure 25. UART Transmitter
30kΩ
4pF
VDDL/60
1.18MΩ
HIGH COMPARATOR
+
-
RXP
41.6kΩ
VCM =
VDDL/3
DIGITAL CORE
+
-
GNDL
ZERO CROSSING COMPARATOR
LOW COMPARATOR
41.6kΩ
1.18MΩ
+
-
RXN
4pF
VDDL/60
30kΩ
Figure 26. UART Receiver
www.maximintegrated.com
Maxim Integrated │ 48
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
UART RX Modes
During the first preamble received after a reset, the
receiver automatically detects if the received signal is
single-ended and if so, places the receiver in single-ended
mode; therefore, the device must be reset for any change
in the RX-mode hardware configuration to be detected.
The receiver mode is indicated by the ALRTCOMMSEL
bit (for lower port) and ALRTCOMMSEU bit (for upper
port) of the FMEA1 register, as shown in Table 19. If the
RXP input is open circuit, the RX-mode detection places
the UART in single-ended mode so the port can still operate, albeit with reduced noise immunity. The host can
diagnose this condition by checking ALRTCOMMSEL and
ALRTCOMMSEU after any POR event. Any other faults
result in communication errors.
UART Loopback
For the last device in the stack, the data must be looped
back from the upper transmitter to the upper receiver. This
is known as loopback and can be configured externally
(default) or internally.
External Loopback Mode
External loopback mode (default) uses a two-wire cable to
connect the upper transmitter (TXU) to the upper receiver
(RXU). The external loopback has two advantages:
1) It is quicker to determine device count for applications
where the host does not assume what the device
count is.
2) It helps to match the supply current of the last device
to that of the other daisy-chained devices (because
the hardware configuration is identical).
Internal Loopback Mode
Internal loopback mode (LASTLOOP = 1) routes the upperport transmit data internally to the upper-port receiver.
Any signal present on the upper-port receiver input pins
is ignored in the internal loopback mode; therefore, when
LASTLOOP is set, the write command that was forwarded
to any upstack devices is interrupted in the downstack
direction. The host should expect this and read the
LASTLOOP bit to verify that the write was successful. If
the MAX17841B interface is used, its receive buffer should
be cleared before changing LASTLOOP, and cleared again
after changing the loopback configuration because the
communication was interrupted.
Internal loopback mode is useful to diagnose the location of a daisy-chain signal break by enabling the internal
loopback mode on the first device, checking communication, then moving the loopback mode to the next device,
and continuing up the stack until communication is lost.
Baud-Rate Detection
The UART can operate at a baud rate of 2Mb/s (default),
1Mb/s, or 0.5Mb/s. The baud rate is controlled by the host
and is automatically detected by the device when the first
preamble character is received after reset. If the host
changes the baud rate after reset, it must issue another
reset (which can be done by setting the SPOR bit) and
resend a minimum of 2 x n preambles (where n is the
number of devices). The 2 x n preambles are necessary
since the transmitter for the upper port will not transmit
data until the lower-port receiver has detected the baud
rate and likewise, the transmitter on the lower port will not
transmit data until the upper-port receiver has detected
the baud rate. A simple way to do this is for the host to
start transmitting preambles and stop when a preamble
has been received back at the host RX port.
Table 19. UART RX Modes
RXP
RXN
ALRTCOMMSEn
Connected to data
Connected to inverse data
0
Differential mode (normal)
Grounded
Connected to inverse data
1
Single-ended mode (normal)
Open circuit (fault)
Connected to inverse data
1
Single-ended mode (low noise immunity)
Connected to data
Open circuit (fault)
0
Differential mode (communication errors)
www.maximintegrated.com
RX MODE
Maxim Integrated │ 49
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Battery-Management UART Protocol
UART is idle for a specified period of time. The host must
periodically transmit data to prevent shutdown unless the
SHDNL input is driven externally.
The battery-management UART protocol uses the
following features to maximize the integrity of the
communications:
Command Packet
●● All transmitted data bytes are Manchester-encoded,
where each data bit is transmitted twice, with the
second bit inverted (G.E. Thomas convention).
A command packet is defined as a sequence of UART
characters originating at the host. Each packet starts with
a preamble character, followed by data characters, and
ending with a stop character (see Figure 27). After sending a packet, the host either goes into idle mode or sends
another packet.
●● Every transmitted character contains 12 bits that include
a start bit, a parity bit, and two stop bits.
●● Read/write packets contain a CRC-8 packet-error
checking (PEC) byte
Preamble Character
●● Each packet is framed by a preamble character and
stop character.
The preamble is a framing character that signals the
beginning of a command packet. It is transmitted as an
unencoded 15h with a logic-one parity bit and a balanced
duty cycle. If any bit(s) other than the stop bits deviate
from the unique preamble sequence, the character is
not interpreted as a valid preamble, but rather as a data
character.
●● Read packets contain a data-check byte for verifying
the integrity of the transmission.
The protocol is also designed to minimize power-consumption by allowing slave devices to shut down if the
PREAMBLE
IDLE
TXP-TXN
MESSAGE
STOP
IDLE
Figure 27. Command Packet
OPTIONAL
IDLE
IDLE
DISABLE
S
1
0
1
0
1
0
0
0
E=1
P
P
OPTIONAL
IDLE
IDLE
ENABLE
Figure 28. Preamble Character
www.maximintegrated.com
Maxim Integrated │ 50
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Data Characters
The parity is even, which means that the parity bit’s value
should always result in an even number of logic-one
bits in the character. Given that the data is Manchesterencoded and there are two stop bits, the parity bit for
data characters is always transmitted as a logic-zero.
If the UART detects a parity error in any received data
character, it sets the ALRTPAR bit in the STATUS
register. Table 20 provides a list of data character
descriptions.
Each data character contains a single-nibble (4-bit) payload, so two characters must be transmitted for each
byte of data. All data is transmitted least-significant bit,
least-significant nibble, and least-significant byte first (see
Figure 29). The data itself is Manchester-encoded, which
means that each data bit is followed by its complement.
If the UART detects a Manchester-encoding error in any
received data character, it sets the ALRTMAN bit in the
STATUS register.
Table 20. Data Characters
BIT
NAME
SYMBOL
1
Start
S
DESCRIPTION
2
Data0
Least-significant bit of data nibble (true)
3
Data0/
Least-significant bit of data nibble (inverted)
4
Data1
Data bit 1 (true)
5
Data1/
Data bit 1 (inverted)
6
Data2
Data bit 2 (true)
7
Data2/
Data bit 2 (inverted)
8
Data3
Most-significant bit of data nibble (true)
9
Data3/
Most-significant bit of data nibble (inverted)
10
Parity
E
Always logic-zero (even parity)
11
Stop
P
Always logic-one
12
Stop
P
Last bit in character, always logic-one
First bit in character, always logic-zero
DATA NIBBLE = 0h
OPTIONAL
IDLE
0
S
0
0
1
0
0
1
0
0
1
0
1
E=0
P
P
IDLE
DISABLE
OPTIONAL
IDLE
IDLE
ENABLE
DATA NIBBLE = Ah
OPTIONAL
IDLE
IDLE
DISABLE
0
S
0
1
1
1
0
0
0
1
1
1
0
E=0
P
P
OPTIONAL
IDLE
IDLE
ENABLE
Figure 29. Data Characters
www.maximintegrated.com
Maxim Integrated │ 51
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Stop Character
command packet is sent or it goes into keep-alive mode,
sending periodic stop characters to prevent the daisychained device(s) from going into shutdown.
The stop character is a framing character that signals the end
of a command packet (see Figure 30). It is transmitted as an
unencoded 54h with a logic-one parity bit and a balanced
duty cycle.
UART Communication Mode
When transitioning from idle mode to communication
mode, the TXP pin must be pulled high (logic-one) prior
to signaling the start bit (logic-zero) (see Figure 31).
The duration of the logic-one is minimized to maintain a
balanced duty cycle while still meeting the timing specification. When transitioning from the stop bit back to idle
mode, the delay, if any, is also minimized.
UART Idle Mode
In the low-Z (default) idle mode, the transmitter outputs
are both driven to 0V (see Figure 31). In the high-Z
idle mode, the transmitter outputs are not driven by the
UART. The MAX17841B interface automatically places its
transmitter in idle mode immediately after each command
packet and remains in idle mode until either the next
OPTIONAL
IDLE
S
0
0
1
0
1
0
1
0
IDLE
DISABLE
E=1
P
P
OPTIONAL
IDLE
IDLE
ENABLE
Figure 30. Stop Character
IDLE
PREAMBLE
IDLE
TXnP
TXnN
tSTSU
TXnP-TXnN
Figure 31. Communication Mode
www.maximintegrated.com
Maxim Integrated │ 52
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Data Types
Command Byte Encoding
The battery-management UART protocol employs several
different data types, as described in Table 21.
Command bytes encoding is described in Table 23.
For READDEVICE and WRITEDEVICE commands, the
device address is encoded in the command byte. The
device ignores those commands containing a device
address other than its own.
Command Bytes
The battery-management UART protocol supports six
command types, which are summarized in Table 22.
Table 21. Data Types
DATA TYPE
DESCRIPTION
A byte defining the command-packet type, generally either a read or a write.
Command byte
Register address
A byte defining the register address to be read or written.
Register data bytes being read or written.
Register data
Data-check byte
An error and alert status byte sent and returned with all reads.
A packet-error checking byte sent and returned with every packet except HELLOALL.
PEC byte
A byte functioning as a device counter on all reads and writes, if ALIVECNTEN = 1.
Alive counter
Bytes transmitted in READALL command packets for clocking purposes only.
Fill byte
Table 22. Command-Packet Types
COMMAND
DESCRIPTION
DATA
CHECK
PEC
ALIVE
COUNTER
PACKET SIZE
(CHARACTERS)
HELLOALL
Writes a unique device address to each device in
the daisy-chain. Required for system initialization.
No
No
No
8
WRITEALL
Writes a specified register in all devices.
No
Yes
Yes
14
Writes a specified register in a single device.
No
Yes
Yes
14
Reads a specific register from all devices.
Yes
Yes
Yes
12 + (4z)
Reads a specified register from a single device.
Yes
Yes
Yes
16
Reads the ADDRESS register for 32 devices.
Yes
Yes
Yes
138
WRITEDEVICE
READALL
READDEVICE
ROLLCALL
Note: z = Total number of devices, ALIVECNTEN = 1, packet size includes framing characters.
Table 23. Command-Byte Encoding
COMMAND
BYTE*
7
6
5
4
3
2
1
0
HELLOALL
57h
0
1
0
1
0
1
1
1
ROLLCALL
01h
0
0
0
0
0
0
0
1
WRITEDEVICE
04h
DA4
3
DA2
DA1
DA0
1
0
0
WRITEALL
02h
0
0
0
0
0
0
1
0
READDEVICE
05h
DA4
DA3
DA2
DA1
DA0
1
0
1
0
1
1
03h
0
0
0
0
0
READALL
*Assumes DA[4:0] = 0x00, where DA[4:0] is the device address in the ADDRESS register.
www.maximintegrated.com
Maxim Integrated │ 53
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Register Addresses
All register addresses are single-byte quantities and are
defined in the Register Map. In general, if the register
or device address in a received command is not a valid
address for the device, the device will ignore the read or
write and simply pass through the packet to the next device.
Register Data
All registers are 16-bit words (two data bytes) and are
defined in the Register Map.
Data-Check Byte
The host uses the returned data-check byte to promptly
determine if any communication errors occurred during
the packet transmission and to check if alert flags are set
in any devices, as shown in Table 24. The data-check
byte is returned by the READALL and READDEVICE
commands. For READDEVICE, the data-check byte is
updated only by the addressed device.
The data-check byte sent by the host is a seed value
normally set to 00h, although non-zero values can be
used as a diagnostic. Each device logically ORs the
received data-check byte with its own status and transmits it to the next device. A PEC error detected by any
device will set the ALRTPEC bit in the STATUS register,
and by extension, the ALRTPEC and ALRTSTATUS bits
in the data-check byte.
PEC Byte
The PEC byte is a CRC-8 packet-error check sent by
the host with all read and write commands. If any device
receives an invalid PEC byte, it sets the ALRTPEC bit
in the STATUS register. During any write transaction, a
device does not execute the write command internally
unless the received PEC matches the expected calculated value. For read commands, the device must return its
own calculated PEC byte based on the returned data. The
host should verify that the received PEC byte matches the
calculated value; if an error is indicated, the data should
be discarded. See the Applications Information section for
details on the PEC calculation.
Alive-Counter Byte
The alive-counter byte is the last data byte of the command packets (except HELLOALL) if the ALIVECNTEN bit
is set in the DEVCFG1 register. The host typically transmits the alive-counter seed value as 00h, but any value is
permitted. For WRITEALL or READALL commands, each
device retransmits the alive counter incremented by one.
For WRITEDEVICE or READDEVICE commands, only
the addressed device increments it. The alive counter is
not used in the HELLOALL command. If the alive counter
reaches FFh, the next device increments it to 00h.
Since the alive counter comes after the PEC byte, an
incorrect PEC value will not affect the incrementing of
the alive-counter byte. Also, the PEC calculation does
not include the alive-counter byte. The host should verify
that the alive counter equals the original seed value + the
number of devices, considering that if the alive counter
reaches FFh, the next device increments it to 00h.
Fill Bytes
In the READALL command, the host sends two fill bytes
for each device in the daisy-chain. The fill bytes are the
locations within the packet and are used by the device to
place the read data. The fill-byte values transmitted by the
MAX17841B interface alternates between C2h and D3h.
As the command packet propagates through the device,
the device overwrites the appropriate fill bytes with the
register data. The device uses the ADDRESS register to
determine which specific fill bytes in the packet should be
overwritten.
For a READDEVICE command, only two fill bytes are
required since only one device responds (returning two
data bytes). Also, fill bytes are not required for write commands because the data received is exactly the same as
the data retransmitted.
Table 24. Data-Check Byte
BIT
NAME
7
ALRTPEC
DESCRIPTION
ALRTPEC is set.
6
ALRTFMEA
5
ALRTSTATUS
4
CHECK
Check bit. Value that is received is forwarded.
3
CHECK
Check bit. Value that is received is forwarded.
2
ALRTOV
ALRTOV is set.
1
ALRTUV
ALRTUV is set.
0
CHECK
Check bit. Value that is received is forwarded.
www.maximintegrated.com
ALRTFMEA1 or ALRTFMEA2 is set.
STATUS bit other than ALRTFMEA1, ALRTFMEA2, ALRTOV, and ALRTUV is set.
Maxim Integrated │ 54
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Battery-Management UART Protocol
Commands
HELLOALL Command
The purpose of the HELLOALL command is to initialize the
device addresses of all daisy-chained devices. The device
address is stored in the DA[4:0] bits of the ADDRESS register. The highest address possible is 0x1F, so a maximum
of 32 devices can be addressed. The command must be
issued after POR to reinitialize all device addresses.
When the HELLOALL command is first sent by the host,
the address specified in the HELLOALL command is
stored to the DA[4:0] bits of the ADDRESS register in the
first daisy-chained device. The command is then forwarded to the next device in the chain with the DA[4:0] bits of
the address byte incremented by 1, as shown in Table 25.
This continues in the upstack direction for each device.
The downstack communication path does not increment
the address. The advantage of the host choosing a first
address of 0x00 is that it is not necessary to write the first
address (FA[4:0]) to all the devices since the default value
of FA[4:0] is 0x00. Note: The host should set the first
address so no assigned device address increments from
0x1F to 0x00 during the HELLOALL.
The DA[4:0] value returned to the host is one greater
than the address assigned to the last device. Once this
last address is known, the host can determine how many
devices are in the daisy-chain, which is required for subsequent READALL commands. A READALL command
should be used to verify the ADDRESS registers.
Special considerations exist if the host wants to use
internal loopback instead of external loopback. The first
HELLOALL command is not returned to the host because
the internal loopback bit for the top device has not yet
been written. If the number of devices is known to the
host, the host can use a WRITEDEVICE to set the internal loopback bit on the last device and then verify with
a READALL. If the number of devices is unknown, the
internal loopback bit must be set on the first device, verified and then cleared. It can then be set on the second
device and verified, and so on incrementally until there is
no response (end of stack). With the number of devices
known, the loopback bit can be reset on the last device
and all ADDRESS registers verified.
When a device receives a valid HELLOALL command,
it clears the ADDRUNLOCK bit of the DEVCFG1 register. When this bit is 0, HELLOALL commands are
ignored to prevent inadvertently changing any device
address. In order to reconfigure the device address, the
ADDRUNLOCK bit must first be set to ‘1’ or a POR event
must occur. After configuring the device addresses, they
should be verified using the READALL or ROLLCALL
commands.
WRITEALL Command
The WRITEALL command writes a 16-bit value to a specified register in all daisy-chained devices. Since most configuration information is common to all the devices, this
command allows faster setup than writing to each device
individually. If the register address is not valid for the
device, the command is ignored. The command sequence
is shown in Table 26.
The register value is written immediately after the valid
PEC byte is received or, if NOPEC is set, after the last
byte is received. If the received PEC byte does not match
the internal calculation, the command is not executed, but
is still forwarded to the next device. The PEC is calculated
from the first 4 bytes of the command starting after the
preamble. A PEC error will generate a PEC alert in the
device STATUS register.
Table 25. HELLOALL Sequencing (z = Total Number of Devices)
HOST TX
DEVICE (n) RXL
DEVICE (n) TXU
HOST RX
Preamble
Preamble
Preamble
Preamble
57h
57h
57h
57h
00h
00h
00h
00h
{0b000,ADDR[4:0]}
{0b000,ADDR[4:0]+n-1}
{0b000,ADDR[4:0]+n}
{0b000,ADDR[4:0]+z}
Stop
Stop
Stop
Stop
www.maximintegrated.com
Maxim Integrated │ 55
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
WRITEDEVICE Command
The WRITEDEVICE command writes a 16-bit value to
the specified register in the addressed device only. If the
register address is not valid for the device, the command
is ignored. The command sequence is shown in Table 27.
The register value is written immediately after the valid
PEC byte is received or, if NOPEC is set, after the last
byte is received. If the received PEC byte does not match
the internal calculation, the command is not executed,
but is still forwarded to the next device. The PEC is calculated from the first 4 bytes of the command starting
after the preamble. A PEC error sets the ALRTPEC bit in
the STATUS register. A PEC error can only occur in the
addressed device.
READALL Command
The READALL command returns register data from the
specified register for all daisy-chained devices. The data
for the first device (connected to the host) is returned
last. The command sequence is shown in Table 28. If the
received PEC byte does not match the calculated value,
the ALRTPEC bit of the data-check byte and ALRTPEC
bit of the STATUS register are set, but the command
proceeds. A Manchester error immediately switches the
data propagation from read mode to write (pass-through)
mode, ensuring that the Manchester error is propagated
through the daisy-chain and back to the host.
The fill byte values transmitted by the MAX17841B
interface alternate between C2h and D3h as shown. As
the packet propagates through the device, the device
retransmits it in the order shown in the sequencing table
(device TXU column). The device knows which bytes to
overwrite since its ADDRESS register contains the first
device address and its own device address; therefore, it
knows where in the data stream it belongs.
Table 26. WRITEALL Sequencing (Unchanged by Daisy-Chain)
HOST TX
DEVICE (n) RXL
DEVICE (n) TXU
HOST RX
Preamble
Preamble
Preamble
Preamble
02h
02h
02h
02h
[REG ADDR]
[REG ADDR]
[REG ADDR]
[REG ADDR]
[DATA LSB]
[DATA LSB]
[DATA LSB]
[DATA LSB]
[DATA MSB]
[DATA MSB]
[DATA MSB]
[DATA MSB]
[PEC]
[PEC]
[PEC]
[PEC]
[ALIVE]*
[ALIVE]*
[ALIVE]*
[ALIVE]*
Stop
Stop
Stop
Stop
*If alive-counter mode is enabled.
Table 27. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain)
HOST TX
DEVICE(n) RXL
DEVICE(n) TXU
HOST RX
Preamble
Preamble
Preamble
Preamble
{(DA[4:0]),0b100}
{(DA[4:0]),0b100}
{(DA[4:0]),0b100}
{(DA[4:0]),0b100}
[REG ADDR]
[REG ADDR]
[REG ADDR]
[REG ADDR]
[DATA LSB]
[DATA LSB]
[DATA LSB]
[DATA LSB]
[DATA MSB]
[DATA MSB]
[DATA MSB]
[DATA MSB]
[PEC]
[PEC]
[PEC]
[PEC]
[ALIVE]*
[ALIVE]*
[ALIVE]*
[ALIVE]*
Stop
Stop
Stop
Stop
*If alive-counter mode is enabled.
www.maximintegrated.com
Maxim Integrated │ 56
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Table 28. READALL Command Sequencing (z = no. of devices)
HOST TX
DEVICE(n) RXL
DEVICE(n) TXU
HOST RX
Preamble
Preamble
Preamble
Preamble
03h
03h
03h
03h
[REG ADDR]
[REG ADDR]
[DATA ADDR]
[REG ADDR]
[DC] = 0x00
[DATA LSB(n-1)]
[DATA LSB(n)]
[DATA LSB(z)]
[PEC]
[DATA MSB(n-1)]
[DATA MSB(n)]
[DATA MSB(z)]
[ALIVE]*
…
…
[DATA LSB(z-1)]
[FD(1) C2h]
…
…
[DATA MSB(z-1)]
[FD(1) D3h]
[DATA LSB(1)]
[DATA LSB(1)]
…
[FD(2) C2h]
[DATA MSB(1)]
[DATA MSB(1)]
…
[FD(2) D3h]
[DC]
[DC]
…
…
[PEC]
[PEC]
…
…
[ALIVE]*
[ALIVE]*
…
…
[FD(1) C2h]
[FD(1) C2h]
…
…
[FD(1) D3h]
[FD(1) D3h]
[DATA LSB(1)]
…
…
…
[DATA MSB(1)]
…
…
…
[DC]
[FD(z) C2h]
[FD(z-n) C2h]
[FD(z-n-1) C2h]
[PEC]
[FD(z) D3h]
[FD(z-n) D3h]
[FD(z-n-1) D3h]
[ALIVE]*
Stop
Stop
Stop
Stop
12 + (4 x z) characters
12 + (4 x z) characters
12 + (4 x z) characters
12 + (4 x z) characters
*If alive-counter mode is enabled.
READDEVICE Command
The READDEVICE command returns a 16-bit word read
from the specified register in the addressed device only.
If the register address is not valid for the device, the command is ignored. The command sequence is shown in
Table 29.
The command packet is forwarded up the daisy-chain until
it reaches the addressed device. The addressed device
overwrites the received fill bytes with the 2 bytes of register data and forwards the packet to the next device. The
alive-counter byte is only incremented by the addressed
device. A Manchester error immediately switches the
data propagation from read mode to write (pass-through)
www.maximintegrated.com
mode, ensuring that the Manchester error is propagated
through the daisy-chain and back to the host.
ROLLCALL Command
While not required for system initialization, the ROLLCALL
command (01h) can be used to verify that all devices
are responding, regardless of the value of FA[4:0]. The
response of each device is identical to that of a READALL
command of the ADDRESS register, where the first
device address (FA[4:0]) is 00h, and there are 32 devices;
therefore, the ROLLCALL command is sent with 64 fill
bytes and each device places the data-check and PEC
bytes after the 32nd register data word. This ensures that
each device can return its ADDRESS register data.
Maxim Integrated │ 57
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Diagnostics
Built-in diagnostics support ISO 26262 (ASIL) requirements by detecting specific fault conditions, as shown in
Table 30. The device automatically performs some of the
diagnostics while the host performs others during initialization (e.g., at key-on), or periodically during operation,
as required by the application. Diagnostics performed
automatically by the device are previously described in
the relevant functional sections. A description of the diagnostics requiring specific configurations are provided in
this section.
Table 29. READDEVICE Sequencing
HOST TX
DEVICE RXL
DEVICE TXU
HOST RX
Preamble
Preamble
Preamble
Preamble
{DA[4:0], 0b101}
{DA[4:0], 0b101}
{DA[4:0], 0b101}
{DA[4:0], 0b101}
[REG ADDR]
[REG ADDR]
[REG ADDR]
[REG ADDR]
[DC]
[DC]
[DATA LSB]
[DATA LSB]
[PEC]
[PEC]
[DATA MSB]
[DATA MSB]
[ALIVE]*
[ALIVE]*
[DC]
[DC]
[FD(1) C2h]
[FD(1) C2h]
[PEC]
[PEC]
[FD(1) D3h]
[FD(1) D3h]
[ALIVE]*
[ALIVE]*
Stop
Stop
Stop
Stop
16 characters
16 characters
16 characters
16 characters
*If alive-counter mode is enabled.
Table 30. Summary of Built-In Diagnostics
DIAGNOSTICS PERFORMED AUTOMATICALLY BY DEVICE WITH NO HOST INTERVENTION
FAULT
DIAGNOSTIC PROCEDURE
OUTPUT
VAA undervoltage
Continuous voltage comparison
ALRTRST
VHV undervoltage
Continuous voltage comparison
ALRTHVUV
VHV overvoltage
Continuous voltage comparison
ALRTHVOV
VHV low headroom
Voltage comparison (updated during measurement)
ALRTHVHDRM
32kHz oscillator fault
Continuous frequency comparison
ALRTOSC1, ALRTOSC2
16MHz oscillator fault
Communication error checking
ALRTMAN, ALRTPAR
Communication fault
Communication error checking
ALRTPEC, ALRTMAN, ALRTPAR
RX pin open/short
Verify RX mode after POR
ALRTCOMMSEUn/ALRTCOMMSELn
VDDLn pin open/short
Continuous voltage comparison
ALRTVDDLx
GNDLn pin open/short
Continuous voltage comparison
ALRTGNDLx
Die overtemperature
Temperature comparison (updated after measurement)
ALRTTEMP
www.maximintegrated.com
Maxim Integrated │ 58
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Table 30. Summary of Built-In Diagnostics (continued)
DIAGNOSTICS PERFORMED DURING ACQUISITION MODE AS SELECTED BY DIAGSEL OR BALSWDIAG
FAULT
DIAGNOSTIC PROCEDURE
DIAGSEL[2:0]
OUTPUT
Reference voltage fault
ALTREF diagnostic
DIAGSEL = 1h
DIAG[15:0] (ALTREF voltage)
VAA voltage fault
VAA diagnostic
DIAGSEL = 2h
DIAG[15:0] (VAA voltage)
LSAMP Offset too high
LSAMP offset diagnostic
DIAGSEL = 3h
DIAG[15:0] (LSAMP offset voltage)
ADC bit stuck high
Zero-Scale ADC diagnostic
DIAGSEL = 4h
DIAG[15:0] (Zero scale)
ADC bit stuck low
Full-Scale ADC diagnostic
DIAGSEL = 5h
DIAG[15:0] (Full scale)
VPTAT or
ALRTTEMP fault
Die Temperature diagnostic
DIAGSEL = 6h
DIAG[15:0] (VPTAT voltage),
ALRTTEMP
Balancing switch short
BALSW diagnostic mode
BALSWDIAG = 1h
ALRTBALSW
Balancing switch open
BALSW diagnostic mode
BALSWDIAG = 2h
ALRTBALSW
Odd sense-wire open
BALSW diagnostic mode
BALSWDIAG = 5h
ALRTBALSW
Even sense-wire open
BALSW diagnostic mode
BALSWDIAG = 6h
ALRTBALSW
PROCEDURAL DIAGNOSTICS
FAULT
DIAGNOSTIC PROCEDURE
OUTPUT
SHDNL stuck high
Idle mode
ALRTSHDNL
HVMUX switch open
Acquisition with HVMUX test sources
ALRTOV, ALRTUV
HVMUX switch short
ALTREF diagnostic
DIAG[15:0]
HVMUX test sources
Acquisition with HVMUX test sources
CELLn
Cn pin open
Acquisition with cell test sources
ALRTOV, ALRTUV
Cn short to SWn
Acquisition with balancing switches
CELLn
Cn pin leakage
ALTMUX vs. HVMUX acquisition
CELLn
Voltage comparator fault
ALTMUX acquisition with balancing switches
CELLn
Voltage comparator fault
ALTMUX acquisition with balancing switches
CELLn
ALRTHVUV comparator
Acquisition with HV charge pump disabled
ALRTHVUV
HVMUX sequencer
Acquisition with cell test sources
CELLn
ALU Data Path
Acquisition with ADCTEST = 1
CELLn, VBLKP, DIAG, and AUXINn
AUXINn Pin Open
Acquisition with AUXIN test sources
AUXINn
Calibration corruption
Read CALx, IDx, perform CRC
ID2
Note: Pin faults such as an open pin or adjacent pins shorted to each other must be detectable. Pin faults do not result in device damage but have a specific device response such as a communication error, or are detectable through a built-in diagnostic. Analyzing the
effect of pin faults is referred to as a pin FMEA. Contact Maxim Applications to obtain pin FMEA results.
www.maximintegrated.com
Maxim Integrated │ 59
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ALTREF Diagnostic Measurement
The ALTREF diagnostic measurement (DIAGSEL[2:0] =
0b001) checks the primary voltage reference of the ADC
by measuring the alternate reference voltage (VALTREF).
The result is available in the DIAG register after a normal
acquisition. See Figure 32.
The ALTREF voltage is computed from the result in the
DIAG register as follows:
VALTREF = (DIAG[15:2]/16384d ) x 5V
Since 1.23V < VALTREF < 1.254V and VALTREF =
1.242V nominally, the expected range for DIAG[15:2] is
(1.23V/5V) x 16384d = 4030d to (1.254V/5V) x 16384 =
4109d; therefore, 0FBEh ≤ DIAG[15:2] ≤ 100Dh. To use the
16-bit register value, the 14-bit values must be shifted or
multiplied by 4 so that 3EF8h ≤ DIAG[15:0] ≤ 4034h.
VAA Diagnostic Measurement
The VAA diagnostic measurement (DIAGSEL[2:0] =
0b010) verifies that VAA is within specification. This
diagnostic measures VREF, but using VTHRM as the ADC
reference. See Figure 33.
The voltage into the ADC is computed from the result in
the DIAG register as follows:
(6/13) x VREF = (DIAG[15:2]/16384d ) x VTHRM
Assuming VTHRM = VAA, then VAA is given by:
VAA = (6/13) x VREF x 16384d/DIAG[15:2],
where VREF = 2.307V
The result for VAA should fall within the range provided in
the Electrical Characteristics table for VAA.
HVMUX BUS
REF
+
THRM
G = 6/13
LSAMP
ADC IN +
LV
MUX
-
ADC IN -
ADC
ADC AUTOMATICALLY
IN UNIPOLAR MODE
ALTREF
AGND
Figure 32. ALTREF Diagnostic
HVMUX
BUS
VREF
VTHRM
G = 6/13
+
LSAMP
ADC IN +
LV
MUX
-
REF
ADC
ADC IN -
ADC AUTOMATICALLY
IN UNIPOLAR MODE
AGND
Figure 33. VAA Diagnostic
www.maximintegrated.com
Maxim Integrated │ 60
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
LSAMP Offset Diagnostic Measurement
The LSAMP diagnostic measurement (DIAGSEL[2:0] =
0b011) measures the level-shift amplifier offset by shorting the LSAMP inputs during the diagnostic portion of the
acquisition. The result is available in the DIAG register
after a normal acquisition. For this measurement, the
ADC polarity is automatically set to bipolar mode to allow
accurate measurement of voltages near zero. This measurement eliminates the chopping phase to preserve the
offset error. If the diagnostic measurement exceeds the
valid range for VOS_LSAMP, as specified in the Electrical
Characteristics table, the chopping function may not be
able to cancel out all the offset error, and acquisition
accuracy could be degraded accordingly. See Figure 34.
The LSAMP offset is computed from the result in the
DIAG register as follows:
LSAMP Offset = (|DIAG[15:2] - 2000h |/16384d ) x 5V
The validity of measurements through LSAMP is further
confirmed by the ALTREF and VAA diagnostics, and comparison of the VBLKP measurement to the sum of the cell
measurements.
Zero-Scale ADC Diagnostic Measurement
Stuck ADC output bits can be verified with a combination
of the zero-scale and full-scale diagnostics. The zeroscale ADC diagnostic measurement (DIAGSEL[2:0] =
0b100) verifies that the ADC conversion results in 000h
when its input is at -VAA in bipolar mode (since for an
input ≤ -2.5V, DIAG[15:0] = 0000h). For this measurement, the ADC is automatically set to bipolar mode. See
Figure 35.
G = 6/13
ADC IN +
+
HVMUX
BUS
LV
MUX
LSAMP
-
ADC
ADC IN ADC AUTOMATICALLY
IN BIPOLAR MODE
Figure 34. LSAMP Offset Diagnostic
REF
THRM
VAA
ADC IN +
LV
MUX
ADC
ADC IN -
AGND
ADC AUTOMATICALLY
IN BIPOLAR MODE
AGND
Figure 35. Zero-Scale ADC Diagnostic
www.maximintegrated.com
Maxim Integrated │ 61
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Full-Scale ADC Diagnostic Measurement
Stuck ADC output bits can be verified with a combination
of the zero-scale and full-scale diagnostics. The full-scale
ADC diagnostic measurement (DIAGSEL[2:0] = 0b101)
verifies that the ADC conversion results in FFFh when its
input is at VAA in bipolar mode (since for an input ≥ 2.5V,
DIAG[15:0] = FFF0h). For this measurement, the ADC is
automatically set to bipolar mode. See Figure 36.
BALSW Diagnostics
Four balancing switch-diagnostic modes are available to
facilitate the following diagnostics:
●● Balancing switch shorted (BALSWDIAG[2:0] = 0b001)
●● Balancing switch open (BALSWDIAG[2:0] = 0b010)
●● Odd sense wire open (BALSWDIAG[2:0] = 0b101)
●● Even sense wire open (BALSWDIAG[2:0] = 0b110)
Enabling any of these modes automatically preconfigures
the acquisition (e.g., enables the ALTMUX measurement
path). The host must initiate the acquisition, but the diagnostic mode automatically compares the measurements to
the specific thresholds and sets any corresponding alerts.
The host presets the thresholds, as determined by the
minimum and maximum resistance of the switch (RSW)
specified in the Electrical Characteristics table and the
intended cell-balancing current.
During any balancing switch-diagnostic mode, ALRTOV,
ALRTUV, and ALRTMSMTCH comparisons are disabled.
After BALSWDIAG[2:0] is cleared, the modified configurations automatically return to their prior setting. The same
configurations and comparisons could be implemented
manually but at the expense of more host operations.
BALSW Short Diagnostic
A short-circuit fault in the balancing path could be a short
between SWn and SWn-1 (see Figure 37) or that the
balancing FET is stuck in the conducting state. In the
short-circuit state, the voltage between SWn and SWn-1
(switch voltage) is less than the voltage between Cn and
Cn-1 (cell voltage).
When enabled, the balancing switch short-diagnostic
mode (BALSWDIAG[2:0] = 0b001) functions as follows:
●● Disables the balancing switches automatically
●● Configures the acquisition using ALTMUX path
automatically
●● Host initiates the acquisition
●● Compares the measurement to the BALSHRTTHR
threshold value automatically (Table 32)
●● If outside the threshold, sets the corresponding flag in
ALRTBALSW automatically
For the best sensitivity to leakage current, set the threshold
value based on the minimum cell voltage minus a small
noise margin (100mV), then update the threshold value
periodically or every time a measurement is taken, depending on how fast the cell voltages are expected to change.
REF
CN
THRM
SWn
TO ALTMUX
VAA
BALSWEN
ADC IN +
LV
MUX
ADC
ADC IN -
AGND
ADC AUTOMATICALLY
IN BIPOLAR MODE
AGND
Figure 36. Full-Scale ADC Diagnostic
www.maximintegrated.com
TO HVMUX
SHORT
CIRCUIT
BALANCING
SWITCH (n)
SWn-1
Cn-1
HV
TO ALTMUX
TO HVMUX
AGND
Figure 37. Balancing Switch Short
Maxim Integrated │ 62
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
MAX178xx FULLY
FUNCTIONAL AND
INITIALIZED
ENSURE BALSHRTTHR
SET TO DESIRED
VALUE
SET BALSWDIAG[2:0] TO
0b001
WAIT 100µs
START ADC
MEASUREMENT
YES
SCANDONE = 1
ALRTFMEA
DATACHECK BIT
SHOWS RESULT
NO
CLEAR BALSWDIAG[2:0]
AND SCANDONE
BALSW SHORT
CIRCUIT CHECK
INVALID
CHECK ALRTBALSW OR
CELLn REGISTERS FOR
DETAILED RESULT
BALSW SHORT
CIRCUIT CHECK
DONE
Figure 38. BALSW Short Diagnostic
Table 31. BALSW Short-Diagnostic Auto Configuration
CONFIGURATION BITS
AUTOMATIC SETTING
PURPOSE
MEASUREEN[14:12]
0b000
Disable AUXIN and VBLKP measurements
BALSWEN[11:0]
000h
Disable all balancing switches
DIAGCFG.ALTMUXSEL
1
Enable ALTMUX measurement path
www.maximintegrated.com
Maxim Integrated │ 63
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
BALSW Open Diagnostic
●● Host initiates acquisition
The BALSW open diagnostic (BALSWDIAG[2:0] = 0b010)
verifies that each enabled balancing switch is conducting
(not open) as follows:
●● Automatically compares measurement to the threshold value BALLOWTHR and BALHIGHTHR (Table 32)
●● If outside the threshold, automatically sets the corresponding flag in ALRTBALSW
●● Automatically configures acquisition for bipolar mode
(for measuring voltages near zero)
Set the thresholds by taking into account the minimum
and maximum RSW of the switch itself, as specified in the
Electrical Characteristics table and the balancing current
for the application. See Figure 39 and Table 33.
●● Automatically configures acquisition for ALTMUX path
●● Automatically configures acquisition to measure switch
voltages for those switches enabled by BALSWEN
Table 32. BALSW Diagnostics
BALSW
V SWn
FAULT INDICATED?
POSSIBLE FAULT CONDITION
> V(BALHIGHTHR)
Yes
Switch open circuit, or overcurrent
No
None
Yes
Path open circuit or short circuit
> V(BALLOWTHR)
On
< V(BALHIGHTHR)
< V(BALLOWTHR)
Off
> V(BALSHRTTHR)
No
None
< V(BALSHRTTHR)
Yes
Short circuit or leakage current
Table 33. BALSW Open-Diagnostic Auto Configuration
CONFIGURATION BITS
AUTOMATIC SETTING
PURPOSE
MEASUREEN[14:12]
0b000
Disable AUXINn and VBLKP measurements
MEASUREEN[11:0]
BALSWEN[11:0]
Measure only active switch positions
DIAGCFG.ALTMUXSEL
1
Enable ALTMUX measurement path
SCANCTRL.POLARITY
1
Enable bipolar mode
www.maximintegrated.com
Maxim Integrated │ 64
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
MAX178xx FULLY
FUNCTIONAL AND
INITIALIZED
ENSURE BALLOWTHR
AND BALHIGHTHR SET
TO DESIRED VALUE
SET BALSWDIAG[2:0]
TO 0b010
START ADC
MEASUREMENT
SCANDONE
= 1?
YES
ALRTFMEA
DATACHECK BIT
SHOWS RESULT
NO
BALSW OPEN
CHECK INVALID
CLEAR BALSWDIAG[2:0]
AND SCANDONE
CHECK ALRTBALSW OR
CELLn REGISTERS FOR
DETAILED RESULT
BALSW OPEN
CHECK DONE
Figure 39. BALSW Open Diagnostic
www.maximintegrated.com
Maxim Integrated │ 65
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Even/Odd Sense-Wire Open Diagnostics
●● Host waits 100μs for settling and then initiates the
acquisition
If enabled, the sense-wire open-diagnostic modes detect if
a cell-sense wire is disconnected as follows:
●● Automatically compares result to the BALHIGHTHR
and BALLOWTHR register
●● Automatically closes nonadjacent switches (even or
odd)
●● If outside thresholds, automatically sets flags in
ALRTBALSW
●● Automatically configures acquisition to use the
ALTMUX path
See Figure 40, Figure 41, Table 34, Table 35, and Table 36.
TO CELL n+1
SENSE WIRE
RFILTER
RBALANCE
Cn
TO HVMUX
CFILTER
SWn
TO ALTMUX
BALSWEN
DETECT BREAK
IN DASHEDLINE PATH
CELL n
RBALFILTER
RBALANCE
SENSE WIRE
BALANCING
SWITCH (n)
SWn-1
RFILTER
Cn-1
CFILTER
TO CELL n-1
HV
TO ALTMUX
TO HVMUX
AGND
Figure 40. Cell Sense-Wire Open Diagnostics
www.maximintegrated.com
Maxim Integrated │ 66
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Table 34. Odd Sense-Wire Open-Measurement Result
SENSE WIRE OPEN FAULT LOCATION
C0
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
0V
0V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell2
NC
cell1+
cell2
cell2+
cell3
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell3
NC
NC
0V
0V
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell4
NC
NC
NC
cell3+
cell4
cell4+
cell5
NC
NC
NC
NC
NC
NC
NC
NC
Cell5
NC
NC
NC
NC
0V
0V
NC
NC
NC
NC
NC
NC
NC
cell6+
cell7
NC
NC
NC
NC
NC
NC
Cell1
CELL MEASUREMENT CHANGE
C1
Cell6
NC
NC
NC
NC
NC
cell5+
cell6
Cell7
NC
NC
NC
NC
NC
NC
0V
0V
NC
NC
NC
NC
NC
Cell8
NC
NC
NC
NC
NC
NC
NC
cell7+
cell8
cell8+
cell9
NC
NC
NC
NC
Cell9
NC
NC
NC
NC
NC
NC
NC
NC
0V
0V
NC
NC
NC
cell10+
cell11
NC
NC
Cell10
NC
NC
NC
NC
NC
NC
NC
NC
NC
cell9+
cell10
Cell11
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
0V
NC
Cell12
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
cell11+
cell12
UD
Note: NC = No Change; UD = Undefined; Maximum result is 5V.
Table 35. Even Sense-Wire Open-Measurement Result
CELL MEASUREMENT CHANGE
SENSE WIRE OPEN FAULT LOCATION
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
Cell1
UD
cell1+
cell2
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell2
NC
0V
0V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell3
NC
NC
Cell2+
cell3
cell3+
cell4
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell4
NC
NC
NC
0V
0V
NC
NC
NC
NC
NC
NC
NC
NC
cell5+
cell6
NC
NC
NC
NC
NC
NC
NC
Cell5
NC
NC
NC
NC
cell4+
cell5
Cell6
NC
NC
NC
NC
NC
0V
0V
NC
NC
NC
NC
NC
NC
Cell7
NC
NC
NC
NC
NC
NC
cell6+
cell7
cell7+
cell8
NC
NC
NC
NC
NC
Cell8
NC
NC
NC
NC
NC
NC
NC
0V
0V
NC
NC
NC
NC
cell9+
cell10
NC
NC
NC
0V
0V
NC
NC
cell11+
cell12
NC
0V
0V
Cell9
NC
NC
NC
NC
NC
NC
NC
NC
cell8+
cell9
Cell10
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell11
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
cell10+
cell11
Cell12
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Note: NC = No Change; UD = Undefined; Maximum result is 5V.
www.maximintegrated.com
Maxim Integrated │ 67
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
MAX178xx FULLY
FUNCTIONAL AND
INITIALIZED
ENSURE BALLOWTHR
AND BALHIGHTHR SET
TO DESIRED VALUE
SET BALSWDIAG[2:0]
0b101 FOR ODD SWITCHES
0b110 FOR EVEN SWITCHES
WAIT 100µs
START ADC
MEASUREMENT
YES
SCANDONE
= 1?
ALRTFMEA DATACHECK
BIT SHOWS RESULT
NO
CLEAR BALSWDIAG[2:0]
AND SCANDONE
BALSW
CONDUCTING CHECK
INVALID
CHECK ALRTBALSW OR CELLn
REGISTERS FOR DETAILED
RESULT
BALSW CONDUCTING
CHECK DONE
Figure 41. Sense-Wire Open Diagnostic
Table 36. Sense-Wire Open-Diagnostic Configurations
CONFIGURATION BIT(S)
CONFIGURATION STATE
TASK
555h (BALSWDIAG = 0b101) or
Enable odd switches
AAAh (BALSWDIAG = 0b110)
Enable even switches
MEASUREEN[14:12]
0b000
Disable AUXINn and VBLKP measurements
MEASUREEN[11:0]
BALSWEN[11:0]
Measure only active switch positions
DIAGCFG.ALTMUXSEL
1
Enable ALTMUX measurement path
SCANCTRL.POLARITY
1
Enable bipolar mode
BALSWEN[11:0]
www.maximintegrated.com
Maxim Integrated │ 68
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Diagnostic Test Sources
●● The test current ranges from 3.125µA up to 50µA per
CTSTDAC[3:0] (applies to all enabled sources)
Diagnostic test current sources (see Figure 42) can be
enabled prior to the acquisition mode for detecting both
internal and external hardware faults in the measurement
path. One set of test sources is connected to the HVMUX
input side and another set is connected to the HVMUX
output side. The basic premise in these diagnostics is for a
symmetrical measurement channel with no faults, the test
currents can be applied symmetrically to the differential
channel and there should only be almost no change in the
channel measurement. On the other hand, if an asymmetric fault exists on the channel, the resulting change will indicate the nature of the fault (e.g., an open or shorted pin).
●● The test current, by default, is applied to both
HVMUX outputs (even and odd outputs); however,
if MUXDIAGPAIR is set, the test current is applied to
only one of the output lines per MUXDIAGBUS. This
mode is used to test the test sources themselves (see
Table 37 for HVMUX output assignments)
Table 37. HVMUX Output Assignment
INPUT SIGNAL
HVMUX OUTPUT
C12
Even bus
For the 15 test current sources on the input channels (13
Cn and 2 AUXINn):
C11
Odd bus
C10
Even bus
●● The test currents are individually enabled per
CTSTEN[12:0] and AUXINTSTEN[2:1]
C9
Odd bus
C8
Even bus
●● The test current ranges from 6.25µA up to 100µA per
CTSTDAC[3:0] (applies to all enabled sources)
●● The test current sources from VAA or sinks to AGND
per the CTSTSRC bit (applies to all enabled sources)
For the two test current sources on the HVMUX output
side:
●● The test currents are enabled by the MUXDIAGEN bit
●● The test current always sources from the HV supply
VAA
RFILTER
Cn
RHVMUX
X
AGND
AGND
CELL n
VAA
RFILTER
Cn-1
HV
CELL TEST
CURRENT
SOURCE
Odd bus
C6
Even bus
C5
Odd bus
C4
Even bus
C3
Odd bus
C2
Even bus
C1
Odd bus
C0
Even bus
REF
Odd bus
ALTREF
Odd bus
AGND
Even bus
HV
HVMUX TEST SOURCES
CONTROLLED BY:
MUXDIAGEN
MUXDIAGPAIR
MUXDIAGBUS
CTSTDAC
CELL TEST SOURCES
CONTROLLED BY:
CTSTENn
CTSTSRC
CTSTDAC
CELL TEST
CURRENT
SOURCE
RHVMUX
X
X
C7
X
+
LSAMP
AGND
AGND
TO
ADC
-
Figure 42. Test Current Sources
www.maximintegrated.com
Maxim Integrated │ 69
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Shutdown Diagnostic
The shutdown diagnostic, as shown in Table 38, verifies
that no hardware fault is preventing the device from shutting
down, such as the SHDNL input being stuck at logic-one.
To perform the diagnostic, the host attempts a shutdown.
The timing shown in Figure 43 is for a UART idle-mode
shutdown. Once VSHNDL < 0.6V, the ALRTSHDNL bit is
set in the STATUS register and the regulator is disabled;
however, the STATUS register may still be read as long
as VAA has not decayed below 2.95V (typ), which takes
about 1ms. The host should verify that ALRTSHDNL is set.
By reading the bit, the charge pump drives VSHDNL > 1.8V
in about 200µs and enables the regulator. The host must
clear the ALRTSHDNL bit to complete the diagnostic. The
ALRTSHDNLRT bit is a real-time version of ALRTSHDNL,
which automatically clears when VSHDNL > 1.8V.
Table 38. Shutdown Diagnostic
FAULT
COMPARISON
ALERT BIT
LOCATION
SHDNL input stuck
VSHDNL < 0.6V?
ALRTSHDNL
STATUS[12]
SHDNL input stuck
VSHDNL < 0.6V?
ALRTSHNDRT
STATUS[11]
Figure 43. Shutdown Diagnostic Timing
www.maximintegrated.com
Maxim Integrated │ 70
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
HVMUX Switch Open Diagnostic
Since an open HVMUX switch causes the measured
voltage to go to either zero or full scale, it is possible to
execute the test by looking for an overvoltage or undervoltage alert following the diagnostic measurement, without analyzing the measurement data. It is possible to read
all voltage measurements and let the host compare the
results by splitting the test into several segments.
The procedure in Figure 44 is quick and efficient. For
higher sensitivity to faults, each cell-voltage measurement
in the diagnostic mode can be compared to a threshold
of 100mV by the host to determine if the HVMUX path is
working correctly. The threshold is derived from the worstcase HVMUX resistance mismatch and the worst-case
diagnostic current-source value variation. See Table 39
for the HVMUX switch open-fault locations
MAX178xx FULLY FUNCTIONAL
AND INITIALIZED;
MUXDIAGPAIR = 0 DBLBUF = 0
STORE MEASUREMENT
VALUES IN HOST
ENABLE VALID CELLS FOR
MEASUREMENT
SET TEST CURRENT
SOURCE VALUE
CTSTDAC[3:0] = 0xF
START ADC MEASUREMENT
ENABLE MUX TEST CURRENT
SOURCE
MUXDIAGEN = 1
START ADC MEASUREMENT
NO
ALRTOV
OR ALRTUV?
ALL MUX SWITCHES
AND PATHS FUNCTIONING
YES
MUX SWITCH PAIR
IS MALFUNCTIONING
Figure 44. HVMUX Switch Open Diagnostic
Table 39. HVMUX Switch Open Diagnostic
HVMUX SWITCH OPEN-FAULT LOCATION
Cell1
CELL MEASUREMENT
Cell2
Cell3
Cell4
Cell5
Cell6
Cell7
Cell8
Cell9
Cell10
Cell11
Cell12
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0V
5V
Note: NC = No change.
www.maximintegrated.com
Maxim Integrated │ 71
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
HVMUX Switch Shorted Diagnostic
A shorted mux switch is detectable in two ways based
on corrupted measurement values. First, the ALTREF
diagnostic will report a large error. Also, during normal cell
measurements, a shorted HVMUX switch will cause the
LSAMP to saturate, which is also easily detectable.
HVMUX Test Source Diagnostic
The two current sources attached to the HVMUX even
bus and the HVMUX odd bus can be enabled independently instead of as a pair setting the MUXDIAGPAIR
bit. MUXDIAGBUS controls which source is enabled
(MUXDIAGBUS = 1 for odd bus source). This causes
every measurement to have a definable change as the
sources are enabled and disabled. By taking measurements while alternating which current source is enabled,
it is possible to verify that each current source is working
(see Table 40).
Table 40. HVMUX Test Source Diagnostic
EVEN TEST SOURCE
SHORTED TO HV
EVEN TEST SOURCE
OPEN CIRCUIT
ODD TEST SOURCE
SHORTED TO HV
ODD TEST SOURCE
OPEN CIRCUIT
Cell1:
0V
-I x R
5V
IxR
Cell2:
5V
IxR
0V
-I x R
Cell3:
0V
-I x R
5V
IxR
Cell4:
5V
IxR
0V
-I x R
Cell5:
0V
-I x R
5V
IxR
Cell6:
5V
IxR
0V
-I x R
Cell7:
0V
-I x R
5V
IxR
Cell8:
5V
IxR
0V
-I x R
Cell9:
0V
-I x R
5V
IxR
Cell10:
5V
IxR
0V
-I x R
Cell11:
0V
-I x R
5V
IxR
Cell12:
5V
IxR
0V
-I x R
CELL MEASUREMENT CHANGE
HVMUX TEST
SOURCE FAULT:
Note: I = Test source current, R = HVMUX resistance.
www.maximintegrated.com
Maxim Integrated │ 72
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Cn Open Diagnostic
If the cell is disconnected from the input, the corresponding cell test source (sinking to AGND) will pull the cell input
voltage toward 0V (except for C0, where source to VAA current source will pull the cell input voltage to VAA) A new measurement is taken with the current sources enabled, and a change in measurement value is detected. If no open circuit
exists, then the measurement value will change by only the value of the test current across the application circuit series
resistor to the Cn pin. See Table 41.
Table 41. Cn Pin Open Diagnostic
CELL MEASUREMENT
Cn PIN OPEN FAULT LOCATION
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
Cell1
Cell13.3V
0V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell2
NC
Cell2+
Cell1
0V
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell3
NC
NC
Cell3+
Cell2
0V
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell4
NC
NC
NC
Cell4+
Cell3
0V
NC
NC
NC
NC
NC
NC
NC
NC
Cell5
NC
NC
NC
NC
Cell5+
Cell4
0V
NC
NC
NC
NC
NC
NC
NC
Cell6
NC
NC
NC
NC
NC
Cell6+
Cell5
0V
NC
NC
NC
NC
NC
NC
Cell7
NC
NC
NC
NC
NC
NC
Cell7+
Cell6
0V
NC
NC
NC
NC
NC
Cell8
NC
NC
NC
NC
NC
NC
NC
Cell8+
Cell7
0V
NC
NC
NC
NC
Cell9
NC
NC
NC
NC
NC
NC
NC
NC
Cell9+
Cell8
0V
NC
NC
NC
Cell10
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell10+
Cell9
0V
NC
NC
Cell11
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell11+
Cell10
0V
NC
Cell12
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cell12+
Cell11
0V
Note: NC = no change.
www.maximintegrated.com
Maxim Integrated │ 73
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Cn Shorted to SWn Diagnostic
pin is shorted to the Cn pin, then the measured value will
change by approximately 40-50% when the balancing
switch is turned on based on the values of RBALANCE,
and the balancing switch resistance. A short circuit from
SWn to Cn-1 produces the same effect. By comparing
both the VCELLn measurement value along with the
VCELLn+1 and VCELLn-1 values, it is possible to determine exactly where the short circuit is located.
Short circuits between the SWn pins and the cell input
pins are detectable. A shorted SWn pin can be detected
by an acquisition with the relevant cell balancing switch
off and then again with it on. If the SWn pin is not shorted
to an adjacent cell input pin, no change in the measured
value should be observed for the two cases. If the SWn
RFILTER
RBALANCE
CELL #n
RFILTER
RBALANCE
TEST FOR SWn TO
Cn SHORT CIRCUIT
CONDITION
Cn
SWn
HV
CONTROLLED BY
BALSWEN[n-1]
Cn-1
SWn-1
Figure 45. SWn to Cn Short
RFILTER
RBALANCE
CELL #n
RFILTER
RBALANCE
TEST FOR SWn TO
Cn SHORT CIRCUIT
CONDITION
Cn
SWn
Cn-1
HV
CONTROLLED BY
BALSWEN[n-1]
SWn-1
Figure 46. SWn-1 to Cn Short
www.maximintegrated.com
Maxim Integrated │ 74
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Cn Leakage Diagnostic
Leakage at the Cn inputs can cause the voltage seen by
the ADC to be different than that at the voltage source due
to the resistance of the external filter circuit. By utilizing an
alternate measurement path, any voltage errors as a result
of Cn pin leakage may be detected. The SWn pins are
connected to the cell sources through an alternate path.
Implementing an HVMUX connection from the SWn pins to
the LSAMP completes the redundant measurement path.
This alternate measurement path for the cell measurements can be enabled by setting the ALTMUXSEL bit of the
DIAGCFG register. When this bit is set and a measurement
cycle is started, all cell measurements are taken using the
alternate path instead of the Cn pin HVMUX connections.
Measurements taken with the normal and alternate paths
can be compared and should be nearly identical for a
system with no faults. Since the SWn pins typically have
a smaller external filter time constant than the Cn pins,
increasing the oversampling setting for this diagnostic
measurement may be beneficial for reducing measurement
noise when the measurement is taken while the cells are
exposed to transient loads.
Cell Overvoltage Diagnostic
Enabling balancing switches can be used to generate
a voltage up to 2 x VCELL at the ALTMUX inputs to test
the input range capability, assuming the cell is sufficiently
charged.
A cell-position input voltage is elevated by approximately
1.5 x VCELLn turning on either BALSWn+1 or BALSWn-1.
When the adjacent switch is turned on, the SWn pin
shared with the switch is moved by 0.5 x VCELL, which
causes VCELLn to increase by that amount when measured with the ALTMUX path. For the topmost cell position, BALSWn-1 must be used, and for the bottom cell
position, BALSWn+1 must be used. By turning on two
adjacent switches instead of one, such as BALSWn+1
and BALSWn+2, the measured voltage is approximately
2 x VCELL, assuming all cells are at approximately the
same voltage. This technique can create an input voltage
that exceeds the overvoltage threshold to verify the higher
end of the input range and the overvoltage alert function.
Input range can also be verified by using the cell-test
sources to induce a higher cell channel voltage. If the
change is as expected, it shows that the system can measure voltages above the present nominal input voltage.
TO CELL n+1
SENSE WIRE
RFILTER
Cn
CFILTER
RBALANCE
SWn
CELL n
+
LSAMP
RBALFILTER
SWn-1
RBALANCE
SENSE WIRE
TO ADC
RFILTER
CFILTER
TO CELL n-1
Cn-1
AGND
HVMUX
BUS
HVMUX
BUS
ALTMUX ALTMUX
BUS
BUS
Figure 47. Redundant HVMUX Paths
www.maximintegrated.com
Maxim Integrated │ 75
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Cell Undervoltage Diagnostic
1) Perform an acquisition.
Turning on the balancing switch can be used to generate
a near-zero voltage at any input channel to the ALTMUX
path. By successfully measuring this near-zero voltage,
the diagnostic verifies the lower-end of the input range
and the undervoltage alert function.
Input range can also be verified by using the cell-test
sources to induce a lower-cell channel voltage. If the
change is as expected, it shows that the system can measure voltages below the present nominal input voltage.
ALRTHVUV Comparator Diagnostic
The ALRTHVUV comparator functionality can be verified by
setting the CPEN bit (to disable the HV charge pump) and
then discharging the external HV capacitor by performing
an acquisition for 5ms (such as 12 cells, 32 oversamples),
or by enabling using one or more of the cell-test current
sources for an appropriate amount of time. The ALRTHVUV
bit should be set after the voltage has decayed.
HVMUX Sequencer Diagnostic
The HVMUX control sequence can be checked using the
sources attached to the Cn pins. The sources are controlled by the CTSTEN bits of the CTSTCFG register. The
basic test method is as follows:
2) Turn on a cell-test source.
3) Wait for sufficient settling time.
4) Perform an acquisition.
5) Check that the cell(s) sharing the pin whose current
source was turned on had the expected measurement change and other cells had no changes.
6) Repeat steps 1–5 for other pins to confirm there are
no logic errors in the HVMUX control sequencer.
The cell-test sources can be turned on for individual pins
to create a detectable measurement variation that is determined by the current source value and the series resistance of the cell input filter circuit. The settling time needed
for a certain change in measurement value depends on
the size of the external filter capacitors and the amplitude
of the test-current source. A longer settling time gives the
full-voltage change, while a shorter settling time saves test
time and should still produce an easily detectable voltage
difference. By detecting the expected measurement variation for a given cell input pair and running a sequence of
tests to cover all cases, the HVMUX sequencer operation
is verified.
VAA
TEST SOURCE
RFILTER
RHVMUX
Cn
TEST SOURCES
CONTROLLED BY:
CTSTENn
CTSTSRC
AGND CTSTDAC
AGND
CELL n
VAA
TEST SOURCE
RFILTER
RHVMUX
Cn-1
+
LSAMP
AGND
AGND
TO ADC
-
Figure 48. HVMUX Sequencer Diagnostic
www.maximintegrated.com
Maxim Integrated │ 76
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
STANDBY MODE;
DBLBUF = 0
STORE MEASUREMENT
VALUES
ENABLE VALID CELLS
FOR MEASUREMENT
SET TEST SOURCE
CURRENT
CTSTDAC[3:0] = 0xF
INITIATE ACQUISITION
SET TEST SOURCE
POLARITY
CTSTSRC = 0 FOR AGND
n = 12
n = n-1
ENABLE CELL TEST
CURRENT SOURCE n
CTSTENn = 1
WAIT FOR SETTLING
TIME
ONE APPS CIRCUIT R*C TIME
INITIATE ACQUISITION
COMPARE ALL CELL
MEASUREMENTS TO
SAVED VALUES
CTSTENn = 0
NO CHANGE
EXCEPT VCELLn,
VCELLn-1
YES
DISABLE CELL TEST
CURRENT SOURCE
NO
n = 1?
YES
PASS
NO
FAIL
Figure 49. HVMUX Sequencer Diagnostic
www.maximintegrated.com
Maxim Integrated │ 77
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ALU Diagnostic
The ADCTEST1x registers are used for all odd-numbered
samples in oversampling mode as well as in singlesample acquisitions. The ADCTEST2x registers are used
for all even-numbered samples (in oversampling mode).
The A registers are used in lieu of the first conversion of
each measurement and the B registers are used in lieu of
the second conversion. After the acquisition, the host can
read the measurement data registers and the alert registers and compare the data to expected values to verify the
ALU functionality.
The ALU diagnostic utilizes the ADC test mode
(ADCTSTEN = 1) to feed data from specific test registers
directly into the ALU instead of from the ADC conversion.
The host can write different data combinations to the test
registers in this mode to provide test coverage for all ALU
and data registers (CELLn, VBLKP, DIAG, and AUXINn)
as well as all alerts that are based on the measurement
data and the corresponding thresholds (e.g., overvoltage
alerts).
USER REGISTER MAP
ALU REGISTERS
12
12
DIAG ALU
ADC IN +
BLOCK ALU
12
ADC
ALU1
ADC IN 12
ALUn
14
14
14
14
AIN1 REGISTER
AIN2 REGISTER
DIAG REGISTER
VBLOCK REGISTER
CELL1 REGISTER
CELLn REGISTER
12
ALU12
ADCTSTEN
RESET
12
12
12
12
12
ADC_CHOP
ADCTEST1A[11:0]
14
CELL12 REGISTER
DATAMOVE
TRIGGER
LOAD
ADCTEST1B[11:0]
ADCTEST2A[11:0]
UART COMMUNICATION
ADCTEST2B[11:0]
OVSAMP_EVEN_ODD
Figure 50. ALU Diagnostic
www.maximintegrated.com
Maxim Integrated │ 78
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
AUXINn Open Diagnostic
The AUXINn open diagnostic can be used to detect if the AUXINn pin is open circuit. The diagnostic procedure is shown
in Figure 51 and Figure 52.
VTHRM
RRATIO
THERMISTOR t
TEST THIS
NODE FOR AN
OPEN CIRCUIT
RFILTER
VAA
SET BY
CTSTDAC[3:0]
CONTROLLED BY
AUXINNTSTEN
AND CTSTSRC
TO LVMUX
AUXINn
CFILTER
AGND
AGND
Figure 51. AUXINn Open Diagnostic
MAX178xx FULLY
FUNCTIONAL AND
INITIALIZED
ENABLE APPROPRIATE
INPUTS FOR
MEASUREMENT
START ADC
MEASUREMENT
SAVE ADC
MEASUREMENT
RESULT
SET CTSTDAC[3:0]
CURRENT SOURCE
VALUE
TESTED INPUTS OK;
REPEAT PROCEDURE
FOR OTHER INPUTS
YES
ALL
VOLTAGES WITHIN
THRESHOLD
?
NO
OUT OF TOLERANCE
INPUT HAS OPEN
CIRCUIT
COMPARE ADC
MEASUREMENT TO
SAVED VALUE
SELECT CTSTSRC TO
SOURCE OR SINK
CURRENT
DETERMINE VOLTAGE
CHANGE THRESHOLD
BASED ON CURRENT
AND INPUT FILTER
SET AUXINNTSTEN TO
ENABLE SOURCE
START ADC
MEASUREMENT
Figure 52. AUXINn Open Diagnostic
www.maximintegrated.com
Maxim Integrated │ 79
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Calibration ROM Diagnostic
The CRC for the calibration ROM can be independently
computed by the host. Any mismatch between the calculated CRC and the factory CRC indicates that the measurement accuracy may be compromised. The factory
CRC, ROMCRC[7:0], is stored in the ID2 register.
The CRC for the calibration ROM uses the same polynomial as the CRC-8 PEC byte and is performed on
addresses C0h to CAh, CFh, ID1, and ID2 and processed
in the order shown in Table 42, least-significant bit first.
Registers CAL11, CAL12, CAL13, and CAL14 are excluded from the calculation. Also, certain ROM bits must be
zeroed prior to performing the calculation using the bitwise AND masks in Table 42.
Table 42. CRC Bit Mask
ORDER
ADDRESS
NAME
BIT-WISE AND MASK
1
0xC0
CAL0
0x003F
2
0xC1
CAL1
0x007F
3
0xC2
CAL2
0x3FFF
4
0xC3
CAL3
0xFFFF
5
0xC4
CAL4
0xFFFF
6
0xC5
CAL5
0xFFFF
7
0xC6
CAL6
0xFFFF
8
0xC7
CAL7
0x3F3F
9
0xC8
CAL8
0x003F
10
0xC9
CAL9
0x3FFF
11
0xCA
CAL10
0x0003
12
0xCF
CAL15
0x007F
13
0x0D
ID1
0xFFFF
14
0x0E
ID2
0x00FF
www.maximintegrated.com
Maxim Integrated │ 80
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Applications Information
Vehicle Applications
Battery cells can use various chemistries such as NiMH,
Li-ion, SuperCap, or Lead-Acid. SuperCap cells are used
in fast-charge applications such as energy storage for
regenerative braking. An electric vehicle system may
require a high-voltage battery pack containing up to 200
Li-ion cells or up to 500 NiMH cells.
A battery module is a number of cells connected in series
that can be connected with other modules to build a
high-voltage battery pack (see Figure 53). The modularity
allows for economy, configurability, quick assembly, and
serviceability. The minimum number of cells connected to
any one device is limited by the device’s minimum operating voltage. The 9V minimum for VDCIN usually requires
at least two Li-ion, six NiMH, or six SuperCap cells per
module.
BATTERY PACK
PLUG
MAIN HV+
CONTACTOR
PHASE 1
M
PHASE 2
PHASE 3
INVERTER
COMM
BUS
VEHICLE 12V PWR
VEHICLE
CONTROL
SYSTEM
(VCS)
VEHICLE GND
COMM BUS
PLUG
BATTERY
MANAGEMENT
SYSTEM
(BMS)
CELL STACK
MAIN HVCONTACTOR
CHASSIS GROUND
Figure 53. Electric Vehicle System
www.maximintegrated.com
Maxim Integrated │ 81
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Battery Management Systems
Daisy-Chain System
A daisy-chain system employs a single data link between the host and all the battery modules. The daisy-chain method
reduces cost and requires only a single isolator between the lowest module and the host.
INVERTER+
MAIN HV+
CONTACTOR
BATTERY
MODULE
SLAVE
MONITOR
AND
CONTROL
TEMP
BATTERY
MODULE
SLAVE
MONITOR
AND
CONTROL
TEMP
BATTERY PACK
HVAC
MASTER
CONTROLLER
COMMUNICATION
ISOLATION
VEHICLE
COMM BUS
TEMP
MAIN HVCONTACTOR
INVERTER-
GROUND
FAULT
CHECK
BATTERY
MODULE
SLAVE
MONITOR
AND
CONTROL
MICRO-Ω
SHUNT
CHASSIS GROUND
Figure 54. Daisy-Chain System
www.maximintegrated.com
Maxim Integrated │ 82
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Distributed-Module Communication
A distributed-module system employs a separate data link and isolator between each battery module and the host with
an associated increase in cost.
INVERTER+
PACK
SWITCHES
ISOLATOR
BATTERY
MODULE
SLAVE
MONITOR
AND
CONTROL
TEMP
ISOLATOR
BATTERY
MODULE
SLAVE
MONITOR
AND
CONTROL
TEMP
ISOLATOR
BATTERY
MODULE
SLAVE
MONITOR
AND
CONTROL
TEMP
MASTER
CONTROLLER
VEHICLE GND
COMM BUS
INVERTER-
ISOLATOR
FAULT
CHECK
PACK
SWITCHES
BATTERY
MODULE
SLAVE
MONITOR
AND
CONTROL
TEMP
CURRENT
SENSE
Figure 55. Distributed System
www.maximintegrated.com
Maxim Integrated │ 83
MAX17823H
Combining MAX17823H and
MAX17880 Devices
The MAX17823H can be used stand-alone or in conjunction with the MAX17880. For systems containing both
types of devices, the simplest implementation is to segregate them into two separate daisy chains. The separate
daisy-chains increase the reliability and simplify device
addressing.
However, if the system employs only a single daisy-chain,
the companion devices must coexist in the same daisychain. To mitigate any potential addressing conflicts, the
battery-management UART protocol allows the host to
create a separate address space for each type of device.
The host creates the separate address spaces during
initialization of the daisy-chain. The host issues separate
HELLOALL commands for each type of device using 57h
for MAX17823H and A7h for MAX17880. Each type of
device will ignore the HELLOALL command intended for
the other type. While it does not matter which HELLOALL
command is issued first, the host must ascertain the
address returned from the first HELLOALL command,
which is the last device address incremented by one. That
value can then be used as the first address sent with the
second HELLOALL command. In this manner, separate
address spaces are created for each type of device.
Acquisition Latency for Daisy-Chain Systems
A maximum 3-bit delay (1.5µs at 2Mbps) is incurred as
any command propagates through each daisy-chained
device. For example, for an 8-device stack, a maximum
12µs delay is incurred. This allows all eight acquisitions to
occur within 12µs of each other.
12-Channel, High-Voltage
Data-Acquisition Systems
The external protection circuit shown in Figure 56 filters
and clamps the DCIN input. During negative voltage transients, the filter capacitor maintains power to the device
through the transient.
For maximum measurement accuracy, dedicated wires
separate from the cell-sense wires should be used for the
power-supply connection (Kelvin sense). This is to eliminate voltage drops in the sense wires induced by supply
current. If the application can tolerate the induced error,
the supply wires can serve as the sense wires to reduce
the wire count.
Connecting Cell Inputs
If the battery stack contains less than 12 cells, the lowestorder inputs (e.g., C1 and C0) should be utilized first
and connected to the lowest common-mode signals. Any
unused cell inputs should be shorted together and any
unused switch inputs should be shorted together. The
TOPCELL register must also be configured for stacks with
less than 12 cells to mask out any false alerts corresponding to the unused channels.
External Cell Balancing
The cell-balancing current can be switched by external
transistors if more power dissipation is required. The
internal switches can be used to switch the external transistors; the power is limited by external current-limiting
resistors.
MODULE+
R80
100Ω
Power-Supply Connection
Both internal and external protection circuits permit the
device to derive its supply directly from the battery module
voltage. The circuits protect against transients such as
those that occur when the battery voltage is first connected to the device, when the vehicle inverter is connected to
the battery stack, or during charge/discharge transitions
such as regenerative braking. The internal circuits include
72V-tolerant battery inputs and a high noise rejection ratio
(PSRR) for the internal low-voltage regulator.
www.maximintegrated.com
DCIN
C80
2.2µF
100V
D80
SMCJ58A
Figure 56. Power-Supply Connection
Maxim Integrated │ 84
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
External Cell-Balancing Using FET Switches
An application circuit for cell-balancing that employs FET switches is shown in Figure 57. QBALANCE is selected for low
VT that meets the minimum VCELLn requirements of the application during balancing. DGATE protects QBALANCE from
reverse VGS voltage during a hot-plug event. RGATE protects the device by limiting the hot-plug inrush current. CGATE
can be added to attenuate transient noise coupled from the drain to the gate to maintain the transistor bias. The cellbalancing current is limited by RBALANCE. A list of FET balancing components is shown in Table 43.
TO CELL n+1
RFILTER
SENSE WIRE
Cn
TO HVMUX
CFILTER
RBIAS
SWn
TO ALTMUX
BALSWn
RBALANCE
CBALFILTER
CELL n
RGATE
QBALANCE
DGATE
SENSE WIRE
BALANCING
SWITCH (n)
HV
CGATE
RBIAS
SWn-1
RFILTER
TO ALTMUX
Cn-1
TO HVMUX
CFILTER
AGND
TO CELL n-1
Figure 57. External Balancing (FET)
Table 43. FET Balancing Components
COMPONENT NAME
TYPICAL VALUE OR PART
RBIAS
1kΩ
Voltage-divider for transistor bias
RGATE
100Ω
Hot-plug current-limiting resistor
DGATE
S1B
Reverse-voltage gate protection
CGATE
1nF
Transient VGS suppression
RBALANCE
per application
QBALANCE
SQ2310ES
www.maximintegrated.com
FUNCTION
Balancing current-limiting resistor
External switch
Maxim Integrated │ 85
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
External Cell Balancing Using BJT Switches
An application circuit for cell balancing that employs BJT switches is shown in Figure 58. QBALANCE is selected for
power dissipation based on the IB drive current available and the cell-balancing current. DBASE protects QBALANCE from
negative VGS during hot-plug events. RBASE protects the device by limiting the hot-plug inrush current. The cell-balancing current is limited by RBALANCE. A list of BJT balancing components is shown in Table 44.
TO CELL n+1
SENSE WIRE
RFILTER
Cn
TO HVMUX
CFILTER
RBIAS
SWn
TO ALTMUX
BALSWn
RBALANCE
CBALFILTER
CELL n
RBASE
QBALANCE
DBASE
SENSE WIRE
BALANCING
SWITCH (n)
HV
CBASE
RBIAS
SWn-1
RFILTER
TO ALTMUX
Cn-1
TO HVMUX
CFILTER
AGND
TO CELL n-1
Figure 58. External Cell Balancing (BJT)
Table 44. BJT Balancing Components
COMPONENT NAME
TYPICAL VALUE OR PART
RBIAS
22Ω
Voltage-divider for transistor bias
RBASE
15Ω
Hot-plug current-limiting resistor
DBASE
S1B
Reverse emitter-base voltage protection
Transient VBE suppression
CBASE
1nF
RBALANCE
per balancing current requirements
QBALANCE
NST489AMT1
www.maximintegrated.com
FUNCTION
Balancing current-limiting resistor
External switch
Maxim Integrated │ 86
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
External Cell-Balancing
Short-Circuit Detection
UART Interface
A short-circuit fault in the external balancing path results
in continuous current flow through RBALANCE and
QBALANCE. To detect this fault, the voltage drop across
the sense-wire parasitic resistance must be measurable.
A very small series resistor can added for this purpose.
The UART pins also employ both internal and external circuits to protect against noise. The recommended external
filters are shown in Figure 59. ESD protection is shown in
Figure 59 and Figure 60.
DAISY-CHAIN
DEVICE (n)
RXLP
RXLN
C40
15pF
C41
15pF
R43
100kΩ
R40
1.5kΩ
C42
2.2nF
600V
R50
47Ω
R41
1.5kΩ
C43
2.2nF
600V
R51
47Ω
R42
100kΩ
GNDL
TXUP
TXUN
SIGNAL TRACES OR
WIRE HARNESS
R44
47Ω
C50
2.2nF
600V
R54
1.5kΩ
R45
47Ω
C51
2.2nF
600V
R55
1.5kΩ
TXLP
TXLN
DAISY-CHAIN
DEVICE (n-1)
SIGNAL TRACES OR
WIRE HARNESS
R52
100kΩ
C52
15pF
RXUP
C53
15pF
R53
100kΩ
RXUN
GNDL
Figure 59. UART Connection
www.maximintegrated.com
Maxim Integrated │ 87
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
High-Z Idle Mode
ferred for ports driving inductive loads to minimize ringing.
See Figure 60 for a high-Z idle mode application circuit.
The high-Z idle mode lowers radiated emissions from wire
harnesses by minimizing the charging and discharging
of the AC-coupling capacitors when entering and exiting
the idle mode. The application circuit shown in Figure 61
uses a weak resistor-divider to bias the TX lines to VDDL
during the high-Z idle period and pnp transistor clamps
to limit the maximum voltage at the TX pins during high
noise injection. The resistor-divider and pnp clamps are
not needed for applications utilizing only the low-Z mode.
The low-Z and high-Z idle modes both exhibit a similar
immunity to noise injection. Low-Z mode may be pre-
UART Supplemental ESD Protection
The UART ports may require supplemental protection to
meet IEC 61000-4-2 requirements for contact discharge.
The recommended circuits to meet ±8kV protection levels
are shown in Figure 61 and Figure 62. The protection
components should be placed as near as possible to the
signal’s entry point on the PCB.
VDDL[2,3]
FMB3906
VAA
R46
10kΩ
R48
10kΩ
TX[U,L]P
R44
47Ω
R45
47Ω
TX[U,L]N
R47
10kΩ
TO REST OF TX
CIRCUIT OR RX
CIRCUIT
R49
10kΩ
GNDL[2,3]
Figure 60. High-Z Idle Mode Application Circuit
TXP
TXN
47Ω
47Ω
TO
RECEIVER
PESD1CAN
GNDL
Figure 61. External ESD Protection for UART TX Ports
www.maximintegrated.com
Maxim Integrated │ 88
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
2.2nF
600V
FROM
TRANSMITTER
2.2nF
600V
1.5kΩ
100Ω
1.5kΩ
100Ω
100kΩ
15pF
50V
RXP
RXN
15pF
50V
100kΩ
PESD1CAN
GNDL
Figure 62. External ESD Protection for UART RX Ports
Single-Ended RX Mode
To configure the lower port for single-ended RX mode, the RXLP input is connected to digital ground and the RXLN input
receives the inverted signal, just as it does for differential mode. If the host cannot transmit inverted data then the signal
must be inverted as shown in Figure 63. Transmitter operation is not affected. If the upstack device is single-ended then
only the TXUN signal is required. Note: In single-ended mode, SHDNL must be driven externally.
ISOLATED OR
NON-ISOLATED
INVERTING
LOGIC DRIVER
UART DATA
RXLP
Rf
1.5kΩ
RXLN
Cf
15pF
GNDL
Figure 63. Application Circuit for Single-Ended Mode
www.maximintegrated.com
Maxim Integrated │ 89
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
UART Isolation
circuit locations where extremely large common-mode
noise is present, such as between vehicle chassis and the
high-voltage battery pack terminals.
The UART is expected to communicate reliably in noisy
high-power battery environments where both high dV/dt
supply noise and common-mode current injection induced
by electromagnetic fields are prevalent. Common-mode
currents can also be induced by parasitic coupling of the
system to a reference node such as a battery or vehicle
chassis. The daisy-chain physical layer is designed for
maximum noise immunity.
The AC-coupled differential communication architecture
has a ±30V common-mode range and +6V differential
swing. This range is in addition to the static commonmode voltage across the AC-coupling capacitors between
modules. Transmitter drivers have low internal impedance and are source-terminated by the application circuit
so that impedances are well-matched in the high- and
low-driver states. This architecture minimizes differential
noise induced by common-mode current injection. The
receiver inputs are filtered above the fundamental communication frequency to prevent high-frequency noise
from entering the device. The system is designed for use
with isolation transformers or optocouplers to provide an
even higher degree of common-mode noise rejection in
Since a mid-pack service-disconnect safety switch is
present in many battery packs, the device is designed
to communicate with the entire daisy-chain whether the
service-disconnect switch is engaged or open. This is
possible with daisy-chains that employ capacitor isolation.
UART Transformer Isolation
The UART ports can be transformer-coupled because
of their DC-balanced differential design (see Figure 64).
Transformer coupling between the MAX17841B interface and the MAX17823H provide excellent isolation
and common-mode noise rejection. The center-tap of
a signal transformer can be used to enhance commonmode rejection by AC-coupling the node to local ground.
Common-mode currents that are able to pass through
the parasitic coupling of the primary and secondary are
shunted to ground to make a very effective commonmode noise filter.
MAX17841
DAISY-CHAIN DEVICE 1
47Ω
1.5kΩ
15pF
TXP
RXLP
1.5kΩ
RXLN
TXN
47Ω
SIGNAL TRACES
OR WIRE HARNESS
1nF
15pF
GNDL
GNDL
Figure 64. UART Transformer Isolation
www.maximintegrated.com
Maxim Integrated │ 90
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
UART Optical Isolation
The daisy-chain can use optical isolation instead of transformer or capacitor isolation (see Figure 65).
Device Initialization Sequence
Immediately after reset, all device addresses are set to 0x00 and the UART baud rate and receive modes have not been
auto-detected; therefore, the following initialization sequence is recommended after every reset or after any change to
the hardware configuration (see Figure 66):
VAA
FROM UART
DATA SOURCE
RXLP
RFILTER
4.7kΩ
RXLN
CFILTER
15pF
ACPL-M72T
GNDL
3.3V
ROPTO
TXLN
TO UART
DATA SOURCE
ACPL-M72T
Figure 65. UART Optical Isolation
DEVICE
COMMUNICATION
INITIALIZED
DEVICE(s) IN
SHUTDOWN MODE
YES
HOST SENDS
PREAMBLES FOR 2ms
PER DEVICE TO WAKE
UP DAISY-CHAIN
ADDRESSING ERROR
NO
ADDRESSES AS
EXPECTED?
NO
HOST RECEIVED
PREAMBLE?
NO
FAULT OR NOT
ENOUGH PREAMBLES
SENT
COMMUNICATION
FAULT OR ADDRESSING
ERROR
YES
PEC ERRORS?
YES
HOST SELECTS FIRST
ADDRESS AND SENDS
HELLOALL
RETURN ADDRESS
AS EXPECTED?
READALL ADDRESS
REGISTERS
NO
FAULT OR DEVICE
COUNT ERROR
WRITEALL FA[4:0]
(IF FIRST ADDRESS
USED ≠ 0)
YES
Figure 66. Device Initialization Sequence
www.maximintegrated.com
Maxim Integrated │ 91
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
After the daisy-chain is initialized, each device should be
configured for operation as follows:
1) Perform a READALL of the status registers.
• The ALRTRST bit should be set in all devices to signify that a reset occurred.
• Check for other unexpected alerts.
2) Clear the ALRTRST bit on each device so that future
unintended resets can be detected.
3) Change configuration registers as necessary with
WRITEALL commands:
• Configure the alert enables and alert thresholds as
required by the application.
• Configure the acquisition mode.
4) Perform all necessary key-on diagnostics.
5) Start the acquisition cycle.
6) Continuously monitor diagnostic and alert status bits.
7) Periodically perform additional
required by the application.
diagnostics,
Error Checking
as
Data integrity is provided by Manchester encoding, parity, character framing, and packet-error checking (PEC).
The combination of these features verify stage-to-stage
communication both in the write and read directions with
a hamming distance(HD) value of 6 for commands with
a length up to 247 bits (counted prior to Manchester
encoding and character framing). This is equivalent to
the longest possible command packet for a daisy-chain
of up to 13 devices. The data-check byte is present in
the READALL and READDEVICE commands to verify
the entire command propagated without errors. Using the
BIT0
BIT1
BIT2
data-check and PEC bytes, complete transaction integrity
for READALL and READDEVICE command packets can
be verified.
PEC Errors
If the device receiver receives an invalid PEC byte, the
ALRTPEC bit is set in the STATUS register. A device does
not execute any write command unless the received PEC
matches the calculated PEC, so to verify the write command execution, the host should perform a READALL to
verify the contents of the written register.
For returned read packets, the host should store the
received data, perform the PEC calculation, and compare
the results to the received PEC byte before considering the data to be valid. To support PEC, the host must
implement a CRC-8 (8-bit cyclic redundancy check)
encoding and decoding algorithm based on the following
polynomial:
P(x) = x8 + x6 + x3 + x2 + 1
The host uses the algorithm to process all bytes received
in the command packet prior to the PEC byte itself.
Neither the PEC nor the alive-counter bytes are part of the
calculation. The bits are processed in the order they are
received, LSB first. A byte-wise pseudocode algorithm is
shown in Figure 68, but lookup table solutions are also
possible to reduce host calculation time.
For commonly issued command packets, the host can
pre-calculate (hard-code) the PEC byte. For commonly
used partial packets, the CRC value of a partial calculation can be used as the initial value for a subsequent runtime calculation (see Figure 67).
BIT3
BIT4
BIT5
BIT6
BIT7
INPUT DATA BITSTREAM
(LSB FIRST)
Figure 67. CRC Calculation
www.maximintegrated.com
Maxim Integrated │ 92
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Function PEC_Calculation(ByteList(), NumberOfBytes, CRCByte)
{
// CRCByte is initialized to 0 for each ByteList in this implementation, where
// ByteList contains all bytes of a single command. It is passed into the
// function in case a partial ByteList calculation is needed.
// Data is transmitted and calculated in LSb first format
// Polynomial = x^8+x^6+x^3+x^2+1
POLY = &HB2 // 10110010b for LSb first
//Loop once for each byte in the ByteList
For ByteCounter = 0 to (NumberOfBytes – 1)
(
//Bitwise XOR the current CRC value with the ByteList byte
CRCByte = CRCByte XOR ByteList(Counter1)
//Process each of the 8 CRCByte remainder bits
For BitCounter = 1 To 8
(
// The LSb should be shifted toward the highest order polynomial
// coefficient. This is a right shift for data stored LSb to the right
// and POLY having high order coefficients stored to the right.
// Determine if LSb = 1 prior to right shift
If (CRCByte AND &H01) = 1 Then
// When LSb = 1, right shift and XOR CRCByte value with 8 LSbs
// of the polynomial coefficient constant. “/ 2” must be a true right
// shift in the target CPU to avoid rounding problems.
CRCByte = ((CRCByte / 2) XOR POLY)
Else
//When LSb = 0, right shift by 1 bit. “/ 2” must be a true right
// shift in the target CPU to avoid rounding problems.
CRCByte = (CRCByte / 2)
End If
//Truncate the CRC value to 8 bits if necessary
CRCByte = CRCByte AND &HFF
)
)
}
//Proceed to the next bit
Next BitCounter
//Operate on the next data byte in the ByteList
Next ByteCounter
// All calculations done; CRCByte value is the CRC byte for ByteList() and
// the initial CRCByte value
Return CRCByte
Figure 68. PEC Calculation Pseudocode
www.maximintegrated.com
Maxim Integrated │ 93
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Register Map
ADDRESS
POR
0x00
8236h
VERSION
Device model and version
0x01
0000h
ADDRESS
Device addresses
0x02
8000h
STATUS
Status flags
0x03
0000h
FMEA1
Failure mode flags 1
0x04
0000h
ALRTCELL
Voltage-fault alert flags
0x05
0000h
ALRTOVCELL
Overvoltage alert flags
0x07
0000h
ALRTUVCELL
Undervoltage alert flags
0x08
0000h
ALRTBALSW
Balancing switch alert flags
0x0A
0F0Fh
MINMAXCELL
Cell number for the highest and lowest voltages measured
0x0B
0000h
FMEA2
0x0D
XXXXh
ID1
Device ID 1
0x0E
XXXXh
ID2
Device ID 2
0x10
0002h
DEVCFG1
0x11
0000h
GPIO
0x12
0000h
MEASUREEN
0x13
0000h
SCANCTRL
Acquisition control and status
0x14
0000h
ALRTOVEN
Overvoltage-alert enables
0x15
0000h
ALRTUVEN
Undervoltage-alert enables
0x18
0000h
TIMERCFG
Timer configuration
0x19
0000h
ACQCFG
Acquisition configuration
0x1A
0000h
BALSWEN
Balancing-switch enables
0x1B
0000h
DEVCFG2
Device configuration 2
0x1C
0000h
BALDIAGCFG
Balancing diagnostic configuration
0x1D
0000h
BALSWDCHG
Balancing-switch discharge configuration
0x1E
000Ch
TOPCELL
0x20
0000h
CELL1
Cell 1 measurement result
0x21
0000h
CELL2
Cell 2 measurement result
0x22
0000h
CELL3
Cell 3 measurement result
0x23
0000h
CELL4
Cell 4 measurement result
0x24
0000h
CELL5
Cell 5 measurement result
0x25
0000h
CELL6
Cell 6 measurement result
0x26
0000h
CELL7
Cell 7 measurement result
www.maximintegrated.com
NAME
DESCRIPTION
Failure mode flags 2
Device configuration 1
GPIO status and configuration
Measurement enables
Top-cell configuration
Maxim Integrated │ 94
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Register Map (continued)
ADDRESS
POR
NAME
DESCRIPTION
0x27
0000h
CELL8
Cell 8 measurement result
0x28
0000h
CELL9
Cell 9 measurement result
0x29
0000h
CELL10
Cell 10 measurement result
0x2A
0000h
CELL11
Cell 11 measurement result
0x2B
0000h
CELL12
Cell 12 measurement result
0x2C
0000h
BLOCK
Block-measurement result
0x2D
0000h
AIN1
AUXIN1 measurement result
0x2E
0000h
AIN2
AUXIN2 measurement result
0x2F
0000h
TOTAL
Sum of all cell measurements
0x40
FFFCh
OVTHCLR
Cell overvoltage-clear threshold
0x42
FFFCh
OVTHSET
Cell overvoltage-set threshold
0x44
0000h
UVTHCLR
Cell undervoltage-clear threshold
0x46
0000h
UVTHSET
Cell undervoltage-set threshold
0x48
FFFCh
MSMTCH
Cell-mismatch threshold
0x49
0000h
AINOT
AUXIN overtemperature threshold
AUXIN undertemperature threshold
0x4A
FFF0h
AINUT
0x4B
0000h
BALSHRTTHR
Balancing switch diagnostic, short-circuit threshold
0x4C
0000h
BALLOWTHR
Balancing switch diagnostic, on-state low threshold
0x4D
0000h
BALHIGHTHR
Balancing switch diagnostic, on-state high threshold
0x50
0000h
DIAG
0x51
0000h
DIAGCFG
Diagnostic configuration
0x52
0000h
CTSTCFG
Test-source configuration
0x57
0000h
ADCTEST1A
User-specified data for ALU diagnostic
0x58
0000h
ADCTEST1B
User-specified data for ALU diagnostic
0x59
0000h
ADCTEST2A
User-specified data for ALU diagnostic
0x5A
0000h
ADCTEST2B
User-specified data for ALU diagnostic
www.maximintegrated.com
Diagnostic measurement result
Maxim Integrated │ 95
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Version Register (address 0x00)
BIT
POR
NAME
823h
MOD[11:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
Model number. Always reads 823h.
D8
D7
D6
D5
D4
D3
Die version per table below:
D2
VERSION
VER[3:0]
D1
MAX17823H
7h
MAX17823B
6h
MAX17823A
5h
MAX17823A
4h
MAX17823
3h
MAX17823
2h
MAX17823
1h
7h
VER[3:0]
D0
www.maximintegrated.com
Maxim Integrated │ 96
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ADDRESS Register (address 0x01)
BIT
POR
NAME
0
Reserved
DESCRIPTION
D15
D14
Always reads logic-zero.
D13
D12
D11
D10
0
FA[4:0]
0
Reserved
D9
D8
Address of the device connected to the host (first address). If the host uses a first address
other than 0x00 in the HELLOALL command, then the host must write that first address to all
devices in the daisy-chain with a WRITEALL command. READALL commands require that
FA[4:0] and DA[4:0] be correct in order for the data check and PEC features to function as
intended.
D7
D6
Always reads logic-zero.
D5
D4
D3
D2
0
DA[4:0]
D1
Device address written by the HELLOALL command as it propagates up the daisy-chain and
is automatically incremented for each device. The host must choose a first address so that
the last device address will not exceed the maximum address of 0x1F during the HELLOALL
command. Writing has no effect except with a HELLOALL command while ADDRUNLOCK = 1.
D0
www.maximintegrated.com
Maxim Integrated │ 97
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
STATUS Register (address 0x02)
BIT
POR
NAME
D15
1
ALRTRST
Indicates a power-on-reset event occurred. Clear after power-on and after a successful
HELLOALL to detect future resets. Writing to a logic-one has no effect.
D14
0
ALRTOV
Bit-wise logical OR of ALRTOVCELL[15:0]. Read-only.
D13
0
ALRTUV
Bit-wise logical OR of ALRTUVCELL[15:0]. Read-only.
D12
0
ALRTSHDNL
Indicates VSHDNL < VIL. Read during shutdown diagnostic when VAA > VPORFALL.
Cleared by writing to logic-zero or POR. Writing to a logic-one has no effect.
D11
0
ALRTSHDNLRT
Indicates VSHDNL < VIL. Read during shutdown diagnostic when VAA > VPORFALL.
Read-only.
D10
0
ALRTMSMTCH
Indicates VMAX - VMIN > VMSMTCH. Cleared at next acquisition if the condition is false.
Read-only.
D9
0
ALRTTCOLD
Logical OR of ALRTOVAIN0 and ALRTOVAIN1. Read-only.
D8
0
ALRTTHOT
Logical OR of ALRTUVAIN0 and ALRTUVAIN1. Read-only.
D7
0
ALRTPEC
Indicates a received character contained a PEC error. Cleared only by writing to logiczero. Writing to a logic-one has no effect.
0
Reserved
Always reads logic-zero.
D4
0
ALRTMAN
Indicates that a character received by the lower UART contained a Manchester error.
Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D3
0
0
D2
0
ALRTPAR
D1
0
ALRTFMEA2
Bit-wise logical OR of FMEA2[15:0]. Read-only.
D0
0
ALRTFMEA1
Bit-wise logical OR of FMEA1[15:0]. Read-only.
D6
D5
www.maximintegrated.com
DESCRIPTION
Write ignored, Read back ‘0’.
Indicates that a character received by the lower UART contained a parity error.
Cleared only by writing to logic-zero. Writing to logic-one has no effect.
Maxim Integrated │ 98
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
FMEA1 Register (address 0x03)
BIT
POR
NAME
D15
0
ALRTOSC1
Indicates that the 32kHz oscillator frequency is not within ±5% of its expected value.
The status is updated every two cycles (32kHz). Cleared only by writing to logic-zero.
Writing to a logic-one has no effect.
D14
0
ALRTOSC2
Same as ALRTOSC1 (redundant alert). Cleared only by writing to logic-zero.
Writing to a logic-one has no effect.
D13
0
0
D12
0
ALRTCOMMSEU1
Indicates that the UART has placed the upper-port receiver in single-ended mode
based on the first preamble received after POR. This bit is not set until the
ALRTRST bit is cleared. Read-only.
D11
0
ALRTCOMMSEL1
Indicates that the UART has placed the lower-port receiver in single-ended mode
based on the first preamble received after POR. This bit is not set until the
ALRTRST bit is cleared. Read-only.
D10
0
ALRTCOMMSEU2
Same as ALRTCOMMSEU1 (redundant alert) except that it sets before ALRTRST
is cleared. Read-only.
D9
0
ALRTCOMMSEL2
Same as ALRTCOMMSEL2 (redundant alert) except that it sets before ALRTRST
is cleared. Read-only.
D8
0
ALRTVDDL3
Indicates VDDL3 < VVDDL_OC. This bit is not set until the ALRTRST bit is cleared
and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D7
0
ALRTVDDL2
Indicates VDDL2 < VVDDL_OC. This bit is not set until the ALRTRST bit is cleared
and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D6
0
ALRTGNDL2
Indicates an open circuit on the GNDL2 pin. This bit is not set until the ALRTRST bit
is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D5
0
ALRTBALSW
Bit-wise logical OR of ALRTBALSW[15:0]. Read-only.
D4
0
ALRTTEMP
Indicates that TDIE > 115°C (120°C typical) or that the diagnostic measurement
did not have sufficient settling time (< 50µs) and therefore may not be accurate.
Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D3
0
ALRTHVUV
Indicates VHV < VHVUV. This bit is not set until the ALRTRST bit is cleared and
cleared only by writing to logic-zero. Writing to logic-one has no effect.
D2
0
ALRTGNDL3
Indicates an open circuit on the GNDL3 pin. This bit is not set until the ALRTRST bit
is cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D1
0
ALRTVDDL1
Indicates VDDL1 < VVDDL_OC. This bit is not set until the ALRTRST bit is cleared and
cleared only by writing to logic-zero. Writing to a logic-one has no effect.
D0
0
ALRTGNDL1
Indicates an open circuit on the GNDL1 pin. This bit is not set until the ALRTRST bit is
cleared and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
www.maximintegrated.com
DESCRIPTION
Always reads logic-zero.
Maxim Integrated │ 99
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ALRTCELL Register (address 0x04)
BIT
POR
NAME
0
Reserved
Always reads logic-zero.
D13
0
ALRTAIN1
Logical OR of ALRTOVAIN1 and ALRTUVAIN1. Read-only.
D12
0
ALRTAIN0
Logical OR of ALRTOVAIN0 and ALRTUVAIN0. Read-only.
0
ALRTCELL
[12:1]
ALRTCELL[n] is the logical OR of ALROVCELL[n] and ALRTUVCELL[n]. Read-Only.
D15
D14
DESCRIPTION
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
ALRTOVCELL Register (address 0x05)
BIT
POR
NAME
0
Reserved
D13
0
ALRTOVAIN1
Indicates VAIN1 > AINUT (cold). Cleared at next acquisition if the condition is false.
Read-only.
D12
0
ALRTOVAIN0
Indicates VAIN0 > AINUT (cold). Cleared at next acquisition if the condition is false.
Read-only.
0
ALRTOV[12:1]
ALRTOV[n] indicates VCELLN > VOV (OVTHRSET threshold) if ALRTOVEN[n] = 1.
Cleared at next acquisition if the condition is false. Read-only.
D15
D14
DESCRIPTION
Always reads logic-zero.
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 100
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ALRTUVCELL Register (address 0x07)
BIT
POR
NAME
0
Reserved
D13
0
ALRTUVAIN1
Indicates VAIN1 < AINOT (hot). Cleared at next acquisition if the condition is false.
Read-only.
D12
0
ALRTUVAIN0
Indicates VAIN0 < AINOT (hot). Cleared at next acquisition if the condition is false.
Read-only.
0
ALRTUV[12:1]
ALRTUV[n] indicates VCELLn < VUV (UVTHRSET threshold) if ALRTUVEN[n] = 1.
Cleared at next acquisition if the condition is false. Read-only.
D15
D14
DESCRIPTION
Always reads logic-zero.
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
ALRTBALSW Register (address 0x08)
BIT
POR
NAME
0
Reserved
0
ALRTBALSW
[11:0]
DESCRIPTION
D15
D14
D13
Always reads logic-zero.
D12
D11
D10
D9
D8
D7
D6
D5
D4
ALRTBALSW[n] indicates the corresponding measurement result exceeds the threshold
specified by BALSWDIAG[2:0]. Cleared at next acquisition if the condition is false.
Read-only.
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 101
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
MINMAXCELL Register (address 0x0A)
BIT
POR
NAME
0
Reserved
Fh
MAXCELL[3:0]
0
Reserved
Fh
MINCELL[3:0]
DESCRIPTION
D15
D14
D13
Always reads logic-zero.
D12
D11
D10
D9
D8
Cell number of the maximum cell voltage currently in the measurement registers.
If multiple cells have the same maximum value, this field contains the highest cell
number with that measurement. Read-only.
D7
D6
D5
Always reads logic-zero.
D4
D3
D2
D1
D0
Cell number of the minimum cell voltage currently in the measurement registers.
If multiple cells have the same minimum value, this field contains the highest cell
number with that measurement. Read-only.
FMEA2 Register (address 0x0B)
BIT
POR
NAME
0
Reserved
D2
0
ALRTHVHDRM
D1
0
Reserved
D0
0
ALRTHVOV
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
Always reads logic-zero.
D8
D7
D6
D5
D4
D3
www.maximintegrated.com
Indicates that VHV - VC12 was too low during the acquisition for an accurate measurement.
Cleared only by writing to logic-zero. Writing to a logic-one has no effect.
Always reads logic-zero.
Indicates that VHV - VDCIN > VHVOV. This bit is not set until the ALRTRST bit is cleared
and cleared only by writing to logic-zero. Writing to a logic-one has no effect.
Maxim Integrated │ 102
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ID1 Register (address 0x0D)
BIT
POR
NAME
xxxxh
DEVID[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
The two least-significant bytes of the 24-bit factory-programmed device ID.
A valid device ID has two or more bits set to logic-one. Read-only.
D6
D5
D4
D3
D2
D1
D0
ID2 Register (address 0x0E)
BIT
POR
NAME
DESCRIPTION
xxh
ROMCRC[7:0]
8-bit CRC value computed from the onboard read-only memory. Read-only.
xxh
DEVID[23:16]
Most-significant byte of the 24-bit factory-programmed device ID. A valid device ID
has two or more bits set to logic-one. Read-only.
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 103
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
DEVCFG1 Register (address 0x10)
BIT
POR
NAME
DESCRIPTION
0
Reserved
D7
0
FORCEPOR
D6
0
ALIVECNTEN
D5
0
ADCTSTEN
Enables the ALU test mode. This mode feeds 12-bit data from the ADCTEST registers
directly into the ALU instead of from the ADC conversion.
D4
0
SCANTODIS
Disables the acquisition watchdog but does not clear the SCANTIMEOUT flag in the
SCANCTRL register if it is set.
Enables the double-buffer mode. This mode automatically transfers data from the ALU
to the data registers at the start of the next acquisition instead of at the end of the
acquisition. This mode can be used in conjunction with the DATAMOVE bit so the host
can start an acquisition and then start reading the previous acquisition (during the
current acquisition), even if the read cycle takes longer than the acquisition.
D15
D14
D13
D12
D11
Reads back the written value.
D10
D9
D8
Enables hard POR by pulling down SHDNL internally. If cleared before the POR occurs,
it will disable the active pulldown on SHDNL.
Enables inclusion of alive-counter byte at end of all write and read packets.
D3
0
DBLBUFEN
D2
0
NOPEC
D1
1
ADDRUNLOCK
Disables write-protection of device address DA[4:0]. Cleared only by HELLOALL
command (write-protected).
D0
0
SPOR
Enables soft POR. Writing to a logic-zero has no effect. Always reads logic-zero.
www.maximintegrated.com
Disables packet-error checking (PEC).
Maxim Integrated │ 104
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
GPIO Register (address 0x11)
BIT
POR
NAME
DESCRIPTION
0
DIR[3:0]
Setting DIR[n] enables GPIOn as an output. Default state is high-impedance input.
0
RD[3:0]
Indicates the current logic state of each GPIOn pin input buffer. The logic state is sampled
at the end of the parity bit of the register address byte during a read of this register.
Read-only.
D15
D14
D13
D12
D11
D10
D9
D8
D7
Enables the GPIO3 timer mode. This mode overrides DIR[3] and DRV[3] and drives
GPIO3 to logic-one when the timer is counting, and drives to logic-zero when the timer
times out. Emergency-discharge mode (EMGCYDCHG=1) automatically enables the
GPIO3 timer mode.
0
GPIO3TMR
0
Reserved
Always reads logic-zero.
0
DRV[3:0]
Setting DRV[n] sets GPIOn to logic-one if DIR[n] is set.
D6
D5
D4
D3
D2
D1
D0
MEASUREEN Register (address 0x12)
BIT
POR
NAME
DESCRIPTION
D15
0
BLKCONNECT
D14
0
BLOCKEN
Enables measurement of the VBLKP input in the acquisition mode.
D13
0
AIN2EN
D12
0
AIN1EN
Enables measurement of the AUXIN2 input in the acquisition mode.
0
CELLEN[12:1]
Connects the voltage-divider to the VBLKP pin. Must be enabled prior to the
VBLOCK measurement.
Enables measurement of the AUXIN1 input in the acquisition mode.
D11
D10
D9
D8
D7
D6
D5
Enables measurement of the respective cell in the acquisition mode. Disabled
channels result in a measurement value of 0000h.
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 105
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
SCANCTRL Register (address 0x13)
BIT
POR
NAME
D15
0
SCANDONE
D14
D13
D12
D11
0
SCANTIMEOUT
Indicates the acquisition has completed. Cleared only by writing it to logic-zero to
detect completion of the next acquisition. Writing to logic-one has no effect. A new
acquisition will not commence if this bit is set.
Indicates the acquisition did not complete in the expected period of time. The timeout
depends on the oversampling configuration. Cleared only by writing it to logic-zero to allow
detection of future timeout events. The acquisition watchdog can be disabled by setting
SCANTOEN in the DEVCFG1 register.
0
DATARDY
Indicates the measurement data from the acquisition has been transferred from the
ALU to the data registers and may now be read. Data for all measurement registers
and MIN/MAX/TOTAL is transferred at the same time. Cleared by writing it to logic-zero
to allow detection of the next data transfer. Writing to logic-one has no effect.
0
Reserved
Always reads logic-zero.
D10
Configures the cell-balancing switch diagnostic modes per table below. When selected,
these modes effectively override the BALSWEN, MEASUREEN, ALTMUXSEL, and
POLARITY configurations during the acquisition mode and update the ALRTBALSW
register per the BALHIGHTHR and BALLOWTHR thresholds. Refer to Diagnostic section
for details.
D9
0
D8
D7
DESCRIPTION
0
BALSWDIAG
[2:0]
POLARITY
www.maximintegrated.com
BALSWDIAG[2:0]
DIAGNOSTIC TEST
000
None
001
Balancing Switch Short
010
Balancing Switch Open
011
None
100
None
101
Cell Sense Open Odds
110
Cell Sense Open Evens
111
None
Enables bipolar mode for ADC (input range is -2.5V to 2.5V). Default is unipolar mode
(input range is 0 to 5V)
Maxim Integrated │ 106
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
SCANCTRL Register (address 0x13) (continued)
BIT
POR
NAME
D6
DESCRIPTION
Configures for the number oversamples in the acquisition per table below:
D5
0
OVSAMPL[2:0]
D4
OVSAMPL [2:0]
OVERSAMPLES
000
1
001
4
010
8
011
16
100
32
101
64
110
128
111
128
D3
0
0
Always reads logic-zero.
D2
0
SCANMODE
Enables top-down scan mode. Default is pyramid scan mode.
D1
0
DATAMOVE
Initiates transfer of measurement data from ALU to data registers (manual transfer)
and sets DATARDY. ALU data is preserved until a new acquisition is started. Always reads
logic-zero. Ignored in acquisition mode.
D0
0
SCAN
Enables the acquisition mode and (if in double-buffer mode) transfers previous
acquisition data from ALU to data registers. Acts as a strobe bit and therefore does
not need to be cleared. Always reads logic-zero. Ignored in acquisition mode.
ALRTOVEN Register (address 0x14)
BIT
POR
NAME
0
Reserved
D13
0
AINOVALRTEN1
Enables the AIN1 overvoltage alert
D12
0
AINOVALRTEN0
Enables the AIN0 overvoltage alert
0
OVALRTEN
[12:1]
D15
D14
DESCRIPTION
Always reads logic-zero.
D11
D10
D9
D8
D7
D6
D5
Enables the overvoltage alert for the respective cell. Clearing also clears the associated
cell alert.
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 107
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ALRTUVEN Register (address 0x15)
BIT
POR
NAME
0
Reserved
D13
0
AINUVALRTEN1
Enables the AIN1 undervoltage alert
D12
0
AINUVALRTEN0
Enables the AIN0 undervoltage alert
0
UVALRTEN
[12:1]
D15
D14
DESCRIPTION
Always reads logic-zero.
D11
D10
D9
D8
D7
D6
D5
Enables the undervoltage alert for the respective cell. Clearing also clears the
associated cell alert.
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 108
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
WATCHDOG Register (address 0x18)
BIT
POR
NAME
D15
0
Reserved
D14
DESCRIPTION
Always reads logic-zero.
Sets the step size of the cell-balancing timer LSB per table below:
D13
0
CBPDIV[2:0]
D12
D11
D10
D9
0
CBTIMER[3:0]
D8
CBPDIV[2:0]
STEP SIZE
TIMEOUT RANGE
000
Disabled
No timeout
001
1s
1–15s
010
4s
4–60s
011
16s
16–240s
100
64s
64–960s
101
128s
128–1920s
110
256s
256–3840s
111
256s
256–3840s
Watchdog timer for the cell-balancing switches. The timer counts down at a rate set
by CBPDIV. When the timer reaches 0, all cell-balancing switches are disabled by a signal
separate from the BALSWEN bits. The timer should be periodically rewritten with
a timeout value to keep the cell balancing switches enabled. When the timer value is read,
the value reported is latched during the stop bit time following the ACQCFG UART register
address of the READALL command. If the GPIO3TMR configuration is enabled, the
GPIO3 pin is driven high while CBTIMER[3:0] is nonzero and is driven low when the timer
value is zero. The cell-balancing timer is reset to zero when EMGCYDCHG =1.
D7
D6
D5
D4
D3
0
Reserved
Always reads logic-zero.
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 109
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ACQCFG Register (address 0x19)
BIT
POR
NAME
0
Reserved
DESCRIPTION
D15
D14
D13
D12
Always reads logic-zero.
D11
D10
D9
D8
D7
D6
Sets the step size of the cell-balancing timer LSB per table below:
0
THRMMODE
[1:0]
THRMMODE[1:0]
OPERATION
00
Auto mode (on in acquisition mode)
01
Auto mode (on in acquisition mode)
10
Manual mode, THRM switch off
11
Manual mode, THRM switch on
0
Reserved
Always reads logic-zero.
0
AINTIME
[5:0]
Configures the pre-conversion settling time for each enabled AUXIN input from 6µs
(default) up to 384µs (6µs/bit). This is to allow extra settling time if the application
circuit requires it since the THRM voltage is not driven out until the start of the
acquisition (in auto mode).
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 110
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
BALSWEN Register (address 0x1A)
BIT
POR
NAME
0
Reserved
0
BALSWEN
[11:0]
DESCRIPTION
D15
D14
D13
Always reads logic-zero.
D12
D11
D10
D9
D8
D7
D6
D5
BALSWEN[n-1] enables the balancing switch (conducting) between SWn and SWn-1.
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 111
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
DEVCFG2 Register (address 0x1B)
BIT
D15
POR
NAME
DESCRIPTION
Enables UART loopback mode, which internally connects upper-port transmitter to
upper-port receiver. The loopback mode allows the host to locate a break in daisy-chain
communication whether or not the last daisy-chained device uses an external wire
loopback wire or the internal loopback.
0
LASTLOOP
0
Reserved
D12
0
DBLBUFSEL
Enables alternate double-buffer mode. Contact Maxim Applications for details;
otherwise, leave in default state.
D11
0
TXLIDLEHIZ
Enables High-Z idle mode, which causes the TX drivers of the lower UART to idle in
the high-Z state instead of idling in the logic-zero state (default mode). Leave in
default state for normal operation.
D10
0
TXUIDLEHIZ
Enables High-Z idle mode, which causes the TX drivers of the upper UART to idle in
the high-Z state instead of idling in the logic-zero state (default mode). Leave in
default state for normal operation.
D9
0
RESERVED
Reserved for future use. Reads the written value.
D8
0
EMGCYDCHG
0
Reserved
Always reads logic-zero.
0
HVCPDIS
Disables the HV charge pump. Used for ALRTHVUV diagnostic. If the HV charge
pump is disabled in normal operation, measurement errors will result due to VHV
undervoltage.
D14
D13
Always reads logic-zero.
Set to enable emergency-discharge mode (configured by BALSWDCHG).
D7
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 112
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
BALDIAGCFG1 Register (address 0x1C)
BIT
POR
NAME
0
Reserved
D13
0
ALTMUXSEL_M
D12
0
POLARITY_M
0
CELLEN_M
[12:1]
D15
D14
DESCRIPTION
Always reads logic-zero.
Mirror for ALTMUXSEL bit.
Mirror for POLARITY bit.
D11
D10
D9
D8
D7
D6
D5
Mirror for CELLEN[12:1] in the MEASUREEN register. Writing to this field also
updates CELLEN[12:1]. Reading this field reflects CELLEN[12:1].
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 113
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
BALSWDCHG Register (address 0x1D)
BIT
POR
NAME
D15
Configuration for emergency-discharge mode (EMGCYDCHG = 1). Sets the duty cycle for
each discharge cycle (even or odd) per the table below:
D14
0
D13
D12
DCHGWIN
[2:0]
0
Reserved
0
DCHGCNTR
[3:0]
D11
D10
D9
DESCRIPTION
D8
D7
DCHGWIN[2:0] (LSb = 7.5s)
BEHAVIOR
0h
Switches on for 7.5s, off for 52.5s
1h
Switches on for 15s, off for 45s
…
…
7h
Switches on for 59.94s, off for 62.5ms
Always reads logic-zero.
Discharge counter that can be read to verify operation of the emergency-discharge mode
(EMGCYDCHG = 1). During the emergency-discharge mode, the discharge
counter counts at 2Hz rolling over at Fh to 0h and continuing until the emergencydischarge mode terminates. Read-only.
Write to set the timeout value of the emergency-discharge mode (EMGCYDCHG = 1) per
the table below. Writing to 00h disables the timer and terminates the emergency-discharge
mode. The timer starts when EMGCYDCHG = 1 (and DCHGTIME[7:0] ≠ 00h) and stops
when it reaches the timeout. The timer is reset when EMGCYDCHG = 0.
D6
D5
DCHGTIME[7:0] (LSb = 2 hours)
TIMEOUT
00h
Discharge mode disabled
D2
01h
Discharge mode disabled after 4 hours
D1
02h
Discharge mode disabled after 6 hours
…
…
FFh
Discharge mode disabled after 512 hours
D4
D3
0
DCHGTIME
[7:0]
D0
www.maximintegrated.com
Maxim Integrated │ 114
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
TOPCELL Register (address 0x1E)
BIT
POR
NAME
0
Reserved
Ch
TOPCELL[3:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
Always reads logic-zero.
D8
D7
D6
D5
D4
D3
D2
D1
D0
Configures the top-cell position if less than 12 channels are used. This is to properly
mask the ALRTBALSW diagnostic alerts. TOPCELL[3:0] = 0h is not a valid
configuration and is identical to the default, Ch (12d).
CELLn Register (addresses 0x20 to 0x2B)
BIT
POR
NAME
0
CELLn[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
CELLn[15:2] contains the 14-bit measurement result for CELLn.
CELLn[1:0] always reads logic-zero. Read-only.
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 115
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
VBLOCK Register (address 0x2C)
BIT
POR
NAME
0
VBLOCK[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
VBLOCK[15:2] contains the 14-bit measurement result for VBLKP.
VBLOCK[1:0] always reads logic-zero. Read-only.
D6
D5
D4
D3
D2
D1
D0
AIN1 Register (address 0x2D)
BIT
POR
NAME
0
AIN1[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
AIN1[15:4] contains the 12-bit measurement result for AUXIN1.
AIN1[3:0] always reads logic-zero. Read-only.
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 116
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
AIN2 Register (address 0x2E)
BIT
POR
NAME
0
AIN2[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
AIN2[15:4] contains the 12-bit measurement result for AUXIN2.
AIN2[3:0] always reads logic-zero. Read-only.
D6
D5
D4
D3
D2
D1
D0
TOTAL Register (address 0x2F)
BIT
POR
NAME
0
SUM[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
16-bit sum of all cell voltages CELLn[15:4] that are enabled by MEASUREEN. Read-only.
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 117
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
OVTHCLR Register (address 0x40)
BIT
POR
NAME
FFFCh
OVTHCLR
[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
14-bit overvoltage-clear threshold. UVTHCLR[1:0] always reads logic-zero.
D6
D5
D4
D3
D2
D1
D0
OVTHSET Register (address 0x42)
BIT
POR
NAME
FFFCh
OVTHSET
[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
14-bit overvoltage-set threshold. UVTHCLR[1:0] always reads logic-zero.
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 118
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
UVTHCLR Register (address 0x44)
BIT
POR
NAME
0
UVTHCLR
[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
14-bit undervoltage-clear threshold. UVTHCLR[1:0] always reads logic-zero.
D6
D5
D4
D3
D2
D1
D0
UVTHSET Register (address 0x46)
BIT
POR
NAME
0
UVTHSET
[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
14-bit undervoltage-set threshold. UVTHSET[1:0] always reads logic-zero.
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 119
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
MSMTCH Register (address 0x48)
BIT
POR
NAME
FFFCh
MSMTCH
[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
14-bit voltage threshold for ALRTMSMTCH. MSMTCH[1:0] always reads logic-zero.
D6
D5
D4
D3
D2
D1
D0
AINOT Register (address 0x49)
BIT
POR
NAME
0
AINOT
[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
12-bit undervoltage (overtemperature) threshold for AUXIN alerts.
AINOT[3:0] always reads logic-zero.
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 120
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
AINUT Register (address 0x4A)
BIT
POR
NAME
DESCRIPTION
FFF0h
AINUT[15:0]
12-bit overvoltage (undertemperature) threshold for AUXIN alerts. AINUT[3:0] always reads
logic-zero.
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
BALSHRTTHR Register (address 0x4B)
BIT
POR
NAME
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
0
BALSHRTTHR
[15:0]
D6
D5
14-bit voltage threshold for the balancing-switch short-circuit diagnostic test.
The ADC results in this test mode are compared against the threshold.
If any result is below the threshold, it is flagged as a balancing-switch alert.
Results above the threshold are considered normal. The threshold should be set
by the system controller prior to making a diagnostic measurement.
BALSHRTTHR[1:0] always reads logic-zero.
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 121
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
BALLOWTHR Register (address 0x4C)
BIT
POR
NAME
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
0
BALLOWTHR
[15:0]
D6
D5
14-bit low-voltage threshold for the balancing-switch conducting and cell-sense
wire diagnostic tests. The ADC results in this test mode are compared against the
threshold. If any result is below the threshold, it is flagged as a balancing-switch alert.
Results above the threshold are considered normal. The threshold should be set by
the system controller prior to making a diagnostic measurement. BALLOWTHR[1:0]
always reads logic-zero.
D4
D3
D2
D1
D0
BALHIGHTHR Register (address 0x4D)
BIT
POR
NAME
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
0
BALHIGHTHR
[15:0]
D6
D5
14-bit high-voltage threshold for the balancing-switch conducting and cell-sense wire
diagnostic tests. The ADC results in this test mode are compared against the threshold.
If any result is above the threshold, it is flagged as a balancing-switch alert. Results
below the threshold are considered normal. The threshold should be set by the system
controller prior to making a diagnostic measurement. BALHIGHTHR[1:0] always
reads logic-zero.
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 122
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
DIAG Register (address 0x50)
BIT
POR
NAME
0
DIAG[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
DIAG[15:2] contains the 14-bit measurement result for the diagnostic selected
by DIAGCFG[2:0]. DIAG[1:0] always reads logic-zero. Read-only.
D6
D5
D4
D3
D2
D1
D0
DIAGCFG Register (address 0x51)
BIT
POR
NAME
D15
DESCRIPTION
Configures the current level for all enabled test sources per the table below
(either 6.25µA or 3.125µA per bit):
D14
CTSTDAC{3:0]
D13
0
CTSTDAC[3:0]
D12
TEST-SOURCE CURRENT
Cn, AUXINn
HVMUX
0h
6.25µA
3.125µA
1h
12.5µA
6.25µA
2h
18.75µA
9.375µA
…
….
…
Dh
87.5µA
43.75µA
Eh
93.75µA
46.875µA
Fh
100µA
50µA
D11
0
CTSTSRC
Configures the cell-input test-current sources to either source current from VAA
(logic-one), or sink current to AGND (logic-zero).
D10
0
Reserved
Always reads logic-zero.
www.maximintegrated.com
Maxim Integrated │ 123
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
DIAGCFG Register (address 0x51) (continued)
BIT
POR
NAME
D9
0
D8
0
AUXINTSTEN
[2:1]
DESCRIPTION
Enables the test-current sources connected to the corresponding AUXIN input for
diagnostic testing. The current level is configured by the CTSTDAC[3:0] and the
current direction is configured by CTSTSRC.
Selects the HVMUX output to which the HVMUX test-current source is connected, if
MUXDIAGPAIR is enabled, as shown below:
D7
0
MUXDIAGBUS
MUXDIAGBUS
HVMUX OUTPUT
0
Output used for even cells, C0, and AGND
1
Output used for odd cells and REF, and ALTREF
Configures a single HVMUX test-current source to be connected to only one HVMUX
output (as selected by MUXDIAGBUS). In the default configuration (MUXDIAGPAIR = 0),
both HVMUX test-current sources are connected to both HVMUX outputs.
D6
0
MUXDIAGPAIR
D5
0
Reserved
D4
0
MUXDIAGEN
Enables the HVMUX test-current source(s). The current level is configured by
CSTDAC[3:0] and the connectivity is configured by MUXDIAGPAIR, and MUXDIAGBUS
D3
0
ALTMUXSEL
Enables cell measurements on the SWn inputs (ALTMUX data path) instead of the Cn
inputs (HVMUX data path). Refer to the Diagnostics section.
D2
Always reads logic-zero.
Selects the diagnostic measurement for the acquisition per table below:
DIAGSEL[2:0]
D1
0
D0
www.maximintegrated.com
DIAGSEL
[2:0]
DIAGNOSTIC MEASUREMENT
0b000
No measurement
0b001
VALTREF
0b010
VAA (with ADC reference = VTHRM)
0b011
LSAMP Offset
0b100
Zero-scale ADC output (000h)
0b101
Full-scale ADC output (FFFh)
0b110
Die temperature
0b111
No measurement
Maxim Integrated │ 124
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
CTSTEN Register (address 0x52)
BIT
POR
NAME
DESCRIPTION
0
Reserved
Always reads logic-zero.
0
CTSTEN
[12:0]
Enables the current sources connected to the corresponding cell input for diagnostic
testing. The current level is configured by the CTSTDAC[3:0] and the current direction
is configured by CTSTSRC in the DIAGCFG register.
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
ADCTEST1A Register (address 0x57)
BIT
POR
NAME
0
Reserved
DESCRIPTION
D15
D14
D13
Always reads logic-zero.
D12
D11
D10
D9
D8
D7
D6
D5
ADCTEST1A
[11:0]
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is
fed into the ALU during the first conversion of odd-numbered samples
(e.g., first sample).
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 125
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ADCTEST1B Register (address 0x58)
BIT
POR
NAME
0
Reserved
0
ADCTEST1B
[11:0]
DESCRIPTION
D15
D14
D13
Always reads logic-zero.
D12
D11
D10
D9
D8
D7
D6
D5
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data
is fed into the ALU during the second conversion of odd-numbered samples
(e.g., first sample).
D4
D3
D2
D1
D0
ADCTEST2A Register (address 0x59)
BIT
POR
NAME
0
Reserved
0
ADCTEST2A
[11:0]
DESCRIPTION
D15
D14
D13
Always reads logic-zero.
D12
D11
D10
D9
D8
D7
D6
D5
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data
is fed into the ALU during the first conversion of even-numbered samples
in oversampling mode.
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 126
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
ADCTEST2B Register (address 0x5A)
BIT
POR
NAME
0
Reserved
0
ADCTEST2B
[11:0]
DESCRIPTION
D15
D14
D13
Always reads logic-zero.
D12
D11
D10
D9
D8
D7
D6
D5
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data
is fed into the ALU during the second conversion of even-numbered samples in
oversampling mode.
D4
D3
D2
D1
D0
CALx Registers (addresses 0xC0–0xCA, 0xCF)
BIT
POR
NAME
xxh
CALx[15:0]
DESCRIPTION
D15
D14
D13
D12
D11
D10
D9
D8
D7
Contains factory-calibration data. Read-only.
D6
D5
D4
D3
D2
D1
D0
www.maximintegrated.com
Maxim Integrated │ 127
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Ordering Information
PART
TEMP RANGE
MAX17823HGCB/V+
-40°C to +105°C
Package Information
PINPACKAGE
64 LQFP
+Denotes a lead(Pb)-free/RoHS-compliant package.
/V denotes an automotive-qualified part.
www.maximintegrated.com
For the latest package outline information and land patterns
(footprints), go to www.maximintegrated.com/packages. Note
that a “+”, “#”, or “-” in the package code indicates RoHS status
only. Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
64 LQFP
C64+13
21-0083
90-0141
Maxim Integrated │ 128
MAX17823H
12-Channel, High-Voltage
Data-Acquisition Systems
Revision History
REVISION
NUMBER
REVISION
DATE
0
8/18
DESCRIPTION
Initial release
PAGES
CHANGED
—
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
© 2018 Maxim Integrated Products, Inc. │ 129