0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX25239AFFA/VY+

MAX25239AFFA/VY+

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFQFN22

  • 描述:

    降压升压 开关稳压器 IC 正 可调(固定) 3V(5V) 1 输出 6A 22-PowerWFQFN

  • 数据手册
  • 价格&库存
MAX25239AFFA/VY+ 数据手册
Click here to ask an associate for production status of specific part numbers. MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters General Description Benefits and Features The MAX25239/MAX25240 are small, synchronous, buckboost converters with integrated H-bridge switches. These ICs provide a fixed-output regulation voltage and an externally adjustable output voltage in the 3V to 20V range with an input voltage above, below, or equal to the output regulation voltage. The IC has typical 8.2A and 10A input current limit options and can support continuous load currents up to 6A depending on the input-to-output voltage ratio and operating frequency. It also has a wide input voltage range of 2V to 36V. ● Meets Stringent Automotive Quality and Reliability Requirements • 2V to 36V Operating Input Voltage Range Allows Operation in Cold-Crank Conditions • Tolerates Input Transients up to 42V • EN Pin Compatible up to 42V • 8.2A/10A Typical Input Current Limit • Fixed and Adjustable Output Voltage Options • -40°C to +125°C Grade 1 Automotive Temperature Range The MAX25239/MAX25240 have three switching frequency options: 2.1MHz, 400kHz, and 200kHz. The 2.1MHz high switching frequency allows small external components and reduced output ripple, and guarantees no AM band interference, while the 400kHz or 200kHz switching frequency offers better efficiency and relieves the power consumption concern. The SYNC input allows three operation modes: skip mode with ultra-low quiescent current, forced fixed-frequency PWM operation, and synchronization to an external clock. The IC also includes spreadspectrum frequency modulation to minimize EMI interference. ● AEC-Q100 Qualified High Integration and Thermally Enhanced Package Reduces BOM Cost and Board Space • Integrated FETs H-Bridge Architecture • 2.1MHz/400kHz/200kHz Switching Frequency Options • Phase-Locked Loop (PLL) Frequency Synchronization • Thermally Enhanced, 22-Pin FC2QFN Package The MAX25239/MAX25240 feature a power-OK (POK) indicator, undervoltage lockout, overvoltage protection, cycle-by-cycle current limit, and thermal shutdown. The ICs are available in a small, 4.25mm x 4.25mm x 0.75mm, 22-pin FC2QFN package. Applications ● ADAS ECU ● Infotainment Systems ● Low Quiescent Current Meets Stringent OEM Current Requirements • 95μA Quiescent Current in Standby Mode • 10μA Maximum Shutdown Current ● Reduced EMI Emissions at Switching Frequency • Spread-Spectrum Function Enabled/Disabled by SPS Pin ● Protection Features Improve System Reliability • Supply Undervoltage Lockout and Thermal Protection • Output PGOOD Indicator, Overvoltage, and ShortCircuit Protection ● Body Electronics ● Start-Stop Systems ● Point-of-Load Power Supplies Ordering Information appears at end of data sheet. 19-101236; Rev 10; 6/23 © 2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2023 Analog Devices, Inc. All rights reserved. MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Simplified Block Diagram SUP PGOOD MAX25239 MAX25240 OUT UVLO VIN POK SHDN PREREGULATOR PGOOD LOGIC BANDGAP AND REFERENCES FEEDBACKSELECT LOGIC FB VCC VIN_UVLO 1.8V VCC REGULATOR VBG BST1 HS1 HS1 DRIVER VFB EAMP VOVP_TH COMP LS1 DL1 PWM COMP PGND1 CLK PLL/ OSCILLATOR CONTROL LOGIC SLOPE COMP ∑ OUT ICS EXTERNAL CLOCK fSYNCSELECT LOGIC LX1 LS1 VCC DRIVER OVP COMP VCCS SPREADSPECTRUM ON/OFF SYNCOUT SYNC* SUP BST1_REFRESH DH1 SOFT-START SPS BST1_REFRESH VCC THSD AGND VCC_UVLO n OTP ICSLIM IZX VTH_REF SUPPLY SWITCHOVER VTH_REF UVLO VCC ICSLIM ILIM COMP ICS BK_CS BST2_REFRESH HS2 DRIVER BST2_REFRESH HS2 DH2 FPWM/SKIP MODE BST2 OUT LX2 VIN_UVLO VVCC_UVLO IN EN EN COMP VCC POK LS2 DRIVER LS2 DL2 SHDN PGND2 POK THSD IZX COMP IZX BST_CS * SYNC CAN BE PROGRAMMED TO SYNCOUT. CONTACT ANALOG DEVICES FOR OPTIONS. www.analog.com Analog Devices | 2 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 22 FC2QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 MAX25239/MAX25240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 H-Bridge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Buck Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Boost Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Buck-Boost Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Linear Regulator Output (VCC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Current-Limit/Hiccup Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power-Good Output (PGOOD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Synchronization Input (SYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 System Enable (EN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Spread-Spectrum Option (SPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Thermal Shutdown Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Maximum Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output Voltage Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Error Amplifier Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 www.analog.com Analog Devices | 3 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters LIST OF FIGURES Figure 1. Output Voltage External Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 2. Compensation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 3. 2.1MHz Application Circuit: ILIM = 8.2A, VOUT = 5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 4. 400kHz Application Circuit: ILIM = 10A, VOUT = 5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 www.analog.com Analog Devices | 4 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Absolute Maximum Ratings SUP, EN to AGND .................................................. -0.3V to +42V LX1 to PGND1 .............................................. -0.3V to VSUP+0.3V LX2 to PGND2 .............................................. -0.3V to VOUT+0.3V OUT to AGND......................................................... -0.3V to +28V BST1 to LX1, BST2 to LX2 .................................... -0.3V to +2.2V BST1 to PGND1 ..................................................... -0.3V to +44V BST2 to PGND2 ..................................................... -0.3V to +30V VCC , SPS to AGND ............................................. -0.3V to +2.2V COMP, FB to AGND ..................................... -0.3V to VVCC+0.3V PGND_ to AGND ................................................... -0.3V to +0.3V SYNC, PGOOD to AGND ......................................... -0.3V to +6V ESD Protection Human Body Model ........................................................... ±2kV Machine Model ................................................................±100V Continuous Power Dissipation (TA = +70°C, derate 30mW/°C above +70°C) ..................................................................2404mW Operating Junction Temperature ........................-40°C to +150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (Soldering 10s) .................................. +300°C Soldering Temperature (reflow) ........................................ +260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 22 FC2QFN Package Code F224A4FY+1 Outline Number 21-100399 Land Pattern Number 90-100137 4-LAYER JEDEC BOARD 4-LAYER EV KIT BOARD Junction-to-Ambient Thermal Resistance (θJA) 33.3°C/W 22.4°C/W Junction-to-Case (Top) Thermal Resistance (θJCt) 6.8°C/W — Junction-to-Case (Bottom) Thermal Resistance (θJCb) 6.4°C/W 7.5°C/W Junction-to-Board Thermal Resistance (θJB) 7.6°C/W 9.6°C/W Junction-to-Top Thermal Characterization Parameter (ΨJT) 3.3°C/W 3.3°C/W Junction-to-Bottom Thermal Characterization Parameter (ΨJB) 8.5°C/W 9.4°C/W THERMAL PARAMETERS For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial. Electrical Characteristics (VSUP = VEN = 14V, TJ = -40°C to +150°C, unless otherwise noted. Typical values are at TA = +25°C. Note 1 and Note 2.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 36 V 10 μA SUP INPUT SUPPLY SUP Voltage Range VSUP Shutdown Supply Current ISUP_SHUTDO Standby Supply Current ISUP_STANDB SUP Undervoltage Lockout www.analog.com Initial start up 4.5 VEN = 0V, TA = +25°C 5 VEN = VSUP, VOUT = 5V, no load, VSYNC = 0V 95 VUVLO_RISE VSUP rising 4.2 VUVLO_FALL VSUP falling WN Y μA 4.45 1.9 V Analog Devices | 5 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Electrical Characteristics (continued) (VSUP = VEN = 14V, TJ = -40°C to +150°C, unless otherwise noted. Typical values are at TA = +25°C. Note 1 and Note 2.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VCC REGULATOR VCC Output Voltage VCC Undervoltage Lockout VVCC VSUP > 3.5V, IVCC = 1mA to 50mA 1.8 V VVCC falling 1.6 V VVCC hysteresis, Note 3 100 mV IVCC_SC VCC shorted to AGND 50 mA VOUT_5V VFB = VVCC 4.9 5.0 5.1 VOUT_11P5 VFB = VVCC 11.27 11.5 11.73 VUVLO_VCC VUVLO_VCC_H YS VCC Short-Circuit Current Limit BUCK-BOOST CONVERTER Fixed Output Voltage Soft-Start Ramp Time tSOFT_START Auto Retry Time tAUTO Minimum ON Time tON_MIN Dead Time Auto retry time after an output short condition is detected V 2.5 ms 5 ms In buck mode, fSW = 2.1MHz 100 In buck mode, fSW = 400kHz, Note 3 125 ns tDEAD Note 3 3 ns LX1, LX2 Rise Time tLX_RISE Note 3 1.5 ns LX1, LX2 Fall Time tLX_FALL Note 3 3 ns VVCC = 1.8V, IDSON = 0.2A 20 POWER MOSFET DMOS On-Resistance RDSON_DMOS LX1 Leakage Current ILX1_LKG LX2 Leakage Current ILX2_LKG 35 mΩ VEN = 0V, VSUP = VLX1 = 36V, TA = +25°C 5 μA VEN = 0V, VLX2 = 12V, TA = +25°C 5 μA CURRENT SENSE 10A, Note 4 Current Limit ILIM 8 10 12 8.2A 6.8 8.2 9.5 12A, Note 5 10 12 14 0.786 0.800 0.814 V 0.02 1 μA A ERROR AMPLIFIER Regulated Feedback Voltage Feedback Leakage Current Transconductance (from FB to COMP) VFB IFB_LKG gM VFB = 0.8V, TA = +25°C VFB = 0.8V, VVCC = 1.8V 85 100 115 μS 400kHz option 350 400 450 kHz 1.9 2.1 2.3 MHz SWITCHING FREQUENCY PWM Switching Frequency SYNC External Clock Input Spread Spectrum www.analog.com fSW fSYNC SPS 2.1MHz option Minimum sync pulse of 100ns 400kHz option 280 520 kHz 2.1MHz option 1.5 2.7 MHz ±6 % Analog Devices | 6 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Electrical Characteristics (continued) (VSUP = VEN = 14V, TJ = -40°C to +150°C, unless otherwise noted. Typical values are at TA = +25°C. Note 1 and Note 2.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 106 108 110 % OUTPUT MONITORS Output Overvoltage Threshold VOUT_OVP Output Overvoltage Hysteresis VOUT_OVP_H PGOOD Threshold VPGOOD_TH PGOOD Output Low Voltage Detected with respect to VFB rising 3 YS VPGOOD_LOW % % of VOUT, VOUT rising 92 94 96 % of VOUT, VOUT falling 91 93 95 ISINK = 1mA PGOOD Leakage Current IPGOOD_LKG VPGOOD = 5.5V, TA = +25°C PGOOD Debounce Time tPGOOD_DB Fault detection, rising and falling % 0.2 V 1 μA 40 μs LOGIC INPUTS (EN, SYNC, SPS) Input High Level VHIGH Voltage rising Input Low Level VLOW Voltage falling 1.3 V Input Leakage Current (EN, SPS) IIN_LEAK TA = +25°C Input Leakage Current (SYNC) IIN_LEAK TA = +25°C, SYNC = 1.8V, EN = high 20 0.5 V 1 μA 50 μA THERMAL SHUTDOWN Thermal Shutdown Threshold TSHDN Note 3 175 °C Thermal Shutdown Hysteresis TSHDN_HYS Note 3 20 °C Note 1: Note 2: Note 3: Note 4: Note 5: All units are 100% production tested at +25°C. All temperature limits are guaranteed by design and characterization. The device is designed for continuous operation up to TJ = +125°C for 95,000 hours and TJ = +150°C for 5,000 hours. Guaranteed by design, not production tested. Boost mode current limit. Output short-circuit not allowed, see the Ordering Information table specifications for further details. www.analog.com Analog Devices | 7 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Typical Operating Characteristics (TA=+25°C, unless otherwise noted.) www.analog.com Analog Devices | 8 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Typical Operating Characteristics (continued) (TA=+25°C, unless otherwise noted.) www.analog.com Analog Devices | 9 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Typical Operating Characteristics (continued) (TA=+25°C, unless otherwise noted.) www.analog.com Analog Devices | 10 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Typical Operating Characteristics (continued) (TA=+25°C, unless otherwise noted.) www.analog.com Analog Devices | 11 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Pin Configuration MAX25239/MAX25240 AGND VCC PGOOD SYNC SPS COMP FB EN TOP VIEW 22 21 20 19 18 17 16 15 BST1 1 SUP MAX25239 MAX25240 2 13 OUT SUP 3 12 OUT NC 4 11 NC PGND1 5 10 PGND2 PGND1 6 9 PGND2 7 8 LX2 BST2 LX1 14 22-PIN FC2QFN 4.25mm x 4.25mm Pin Description PIN NAME FUNCTION 1 BST1 Bootstrap Capacitor Connection for Switching Node LX1. Connect a 0.1μF ceramic capacitor between LX1 and BST1. 2, 3 SUP Power Supply of the Buck-Boost Converter and Internal VCC LDO Regulator. Bypass SUP to PGND1 with a 4.7μF or larger ceramic capacitor. 4 NC 5, 6 PGND1 7 LX1 Buck-Boost Converter Switching Node 1. Connect LX1 to one side of the power inductor. 8 LX2 Buck-Boost Converter Switching Node 2. Connect LX2 to the other side of the power inductor. 9, 10 PGND2 Not Connected Power Ground Connection for Buck Low-Side FET LS1. Connect PGND1 and PGND2 together to power ground. Power Ground Connection for Boost Low-Side FET LS2. Connect PGND1 and PGND2 together to power ground. 11 NC 12, 13 OUT Buck-Boost Converter Output. 14 BST2 Bootstrap Capacitor Connection for Switching Node LX2. Connect a 0.1μF ceramic capacitor between LX2 and BST2. 15 EN www.analog.com Not Connected High-Voltage-Tolerant Enable Input. Drive EN high to enable buck-boost converter. Analog Devices | 12 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Pin Description (continued) PIN NAME 16 FB 17 COMP 18 SPS 19 SYNC FUNCTION Feedback Input. Connect FB to a resistor-divider between OUT and AGND to set the desired output voltage in the range of 3V to 20V. Connect FB to VCC for the fixed output voltage option. Error Amplifier Output. Connect an RC compensation network between COMP and AGND to stabilize the control loop. Spread-Spectrum (SPS) Function Enable Input. Connect SPS high to enable SPS function and low to disable SPS function. External Clock Synchronization and Skip/PWM Mode Control Input. Connect SYNC to AGND to enable skip mode. Connect SYNC to VCC to enable PWM mode. Connect SYNC to a valid external clock to synchronize the buck-boost converter switching frequency to external clock. Open-Drain Power-Good Indicator. Pull up PGOOD with an external resistor to VCC or a positive voltage lower than 5.5V to correctly indicate the OUT voltage status. PGOOD asserts low when the OUT voltage falls below 93% (typ) of its regulation voltage. PGOOD becomes high impedance when the OUT voltage rises above 94% (typ) of its regulation voltage. PGOOD is also in low during soft-start and in shutdown. 20 PGOOD 21 VCC Internal 1.8V Regulator Output. Bypass VCC to ground with a minimum 4.7μF ceramic capacitor. 22 AGND Analog Ground. Connect AGND, PGND1, and PGND2 together at a single point in a star-ground connection. www.analog.com Analog Devices | 13 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Detailed Description The MAX25239/MAX25240 is a small, synchronous buck-boost converter family with integrated high-side and low-side switches. The IC is designed to deliver up to 6.0A with input voltages from +2.0V to +36V while using only 95µA quiescent current at no load. The MAX25239/MAX25240 family provides an accurate output voltage of ±2% within the normal operation input range. Voltage quality can be monitored by observing the PGOOD signal. The MAX25239/MAX25240 offers fixed output voltages and programmable output voltages in the range of 3V to 20V. Frequency is fixed with 200kHz, 400kHz, and 2.1MHz options. The 2.1MHz frequency allows for small external components and reduced output ripple, and guarantees no AM interference. The IC automatically enters skip mode at light loads with a low quiescent current of 95µA at no load. It can operate with ±6% spread-spectrum frequency modulation designed to minimize EMI radiated emissions. H-Bridge Operation The MAX25239/MAX25240 H-bridge configuration is shown in the Simplified Block Diagram. The H-bridge consists of the four switches HS1, LS1, HS2, and LS2. Switches HS1 and LS1 are in series with the input voltage, and switches HS2 and LS2 are connected to the output. The inductor is connected between LX1 and LX2. There are three operation modes depending on the ratio of the input and output voltage: buck mode, boost mode, and buck-boost mode. Buck Mode When the input voltage is much higher than the output voltage, the MAX25239/MAX25240 operate in pure buck mode. In this mode, switch HS2 is always on and switch LS2 is always off, while the switches HS1 and LS1 switch at the switching frequency. The IC uses an peak-current-mode control scheme to determine the ON pulse width for the switches HS1 and LS1. The switches HS1 and LS1 will alternate, behaving like a synchronous buck converter. Boost Mode When the input voltage is much lower than the output voltage, the MAX25239/MAX25240 operate in pure boost mode. In this boost configuration, the switch HS1 is always on and the switch LS1 is always off, while the switches HS2 and LS2 are operating at the switching frequency. The MAX25240 uses an peak-current-mode control scheme to determine the ON pulse width for the switches HS2 and LS2. The switches HS2 and LS2 switch as a synchronous boost converter. Buck-Boost Mode With the input voltage close to the output voltage, the MAX25239/MAX25240 operate in buck-boost mode. During the buck-boost transition region, all four switches are turned on/off at the switching frequency as needed to maintain high efficiency and regulated output voltage in the transition region. Linear Regulator Output (VCC) The devices include a 1.8V linear regulator (VCC) that provides power to the internal circuit blocks. Connect a 4.7μF (min) ceramic capacitor from VCC to GND. During startup, the bias regulator draws power from the input and switches over to the output after the startup is complete. For output voltages less than 1.8V, the bias regulator is always supplied from the input. Soft-Start The MAX25239/MAX25240 include a 2.5ms soft-start time. Soft-start time limits startup inrush current by forcing the output voltage to ramp up towards its regulation point. The soft-start ramp rate is set at 2.5ms. Current-Limit/Hiccup Mode The devices feature a current limit that protects the device against short-circuit and overload conditions at the output. In the event of a short-circuit or overload condition, the high-side MOSFET remains on until the inductor current reaches the high-side MOSFET’s current-limit threshold. The converter then turns on the low-side MOSFET to allow the inductor current to ramp down. Once the inductor current crosses below the low-side MOSFET current-limit threshold, the converter turns on the high-side MOSFET again. This cycle repeats until the short-circuit or overload condition is removed. www.analog.com Analog Devices | 14 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters If the device reaches the current limit with an output voltage below 50% of the target, hiccup mode is enabled and the output turns off for 5ms, then the IC attempts to power up through soft-start again. Power-Good Output (PGOOD) The devices feature an open-drain power-good indicator (PGOOD). The PGOOD asserts low when the output voltage drops below the 93% (typ) falling threshold. The PGOOD deasserts when the output voltage rises above the 94% (typ) rising threshold. Connect PGOOD to the output or external I/O voltage with a pullup resistor. Synchronization Input (SYNC) The SYNC pin is a logic-level input used for operating mode selection and frequency control. Connecting SYNC to VCC or to an external clock enables forced fixed-frequency (FPWM) operation. Connecting SYNC to GND enables automatic skip-mode operation for better light load efficiency. The external clock frequency at SYNC can be higher or lower than the internal clock by 20%. The devices synchronize to the external clock in two cycles. When the external clock signal at SYNC is absent for more than two clock cycles, the devices use the internal clock. System Enable (EN) An enable control input (EN) activates the devices from their low-power shutdown mode. EN is compatible with inputs from the automotive battery level down to 1.8V. EN turns on the internal linear (VCC) regulator. Once VCC is above the internal lockout threshold (VUVLO_VCC = 1.7V (typ)), the converter activates and the output voltage ramps up with the programmed soft-start time. A logic-low at EN shuts down the device. During shutdown, the VCC regulator and gate drivers turn off. Shutdown is the lowest power state and reduces the quiescent current to 5μA (typ). Drive EN high to bring the device out of shutdown. Spread-Spectrum Option (SPS) When the SPS pin is tied high, the operating frequency is varied ±6% centered on the switching frequency. The internal spread spectrum is disabled if the devices are synchronized to an external clock. However, the devices do not filter the external clock on the SYNC pin and pass any modulation (including spread spectrum) present driving the external clock. Thermal Shutdown Protection Thermal shutdown protects the device from excessive operating temperature. When the junction temperature exceeds +175°C, the sensor shuts down the converter, allowing the IC to cool. The sensor turns the IC on again after the junction temperature cools by 20°C. Thermal shutdown only disables the power switching, The VCC regulator and IC logic remain active during thermal shutdown. www.analog.com Analog Devices | 15 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Applications Information Inductor Selection Design of the inductor is a compromise between the size, efficiency, control, bandwidth, and stability of the converter. For a buck-boost application, selecting the right value of inductor becomes even more critical due to the presence of right-half-plane (RHP) zero in boost and buck-boost mode. A larger inductance value would reduce RMS current loss in MOSFETs, core, and winding losses in the inductor. On the other hand, it slows the control loop and reduces the frequency of the RHP zero, which can cause stability concerns. Start the selection of the inductor based on the inductor peak-to-peak current ripple as a percentage of the maximum inductor current in buck and boost modes of operation using Equations 1, 2, and 3. Typically, 40% ripple of the maximum inductor current is a good compromise between speed and efficiency. Equation 1: (VIN_MAX − VOUT) × VOUT LBUCK = f SW × ∆ ILP − P × VIN_MAX where: VIN_MAX = maximum input voltage VOUT = output voltage ∆ILP-P = peak-to-peak current ripple of the inductor fsw = switching frequency Equation 2: (VOUT_MAX − VIN) × VIN LBOOST = f SW × ∆ ILP − P × VOUT_MAX where: VIN = input voltage VOUT_MAX = maximum output voltage Select the larger of LBUCK and LBOOST as the final value of inductance L. Once the final value of inductance L is selected, calculate the actual peak inductor current using Equations 3 and choose an inductor with saturation current ≈20% more than the peak inductor current and the low DC resistance (DCR). Equation 3: IL VOUT × IOUT = V + PEAK IN_MIN × η VIN_MIN × (1 − VIN_MIN VOUT ) L × fSW × 2 where: VIN_MIN = minimum input voltage IOUT = output current η = power conversion efficiency L = inductor value Maximum Output Current The MAX25239/MAX25240 sense the peak inductor current to limit the output current. The maximum output current is determined by the operating conditions and component selection that impact peak inductor current. At a heavy load and high output voltage, thermal limitations impact the output current capability. Use θJA to estimate the junction temperature at specific operating conditions to determine whether the device will trigger thermal shutdown. www.analog.com Analog Devices | 16 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Input Capacitor The input capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit switching. For operation in buck mode, the input capacitor sees high discontinuous input current. Both the equivalent series resistance (ESR) and capacitance of the input capacitors cause the peak-to-peak voltage ripple, calculated in Equation 4. Equation 4: (1 − VOUT VOUT △ VIN = (1 − V ) × IOUT × ESR + IN VIN ) × IOUT × VOUT fSW × VIN × CIN where: ESR = equivalent series resistance of the input capacitor IOUT = output current CIN = capacitance of the input capacitor With the given maximum input voltage ripple, the input capacitance is calculated as in Equation 5. Equation 5: (1 − VOUT VIN ) × IOUT × VOUT CIN = (V × △ V − (V − V IN IN IN OUT) × IOUT × ESR) × fSW The selected input capacitor should be designed to handle the input RMS current of the input capacitor calculated by Equation 6. Equation 6: ICIN RMS = IOUTx√VOUTx(VIN − VOUT) VIN where: ICINRMS = RMS current flowing through the input capacitor The maximum input RMS current occurs at VIN = 2 x VOUT in Equation 7. Equation 7: ICIN RMS(MAX) = IOUT 2 Select the input capacitors that can handle the given RMS current as the RMS current flowing through the capacitor’s ESR will produce power loss to make the temperature rise. Ceramic capacitors are recommended for their low ESR, ESL, small size, and high current ripple capability to bypass the pulsing ripple current, which helps reduce the peak-to-peak voltage ripple at the input voltage and electromagnetic interference (EMI). Output Capacitor In boost mode, the output capacitors see high discontinuous ripple current. Both equivalent series resistance (ESR) and capacitance of the output capacitors cause the voltage ripple, as calculated in Equation 8. Equation 8: △ VOUT = VOUT × IOUT × ESR VIN × η + IOUT × (1 − VIN ) VOUT fSW × COUT where: ESR = equivalent series resistance of the output capacitor COUT = capacitance of the output capacitor www.analog.com Analog Devices | 17 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters With the given maximum voltage ripple, the output capacitance is calculated as shown in Equation 9. Equation 9: (VOUT − VIN) × VIN × IOUT × η COUT = ( △ V OUT × VIN × η − VOUT × IOUT × ESR) × VOUT × fSW When the input voltage reaches the minimum value, and the output voltage reaches the maximum value, the output voltage is the largest. Meanwhile the output capacitance is selected to satisfy the load transient requirements. During a load step, the output current changes almost instantaneously, whereas the inductor is slow to react. During this transition time, the load-charge requirements are supplied by the output capacitors, which causes an undershoot in the output voltage. Select a capacitor based on the maximum allowable undershoot on the output voltage. Typically, the worst-case response from a load transient is in boost mode. The output capacitance for the allowable undershoot is calculated under the load transient in boost mode, as in Equation 10: Equation 10: △ IOUT COUT = 2 × π × △ V OUTUS × fC where: fC = crossover frequency ∆IOUT = transient load step ∆VOUTUS = maximum allowable undershoot Select the larger output capacitance of Equation 9 and Equation 10 as the final value of the output capacitance COUT that can handle the given RMS current at the operating frequency. Ceramic capacitors are recommended for their low ESR, ESL, small size, and high current ripple capability to bypass the pulsing ripple current, which helps reduce the peak-to-peak voltage ripple at the output voltage and electromagnetic interference (EMI). The RMS ripple current of the output capacitors is calculated in Equation 11: Equation 11: ICOUT RMS = IOUT × √ VOUT − VIN VIN Output Voltage Setting Connect FB to VCC to enable the fixed output voltage set by a preset internal resistive voltage-divider connected between the feedback pin (FB) and AGND. To externally adjust the output voltage between 3V and 20V, connect a resistive voltage-divider from the output (OUT) to FB to AGND, as shown in Figure 1. Calculate RFB1 and RFB2 using Equation 12. Equation 12: VOUT RFB1 = RFB2[( V ) -1 ] FB where: VFB = 0.8V (typ) RFB2 < 50kΩ, can be typically set to 10kΩ www.analog.com Analog Devices | 18 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters VOUT MAX25239 MAX25240 RFB1 FB RFB2 Figure 1. Output Voltage External Adjustment Error Amplifier Compensation Design The MAX25240 converter uses an internal transconductance error amplifier, with its inverting input and output terminals available to the user for external frequency compensation (see Figure 2). The controller uses a peak current-mode-controlled architecture that regulates the output voltage by forcing the required current through the external inductor. Current-mode control splits the double pole in the feedback loop caused by the inductor and output capacitor into two single poles. One of the poles is moved to a high frequency outside the typical bandwidth of the converter, making it a single-pole system. This makes compensation easy with just Type II required to compensate the loop. In boost mode, an extra right half-plane (RHP) zero is introduced by the power stage that adds extra phase delay in the control loop. To avoid any significant effect of the RHP zero on the converter stability, the compensation is designed such that the bandwidth is approximately 1/5 of the worst-case RHP zero frequency. The design of external compensation requires some iterations to reach an optimized design. Care must be taken while designing the compensation for working in deep-boost mode and heavy load (VIN-MIN), as the RHP zero frequency decreases. A convenient way to design compensation for both buck and boost modes is to design the compensation at minimum input voltage and heavy load (deep-boost mode). At this operating point, RHP zero is at its lowest frequency. Design the compensation to achieve a bandwidth of 1/5 or lower of the RHP zero frequency to avoid significant effect of the RHP zero on the converter stability. The closed-loop gain of the converter would be a combination of the power-stage gain of the converter and error-amplifier gain, where the power stage’s pole and zero are calculated in Equation 13. Equation 13: 1 fPBOOST = π × R LOAD × COUT 1 fZESR = 2 × π × ESR × C OUT fZRHP = RLOAD × (1 − D)2 2×π×L where the error amplifier's pole and zero are calculated in Equation 14: Equation 14: 1 1 fP1EA = 2 × π × (R + R ) × C ≈ 2 × π × R × C , ifREA > > RC EA C C EA C 1 fP2EA = 2 × π × R × C C P 1 fZEA = 2 × π × R × C C C where REA is the output impedance of the transconductance error amplifier with the value of approximately 5MΩ. ESR is the equivalent series resistance of the output capacitors. RLOAD is the load resistance. The target bandwidth for the closed-loop converter is selected to be 1/5 of the RHP zero. The zero of the error amplifier www.analog.com Analog Devices | 19 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters should be placed well below the bandwidth to give enough phase boost at the crossover frequency fC. Typically, the zero of the transconductance error amplifier is placed close to the low-frequency pole fPBOOST of the power stage. The second pole fP2EA of the transconductance error amplifier is placed close to the RHP zero of the power stage. In such a case, the resistor RC and capacitors CC, CP of the compensation network are calculated using Equation 15. Equation 15: RC = CC = 2 × π × Ri × COUT × VOUT × fC (1 − D) × Gm × VREF RLOAD × COUT 2 × RC 1 CP = 2 × π × R × f C ZRHP where: Ri = 50mΩ current-sensing resistor GM = 100μA/V gain of the transconductance error amplifier fC = selected crossover frequency VREF = 0.8V reference of the feedback voltage The internal compensation network is shown in Figure 2. VOUT RFB1 VFB GM VCOMP RFB2 RC REA VREF = 0.8V CP CC Figure 2. Compensation Network PCB Layout Guidelines Careful PCB layout is critical to achieve low switching losses and clean, stable operation. Use a multilayer board whenever possible for better noise immunity and power dissipation. Follow these guidelines for good PCB layout: 1. Place ceramic bypass capacitors close to the input and output pins to minimize high frequency current loops. This improves efficiency and helps minimize radiated emissions. 2. Place VCC bypass capacitors close to the IC between the VCC and AGND pins. 3. Orient the input and output capacitors to minimize the distance between their ground connections. 4. Isolate the power ground from the analog ground whenever possible. Connect the power ground to the analog ground with a star-ground connection at the AGND pin. This keeps the ground-current loops to a minimum. In cases where only one ground is used, adequate isolation between the analog return signals and high-power signals must be maintained. 5. Minimize trace inductance between the LX pins and BST capacitors, placing ceramic bootstrap capacitors as close www.analog.com Analog Devices | 20 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters as possible to the BST1 and BST2 pins. 6. Isolate the power components and high-current path from the sensitive analog circuitry in the compensation and feedback loops. This is essential to prevent noise coupling into the analog signals. 7. Keep the high-current paths short, especially at the ground terminals. This practice is essential for stable, jitter-free operation. The high-current path (composed of an input capacitor, high-side FET, inductor, and output capacitor) should be as short as possible. 8. Keep the power traces and load connections short and wide. This practice is essential for high efficiency. Use thick copper PCBs (2oz vs. 1oz) to enhance full-load efficiency and thermal dissipation. 9. The analog signal lines should be routed away from the high-frequency planes. This ensures the integrity of sensitive signals feeding back into the device. 10. Place compensation components as close to the COMP pin as possible. Typical Application Circuits L 2.2µH CBST2 0.1µF CBST1 0.1µF BST1 VBAT LX1 LX2 BST2 SUP VOUT OUT CIN 2 x 4.7µF COUT 4x22µF VCC CVCC 4.7µF MAX25239 FB COMP RC SYNC SPS CF EN CC PGOOD AGND PGND1 PGND2 Figure 3. 2.1MHz Application Circuit: ILIM = 8.2A, VOUT = 5V www.analog.com Analog Devices | 21 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Typical Application Circuits (continued) L 4.7µH CBST2 0.1µF CBST1 0.1µF BST1 VBAT LX1 LX2 BST2 SUP VOUT OUT COUT 4 x 22µF CIN 2 x 4.7µF VCC CVCC 4.7µF COMP MAX25240 FB RC SYNC SPS CF EN CC PGOOD AGND PGND1 PGND2 Figure 4. 400kHz Application Circuit: ILIM = 10A, VOUT = 5V www.analog.com Analog Devices | 22 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Ordering Information CURRENT LIMIT ILIM (A) FIXED VOUT OPTIONS (V) ** ADJ VOUT (V) SWITCHING FREQUENCY (kHz) MAX25239AFFA/VY+ 8.2 5 6.5 2100 PART NUMBER /V denotes an automotive-qualified part. + Denotes a lead(Pb)-free/RoHS-compliant package. T Denotes tape-and-reel. * Future product—contact factory for availability. ^ 18V max operating VIN, 5A max average IOUT. ** Contact factory for options that include: • Fixed VOUT options from 3V to 15V • SYNC input or output • PGOOD assertion time delay options of 5ms and 10ms www.analog.com Analog Devices | 23 MAX25239/MAX25240 Automotive 2V to 36V, 6A Buck-Boost Converters Revision History REVISION NUMBER REVISION DATE 0 11/21 Initial release — 1 1/22 Updated Ordering Information table 23 2 2/22 Updated Ordering Information table 23 3 2/22 Updated Ordering Information table 23 4 3/22 Updated Ordering Information table 23 5 4/22 Updated Ordering Information table 23 6 7/22 Updated Ordering Information table 7 9/22 Updated Electrical Characteristics and Ordering Information table 8 12/22 Updated Ordering Information table 23 9 4/23 Updated Ordering Information table 23 10 6/23 Updated Package Information Thermal Parameters, Detailed Description, Applications Information, and Figure 4 DESCRIPTION PAGES CHANGED 23 6, 23 5, 14, 18, 22 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. w w w . a n a l o g . c o m Analog Devices | 24
MAX25239AFFA/VY+ 价格&库存

很抱歉,暂时无法提供与“MAX25239AFFA/VY+”相匹配的价格&库存,您可以联系我们找货

免费人工找货