0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX32672GTL+

MAX32672GTL+

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFQFN40_EP

  • 描述:

    M4 CORTEX 96MHZ 1024KB TQFN

  • 详情介绍
  • 数据手册
  • 价格&库存
MAX32672GTL+ 数据手册
Click here to ask an associate for production status of specific part numbers. MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC General Description Benefits and Features In the DARWIN family, the MAX32672 is an ultra-lowpower, cost-effective, highly integrated, and highly reliable 32-bit microcontroller enabling designs with complex sensor processing without compromising battery life. It combines a flexible and versatile power management unit with the powerful Arm® Cortex®-M4 processor with a floatingpoint unit (FPU). The MAX32672 also offers legacy designs an easy and cost-optimal upgrade path from 8- or 16-bit microcontrollers. ● High-Efficiency Microcontroller for Low-Power HighReliability Devices • Arm Cortex-M4 Processor with FPU up to 100MHz • 1MB Dual-Bank Flash with Error Correction • 200KB SRAM (160KB with ECC Enabled), Optionally Preserved in Lowest Power Modes • EEPROM Emulation on Flash • 16KB Unified Cache with ECC • Resource Protection Unit (RPU) and Memory Protection Unit (MPU) • Dual- or Single-Supply Operation, 1.7V to 3.6V • Wide Operating Temperature: -40°C to +105°C The device integrates 1MB of flash and 200KB of SRAM to accommodate application and sensor code. Error correction coding (ECC) is implemented on the entire flash, RAM, and cache to ensure extremely reliable code execution even in the harshest of environments. Brownout detection ensures proper operation during power-down and power-up events and unexpected supply transients. The flash is organized into two equal-size physical banks to allow execute-while-write and facilitate "live upgrades." Multiple high-speed peripherals such as 3.4MHz I2C, 50MHz SPI, and UART are included to maximize communication bandwidth. In addition, a low-power UART (LPUART) is available for operation in the lowest power sleep modes to facilitate wake-up activity without any loss of data. A total of six timers with I/O capability are provided, including two low-power timers to enable pulse counting, capture/compare, and pulse-width modulation (PWM) generation, even in the lowest power sleep modes. An incremental/quadrature encoder interface with multiple diagnostics is included specifically for motor control applications. A 1Msps, 12-channel, 12-bit successive approximation register (SAR) ADC is integrated for the digitization of analog sensor signals or other analog measurements. Two low-power comparators, available in all low-power modes, allow energy-efficient monitoring and wake-up on external analog signals. An Elliptic Curve Digital Signature Algorithm (ECDSA)-based cryptographic secure bootloader is available in ROM. The device is available in a 5mm x 5mm, 40-pin TQFN-EP or 7mm x 7mm, 56-pin TQFN. Applications ● Motion/Motor Control, Industrial Sensors ● Optical Communication Modules, Secure Radio Modem Controller ● Battery-Powered Medical Devices ● Flexible Clocking Schemes • Internal High-Speed 100MHz Oscillator • Internal Low-Power 7.3728MHz and Ultra-LowPower 80kHz Oscillators • 16MHz–32MHz Oscillator, 32.768kHz Oscillator (External Crystal Required) • External Clock Input for CPU, LPUART, LPTMR ● Power Management Maximizes Uptime for Battery Applications • 59.8μA/MHz ACTIVE at 0.9V up to 12MHz (CoreMark®) • 56.6μA/MHz ACTIVE at 1.1V up to 100MHz (While(1)) • 3.09μA Full Memory Retention Power in BACKUP Mode at VDD = 1.8V • 350nA Ultra-Low-Power RTC at VDD = 1.8V • Wake from LPUART or LPTMR ● Optimal Peripheral Mix Provides Platform Scalability • Up to 42 General-Purpose I/O Pins • Up to Three SPI Master/Slave (up to 50Mbps) • Up to Three 4-Wire UART • Up to Three I2C Master/Slave 3.4Mbps High Speed • Up to Four 32-Bit Timers (TMR) • Up to Two Low-Power 32-Bit Timers (LPTMR) • One I2S Master/Slave for Digital Audio Interface • 12-Channel, 12-Bit, 1Msps SAR ADC with On-Die Temperature Sensor ● Security and Integrity • Optional ECDSA-Based Cryptographic Secure Bootloader in ROM • Secure Cryptographic Accelerator for Elliptic Curve • AES-128/192/256 Hardware Acceleration Engine Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. CoreMark is a registered trademark of EEMBC. Ordering Information appears at end of data sheet. 19-101210; Rev 2; 5/23 © 2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2023 Analog Devices, Inc. All rights reserved. MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Simplified Block Diagram MAX32672 100MHz (IPO) HFXOUT HFXIN 16MHz– 32MHz (ERFO) 7.3728MHz (IBRO) EXTERNAL CLOCK 32KOUT 32KIN 32.768kHz (ERTCO) HOST Arm Cortex-M4 WITH FPU CPU SERIAL WIRE DEBUG (SWD) *4 x 32-BIT TIMER NVIC 80kHz (INRO) GPIO AND SHARED PAD FUNCTIONS *2 x 32-BIT LOW POWER TIMER MEMORY VCORE VDD VSS VREG1 VREF VDDA VSSA 32KIN SRAM 200KB (160KB WITH ECC) 16KB CACHE (WITH ECC) REGULATOR/ POWER CONTROL 12-CHANNEL STANDARD DMA QUADRATURE DECODER INTERFACE *3 x I2C MASTER/SLAVE I2S MASTER/SLAVE *3 x 4-WIRE UART 1 x 4-WIRE LOW POWER UART VCORE 12-BIT 1Msps ADC (SAR) 12 EXTERNAL CHANNELS VDDA 2 COMPARATORS 12 2 x WINDOWED WATCHDOG TIMER RTC 32KOUT TIMER LOW-POWER TIMER ADC COMPARATORS SPI I2 C UART LPUART I2 S 32kHz OUTPUT SINGLE-WIRE DEBUG EXT CLK INPUT/ OUTPUT ADC TRIGGER *3 x SPI MASTER/SLAVE BUS MATRIX – AHB, APB, IBUS, DBUS… RSTN POR, BROWNOUT MONITOR, SUPPLY VOLTAGE MONITORS FLASH 1MB DUAL BANK (WITH ECC) GPIO/ ALTERNATE FUNCTION VDD TEMP SENSOR 2 EXTERNAL INTERRUPTS 12 2 SECURITY 32-BIT CRC ACCELERATOR SECURE CRYPTO SHA-2 ACCELERATOR (SCA) SECURE NV KEY SECURE BOOTLOADER TRUE RANDOM NUMBER GENERATOR (TRNG) AES-128/192/256 www.analog.com *NOT ALL PACKAGES PROVIDE THE FULL COMPLEMENT OF HIS PERIPHERAL. SEE ORDERING INFORMATION FOR DETAILS. Analog Devices | 2 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 40 TQFN-EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 56 TQFN-EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical Characteristics—SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Electrical Characteristics—I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Electrical Characteristics—I2S Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Electrical Characteristics—Quadrature Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 40 TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 56 TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Arm Cortex-M4 Processor with FPU Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Internal Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Internal SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 General-Purpose I/O and Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Standard DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Power Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 DEEPSLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 BACKUP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 STORAGE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Real-Time Clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Windowed Watchdog Timer (WDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 32-Bit Timer/Counter/PWM (TMR, LPTMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Serial Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 www.analog.com Analog Devices | 3 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC TABLE OF CONTENTS (CONTINUED) Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 I2S Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Quadrature Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Secure Cryptographic Accelerator (SCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 True Random Number Generator (TRNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CRC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 SHA-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Software Integrity and Root of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Root of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Secure Communications Protocol Bootloader (SCPBL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Debug and Development Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Bypass Capacitor Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Bootloader Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Single Supply Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 DEEPSLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 BACKUP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 STORAGE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Dual Supply Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 DEEPSLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 DEEPSLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 BACKUP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 www.analog.com Analog Devices | 4 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC TABLE OF CONTENTS (CONTINUED) BACKUP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 STORAGE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 STORAGE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 www.analog.com Analog Devices | 5 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC LIST OF FIGURES Figure 1. Power Supply Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 2. SPI Master Mode Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 3. SPI Slave Mode Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 4. I2C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 5. I2S Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 6. Quadrature Decoder Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 7. Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 www.analog.com Analog Devices | 6 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC LIST OF TABLES Table 1. BACKUP Mode RAM Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 2. MAX32672 Watchdog Timer Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 3. MAX32672 Timer Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 4. MAX32672 I2C Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 5. MAX32672 SPI Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 6. MAX32672 UART Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 7. Common CRC Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 8. Bootloader Activation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 9. Fixed VDD Current Consumption ACTIVE Mode, IPO, Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 10. Fixed VDD Current Consumption SLEEP Mode, IPO, Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 11. Fixed VDD Current Consumption ACTIVE Mode, IBRO, Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 12. Fixed VDD Current Consumption SLEEP Mode, IBRO, Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 13. Fixed VDD Current Consumption DEEPSLEEP Mode, Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 14. Fixed VDD Current Consumption BACKUP Mode, Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 15. Fixed VDD Current Consumption STORAGE Mode, Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 16. Fixed VCORE Current Consumption ACTIVE Mode, IPO, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 17. Fixed VDD Current Consumption ACTIVE Mode, IPO, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 18. Fixed VCORE Current Consumption SLEEP Mode, IPO, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 19. Fixed VDD Current Consumption SLEEP Mode, IPO, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 20. Fixed VCORE Current Consumption ACTIVE Mode, IBRO, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 21. Fixed VDD Current Consumption ACTIVE Mode, IBRO, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 22. Fixed VCORE Current Consumption SLEEP Mode, IBRO, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 23. Fixed VDD Current Consumption SLEEP Mode, IBRO, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 24. Fixed VCORE Current Consumption DEEPSLEEP Mode, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 25. Fixed VDD Current Consumption DEEPSLEEP Mode, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 26. Fixed VCORE Current Consumption BACKUP Mode, Dual Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 27. Fixed VDD Current Consumption BACKUP Mode, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 28. Fixed VCORE Current Consumption STORAGE Mode, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 29. Fixed VDD Current Consumption STORAGE Mode, Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 www.analog.com Analog Devices | 7 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Absolute Maximum Ratings VCORE, HFXIN, HFXOUT ................................... -0.3V to +1.21V VDD, VDDA .......................................................... -0.3V to +3.63V VREF ........................................................... -0.3V to VDDA + 0.3V 32KIN, 32KOUT ........................................... -0.3V to VDD + 0.3V RSTN, GPIO ................................................. -0.3V to VDD + 0.3V Total Current into All GPIO Combined (sink) .................... 100mA VSS .................................................................................... 100mA Output Current (sink) by Any GPIO Pin ............................... 25mA Output Current (source) by Any GPIO Pin ......................... -25mA Continuous Package Power Dissipation 40 TQFN-EP (multilayer board) TA = +70°C (derate 35.7mW/°C above +70°C) ........................................................................2857.10mW Continuous Package Power Dissipation 56 TQFN-EP (multilayer board) TA = +70°C (derate 40mW/°C above +70°C) ......3200mW Operating Temperature Range ...........................-40°C to +105°C Storage Temperature Range ..............................-65°C to +125°C Soldering Temperature (reflow) ........................................ +260°C Note: No device pins can exceed 3.63V. All voltages with respect to VSS, unless otherwise noted. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 40 TQFN-EP Package Code T4055+1 Outline Number 21-0140 Land Pattern Number 90-0016 Thermal Resistance, Single-Layer Board: Junction to Ambient (θJA) 45°C/W Junction to Case (θJC) 2°C/W Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 28°C/W Junction to Case (θJC) 2°C/W 56 TQFN-EP Package Code T5677+1 Outline Number 21-0144 Land Pattern Number 90-0042 Thermal Resistance, Single-Layer Board: Junction to Ambient (θJA) 36°C/W Junction to Case (θJC) 1°C/W Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 25°C/W Junction to Case (θJC) 1°C/W For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. www.analog.com Analog Devices | 8 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS V POWER / BOTH SINGLE-SUPPLY OPERATION AND DUAL-SUPPLY OPERATION Supply Voltage Supply Voltage, Core VDD VCORE Dual-supply operation 1.71 1.8 3.63 0.855 0.9 0.945 OVR = [01] 0.95 1.0 1.05 Default OVR = [10] 1.045 1.1 1.155 OVR = [00] No power supply connection for singlesupply operation Supply Voltage, Analog VDDA Power-Fail Reset Voltage VRST Power-On Reset Voltage VPOR www.analog.com V — VDDA must be connected to VDD 1.71 3.63 Monitors VDD 1.58 1.71 Monitors VCORE during dual-supply operation 0.74 0.845 Monitors VDD 1.4 Monitors VCORE during dual-supply operation 0.6 V V V Analog Devices | 9 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER / SINGLE-SUPPLY OPERATION (VDD ONLY); fSYS_OSC = IPO Dynamic, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current ACTIVE Mode IDD_DACTS Dynamic, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA Dynamic, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 100MHz 70 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz 68.4 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 12MHz 66.8 OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 100MHz 69.4 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz 67.5 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 12MHz 65.9 OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 100MHz 56.6 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz 54.3 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 12MHz 53.1 μA/MHz Analog Devices | 10 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS www.analog.com TYP 56 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz 53.7 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 12MHz 52.5 Fixed, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 9 for temperature variance. OVR = [10], internal regulator set to 1.1V 893 OVR = [01], internal regulator set to 1.0V 732 OVR = [00], internal regulator set to 0.9V 618 Fixed, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 9 for temperature variance. OVR = [10], internal regulator set to 1.1V 865 OVR = [01], internal regulator set to 1.0V 708 OVR = [00], internal regulator set to 0.9V 594 Dynamic, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA IDD_FACTS MIN OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 100MHz MAX UNITS μA Analog Devices | 11 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Dynamic, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current SLEEP Mode IDD_DSLPS Dynamic, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA Dynamic, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, DMA disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com MIN TYP OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 100MHz 44.9 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz 43.6 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 12MHz 43.8 OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 100MHz 44.7 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz 43.3 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 12MHz 43.5 OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 100MHz 21.4 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz 19.8 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 12MHz 19.8 MAX UNITS μA/MHz Analog Devices | 12 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS www.analog.com TYP 21.4 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz 19.8 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 12MHz 19.7 Fixed, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 10 for temperature variance. OVR = [10], internal regulator set to 1.1V 893 OVR = [01], internal regulator set to 1.0V 732 OVR = [00], internal regulator set to 0.9V 618 Fixed, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 10 for temperature variance. OVR = [10], internal regulator set to 1.1V 865 OVR = [01], internal regulator set to 1.0V 708 OVR = [00], internal regulator set to 0.9V 594 Dynamic, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, DMA disabled, inputs tied to VSS or VDD, outputs source/sink 0mA IDD_FSLPS MIN OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 100MHz MAX UNITS μA Analog Devices | 13 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER / SINGLE-SUPPLY OPERATION (VDD ONLY); fSYS_OSC = IBRO Dynamic, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current ACTIVE Mode IDD_DACTS Dynamic, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA Dynamic, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 7.3728MHz 70.8 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 7.3728MHz 68.1 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 7.3728MHz 64.2 OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 7.3728MHz 70.1 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 7.3728MHz 67.4 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 7.3728MHz 63.4 OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 7.3728MHz 56.5 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 7.3728MHz 53.5 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 7.3728MHz 50.1 μA/MHz Analog Devices | 14 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS www.analog.com TYP 55.8 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 7.3728MHz 52.8 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 7.3728MHz 49.4 Fixed, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 11 for temperature variance. OVR = [10], internal regulator set to 1.1V 446 OVR = [01], internal regulator set to 1.0V 385 OVR = [00], internal regulator set to 0.9V 341 Fixed, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 11 for temperature variance. OVR = [10], internal regulator set to 1.1V 413 OVR = [01], internal regulator set to 1.0V 353 OVR = [00], internal regulator set to 0.9V 309 Dynamic, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA IDD_FACTS MIN OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 7.3728MHz MAX UNITS μA Analog Devices | 15 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Dynamic, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current SLEEP Mode IDD_DSLPS Dynamic, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA Dynamic, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, DMA disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com MIN TYP OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 7.3728MHz 44 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 7.3728MHz 42.6 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 7.3728MHz 40.9 OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 7.3728MHz 43.8 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 7.3728MHz 42.4 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 7.3728MHz 40.6 OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 7.3728MHz 20.6 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 7.3728MHz 19.1 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 7.3728MHz 17.2 MAX UNITS μA/MHz Analog Devices | 16 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS TYP 20.6 OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 7.3728MHz 19.1 OVR = [00], internal regulator set to 0.9V, fSYS_CLK(MAX) = 7.3728MHz 17.1 Fixed, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 12 for temperature variance. OVR = [10], internal regulator set to 1.1V 446 OVR = [01], internal regulator set to 1.0V 385 OVR = [00], internal regulator set to 0.9V 341 Fixed, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 12 for temperature variance. OVR = [10], internal regulator set to 1.1V 413 OVR = [01], internal regulator set to 1.0V 353 OVR = [00], internal regulator set to 0.9V 309 VDD = 3.3V 5.3 VDD = 1.8V 5 Dynamic, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, DMA disabled, inputs tied to VSS or VDD, outputs source/sink 0mA IDD_FSLPS MIN OVR = [10], internal regulator set to 1.1V, fSYS_CLK(MAX) = 7.3728MHz MAX UNITS μA POWER / SINGLE-SUPPLY OPERATION (VDD ONLY) VDD Fixed Current, DEEPSLEEP Mode www.analog.com IDD_FDSLS Standby state with full data retention and 200KB SRAM retained. See Table 13 for temperature variance. μA Analog Devices | 17 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS VDD = 3.3V, RTC disabled. See Table 14 for temperature variance. VDD Fixed Current, BACKUP Mode IDD_FBKUS VDD = 1.8V, RTC disabled. See Table 14 for temperature variance. VDD Fixed Current, STORAGE Mode IDD_FSTOS See Table 15 for temperature variance. MIN TYP 0KB SRAM retained, retention regulator disabled 0.35 20KB SRAM retained 1.14 40KB SRAM retained 1.56 120KB SRAM retained 2.69 200KB SRAM retained 3.78 0KB SRAM retained, retention regulator disabled 0.08 20KB SRAM retained 0.86 40KB SRAM retained 1.3 120KB SRAM retained 2.4 200KB SRAM retained 3.5 VDD = 3.3V 0.34 VDD = 1.8V 0.083 MAX UNITS μA μA POWER / SINGLE-SUPPLY OPERATION (VDD ONLY) RESUME TIMES SLEEP Mode Resume Time DEEPSLEEP Mode Resume Time BACKUP Mode Resume Time STORAGE Mode Resume Time www.analog.com tSLP_ONS fSYS_OSC = IPO 0.1 fSYS_OSC = IBRO 1.1 fSYS_OSC = IPO tDSL_ONS fSYS_OSC = IBRO tBKU_ONS tSTO_ONS Time from power mode exit to execution of application code Time from power mode exit to execution of application code fast_wk_en = 1 74 fast_wk_en = 0 210 fast_wk_en = 1 182 fast_wk_en = 0 319 Parts without SCPBL 1.08 Parts with SCPBL performing signature verification over 512KB of flash 264 Parts without SCPBL 1.08 Parts with SCPBL performing signature verification over 512KB of flash 264 μs μs μs ms ms Analog Devices | 18 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER Cold Boot Startup Time SYMBOL tCB_STS CONDITIONS Time from VDD = VDD(MIN) to execution of application code MIN TYP Parts without SCPBL 1.08 Parts with SCPBL performing signature verification over 512KB of flash 264 MAX UNITS ms POWER / DUAL-SUPPLY OPERATION (VDD AND VCORE); fSYS_OSC = IPO Dynamic, IPO enabled, total current into VCORE pin, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA ICORE_DACTD Dynamic, IPO enabled, total current into VCORE pin, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VCORE Current, ACTIVE Mode ICORE_FACTD www.analog.com Fixed, IPO enabled, total current into VCORE pin, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 16 for temperature variance. OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 100MHz 69 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 50MHz 67 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 12MHz 59.8 OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 100MHz 55.5 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 50MHz 53 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 12MHz 47.4 OVR = [10], VCORE = 1.1V 417 OVR = [01], VCORE = 1.0V 261 μA/MHz μA OVR = [00], VCORE = 0.9V 137 Analog Devices | 19 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER VDD Current, ACTIVE Mode www.analog.com SYMBOL IDD_DACTD CONDITIONS MIN TYP Dynamic, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], fSYS_CLK(MAX) = 100MHz 0.67 OVR = [01], fSYS_CLK(MAX) = 50MHz 0.67 OVR = [00], fSYS_CLK(MAX) = 12MHz 0.67 Dynamic, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], fSYS_CLK(MAX) = 100MHz 0.30 OVR = [01], fSYS_CLK(MAX) = 50MHz 0.30 OVR = [00], fSYS_CLK(MAX) = 12MHz 0.30 Dynamic, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], fSYS_CLK(MAX) = 100MHz 0.67 OVR = [01], fSYS_CLK(MAX) = 50MHz 0.67 OVR = [00], fSYS_CLK(MAX) = 12MHz 0.67 Dynamic, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], fSYS_CLK(MAX) = 100MHz 0.30 OVR = [01], fSYS_CLK(MAX) = 50MHz 0.30 OVR = [00], fSYS_CLK(MAX) = 12MHz 0.30 MAX UNITS μA/MHz Analog Devices | 20 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL IDD_FACTD www.analog.com CONDITIONS MIN TYP Fixed, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 17 for temperature variance. OVR = [10], VCORE = 1.1V 430 OVR = [01], VCORE = 1.0V 430 OVR = [00], VCORE = 0.9V 430 Fixed, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 17 for temperature variance. OVR = [10], VCORE = 1.1V 410 OVR = [01], VCORE = 1.0V 410 OVR = [00], VCORE = 0.9V 410 MAX UNITS μA Analog Devices | 21 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Dynamic, IPO enabled, total current into VCORE pin, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA ICORE_DSLPD Dynamic, IPO enabled, total current into VCORE pin, CPU in SLEEP mode, ECC disabled, DMA disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VCORE Current, SLEEP Mode ICORE_FSLPD www.analog.com Fixed, IPO enabled, total current into VCORE pin, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 18 for temperature variance. MIN TYP OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 100MHz 44.5 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 50MHz 42.9 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 12MHz 39.2 OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 100MHz 21.1 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 50MHz 19.3 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 12MHz 16.5 OVR [10], VCORE = 1.1V 417 OVR [01], VCORE = 1.0V 261 MAX UNITS μA/MHz μA OVR [00], VCORE = 0.9V 137 Analog Devices | 22 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL IDD_DSLPD VDD Current, SLEEP Mode IDD_FSLPD www.analog.com CONDITIONS MIN TYP Dynamic, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 100MHz 0.002 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 50MHz 0.002 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 12MHz 0.002 Dynamic, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 100MHz 0.001 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 50MHz 0.001 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 12MHz 0.001 Fixed, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 19 for temperature variance. OVR = [10], VCORE = 1.1V 430 OVR = [01], VCORE = 1.0V 430 OVR = [00], VCORE = 0.9V 430 Fixed, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 19 for temperature variance. OVR = [10], VCORE = 1.1V 410 OVR = [01], VCORE = 1.0V 410 OVR = [00], VCORE = 0.9V 410 MAX UNITS μA/MHz μA Analog Devices | 23 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER / DUAL-SUPPLY OPERATION (VDD AND VCORE); fSYS_OSC = IBRO Dynamic, IBRO enabled, total current into VCORE pin, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA ICORE_DACTD Dynamic, IBRO enabled, total current into VCORE pin, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VCORE Current, ACTIVE Mode ICORE_FACTD www.analog.com Fixed, IBRO enabled, total current into VCORE pin, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 20 for temperature variance. OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 7.3728MHz 70.4 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 7.3728MHz 67 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 7.3728MHz 60 OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 7.3728MHz 55.9 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 7.3728MHz 52.9 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 7.3728MHz 46.9 OVR = [10], VCORE = 1.1V 238 OVR = [01], VCORE = 1.0V 179 μA/MHz μA OVR = [00], VCORE = 0.9V 122 Analog Devices | 24 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER VDD Current, ACTIVE Mode www.analog.com SYMBOL IDD_DACTD CONDITIONS MIN TYP Dynamic, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], fSYS_CLK(MAX) = 7.3728MHz 0.05 OVR = [01], fSYS_CLK(MAX) = 7.3728MHz 0.01 OVR = [00], fSYS_CLK(MAX) = 7.3728MHz 0.42 Dynamic, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode, executing CoreMark, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], fSYS_CLK(MAX) = 7.3728MHz 0.022 OVR = [01], fSYS_CLK(MAX) = 7.3728MHz 0.045 OVR = [00], fSYS_CLK(MAX) = 7.3728MHz 0.18 Dynamic, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], fSYS_CLK(MAX) = 7.3728MHz 0.05 OVR = [01], fSYS_CLK(MAX) = 7.3728MHz 0.1 OVR = [00], fSYS_CLK(MAX) = 7.3728MHz 0.42 Dynamic, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], fSYS_CLK(MAX) = 7.3728MHz 0.02 OVR = [01], fSYS_CLK(MAX) = 7.3728MHz 0.04 OVR = [00], fSYS_CLK(MAX) = 7.3728MHz 0.18 MAX UNITS μA/MHz Analog Devices | 25 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL IDD_FACTD www.analog.com CONDITIONS MIN TYP Fixed, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 21 for temperature variance. OVR = [10], VCORE = 1.1V 165 OVR = [01], VCORE = 1.0V 165 OVR = [00], VCORE = 0.9V 165 Fixed, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 21 for temperature variance. OVR = [10], VCORE = 1.1V 136 OVR = [01], VCORE = 1.0V 136 OVR = [00], VCORE = 0.9V 136 MAX UNITS μA Analog Devices | 26 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Dynamic, IBRO enabled, total current into VCORE pin, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA ICORE_DSLPD Dynamic, IBRO enabled, total current into VCORE pin, CPU in SLEEP mode, ECC disabled, DMA disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VCORE Current, SLEEP Mode ICORE_FSLPD www.analog.com Fixed, IBRO enabled, total current into VCORE pin, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 22 for temperature variance. MIN TYP OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 7.3728MHz 0.04 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 7.3728MHz 0.04 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 7.3728MHz 0.04 OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 7.3728MHz 0.02 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 7.3728MHz 0.02 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 7.3728MHz 0.02 OVR [10], VCORE = 1.1V 238 OVR [01], VCORE = 1.0V 179 MAX UNITS μA/MHz μA OVR [00], VCORE = 0.9V 122 Analog Devices | 27 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL IDD_DSLPD VDD Current, SLEEP Mode IDD_FSLPD www.analog.com CONDITIONS MIN TYP Dynamic, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 7.3728MHz 0.001 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 7.3728MHz 0.001 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 7.3728MHz 0.001 Dynamic, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to VSS or VDD, outputs source/sink 0mA OVR = [10], VCORE = 1.1V, fSYS_CLK(MAX) = 7.3728MHz 0.001 OVR = [01], VCORE = 1.0V, fSYS_CLK(MAX) = 7.3728MHz 0.001 OVR = [00], VCORE = 0.9V, fSYS_CLK(MAX) = 7.3728MHz 0.001 Fixed, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 23 for temperature variance. OVR = [10], VCORE = 1.1V 165 OVR = [01], VCORE = 1.0V 165 OVR = [00], VCORE = 0.9V 165 Fixed, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA. See Table 23 for temperature variance. OVR = [10], VCORE = 1.1V 136 OVR = [01], VCORE = 1.0V 136 OVR = [00], VCORE = 0.9V 136 MAX UNITS μA/MHz μA Analog Devices | 28 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER / DUAL-SUPPLY OPERATION (VDD AND VCORE) VCORE Fixed Current, DEEPSLEEP Mode VDD Fixed Current, DEEPSLEEP Mode www.analog.com ICORE_FDSLP D IDD_FDSLPD See Table 24 for temperature variance. See Table 25 for temperature variance. VDD = 3.3V, VCORE = 1.1V 12.2 VDD = 3.3V, VCORE = 0.855V 4.6 VDD = 1.8V, VCORE = 1.1V 12.2 VDD = 1.8V, VCORE = 0.855V 4.6 VDD = 3.3V, VCORE = 1.1V 0.37 VDD = 3.3V, VCORE = 0.855V 0.37 VDD = 1.8V, VCORE = 1.1V 0.15 VDD = 1.8V, VCORE = 0.855V 0.15 μA μA Analog Devices | 29 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS 0KB SRAM retained, RTC disabled, retention regulator disabled. See Table 26 for temperature variance. 20KB SRAM retained with RTC disabled. See Table 26 for temperature variance. VCORE Fixed Current, BACKUP Mode ICORE_FBKUD 40KB SRAM retained with RTC disabled. See Table 26 for temperature variance. 120KB SRAM retained with RTC disabled. See Table 26 for temperature variance. 200KB SRAM retained with RTC disabled. See Table 26 for temperature variance. www.analog.com MIN TYP VDD = 3.3V, VCORE = 1.1V 0.28 VDD = 3.3V, VCORE = 0.855V 0.14 VDD = 1.8V, VCORE = 1.1V 0.28 VDD = 1.8V, VCORE = 0.855V 0.14 VDD = 3.3V, VCORE = 1.1V 1.31 VDD = 3.3V, VCORE = 0.855V 0.54 VDD = 1.8V, VCORE = 1.1V 1.31 VDD = 1.8V, VCORE = 0.855V 0.54 VDD = 3.3V, VCORE = 1.1V 2.35 VDD = 3.3V, VCORE = 0.855V 0.94 VDD = 1.8V, VCORE = 1.1V 2.35 VDD = 1.8V, VCORE = 0.855V 0.94 VDD = 3.3V, VCORE = 1.1V 5.46 VDD = 3.3V, VCORE = 0.855V 2.02 VDD = 1.8V, VCORE = 1.1V 5.46 VDD = 1.8V, VCORE = 0.855V 2.02 VDD = 3.3V, VCORE = 1.1V 8.55 VDD = 3.3V, VCORE = 0.855V 3.09 VDD = 1.8V, VCORE = 1.1V 8.55 VDD = 1.8V, VCORE = 0.855V 3.09 MAX UNITS μA Analog Devices | 30 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS 0KB SRAM retained with RTC disabled, retention regulator disabled. See Table 27 for temperature variance. 20KB SRAM retained with RTC disabled. See Table 27 for temperature variance. VDD Fixed Current, BACKUP Mode IDD_FBKUD 40KB SRAM retained with RTC disabled. See Table 27 for temperature variance. 120KB SRAM retained with RTC disabled. See Table 27 for temperature variance. 200KB SRAM retained with RTC disabled. See Table 27 for temperature variance. www.analog.com MIN TYP VDD = 3.3V, VCORE = 1.1V 0.37 VDD = 3.3V, VCORE = 0.855V 0.37 VDD = 1.8V, VCORE = 1.1V 0.16 VDD = 1.8V, VCORE = 0.855V 0.16 VDD = 3.3V, VCORE = 1.1V 0.37 VDD = 3.3V, VCORE = 0.855V 0.37 VDD = 1.8V, VCORE = 1.1V 0.16 VDD = 1.8V, VCORE = 0.855V 0.16 VDD = 3.3V, VCORE = 1.1V 0.37 VDD = 3.3V, VCORE = 0.855V 0.37 VDD = 1.8V, VCORE = 1.1V 0.16 VDD = 1.8V, VCORE = 0.855V 0.16 VDD = 3.3V, VCORE = 1.1V 0.37 VDD = 3.3V, VCORE = 0.855V 0.37 VDD = 1.8V, VCORE = 1.1V 0.16 VDD = 1.8V, VCORE = 0.855V 0.16 VDD = 3.3V, VCORE = 1.1V 0.37 VDD = 3.3V, VCORE = 0.855V 0.37 VDD = 1.8V, VCORE = 1.1V 0.16 VDD = 1.8V, VCORE = 0.855V 0.16 MAX UNITS μA Analog Devices | 31 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER VCORE Fixed Current, STORAGE Mode VDD Fixed Current, STORAGE Mode SYMBOL ICORE_FSTOD IDD_FSTOD CONDITIONS See Table 28 for temperature variance. See Table 29 for temperature variance. MIN TYP VDD = 3.3V, VCORE = 1.1V 0.29 VDD = 3.3V, VCORE = 0.855V 0.15 VDD = 1.8V, VCORE = 1.1V 0.29 VDD = 1.8V, VCORE = 0.855V 0.15 VDD = 3.3V; VCORE = 1.1V 0.4 VDD = 3.3V; VCORE = 0.855V 0.4 VDD = 1.8V; VCORE = 1.1V 0.16 VDD = 1.8V; VCORE = 0.855V 0.16 MAX UNITS μA μA POWER / DUAL-SUPPLY OPERATION (VDD AND VCORE) RESUME TIMES SLEEP Mode Resume Time DEEPSLEEP Mode Resume Time BACKUP Mode Resume Time STORAGE Mode Resume Time Cold Boot Startup Time tSLP_OND tDSL_OND tBKU_OND tSTO_OND tCB_STD fSYS_OSC = IPO; OVR = [11] 0.1 fSYS_OSC = IBRO; OVR = [11] 1.1 fSYS_OSC = IPO; OVR = [11] fast_wk_en = 1 37 fast_wk_en = 0 184 fSYS_OSC = IBRO; OVR = [11] fast_wk_en = 1 146 fast_wk_en = 0 295 Parts without SCPBL 1.05 Parts with SCPBL performing signature verification over 512KB of flash 264 Parts without SCPBL 1.05 Parts with SCPBL performing signature verification over 512KB of flash 264 Parts without SCPBL 1.05 Time from power mode exit to execution of application code; OVR = [11] Time from power mode exit to execution of application code Time from VDD = VDD(MIN) and VCORE = VCORE(MIN) to execution of application code μs μs ms ms ms CLOCKS System Clock Frequency www.analog.com fSYS_CLK 100 MHz Analog Devices | 32 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER System Clock Period Internal Primary Oscillator (IPO) SYMBOL fIPO fERFO Internal Baud Rate Oscillator (IBRO) fIBRO Internal Nanoring Oscillator (INRO) fINRO RTC Operating Current MIN fERTCO IRTC RTC Power-Up Time tRTC_ ON External Clock Input Frequency fEXT_CLK TYP MAX 1/fSYS_C tSYS_CLK External RF Oscillator (ERFO) External RTC Oscillator (ERTCO) CONDITIONS μs LK Default OVR = [10] 100 Required crystal characteristics: CL = 12pF, ESR ≤ 50Ω, C0 ≤ 7pF, temperature stability ±20ppm, initial tolerance ±20ppm 16 Measured at VDD = 1.8V 32.768kHz watch crystal, CL = 6pF, ESR < 90kΩ, C0 < 2pF All power modes, RTC enabled UNITS MHz 32 MHz 7.3728 MHz 70 kHz 32.768 kHz 0.35 μA 250 ms EXT_CLK1 selected 50 EXT_CLK2 selected 1 MHz 12-BIT SAR ADC Resolution Effective Number of Bits ENOB ADC_CLKCTRL.clkdiv = 0bX00. AINx input pk--pk = VREF – 10mV External Reference Voltage VREF VREF ≤ VDDA Internal Reference Voltage 12 bits 10 bits 2.048 VDDA VINT_REF MCR_ADC_CFG0.ext_ref = 0, MCR_ADC_CFG0.ref_sel = 0 1.25 VINT_REF MCR_ADC_CFG0.ext_ref = 0, MCR_ADC_CFG0.ref_sel = 1 2.048 V V ADC Clock Rate fACLK 1 MHz ADC Clock Period tACLK 1/fACLK μs Input Voltage Range VAIN Input Impedance RAIN Analog Input Capacitance CAIN AIN[11:0], ADC_DATA.chan = [11:0] ADC_CLKCTRL.clk div = 0bX00 VSSA  + 0.05 VREF ADC_CLKCTRL.clk div = 0bX01 VSSA + 0.05 min(2 x VREF,VD DA) ADC_CLKCTRL.clk div = 0bX10 VSSA + 0.05 min(2 x VREF,VD DA) ADC_CLKCTRL.clkdiv = 0bX01 5 ADC_CLKCTRL.clkdiv = 0bX10 50 Fixed capacitance to VSSA Dynamically switched capacitance V kΩ 2 pF 1.2 pF Integral Nonlinearity INL ±1.5 LSb Differential Nonlinearity DNL ±0.75 LSb www.analog.com Analog Devices | 33 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER Offset Error SYMBOL VOS CONDITIONS IADC Chopping enabled ±0.2 ADC active, reference buffer enabled, ADC_CLKCTRL.clk div = 0bX01 ADC active, reference buffer enabled, ADC_CLKCTRL.clk div = 0bX10 ADC Sample Rate ADC Setup Time fADC tADC_SU TYP ±9 ADC active, reference buffer enabled, ADC_CLKCTRL.clk div = 0bX00 ADC Active Current MIN Chopping disabled MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 0, VDDA = 1.8V 500 MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 1, VDDA = 3.3V 788 MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 0, VDDA = 1.8V 440 MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 1, VDDA = 3.3V 670 MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 0, VDDA = 1.8V 366 MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 1, VDDA = 3.3V 512 MAX UNITS LSb µA ADC_CLKCTRL.clkdiv = 0bX00 1 ADC_CLKCTRL.clkdiv = 0bX01 0.625 ADC_CLKCTRL.clkdiv = 0bX10 0.125 Any power-up of ADC clock or ADC bias to CpuAdcStart 500 Msps µs ADC Input Leakage IADC_LEAK ADC inactive or channel not selected 0.4 nA Bandgap Temperature Coefficient VTEMPCO Box method 45 ppm Includes linearity and calibration error ±3 °C Includes integration and ADC conversion time 300 μs 0.5 °C 12-BIT SAR ADC / TEMPERATURE SENSOR Accuracy TACC Conversion Time tT_CONV Integration Noise 1-Sigma TINTN www.analog.com Reduce by 1 √N integrations Analog Devices | 34 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS COMPARATORS Input Offset Voltage Input Hysteresis Input Voltage Range VOFFSET VHYST ±3 AINCOMPHYST[1:0] = 00 22 AINCOMPHYST[1:0] = 01 50 AINCOMPHYST[1:0] = 10 2 AINCOMPHYST[1:0] = 11 7 VIN_CMP Common-mode range Input Low Voltage for All GPIO, RSTN VIL_GPIO Pin configured as GPIO Input High Voltage for All GPIO, RSTN VIH_GPIO Pin configured as GPIO 0.6 mV mV 1.35 V 0.3 × VDD V GENERAL-PURPOSE I/O Output Low Voltage for All GPIO Except P0.6, P0.7, P0.12, P0.13, P0.18, and P0.19 Output Low Voltage for GPIO P0.6, P0.7, P0.12, P0.13, P0.18, P0.19 Output High Voltage for All GPIO Except P0.6, P0.7, P0.12, P0.13, P0.18, and P0.19 VOL_GPIO VOL_I2C VOH_GPIO Output High Voltage for GPIO P0.6, P0.7, P0.12, P0.13, P0.18, and P0.19 VOH_I2C Combined IOL, All GPIO IOL_TOTAL Combined IOH, All GPIO IOH_TOTAL Input Hysteresis (Schmitt) Input/Output Pin Capacitance for All Pins Input Leakage Current Low www.analog.com 0.7 × VDD V VDD = 1.71V, IOL = 1mA, DS[1:0] = 00 (Note 1) 0.2 0.4 VDD = 1.71V, IOL = 2mA, DS[1:0] = 10 (Note 1) 0.2 0.4 VDD = 1.71V, IOL = 4mA, DS[1:0] = 01 (Note 1) 0.2 0.4 VDD = 1.71V, IOL = 6mA, DS[1:0] = 11 (Note 1) 0.2 0.4 VDD = 1.71V, IOL = 2mA, DS = 0 (Note 1) 0.2 0.4 VDD = 1.71V, IOL = 8mA, DS = 1 (Note 1) 0.2 0.4 V VDD = 1.71V, IOH = 1mA, DS[1:0] = 00 (Note 1) VDD 0.4 VDD = 1.71V, IOH = 2mA, DS[1:0] = 10 (Note 1) VDD 0.4 VDD = 1.71V, IOH = 4mA, DS[1:0] = 01 (Note 1) VDD 0.4 VDD = 1.71V, IOH = 6mA, DS[1:0] = 11 (Note 1) VDD 0.4 VDD = 1.71V, IOH = 2mA, DS = 0 (Note 1) VDD 0.4 VDD = 1.71V, IOH = 8mA, DS = 1 (Note 1) VDD 0.4 V V V 100 -100 mA mA VIHYS 300 mV CIO 4 pF IIL VIN = 0V, internal pullup disabled -500 +500 nA Analog Devices | 35 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics (continued) (All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL Input Leakage Current High IIH RSTN Assertion Time tRSTN Input Pullup Resistor to RSTN Input Pullup Resistor for All GPIO Input Pulldown Resistor for All GPIO CONDITIONS VIN = 3.6V, internal pulldown disabled MIN TYP -500 Device in ACTIVE mode, RSTN device pin assertion duration to entry into device reset state Pullup to VDD = 3.63V, RSTN at VIH 10.0 Device pin configured as GPIO, pullup to VDD = VRST, device pin at VIH 18.7 Device pin configured as GPIO, pullup to VDD = 3.63V, device pin at VIH 10.0 Device pin configured as GPIO, pulldown to VSS, VDD = VRST, device pin at VIL 17.6 Device pin configured as GPIO, pulldown to VSS, VDD = 3.63V, device pin at VIL 8.8 tM_ERASE Mass erase 30 tP_ERASE Page erase 30 32-bit programming mode, fFLC_CLK = 1MHz 42 RPD +500 nA μs K 18.7 RPU UNITS 6x tSYS_CL Pullup to VDD = VRST, RSTN at VIH RPU_VDD MAX kΩ kΩ kΩ FLASH MEMORY Flash Erase Time Flash Programming Time per Word tPROG Flash Endurance Data Retention Current Consumption During Flash Programming tRET IPROG TA = +125°C Single-supply operation; current required for flash write/erase Dual-supply operation; current required for flash write/erase ms μs 10 kcycles 10 years VDD 6.5 VCORE 0.5 VDD mA 6 Electrical Characteristics—SPI (Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 50 MHz MASTER MODE SPI Master Operating Frequency fMCK SPI Master SCK Period tMCK SCK Output PulseWidth High/Low MOSI Output Hold Time After SCK Sample Edge www.analog.com fSYS_CLK = 100MHz, fMCK(MAX) = fSYS_CLK/2 1/fMCK ns tMCH, tMCL tMCK/2 ns tMOH tMCK/2 ns Analog Devices | 36 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics—SPI (continued) (Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS MOSI Output Valid to Sample Edge tMOV MOSI Output Hold Time After SCK Low Idle tMLH tMCK/2 ns MISO Input Valid to SCK Sample Edge Setup tMIS 5 ns MISO Input to SCK Sample Edge Hold tMIH tMCK/2 ns tMCK/2 ns SLAVE MODE SPI Slave Operating Frequency fSCK SPI Slave SCK Period tSCK 1/fSCK SCK Input Pulse-Width High/Low tSCH, tSCL tSCK/2 SSx Active to First Shift Edge tSSE 10 ns MOSI Input to SCK Sample Edge Rise/Fall Setup tSIS 5 ns MOSI Input from SCK Sample Edge Transition Hold tSIH 1 ns MISO Output Valid after SCLK Shift Edge Transition tSOV 5 ns SCK Inactive to SSx Inactive tSSD 10 ns SSx Inactive Time tSSH 1/fSCK μs MISO Hold Time after SSx Deassertion tSLH 10 ns 50 MHz ns Electrical Characteristics—I2C (Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS STANDARD MODE Output Fall Time tOF Standard mode, from VIH(MIN) to VIL(MAX) 150 ns SCL Clock Frequency fSCL 0 Low-Period SCL Clock tLOW 4.7 μs High-Time SCL Clock tHIGH 4.0 μs www.analog.com 100 kHz Analog Devices | 37 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics—I2C (continued) (Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Setup Time for Repeated Start Condition tSU;STA 4.7 μs Hold Time for Repeated Start Condition tHD;STA 4.0 μs Data Setup Time tSU;DAT 300 ns Data Hold Time tHD;DAT 10 ns Rise Time for SDA and SCL tR 800 ns Fall Time for SDA and SCL tF 200 ns Setup Time for a Stop Condition tSU;STO 4.0 μs tBUS 4.7 μs Data Valid Time tVD;DAT 3.45 μs Data Valid Acknowledge Time tVD;ACK 3.45 μs Bus Free Time Between a Stop and Start Condition FAST MODE Output Fall Time tOF Pulse Width Suppressed by Input Filter tSP From VIH(MIN) to VIL(MAX) 150 ns 75 ns SCL Clock Frequency fSCL 0 Low-Period SCL Clock tLOW 1.3 400 kHz μs High-Time SCL Clock tHIGH 0.6 μs Setup Time for Repeated Start Condition tSU;STA 0.6 μs Hold Time for Repeated Start Condition tHD;STA 0.6 μs Data Setup Time tSU;DAT 125 ns Data Hold Time tHD;DAT 10 ns Rise Time for SDA and SCL tR 30 ns Fall Time for SDA and SCL tF 30 ns Setup Time for a Stop Condition tSU;STO 0.6 μs tBUS 1.3 μs tVD;DAT 0.9 μs Bus Free Time Between a Stop and Start Condition Data Valid Time www.analog.com Analog Devices | 38 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics—I2C (continued) (Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL Data Valid Acknowledge Time tVD;ACK CONDITIONS MIN TYP MAX 0.9 UNITS μs FAST-MODE PLUS Output Fall Time tOF Pulse Width Suppressed by Input Filter tSP SCL Clock Frequency fSCL From VIH(MIN) to VIL(MAX) 80 ns 75 ns 0 1000 kHz Low-Period SCL Clock tLOW 0.5 μs High-Time SCL Clock tHIGH 0.26 μs Setup Time for Repeated Start Condition tSU;STA 0.26 μs Hold Time for Repeated Start Condition tHD;STA 0.26 μs Data Setup Time tSU;DAT 50 ns Data Hold Time tHD;DAT 10 ns Rise Time for SDA and SCL tR 50 ns Fall Time for SDA and SCL tF 30 ns Setup Time for a Stop Condition tSU;STO Bus Free Time Between a Stop and Start Condition 0.26 μs 0.5 tBUS μs Data Valid Time tVD;DAT 0.45 μs Data Valid Acknowledge Time tVD;ACK 0.45 μs Electrical Characteristics—I2S Slave (Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 25 MHz Bit Clock Frequency fBCLKS Bit Clock Period tBCLKS BCLK High Time tWBCLKHS 0.5 1/fBCLKS BCLK Low Time tWBCLKLS 0.5 1/fBCLKS tLRCLK_BCLKS 25 ns tBCLK_SDOS 12 ns tSU_SDIS 6 ns LRCLK Setup Time Delay Time, BCLK to SD (Output) Valid Setup Time for SD (Input) www.analog.com 1/fBCLKS ns Analog Devices | 39 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Electrical Characteristics—I2S Slave (continued) (Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER Hold Time SD (Input) SYMBOL CONDITIONS MIN tHD_SDIS TYP MAX 3 UNITS ns Electrical Characteristics—Quadrature Decoder (Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 4 8 tPCLK Encoder Period tEP Ensure at least one sample in each encoder state Encoder Pulse Width tE Ensure at least one sample in each encoder state 2 4 tPCLK Encoder State Period tES Ensure at least one sample in each encoder state 1 2 tPCLK Index Signal Width tIND 1 1/4 x tEP Expected Glitch Time Window tGL QDEC_CTRL.filter = 0b00 0 tEP tPCLK tPCLK QDEC_CTRL.filter = 0b01 1 tQDIR After either QEA or QEB transition 4 tPCLK Q MATCH tQM After either QEA or QEB transition 4 tPCLK Q MATCH Pulse Width tQMP Until next state transition 1 tES Q DIRECTION Q ERROR tER After either a faulty QEA or QEB transition 4 tPCLK Q ERROR Pulse Width tERP Until next state transition 1 tES Note 1: When using a GPIO bias voltage of 2.97V, the drive current capability of the GPIO is 2x that of its drive strength when using a GPIO bias voltage of 1.62V. www.analog.com Analog Devices | 40 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC VBAT 1.71V TO 3.63V VDD 4.7µF Li+ 2.7V TO 5.5V MAX32672 VDDA POWER MANAGEMENT 1µF 0.855V TO 1.155V VCORE 1µF VREG1 4.7nF VSS DUAL-SUPPLY OPERATION VBAT 1.71V TO 3.63V STANDARD CELL VDD 4.7µF MAX32672 VDDA 1µF VCORE 1µF VREG1 4.7nF VSS SINGLE-SUPPLY OPERATION Figure 1. Power Supply Operational Modes www.analog.com Analog Devices | 41 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC SHIFT SAMPLE SHIFT SAMPLE SSx (SHOWN ACTIVE LOW) tMCK SCK CKPOL/CKPHA 0/1 OR 1/0 SCK CKPOL/CKPHA 0/0 OR 1/1 tMCH tMCL tMOH MOSI/SDIOx (OUTPUT) MSB tMOV tMLH tMIS MISO/SDIOx (INPUT) LSB MSB-1 tMIH MSB MSB-1 LSB Figure 2. SPI Master Mode Timing Diagram SHIFT SAMPLE SHIFT SAMPLE SSx (SHOWN ACTIVE LOW) tSSE SCK CKPOL/CKPHA 0/1 OR 1/0 tSSH tSSD tSCK tSCH tSCL SCK CKPOL/CKPHA 0/0 OR 1/1 MOSI/SDIOx (INPUT) tSIS MSB tSIH MSB-1 LSB tSOV MISO/SDIOx (OUTPUT) MSB MSB-1 tSLH LSB Figure 3. SPI Slave Mode Timing Diagram www.analog.com Analog Devices | 42 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC STOP START REPEAT START START tBUS SDA tOF tR tSU;STO tSP tSU;STA tSU;DAT tHIGH SCL tHD;STA tHD;DAT tLOW tVD;ACK tVD;DAT Figure 4. I2C Timing Diagram tBCLKS tWBCLKHS tWBCLKLS BCLK (INPUT) tLRCLK_BCLKS LRCLK (INPUT) tBCLK_SDOS SDO (OUTPUT) LSB MSB LSB tSU_SDIS SDI (INPUT) LSB WORD N-1 RIGHT CHANNEL MSB LSB WORD N LEFT CHANNEL MSB tHD_SDIS MSB WORD N RIGHT CHANNEL CONDITIONS: I2S_CTRL0CH0.ws_pol = 0; I2S_CTRL0CH0.ch_mode = 3; I2S_CTRL0CH0.lsb_first = 0; I2S_CTRL0CH0.stereo = 0; I2S_CTRL1CH0.en = 1 Figure 5. I2S Timing Diagram www.analog.com Analog Devices | 43 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC tEP tE QEA tES tGL tES QEB NOISE SPIKE tIND QEI tQM QMATCH tQM tQMP tQDIR QDIR QERR tQDIR tER tER tERP Figure 6. Quadrature Decoder Timing Diagram www.analog.com Analog Devices | 44 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Pin Configuration P0.11 P0.10 P0.12 P0.13 29 28 27 P0.14 30 P0.15 P0.16 P0.17 P0.18 TOP VIEW P0.19 40 TQFN 26 25 24 23 22 21 VDDA 31 20 P0.9 VSSA 32 19 P0.8 VREF 33 18 P0.29 VREG1 34 17 P0.28 RSTN 35 16 P0.27 MAX32672 HFXIN 36 15 P0.26 HFXOUT 37 14 P0.25 VSS 38 13 P0.24 + VDD 39 32KOUT 40 12 P0.23 VCORE P0.22 P0.0 P0.1 6 7 8 9 10 P0.6 5 P0.5 4 P0.4 3 P0.3 2 P0.2 1 32KIN 11 P0.7 TQFN 5mm x 5mm Pin Description FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 Alternate Function 3 Alternate Function 4 FUNCTION POWER AND SYSTEM PINS (See Bypass Capacitor Recommendations) 2 VCORE — — — — — Digital Supply Voltage. Bypass with 1.0μF to VSS. 34 VREG1 — — — — — Bypass with 4.7nF to VSS. Do not connect this device pin to any other external circuitry. 39 VDD — — — — — GPIO Supply Voltage. Bypass with 4.7μF to VSS. EP, 38 VSS — — — — — Digital Ground. Exposed pad (TQFN only). This pad must be connected to VSS. Refer to Application Note 3273: Exposed Pads: A Brief Introduction for additional information. 33 VREF — — — — — ADC External Reference Input. This is the reference input for the ADC. Bypass with 1.0μF to VSS. www.analog.com Analog Devices | 45 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 40 TQFN FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 Alternate Function 3 Alternate Function 4 FUNCTION 31 VDDA — — — — — Analog Supply Voltage. This pin must always be connected to the VDD device pin at the PCB level. Bypass this pin to VSSA with 1.0μF as close as possible to the package. 32 VSSA — — — — — Analog Ground — Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin has an internal pullup to the VDD supply. — 32kHz Crystal Oscillator Output. Refer to the MAX32672 User Guide for determination of the required external stability capacitors. — 32kHz Crystal Oscillator Input. Connect a 32kHz crystal between 32KIN and 32KOUT for RTC operation. Refer to the MAX32672 User Guide for determination of the required external stability capacitors. Optionally, this pin can be configured as the input for an external CMOSlevel clock source. — RF Crystal Oscillator Input. Connect the crystal between HFXIN and HFXOUT. Optionally, this pin can be configured as the input for an external square-wave source. See the Electrical Characteristics table for details of the crystal requirements. Refer to the MAX32672 User Guide for determination of the required external stability capacitors. — RF Crystal Oscillator Output. Connect the crystal between HFXIN and HFXOUT. See the Electrical Characteristics table for details of the crystal requirements. Refer to the MAX32672 User Guide for determination of the required external stability capacitors. 35 RSTN — — — — CLOCK PINS 40 1 36 37 32KOUT 32KIN HFXIN HFXOUT www.analog.com — — — — — — — — — — — — — — — — Analog Devices | 46 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 40 TQFN FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 Alternate Function 3 Alternate Function 4 FUNCTION GPIO AND ALTERNATE FUNCTION 4 P0.0 P0.0 SWDIO — TMR0C_IA — Single-Wire Debug I/O; Timer0 Port Map C Input 32 Bits or Lower 16 Bits 5 P0.1 P0.1 SWDCLK — TMR0C_OA — Single-Wire Debug Clock; Timer0 Port Map C Output 32 Bits or Lower 16 Bits 6 P0.2 P0.2 SPI0A_MIS O UART1B_R X TMR1C_IA — SPI0 Master In Slave Out; UART1 Port Map B RX; Timer1 Port Map C Input 32 Bits or Lower 16 Bits 7 P0.3 P0.3 SPI0A_MO SI UART1B_T X TMR1C_OA — SPI0 Master Out Slave In; UART1 Port Map B Tx; Timer1 Port Map C Output 32 Bits or Lower 16 Bits 8 P0.4 P0.4 SPI0A_SCK UART1B_C TS TMR2C_IA — SPI0 Serial Clock; UART1 Port Map B CTS; Timer2 Port Map C Input 32 Bits or Lower 16 Bits SPI0A_SS0 UART1B_R TS TMR2C_OA HFX_CLK_ OUT I2C0A_SCL LPTMR0B_I A 9 10 P0.5 P0.6 P0.5 P0.6 QEA I2C0 Serial Clock; Low-Power Timer0 Port Map A Input 32 Bits or Lower 16 Bits; SPI0 Slave Select 1; Quadrature Decoder Phase A Input SPI0C_SS2 QEB I2C0 Serial Data; Low-Power Timer0 Port Map A Output 32 Bits or Lower 16 Bits; SPI0 Slave Select 2; Quadrature Decoder Phase B Input TMR0C_IA AIN0/ AIN_C0_N/ AIN_C1_N UART0 Port Map A Rx; I2S0 Serial Data Output; Timer0 Port Map C Input 32 Bits or Lower 16 Bits; Comparator Negative Input TMR0C_OA AIN1/ AIN_C0_N/ AIN_C1_N UART0 Port Map A Tx; I2S0 Left/ Right Clock; Timer0 Port Map C Output 32 Bits or Lower 16 Bits; Comparator Negative Input TMR1C_IA AIN2/ AIN_C0_N/ AIN_C1_N UART0 Port Map A CTS; I2S0 Bit Clock; Timer Port Map C Input 32 Bits or Lower 16 Bits; Comparator Negative Input UART0 Port Map A RTS; I2S0 Serial Data Input; Timer1 Port Map C Output 32 Bits or Lower 16 Bits; Comparator Negative Input I2C1 Serial Clock; Low-Power External Clock Input; Timer2 Port Map C Input 32 Bits or Lower 16 Bits; Comparator Positive Input SPI0C_SS1 11 P0.7 P0.7 I2C0A_SDA LPTMR0B_ OA 19 P0.8 P0.8 UART0A_R X I2S0A_SDO P0.9 UART0A_T X I2S0A_LRC LK P0.10 UART0A_C TS I2S0A_BCL K I2S0A_SDI TMR1C_OA AIN3/ AIN_C0_N/ AIN_C1_N EXT_CLK2 TMR2C_IA AIN4/ AIN_C0_P/ AIN_C1_P 20 21 P0.9 P0.10 22 P0.11 P0.11 UART0A_R TS 23 P0.12 P0.12 I2C1A_SCL www.analog.com SPI0 Slave Select 0; UART1 Port Map B RTS; Timer2 Port Map C Output; ERFO Buffered Output 32 Bits or Lower 16 Bits Analog Devices | 47 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 40 TQFN FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 FUNCTION Alternate Function 3 Alternate Function 4 I2C1 Serial Data; 32.768kHz Calibration Output; Timer2 Port Map C Output 32 Bits or Lower 16 Bits; Comparator Positive Input 24 P0.13 P0.13 I2C1A_SDA 32KCAL TMR2C_OA AIN5/ AIN_C0_P/ AIN_C1_P 25 P0.14 P0.14 SPI1A_MIS O UART2B_R X TMR3C_IA AIN6/ AIN_C0_P/ AIN_C1_P SPI1 Master In Slave Out; UART2 Port Map B Rx; Timer3 Port Map C Input 32 Bits or Lower 16 Bits; Comparator Positive Input UART2B_T X TMR3C_OA AIN7/ AIN_C0_P/ AIN_C1_P SPI1 Master Out Slave In; UART2 Port Map B Tx; Timer3 Port Map C Output 32 Bits or Lower 16 Bits; ADC Input 7/Comparator Positive Input TMR0C_IA AIN8 SPI1 Serial Clock; UART2 Port Map B CTS; Timer0 Port Map C Input 32 Bits or Lower 16 Bits; ADC Input 8 26 P0.15 P0.15 SPI1A_MO SI 27 P0.16 P0.16 SPI1A_SCK UART2B_C TS TMR0C_OA AIN9 SPI1 Slave Select 0; UART2 Port Map B RTS; Timer0 Port Map C Output 32 Bits or Lower 16 Bits; ADC Input 9 28 P0.17 P0.17 SPI1A_SS0 UART2B_R TS 29 P0.18 P0.18 I2C2A_SCL — TMR1C_IA AIN10 I2C2 Serial Clock; Timer1 Port Map C Input 32 Bits or Lower 16 Bits; ADC Input 10 30 P0.19 P0.19 I2C2A_SDA — TMR1C_OA AIN11 I2C2 Serial Data; Timer1 Port Map C Output 32 Bits or Lower 16 Bits; ADC Input 11 3 P0.22 P0.22 LPTMR1A_I A ADC_TRIG _B TMR0C_IA — Low-Power Timer1 Port Map A Input; ADC Trigger Port Map B; Timer0 Port Map C Input 32 Bits or Lower 16 Bits 12 P0.23 P0.23 LPTMR1A_ OA — SPI0C_SS3 QEI Low-Power Timer1 Port Map A Output; SPI0 Slave Select 3; Quadrature Decoder Index Input UART0B_R X I2S0A_SD0 QES Low-Power UART0 CTS; UART0 Port Map B Rx; I2S0 Serial Data Output; Quadrature Decoder Capture Input QMATCH 13 P0.24 P0.24 LPUART0A _CTS 14 P0.25 P0.25 LPUART0A _RTS UART0B_T X I2S0A_LRC LK P0.26 LPUART0A _RX UART0B_C TS I2S0C_BCL K P0.27 LPUART0A _TX UART0B_R TS 15 16 P0.26 P0.27 www.analog.com I2S0C_SDI Low-Power UART0 RTS; UART0 Port Map B Tx; I2S0 Left/Right Clock; Quadrature Decoder Match Output QDIR Low-Power UART0 Rx; UART0 Port Map B CTS; I2S0 Bit Clock; Quadrature Decoder Direction Output QERR Low-Power UART0 Port Map A Tx; UART0 Port Map B Request to Send; I2S 0 Port Map C Serial Data Input; Quadrature Decoder Error Output Analog Devices | 48 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 40 TQFN FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 Alternate Function 3 Alternate Function 4 17 P0.28 P0.28 UART1A_R X EXT_CLK1 TMR3C_IA — P0.29 UART1A_T X TMR3C_OA ADC_TRIG _D 18 P0.29 SPI1_SS0 FUNCTION UART1 Port Map A Receive; Timer3 Port Map C Input 32 Bits or Lower 16 Bits; External Clock Input UART1 Port Map A Transmit; SPI1 Port Map B Slave Select 0; Timer3 Port Map C Output 32 Bits or Lower 16 Bits; ADC Trigger Port Map D Pin Configuration 56 TQFN P0.9 34 33 P0.10 35 P0.11 37 36 P0.12 P0.14 P0.13 P0.15 39 38 P0.16 P1.7 40 P1.5 P1.8 42 41 P1.6 P0.17 P0.18 TOP VIEW 32 31 30 29 P0.19 43 28 P0.8 P0.31 44 27 VSS VDDA 45 26 P0.30 VSSA 46 25 P0.29 VREF 47 24 P0.28 VREG1 48 RSTN 49 HFXIN 50 21 P1.4 HFXOUT 51 20 P1.1 VSS 52 19 P1.2 VDD 53 18 P0.26 32KOUT 54 32KIN 55 VCORE 56 23 P0.27 MAX32672 22 P1.3 17 P0.25 EP + 16 P0.24 5 6 7 8 9 10 P0.21 P0.22 P1.0 P1.9 P0.0 P0.1 P0.2 P0.3 P0.4 11 12 13 14 VDD 4 P0.7 3 P0.6 2 P0.5 1 P0.20 15 P0.23 TQFN 7mm x 7mm www.analog.com Analog Devices | 49 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Pin Description FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 Alternate Function 3 Alternate Function 4 FUNCTION POWER AND SYSTEM PINS (See Bypass Capacitor Recommendations) 56 VCORE — — — — — Digital Supply Voltage. Bypass with 1.0μF to VSS. 48 VREG1 — — — — — Bypass with 4.7nF to VSS. Do not connect this device pin to any other external circuitry. 14, 53 VDD — — — — — GPIO Supply Voltage. Bypass with 4.7μF to VSS. EP, 27, 52 VSS — — — — — Digital Ground. Exposed pad (TQFN only). This pad must be connected to VSS. Refer to Application Note 3273: Exposed Pads: A Brief Introduction for additional information. 47 VREF — — — — — ADC External Reference Input. This is the reference input for the ADC converter. Bypass with 1.0μF to VSS. 45 VDDA — — — — — Analog Supply Voltage. This pin must always be connected to the VDD device pin at the PCB level. Bypass this pin to VSSA with 1.0μF as close as possible to the package. 46 VSSA — — — — — Analog Ground — Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin has an internal pullup to the VDD supply. — 32kHz Crystal Oscillator Output. Refer to the MAX32672 User Guide for determination of the required external stability capacitors. — 32kHz Crystal Oscillator Input. Connect a 32kHz crystal between 32KIN and 32KOUT for RTC operation. Refer to the MAX32672 User Guide for determination of the required external stability capacitors Optionally, this pin can be configured as the input for an external CMOSlevel clock source. 49 RSTN — — — — CLOCK PINS 54 55 32KOUT 32KIN www.analog.com — — — — — — — — Analog Devices | 50 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 56 TQFN FUNCTION MODE PIN 50 51 NAME HFXIN HFXOUT Primary Signal (Default) Alternate Function 1 — — — Alternate Function 2 — Alternate Function 3 — Alternate Function 4 FUNCTION — RF Crystal Oscillator Input. Connect the crystal between HFXIN and HFXOUT. Optionally, this pin can be configured as the input for an external square-wave source. See the Electrical Characteristics table for details of the crystal requirements. Refer to the MAX32672 User Guide for determination of the required external stability capacitors. — — — — RF Crystal Oscillator Output. Connect the crystal between HFXIN and HFXOUT. See Electrical Characteristics for details of the crystal requirements. Refer to the MAX32672 User Guide for determination of the required external stability capacitors. GPIO AND ALTERNATE FUNCTION 6 P0.0 P0.0 SWDIO — TMR0C_IA — Single-Wire Debug I/O; Timer0 Port Map C Input 32 Bits or Lower 16 Bits 7 P0.1 P0.1 SWDCLK — TMR0C_OA — Single-Wire Debug Clock; Timer0 Port Map C Output 32 Bits or Lower 16 Bits UART1B_R X TMR1C_IA — SPI0 Port Map A Master In Slave Out; UART1 Port Map B Rx; Timer1 Port Map C Input 32 Bits or Lower 16 Bits 8 P0.2 P0.2 SPI0A_MIS O 9 P0.3 P0.3 SPI0A_MO SI UART1B_T X TMR1C_OA — SPI0 Master Out Slave In; UART1 Port Map B Tx; Timer1 Port Map C Output 32 Bits or Lower 16 Bits 10 P0.4 P0.4 SPI0A_SCK UART1B_C TS TMR2C_IA — SPI0 Serial Clock; UART1 Port Map B CTS; Timer2 Port Map C Input 32 Bits or Lower 16 Bits 11 P0.5 P0.5 SPI0A_SS0 UART1B_R TS TMR2C_OA HFX_CLK_ OUT 12 P0.6 P0.6 I2C0A_SCL LPTMR0B_I A SPI0C_SS1 QEA I2C0 Serial Clock; Low-Power Timer0 Port Map A Input 32 Bits or Lower 16 Bits; SPI0 Slave Select 1; Quadrature Decoder Phase A Input I2C0A_SDA LPTMR0B_ OA QEB I2C0 Serial Data; Low-Power Timer0 Port Map A Output 32 Bits or Lower 16 Bits; SPI0 Slave Select 2; Quadrature Decoder Phase B Input 13 P0.7 www.analog.com P0.7 SPI0C_SS2 SPI0 Slave Select 0; UART1 Port Map B RTS; Timer2 Port Map C Output 32 Bits or Lower 16 Bits; ERFO Buffered Output Analog Devices | 51 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 56 TQFN FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 Alternate Function 4 I2S0A_SDO TMR0C_IA AIN0/ AIN_C0_N/ AIN_C1_N UART0 Port Map A Rx; I2S0 Serial Data Output; Timer0 Port Map C Input 32 Bits or Lower 16 Bits; Comparator Negative Input TMR0C_OA AIN1/ AIN_C0_N/ AIN_C1_N UART0 Port Map A Tx; I2S0 Left/ Right Clock; Timer0 Port Map C Output 32 Bits or Lower 16 Bits; Comparator Negative Input TMR1C_IA AIN2/ AIN_C0_N/ AIN_C1_N UART0 Port Map A CTS; I2S0 Bit Clock; Timer1 Port Map C Input 32 Bits or Lower 16 Bits; Comparator Negative Input TMR1C_OA AIN3/ AIN_C0_N/ AIN_C1_N UART0 Port Map A RTS; I2S0 Serial Data Input; Timer1 Port Map C Output 32 Bits or Lower 16 Bits; Comparator Negative Input I2C1 Serial Clock; Low-Power External Clock Input; Timer2 Port Map C Input 32 Bits or Lower 16 Bits; Comparator Positive Input 28 P0.8 P0.8 UART0A_R X 29 P0.9 P0.9 UART0A_T X I2S0A_LRC LK P0.10 UART0A_C TS I2S0A_BCL K P0.11 UART0A_R TS 30 31 P0.10 P0.11 FUNCTION Alternate Function 3 I2S0A_SDI 32 P0.12 P0.12 I2C1A_SCL EXT_CLK2 TMR2C_IA AIN4/ AIN_C0_P/ AIN_C1_P 33 P0.13 P0.13 I2C1A_SDA 32KCAL TMR2C_OA AIN5/ AIN_C0_P/ AIN_C1_P I2C1 Serial Data; 32.768kHz Calibration Output; Timer2 Port Map C Output 32 Bits or Lower 16 Bits; Comparator Positive Input P0.14 SPI1A_MIS O UART2B_R X TMR3C_IA AIN6/ AIN_C0_P/ AIN_C1_P SPI1 Master In Slave Out; UART2 Port Map B Rx; Timer3 Port Map C Input 32 Bits or Lower 16 Bits; Comparator Positive Input UART2B_T X TMR3C_OA AIN7/ AIN_C0_P/ AIN_C1_P SPI1 Master Out Slave In; UART2 Port Map B Tx; Timer3 Port Map C Output 32 Bits or Lower 16 Bits; ADC Input 7/Comparator Positive Input TMR0C_IA AIN8 SPI1 Serial Clock; UART2 Port Map B CTS; Timer0 Port Map C Input 32 Bits or Lower 16 Bits; ADC Input 8 34 P0.14 35 P0.15 P0.15 SPI1A_MO SI 36 P0.16 P0.16 SPI1A_SCK UART2B_C TS TMR0C_OA AIN9 SPI1 Slave Select 0; UART2 Port Map B RTS; Timer0 Port Map C Output 32 Bits or Lower 16 Bits; ADC Input 9 41 P0.17 P0.17 SPI1A_SS0 UART2B_R TS 42 P0.18 P0.18 I2C2A_SCL — TMR1C_IA AIN10 I2C2 Serial Clock; Timer1 Port Map C Input 32 Bits or Lower 16 Bits; ADC Input 10 43 P0.19 P0.19 I2C2A_SDA — TMR1C_OA AIN11 I2C2 Serial Data; Timer1 Port Map C Output 32 Bits or Lower 16 Bits; ADC Input 11 1 P0.20 P0.20 CM4_RX — TMR2C_IA — CM4 Rx Event Input; Timer2 Port Map C Input 32 Bits or Lower 16 Bits www.analog.com Analog Devices | 52 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 56 TQFN FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 Alternate Function 3 Alternate Function 4 2 P0.21 P0.21 CM4_TX — TMR2C_OA — CM4 Tx Event Output; Timer2 Port Map C Output 32 Bits or Lower 16 Bits ADC_TRIG _B TMR0C_IA — Low-Power Timer1 Port Map A Input; ADC Trigger Port Map B; Timer0 Port Map C Input 32 Bits or Lower 16 Bits SPI0C_SS3 QEI Low-Power Timer1 Port Map A Output; SPI0 Slave Select 3; Quadrature Decoder Index Input QES Low-Power UART0 CTS; UART0 Port Map B Rx; I2S0 Serial Data Output; Quadrature Decoder Capture Input 3 P0.22 P0.22 LPTMR1A_I A 15 P0.23 P0.23 LPTMR1A_ OA — P0.24 LPUART0A _CTS UART0B_R X I2S0A_SD0 UART0B_T X I2S0A_LRC LK QMATCH 16 P0.24 FUNCTION Low-Power UART0 RTS; UART0 Port Map B Tx; I2S0 Left/Right Clock; Quadrature Decoder Match Output 17 P0.25 P0.25 LPUART0A _RTS 18 P0.26 P0.26 LPUART0A _RX UART0B_C TS I2S0C_BCL K QDIR Low-Power UART0 Rx; UART0 Port Map B CTS; I2S0 Bit Clock; Quadrature Decoder Direction Output 23 P0.27 P0.27 LPUART0A _TX UART0B_R TS I2S0C_SDI QERR Low-Power UART0 Port Map A Tx; UART0 Port Map B Request to Send; I2S0 Port Map C Serial Data Input; Quadrature Decoder Error Output 24 P0.28 P0.28 UART1A_R X EXT_CLK1 TMR3C_IA — UART1 Port Map A Receive; Timer3 Port Map C Input 32 Bits or Lower 16 Bits; External Clock Input 25 P0.29 P0.29 UART1A_T X SPI1_SS0 TMR3C_OA ADC_TRIG _D UART1 Port Map A Transmit; SPI1 Port Map B Slave Select 0;Timer3 Port Map C Output 32 Bits or Lower 16 Bits; ADC Trigger Port Map D 26 P0.30 P0.30 UART1A_C TS — TMR3C_IA — UART1 Port Map A Clear to Send; Timer3 Port Map C Input 32 Bits or Lower 16 Bits 44 P0.31 P0.31 UART1A_R TS — TMR3C_OA — UART1 Port Map A Request to Send; Timer3 Port Map C Output 32 Bits or Lower 16 Bits 4 P1.0 P1.0 — — TMR1C_IA — Timer1 Port Map C Input 32 Bits or Lower 16 Bits 20 P1.1 P1.1 SPI2A_MIS O UART0B_R X TMR3C_OA — SPI2 Port Map A Master In Slave Out; UART0 Port Map B Receive; Timer3 Port Map C Output 32 Bits or Lower 16 Bits www.analog.com Analog Devices | 53 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 56 TQFN FUNCTION MODE PIN NAME Primary Signal (Default) Alternate Function 1 Alternate Function 2 Alternate Function 3 Alternate Function 4 UART0B_T X TMR3C_IA DIV_CLK_ OUT — — 19 P1.2 P1.2 SPI2A_MO SI 22 P1.3 P1.3 SPI2A_SCK UART0B_C TS TMR0C_OA ADC_TRIG _D FUNCTION SPI2 Port Map A Master Out Slave In; UART0 Port Map B Transmit; Timer3 Port Map C Input 32 Bits or Lower 16 Bits; Divided_Clock_Output SPI2 Port Map A Serial Clock; UART0 Port Map B Clear to Send SPI2 Port Map A Slave Select 0; UART0 Port Map B Request to Send; Timer0 Port Map C Output 32 Bits or Lower 16 Bits; ADC Trigger Port Map D 21 P1.4 P1.4 SPI2A_SS0 UART0B_R TS 37 P1.5 P1.5 UART2A_R X — — — UART2 Port Map A Receive 38 P1.6 P1.6 UART2A_T X — — — UART2 Port Map A Transmit 39 P1.7 P1.7 UART2A_C TS — — — UART2 Port Map A Clear to Send 40 P1.8 P1.8 UART2A_R TS — — — UART2 Port Map A Request to Send 5 P1.9 P1.9 — — TMR1C_OA — Timer1 Port Map C Output 32 Bits or Lower 16 Bits www.analog.com Analog Devices | 54 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Detailed Description The MAX32672 is an ultra-low-power, cost-effective, highly integrated microcontroller designed for battery-powered devices and wireless sensors. It combines a flexible and versatile power management unit with the powerful Arm CortexM4 processor with FPU. The device enables designs with complex sensor processing without compromising battery life. It also offers legacy designs an easy and cost-optimal upgrade path from 8- or 16-bit microcontrollers. Error correction coding (single error correction, double error detection, or SEC-DED) for flash and SRAM provides extremely reliable code execution. The device integrates 1MB of dual-bank flash memory and 200KB (160KB with ECC enabled) of SRAM to accommodate application and sensor code. A 1Msps, 12-channel, 12-bit SAR ADC is integrated for the digitization of analog sensor signals or other analog measurements. The device features five powerful and flexible power modes. It can operate from a single-supply battery or a dual-supply typically provided by a PMIC. The I2C ports support Standard, Fast, Fast-mode Plus, and High Speed modes, operating up to 3400kbps. The SPI ports can run up to 50MHz in both master and slave mode. Four general-purpose 32-bit timers, two low-power 32-bit timers, two windowed watchdog timers, and a real-time clock (RTC) are also provided. An I2S interface provides digital audio streaming to a codec. Arm Cortex-M4 Processor with FPU Engine The Arm Cortex-M4 with FPU processor combines high-efficiency signal processing functionality with low power, low cost, and ease of use. The Arm Cortex-M4 with FPU DSP supports single instruction, multiple data (SIMD) path DSP extensions, providing: ● ● ● ● ● ● Four parallel 8-bit add/sub Floating point single precision Two parallel 16-bit add/sub Two parallel MACs 32- or 64-bit accumulate Signed, unsigned, data with or without saturation Memory Internal Flash Memory The 1MB internal flash memory with error correction provides nonvolatile storage of program and data memory. The flash is organized in two equal sizes, physically separate banks (dual bank) to allow execute-while-write operation and facilitate "live FW upgrades." Internal SRAM The internal 200KB SRAM provides low-power retention of application information in all power modes except STORAGE. The SRAM can be configured as 160KB with Error Correction Coded (ECC) SEC-DED for enhanced system reliability. The SRAM can be divided into granular banks that create a flexible SRAM retention architecture. This data retention feature is optional and is configurable. This granularity allows the application to minimize its power consumption by only retaining the essential data. Clocking Scheme The internal primary oscillator (IPO) operates at a nominal frequency of 100MHz. Optionally, the software can select one of five other oscillators depending upon power needs: ● ● ● ● ● 80kHz oscillator (INRO) 32.768kHz oscillator (external crystal required) (ERTC0) 7.3728MHz oscillator (IBRO) 16MHz–32MHz oscillator (external crystal required) (ERFO) External square-wave clocks up to 50MHz This clock is the primary clock source for digital logic and peripherals. www.analog.com Analog Devices | 55 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC An external 32.768kHz timebase is required when using the RTC. A separate external square-wave clock can be used as a source for LPTMR0/1 and LPUART0 in the Always-On domain. RTC/CALIBRATION OUTPUT 32KCAL (P0.13) ALWAYS-ON DOMAIN XTAL DRIVER OR EXTERNAL CLOCK 32KIN BYPASS 32KIN 32.768kHz CRYSTAL 4096Hz DIGITAL INTERFACE 32.768kHz OSC LPTMR0 32-BIT 32KOUT RTC_OSCCTRL.bypass 1Hz 512Hz 4096Hz 32768Hz 32.768kHz LPTMR1 32-BIT REAL-TIME CLOCK LPUART0 POWER SEQUENCER NANORING (INRO) ~80kHz AUTO-CAL GCR_CLKCTRL.ipo_div 100MHz 100MHz INTERNAL PRIMARY OSCILLATOR (IPO) 80kHz INTERNAL PRIMARY OSCILLATOR PRESCALER Arm Cortex-M4 GCR_PCLKDIV.aon_clkdiv 32.768kHz 7.3728MHz ALWAYS-ON DOMAIN CLOCK (AOD_CLK) GCR_CLKCTRL.sysclk_sel ÷2 PCLK SYS_CLK GCR_PCLKDIV.div_clk_out_ctrl 7.3728MHz SYS_OSC INTERNAL BAUD RATE OCILLATOR (IBRO) ÷2 DIV_CLK_OUT (P1.2 56 TQFN PACKAGE ONLY) ÷4 ÷8 HFX_CLK_OUT (P0.5) GCR_CLKCTRL.sysclk_div HFXIN BYPASS 16MHz–32MHz CRYSTAL XTAL DRIVER OR EXTERNAL CLOCK EXT_CLK1 (P0.28) EXT_CLK2 (P0.12) TMR0 DUAL 16-BIT TMR1 DUAL 16-BIT AES/CRC/ TRNG PRESCALER 12-BIT SAR ADC 16MHz– 32MHz ADC OSC (ERFO) SAR_CLKCTRL.clkdiv HFXOUT GCR_PM.erfo_bp CLOCK SCALER SAR_CLKCTRL.clksel EXT_CLK1 (AF2) EXT_CLK2 (AF2) TMR2 DUAL 16-BIT TMR3 DUAL 16-BIT UART0 UART1 UART2 WDT1 WDT0 3x I2 C I2 S 12-CH DMA 3x SPI QUAD DEC Figure 7. Clocking Scheme General-Purpose I/O and Special Function Pins Most general-purpose I/O (GPIO) pins share a firmware-controlled I/O function and one or more special function signals associated with peripheral modules. The software can individually enable pins for GPIO or peripheral special function use. Configuring a pin as a special function usually supersedes its use as a software-controlled I/O. Multiplexing between peripheral and GPIO functions is usually static but can also be done dynamically by software. The electrical characteristics of a GPIO pin are identical whether the pin is configured as an I/O or special function, except where www.analog.com Analog Devices | 56 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC explicitly noted in the Electrical Characteristics tables. In GPIO mode, each port pin has an interrupt function that can be independently enabled by software and configured as a level- or edge-sensitive interrupt. All GPIOs share the same interrupt vector. Some packages do not have all of the GPIOs available. When configured as GPIOs, the following features are provided. These features can be independently enabled or disabled on a per-pin basis. ● ● ● ● Configurable as input, output, bidirectional, or high-impedance Optional internal pullup resistor or internal pulldown resistor when configured as input Exit from low-power modes on rising or falling edge Selectable standard- or high-drive modes The MAX32672 provides up to 42 GPIOs. See the Ordering Information table for the specific number of GPIOs by part number. Standard DMA Controller The standard direct memory access (DMA) controller provides a means to offload the CPU for memory/peripheral data transfer leading to a more power-efficient system. It allows automatic one-way data transfer between two entities. These entities can be either memories (flash or SRAM) or peripherals. The transfers are done without using CPU resources. The following transfer modes are supported: ● ● ● ● ● 12 channel Peripheral to memory Memory to peripheral Memory to memory Event support All DMA transactions consist of an AHB burst read into the DMA FIFO followed immediately by an AHB burst write from the FIFO. Power Management Power Management Unit The power management unit (PMU) provides the optimal mix of high-performance and low-power consumption. It exercises intelligent, precise control of power distribution to the CPU and peripheral circuitry. The PMU provides the following features: ● ● ● ● User-configurable system clock Automatic enabling and disabling of crystal oscillators based on power mode Multiple clock domains Fast wakeup of powered-down peripherals when activity detected ACTIVE Mode In this mode, the CPU executes software and all digital and analog peripherals are available on demand. Dynamic clocking disables local clocks in peripherals that are not in use. This mode corresponds to the Arm Cortex-M4 processor with FPU ACTIVE mode. SLEEP Mode This mode allows for lower power consumption operations than ACTIVE mode. The CPU is asleep, peripherals are on, and the standard DMA block is available. The GPIO or any active peripheral can be configured to interrupt and cause a transition to the ACTIVE mode. This mode corresponds to the Arm Cortex-M4 processor with FPU SLEEP mode. DEEPSLEEP Mode In this mode, CPU and critical peripheral configuration settings and all volatile memory are preserved. The device status is as follows: www.analog.com Analog Devices | 57 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC ● CPU is powered down. System state and all SRAM is retained. ● The GPIO pins retain their state. ● The transition from DEEPSLEEP to ACTIVE mode is faster than the transition from BACKUP mode because system initialization is not required. ● The system oscillators are all disabled to provide additional power savings over SLEEP mode. ● LPUART0 and LPTMR0/1 can be active and are optional wake-up sources. This mode corresponds to the Arm Cortex-M4 with FPU DEEPSLEEP mode. BACKUP Mode This mode places the CPU in a static, low-power state. BACKUP mode supports the same wake-up sources as DEEPSLEEP mode. The device status is as follows: ● CPU is powered down. ● SRAM retention as per Table 1. ● LPUART0 and LPTMR0/1 can be active and are optional wake-up sources. Table 1. BACKUP Mode RAM Retention RAM BLOCK SRAM SIZE RETAINED SRAM TYPE SYSRAM0 20KB 18KB 16KB + 4KB ECC SYSRAM1 20KB 14KB 16KB + 4KB ECC SYSRAM2 80KB 80KB 64KB + 16KB ECC SYSRAM3 80KB 80KB 64KB + 16KB ECC Note: The boot ROM uses certain ranges of SRAM during a system reset, watchdog timer reset, an external reset, and exiting from BACKUP. The devices uses this RAM to perform system checks. As a result, not all of each RAM can be retained during an exit from BACKUP. STORAGE Mode The device status is as follows: ● ● ● ● ● CPU is powered off. All peripherals are powered off. Wake-up from GPIO interrupt. The RTC can be enabled by software before entering STORAGE mode. No SRAM retention. Real-Time Clock (RTC) An RTC keeps the time of day in absolute seconds. The 32-bit seconds register can count up to approximately 136 years and be translated to calendar format by application software. The RTC provides a time-of-day alarm programmed by software to any future value between 1 second and 12 days. When configured for long intervals, the time-of-day alarm can be used as a power-saving timer, allowing the device to remain in an extremely low-power mode but still awaken periodically to perform assigned tasks. Software can program a second independent 32-bit 1/4096 sub-second alarm between 244μs and 12 days. Both can be configured as recurring alarms. When enabled, either alarm can cause an interrupt or wake the device from most low-power modes. The time base is generated by a 32.768kHz crystal or an external clock source that must meet the electrical/timing requirements in the Electrical Characteristics table. An RTC calibration feature allows the software to compensate for minor variations in the RTC oscillator, crystal, temperature, and board layout. Enabling the 32KCAL alternate function outputs a timing signal derived from the RTC. External hardware can measure the frequency and adjust the RTC frequency in increments of ±127ppm with a 1ppm resolution. Under most circumstances, the oscillator does not require any calibration. www.analog.com Analog Devices | 58 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Windowed Watchdog Timer (WDT) Microcontrollers are often used in harsh environments where electrical noise and electromagnetic interference (EMI) are abundant. Without proper safeguards, these hazards can disturb device operation and corrupt program execution. One of the most effective countermeasures is the windowed WDT, which detects runaway code or system unresponsiveness. The WDT is a 32-bit, free-running counter with a configurable prescaler. When enabled, the WDT must be periodically reset by the application software. Failure to reset the WDT within the user-configurable timeout period indicates that the application software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger an interrupt, system reset, or both. Either response forces the instruction pointer to a known good location before resuming instruction execution. The windowed timeout period feature provides more detailed monitoring of system operation, requiring the WDT to be reset within a specific time window. One or more instances of the peripheral are provided, as shown in Table 2. See the Ordering Information table for the specific instances available by part number. Table 2. MAX32672 Watchdog Timer Instances INSTANCE OPERATING MODES WDT0 WDT1 CLOCK SOURCE PCLK IPO IBRO ERFO INRO ERTCO EXT_CLK1 EXT_CLK2 ACTIVE SLEEP YES YES YES YES YES YES YES NO ACTIVE SLEEP YES YES YES YES YES YES YES NO 32-Bit Timer/Counter/PWM (TMR, LPTMR) General-purpose, 32-bit timers provide timing, capture/compare, or generate pulse-width modulated (PWM) signals with minimal software interaction. The timer provides the following features: ● ● ● ● ● ● ● ● 32-bit up/down auto-reload Programmable prescaler PWM output generation Capture, compare, and capture/compare capability External pin multiplexed with GPIO for timer input, clock gating, or capture Timer output pin TMR0-TMR3 configurable as 2 × 16-bit general-purpose timers Timer interrupt The MAX32672 provides six 32-bit timers (TMR0, TMR1, TMR2, TMR3, LPTMR0, LPTMR1). The LPTMR0 and LPTMR1 are capable of operation in the SLEEP, DEEPSLEEP, and BACKUP low-power modes. The I/O functionality is supported for all of the timers. Note that the function of a port can be multiplexed with other functions on the GPIO pins, so it might not be possible to use all the ports depending on the device configuration. One or more instances of the peripheral are provided, as shown in Table 3. See the Ordering Information table for the specific instances available by part number. Table 3. MAX32672 Timer Instances CLOCK SOURCE INSTANCE SINGLE 32-BIT DUAL 16-BIT OPERATING MODES PCLK IBRO ERFO INRO ERTCO EXT_CLK1 EXT_CLK2 TMR0 YES YES ACTIVE YES YES YES NO NO YES NO TMR1 YES YES ACTIVE YES YES YES NO NO YES NO TMR2 YES YES ACTIVE YES YES YES NO NO YES NO TMR3 YES YES ACTIVE YES YES YES NO NO YES NO LPTMR0 YES NO AOD_CLK NO NO YES YES NO YES www.analog.com ACTIVE SLEEP Analog Devices | 59 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Table 3. MAX32672 Timer Instances (continued) INSTANCE SINGLE 32-BIT DUAL 16-BIT OPERATING MODES CLOCK SOURCE PCLK DEEPSLEEP YES NO ERFO INRO ERTCO EXT_CLK1 EXT_CLK2 NO NO YES YES NO YES NO BACKUP LPTMR1 IBRO ACTIVE SLEEP AOD_CLK DEEPSLEEP BACKUP NO Serial Peripherals I2C Interface The I2C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many, or many-to-many communications medium. The I2C master/slave interfaces to a wide variety of I2C-compatible peripherals. These engines support standard-mode, fast-mode, fast-mode plus, and highspeed mode I2C speeds. It provides the following features: ● Master or slave mode operation • Supports up to four different slave addresses in slave mode ● ● ● ● ● ● Supports standard 7-bit addressing or 10-bit addressing RESTART condition Interactive receive mode Transmit FIFO preloading Support for clock stretching to allow slower slave devices to operate on higher speed busses Multiple transfer rates • Standard mode: 100kbps • Fast mode: 400kbps • Fast mode plus: 1000kbps • High-speed mode: 3400kbps ● Internal filter to reject noise spikes ● Receive FIFO depth of 8 bytes ● Transmit FIFO depth of 8 bytes One or more instances of the peripheral are provided, as shown in Table 4. See the Ordering Information table for the specific instances available by part number. Table 4. MAX32672 I2C Instances INSTANCE POWER MODES I2C0 ACTIVE SLEEP I2C1 ACTIVE SLEEP I2C2 ACTIVE SLEEP Serial Peripheral Interface (SPI) The SPI is a highly configurable, flexible, and efficient synchronous interface between multiple SPI devices on a single bus. The bus uses a single clock signal and multiple data signals and one or more slave select lines to address only the intended target device. The SPI operates independently and requires minimal processor overhead. The provided SPI peripherals can operate in either slave or master mode and provide the following features: ● SPI modes 0, 1, 2, and 3 for single-bit communication www.analog.com Analog Devices | 60 MAX32672 ● ● ● ● ● ● ● High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC 3- or 4-wire mode for single-bit slave device communication Full-duplex operation in single-bit, 4-wire mode Multimaster mode fault detection Programmable interface timing Programmable SCK frequency and duty cycle 32-byte transmit and receive FIFOs Slave select assertion and deassertion timing relative to leading/trailing SCK edge One or more instances of the peripheral are provided, as shown in Table 5. See the Ordering Information table for the specific instances available by part number. Table 5. MAX32672 SPI Instances INSTANCE DATA SLAVE SELECT LINES MAXIMUM FREQUENCY (MASTER MODE) (MHz) MAXIMUM FREQUENCY (SLAVE MODE) (MHz) SPI0 3 wire, 4 wire 4 50 50 SPI1 3 wire, 4 wire 1 50 50 SPI2 3 wire, 4 wire 1 50 50 I2S Interface The I2S interface is a bidirectional, 4-wire serial bus that provides serial communications for codecs and audio amplifiers compliant with the I2S Bus Specification, June 5, 1996. It provides the following features: ● ● ● ● ● ● ● ● ● ● Slave mode operation 8-, 16-, 24-, and 32-bit frames Receive and transmit DMA support Wakeup on FIFO status (full/empty/threshold) Pulse density modulation support for the receive channel Word select polarity control First-bit position selection Interrupts generated for FIFO status Receiver FIFO depth of 32 bytes Transmitter FIFO depth of 32 bytes The MAX32672 provides one instance of the I2S peripheral (I2S0). UART The universal asynchronous receiver-transmitter (UART, LPUART) interface supports full-duplex asynchronous communication with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry-standard request-to-send (RTS) and clear-to-send (CTS) flow control signaling. Each LPUART is individually programmable. ● ● ● ● ● ● ● ● ● ● ● ● 2-wire interface or 4-wire interface with flow control 8-byte send/receive FIFO Full-duplex operation for asynchronous data transfers Interrupts available for frame error, parity error, CTS, receive FIFO overrun, and FIFO full/partially full conditions Automatic parity and frame error detection Independent baud-rate generator Programmable 9th-bit parity support Multidrop support Start/stop bit support Hardware flow control using RTS/CTS Two DMA channels can be connected (read and write FIFOs) Programmable word size (5 bits to 8 bits) www.analog.com Analog Devices | 61 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC LPUART0 is capable of operation in SLEEP, DEEPSLEEP, and BACKUP low-power modes. One or more instances of the peripheral are provided, as shown in Table 6. See the Ordering Information table for the specific instances available by part number. Table 6. MAX32672 UART Instances INSTANCE MODE UART0 CLOCK SOURCE PCLK IBRO ERFO INRO ERTCO EXT_CLK1 EXT_CLK2 ACTIVE YES YES YES NO NO YES NO UART1 ACTIVE YES YES YES NO NO YES NO UART2 ACTIVE YES YES YES NO NO YES NO ACTIVE SLEEP AOD_CLK DEEPSLEEP BACKUP NO NO YES YES NO YES NO LPUART0 Quadrature Decoder The quadrature decoder converts rotational information derived from optical or magnetic encoders to counts representing a shaft's angle and rotational velocity. The following features are provided: ● ● ● ● ● x1, x2, and x4 mode selection 32-bit counter Index input Rotational direction and error outputs On-chip deglitch filters The MAX32672 provides one instance of the quadrature decoder (QDEC). Analog-to-Digital Converter (ADC) The 12-bit SAR ADC provides an integrated reference generator and a single-ended input multiplexer. The multiplexer selects an input channel from one of the 12 external analog input signals (AIN0–AIN11), the internal power supply inputs, or an internal temperature sensor. The reference for the ADC can be: ● External VREF input ● VDDA analog supply The ADC measures the following voltages: ● ● ● ● ● AIN[11:0] up to 3.3V VDD VCORE VDDA Internal die temperature sensor input Security AES The dedicated hardware-based AES engine supports the following algorithms: ● AES-128 ● AES-192 ● AES-256 AES keys can be generated by the TRNG, and software can store the keys in a dedicated protected flash region. If keys are stored in the dedicated protected flash region, the keys are automatically loaded to the AES system key registers on www.analog.com Analog Devices | 62 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC power-on reset and system reset. The AES key registers can not be read by software. Secure Cryptographic Accelerator (SCA) This hardware accelerator is dedicated to asymmetrical cryptographic operations, specially optimized ECDSA P-256 curve cryptographic operations such as signatures and verifications. It also accelerates low-level operations such as modular addition, subtraction, multiplication, division, and scalar operations. The following features are provided: ● ● ● ● ● ● ● ECC operations of 256, 384, and 521 bits Pointer-based architecture to easily access SCA memory without memory transfer overhead Support for Jacobian and affine coordinates SPA, DPA, and fault attack countermeasures Precalculated point support to speed ECC processing (ECDSA P-256) EdDSA algorithms such as Ed25519 and Ed448 can also be implemented (supported in TLS 1.3), as well as X25519 Dedicated input for the private key True Random Number Generator (TRNG) Random numbers are a vital part of a secure application, providing random numbers useable for cryptographic seeds or strong cryptography keys to ensure data privacy. Software can use random numbers to trigger asynchronous events that result in nondeterministic behavior. Random strings can be added to to messages to make encryption indeterministic and therefore avoid replay attacks. The TRNG is continuously updated by a high-quality, physically-unpredictable entropy source. It generates one random bit per cryptographic clock cycle. The TRNG can support the system-level validation of many security standards. Contact Analog Devices for details of compliance with specific standards. CRC Module A cyclic redundancy check (CRC) hardware module provides fast calculations and data integrity checks by application software. The CRC polynomial is programmable to support custom CRC algorithms, as well as the common algorithms shown in Table 7. Table 7. Common CRC Polynomials ALGORITHM POLYNOMIAL EXPRESSION CRC-32-ETHERNET x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + x0 CRC-CCITT x16 + x12 + x5 + x0 CRC-16 x16 + x15 + x2 + x0 USB DATA x16 + x15 + x2 + x0 PARITY x1 + x0 SHA-2 SHA-2 is a cryptographic hash function. It authenticates user data and verifies its integrity. It is used for digital signatures. The device provides a hardware SHA-2 engine for fast computation of digests supporting: ● ● ● ● SHA-224 SHA-256 SHA-384 SHA-512 Software Integrity and Root of Trust Root of Trust On devices that support SCPBL, the root of trust starts with trusted software and the microcontroller's complement of www.analog.com Analog Devices | 63 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC security features. Communications between a host and the device must be secure and authenticated, and program integrity must be verified each time before execution to ensure the device's trustworthiness. The device's root of trust is based on a secret Analog Devices root verification key and a signed customer verification key (CVK). Customers submit their public CVK, which is then signed, and a certificate is sent back to the customer. This process is quick and required only once, before the software is released for the first time, and is unnecessary during the software development. A customer can then load their own key and download their signed binary executable code. Secure Communications Protocol Bootloader (SCPBL) On devices that support SCPBL, communication between a host system and the device uses a system of ECDSA-256 digitally signed packets. This guarantees the integrity and authenticity of all communication before executing configuration commands and loading or verifying program memory. One or more serial interfaces are available for communication. This also enables the assembly and programming of the customer's final product by third-party assembly houses without the required cost and complexity of ensuring that the assembly house implements and maintains a secure production facility. It also allows in-field software upgrades to deployed products, thus eliminating the costly need to return a product to the manufacturer for any software changes. The serial interfaces available for SCPBL communication are shown in Table 8. Following any reset or exit from certain low-power modes, the device tests the assigned stimulus pin and, if active, begins an SCPBL session. The stimulus pin can be reassigned once an SCPBL session begins. The host can disable the bootloader interface before deployment to prevent any changes to program memory. See the Ordering Information table for availability. Secure Boot On devices that support SCPBL, the device performs a secure boot to confirm that the root of trust has not been compromised. Following every reset and exit from certain low-power modes, the secure boot verifies the digital signature of the program memory to confirm it has not been modified or corrupted, ensuring the trustworthiness of the application software. Failure to verify the digital signature transitions the device to safe mode, which prevents execution of the customer code. During the development phase, the bootloader can be reactivated and a new, trusted program memory loaded. Debug and Development Interface The device provides an Arm Debug Access Port (DAP) that supports debugging during application development. The DAP enables an external debugger to access the device. The DAP is a standard Arm CoreSight™ serial wire debug (SWD) port and uses a two-pin serial interface (SWDCLK and SWDIO). Coresight is a trademark of Arm Limited. www.analog.com Analog Devices | 64 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Applications Information Bypass Capacitor Recommendations The proper use of bypass capacitors reduces noise generated by the IC into the ground plane. The Pin Descriptions table indicates which pins should be connected to bypass capacitors and the appropriate ground plane. It is recommended that one instance of a bypass capacitor should be connected to each pin/ball of the IC package. For example, if the Pin Descriptions table shows four device pins associated with voltage supply A, a separate capacitor should be connected to each pin for a total of four capacitors. Place capacitors as close as possible to their corresponding device pins. When more than one value of capacitor is recommended per pin, the capacitors should be placed in parallel starting with the lowest value capacitor closest to the pin. Bootloader Activation The SCPBL can use the interfaces shown in Table 8. Table 8. Bootloader Activation Summary BOOTLOADER INTERFACE PART NUMBERS DEFAULT STIMULUS PIN UART MAX32672GTLBL MAX32672GTNBL UART0A_RX/UART0A_TX P0.10 (Active Low) On devices that support SCPBL, the SCPBL is activated following any reset or existing certain low-power modes if the assigned stimulus pin is asserted. The design must ensure that the desired bootloader interface and stimulus pin is accessible by the host or the SCPBL cannot be activated. A different stimulus pin can be assigned once an SCPBL session has been started. The RSTN signal must also be accessible by the host for initial synchronization with the SCPBL. Single Supply Operation ACTIVE Mode Table 9. Fixed VDD Current Consumption ACTIVE Mode, IPO, Single Supply PARAMETER VDD Current, ACTIVE Mode www.analog.com SYMBOL IDD_FACTS TYPICAL CONDITIONS Fixed, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA -40°C +25°C +55°C +85°C +105°C OVR = [10], internal regulator set to 1.1V 700 890 1260 1930 2770 OVR = [01], internal regulator set to 1.0V 580 730 1020 1560 2260 OVR = [00], internal regulator set to 0.9V 500 620 850 1280 1860 UNITS μA Analog Devices | 65 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Table 9. Fixed VDD Current Consumption ACTIVE Mode, IPO, Single Supply (continued) PARAMETER SYMBOL TYPICAL CONDITIONS Fixed, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA -40°C +25°C +55°C +85°C +105°C OVR = [10], internal regulator set to 1.1V 670 860 1230 1890 2870 OVR = [01], internal regulator set to 1.0V 560 710 1000 1530 2210 OVR = [00], internal regulator set to 0.9V 480 590 820 1250 1820 UNITS SLEEP Mode Table 10. Fixed VDD Current Consumption SLEEP Mode, IPO, Single Supply PARAMETER VDD Current, SLEEP Mode SYMBOL Fixed, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA IDD_FSLPS Fixed, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C OVR = [10], internal regulator set to 1.1V 700 890 1260 1930 2770 OVR = [01], internal regulator set to 1.0V 580 730 1020 1560 2260 OVR = [00], internal regulator set to 0.9V 500 620 850 1280 1860 OVR = [10], internal regulator set to 1.1V 670 860 1230 1890 2870 UNITS μA Analog Devices | 66 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Table 10. Fixed VDD Current Consumption SLEEP Mode, IPO, Single Supply (continued) PARAMETER SYMBOL TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C OVR = [01], internal regulator set to 1.0V 560 710 1000 1530 2210 OVR = [00], internal regulator set to 0.9V 480 590 820 1250 1820 UNITS ACTIVE Mode Table 11. Fixed VDD Current Consumption ACTIVE Mode, IBRO, Single Supply PARAMETER SYMBOL Fixed, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current, ACTIVE Mode IDD_FACTS Fixed, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C OVR = [10], internal regulator set to 1.1V 170 450 800 1450 2280 OVR = [01], internal regulator set to 1.0V 260 390 660 1180 1870 OVR = [00], internal regulator set to 0.9V 240 340 550 980 1540 OVR = [10], internal regulator set to 1.1V 240 410 760 1400 2220 OVR = [01], internal regulator set to 1.0V 230 350 620 1140 1810 UNITS μA Analog Devices | 67 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Table 11. Fixed VDD Current Consumption ACTIVE Mode, IBRO, Single Supply (continued) PARAMETER SYMBOL TYPICAL CONDITIONS OVR = [00], internal regulator set to 0.9V -40°C +25°C +55°C +85°C +105°C 210 310 520 940 1490 UNITS SLEEP Mode Table 12. Fixed VDD Current Consumption SLEEP Mode, IBRO, Single Supply PARAMETER SYMBOL Fixed, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/ sink 0mA VDD Current, SLEEP Mode IDD_FSLPS Fixed, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C OVR = [10], internal regulator set to 1.1V 270 450 800 1450 2280 OVR = [01], internal regulator set to 1.0V 260 390 660 1180 1870 OVR = [00], internal regulator set to 0.9V 240 340 550 980 1540 OVR = [10], internal regulator set to 1.1V 240 410 760 1400 2220 OVR = [01], internal regulator set to 1.0V 230 350 620 1140 1810 OVR = [00], internal regulator set to 0.9V 210 310 520 940 1490 UNITS μA Analog Devices | 68 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC DEEPSLEEP Mode Table 13. Fixed VDD Current Consumption DEEPSLEEP Mode, Single Supply PARAMETER VDD Fixed Current, DEEPSLEEP Mode SYMBOL IDD_FDSLS TYPICAL CONDITIONS -40°C +25°C +55°C +85°C 105°C 5.3 16.2 43.9 89 Standby state with full data retention and 200KB SRAM retained VDD = 3.3V 2 Standby state with full data retention and 200KB SRAM retained VDD = 1.8V 1.8 UNITS μA 5 15.7 43.3 87.9 BACKUP Mode Table 14. Fixed VDD Current Consumption BACKUP Mode, Single Supply PARAMETER SYMBOL CONDITIONS VDD = 3.3V, RTC disabled VDD Fixed Current, BACKUP Mode IDD_FBKUS VDD = 1.8V, RTC disabled TYPICAL -40°C +25°C +55°C +85°C +105°C 0KB SRAM retained, retention regulator disabled 0.3 0.35 0.75 1.7 3.2 20KB SRAM retained 0.65 1.14 2.7 6.7 13.2 40KB SRAM retained 0.8 1.6 4.1 10.5 21 120KB SRAM retained 1.2 2.7 7.3 19.2 38.7 200KB SRAM retained 1.6 3.8 10.5 27.9 56.4 0KB SRAM retained, retention regulator disabled 0.06 0.09 0.33 0.96 2.2 20KB SRAM retained 0.5 0.9 2.3 6 12.2 40KB SRAM retained 0.65 1.3 3.7 9.8 19.9 120KB SRAM retained 1 2.4 6.9 18.4 37.4 200KB SRAM retained 1.5 3.5 10.1 26.9 54.7 UNITS μA STORAGE Mode Table 15. Fixed VDD Current Consumption STORAGE Mode, Single Supply PARAMETER VDD Fixed Current, STORAGE Mode SYMBOL IDD_FSTOS CONDITIONS TYPICAL -40°C +25°C +55°C +85°C 105°C VDD = 3.3V 0.27 0.4 0.74 1.6 3.2 VDD = 1.8V 0.06 0.09 0.34 0.97 2.2 UNITS μA Dual Supply Operation www.analog.com Analog Devices | 69 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC ACTIVE Mode Table 16. Fixed VCORE Current Consumption ACTIVE Mode, IPO, Dual Supply PARAMETER VCORE Fixed Current, ACTIVE Mode SYMBOL TYPICAL CONDITIONS ICORE_FACTD Fixed, IPO enabled, total current into VCORE pin, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA -40°C +25°C +55°C +85°C +105°C OVR = [10], VCORE set to 1.1V 240 420 750 1370 2170 OVR = [01], VCORE set to 1.0V 120 260 510 1010 1660 OVR = [00], VCORE set to 0.9V 44 140 300 670 1150 UNITS μA ACTIVE Mode Table 17. Fixed VDD Current Consumption ACTIVE Mode, IPO, Dual Supply PARAMETER SYMBOL Fixed, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current, ACTIVE Mode IDD_FACTD Fixed, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C OVR = [10], VCORE = 1.1V 400 430 450 480 510 OVR = [01], VCORE = 1.0V 400 430 450 480 510 OVR = [00], VCORE = 0.9V 400 430 450 480 510 OVR = [10], VCORE = 1.1V 380 410 430 460 490 OVR = [01], VCORE = 1.0V 380 410 430 460 490 OVR = [00], VCORE = 0.9V 380 410 430 460 490 UNITS μA Analog Devices | 70 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC SLEEP Mode Table 18. Fixed VCORE Current Consumption SLEEP Mode, IPO, Dual Supply PARAMETER VCORE Current, SLEEP Mode SYMBOL TYPICAL CONDITIONS ICORE_FSLPD Fixed, IPO enabled, total current into VCORE pin, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA -40°C +25°C +55°C +85°C +105°C OVR = [10], VCORE = 1.1V 240 420 750 1370 2170 OVR = [01], VCORE = 1.0V 120 260 510 1010 1660 OVR = [00], VCORE = 0.9V 44 140 300 670 1150 UNITS μA SLEEP Mode Table 19. Fixed VDD Current Consumption SLEEP Mode, IPO, Dual Supply PARAMETER SYMBOL Fixed, IPO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current, SLEEP Mode IDD_FSLPD Fixed, IPO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C OVR = [10], VCORE = 1.1V 400 430 450 480 510 OVR = [01], VCORE = 1.0V 400 430 450 480 510 OVR = [00], VCORE = 0.9V 400 430 450 480 510 OVR = [10], VCORE = 1.1V 380 410 430 460 490 OVR = [01], VCORE = 1.0V 380 410 430 460 490 OVR = [00], VCORE = 0.9V 380 410 430 460 490 UNITS μA Analog Devices | 71 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC ACTIVE Mode Table 20. Fixed VCORE Current Consumption ACTIVE Mode, IBRO, Dual Supply PARAMETER VCORE Current, ACTIVE Mode SYMBOL TYPICAL CONDITIONS ICORE_FACTD Fixed, IBRO enabled, total current into VCORE pin, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA -40°C +25°C +55°C +85°C +105°C OVR = [10], VCORE = 1.1V 60 240 570 1210 1910 OVR = [01], VCORE = 1.0V 40 180 430 940 1600 OVR = [00], VCORE = 0.9V 30 120 290 660 1150 UNITS μA ACTIVE Mode Table 21. Fixed VDD Current Consumption ACTIVE Mode, IBRO, Dual Supply PARAMETER SYMBOL Fixed, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current, ACTIVE Mode IDD_FACTD Fixed, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in ACTIVE mode 0MHz execution, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C OVR = [10], VCORE = 1.1V 155 165 175 190 210 OVR = [01], VCORE = 1.0V 155 165 175 190 210 OVR = [00], VCORE = 0.9V 155 165 175 190 210 OVR = [10], VCORE = 1.1V 128 136 144 158 179 OVR = [01], VCORE = 1.0V 128 136 144 158 179 OVR = [00], VCORE = 0.9V 128 136 144 158 179 UNITS μA Analog Devices | 72 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC SLEEP Mode Table 22. Fixed VCORE Current Consumption SLEEP Mode, IBRO, Dual Supply PARAMETER VCORE Current, SLEEP Mode SYMBOL TYPICAL CONDITIONS ICORE_FSLPD Fixed, IBRO enabled, total current into VCORE pin, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA -40°C +25°C +55°C +85°C +105°C OVR = [10], VCORE = 1.1V 60 240 570 1210 1910 OVR = [01], VCORE = 1.0V 40 180 430 940 1600 OVR = [00], VCORE = 0.9V 30 120 290 660 1150 UNITS μA SLEEP Mode Table 23. Fixed VDD Current Consumption SLEEP Mode, IBRO, Dual Supply PARAMETER SYMBOL Fixed, IBRO enabled, total current into VDD pin, VDD = 3.3V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA VDD Current, SLEEP Mode IDD_FSLPD Fixed, IBRO enabled, total current into VDD pin, VDD = 1.8V, CPU in SLEEP mode, ECC disabled, inputs tied to VSS or VDD, outputs source/sink 0mA www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C OVR = [10], VCORE = 1.1V 155 165 175 190 210 OVR = [01], VCORE = 1.0V 155 165 175 190 210 OVR = [00], VCORE = 0.9V 155 165 175 190 210 OVR = [10], VCORE = 1.1V 128 136 144 158 179 OVR = [01], VCORE = 1.0V 128 136 144 158 179 OVR = [00], VCORE = 0.9V 128 136 144 158 179 UNITS μA Analog Devices | 73 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC DEEPSLEEP Mode Table 24. Fixed VCORE Current Consumption DEEPSLEEP Mode, Dual Supply PARAMETER VCORE Fixed Current, DEEPSLEEP Mode SYMBOL CONDITIONS ICORE_FDSLD TYPICAL -40°C +25°C +55°C +85°C 105°C VDD = 3.3V, VCORE = 1.1V 5.8 12.2 29 68 126 VDD = 3.3V, VCORE = 0.855V 1.5 4.6 14.7 40 79.5 VDD = 1.8V, VCORE = 1.1V 5.8 12.2 29 68 126 VDD = 1.8V, VCORE = 0.855V 1.5 4.6 14.7 40 79.5 UNITS μA DEEPSLEEP Mode Table 25. Fixed VDD Current Consumption DEEPSLEEP Mode, Dual Supply PARAMETER VDD Fixed Current, DEEPSLEEP Mode SYMBOL CONDITIONS IDD_FDSLD TYPICAL -40°C +25°C +55°C +85°C 105°C VDD = 3.3V, VCORE = 1.1V 0.34 0.4 0.77 1.66 3.2 VDD = 3.3V, VCORE = 0.855V 0.34 0.4 0.77 1.66 3.2 VDD = 1.8V, VCORE = 1.1V 0.14 0.15 0.33 0.96 2.2 VDD = 1.8V, VCORE = 0.855V 0.14 0.15 0.33 0.96 2.2 UNITS μA BACKUP Mode Table 26. Fixed VCORE Current Consumption BACKUP Mode, Dual Supply PARAMETER SYMBOL 0KB SRAM retained with RTC disabled, retention regulator disabled Fixed VCORE Current, BACKUP Mode ICORE_FBKUD 20KB SRAM retained with RTC disabled www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C VDD = 3.3V, VCORE = 1.1V 0.22 0.3 1.1 3.5 7.8 VDD = 3.3V, VCORE = 0.855V 0.03 0.14 0.78 2.7 6.2 VDD = 1.8V, VCORE = 1.1V 0.22 0.3 1.1 3.5 7.8 VDD = 1.8V, VCORE = 0.855V 0.03 0.14 0.78 2.7 6.2 VDD = 3.3V, VCORE = 1.1V 0.65 1.4 3.7 9.4 18.6 VDD = 3.3V, VCORE = 0.855V 0.15 0.55 2.1 6.2 13 VDD = 1.8V, VCORE = 1.1V 0.65 1.4 3.7 9.4 18.6 UNITS μA Analog Devices | 74 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Table 26. Fixed VCORE Current Consumption BACKUP Mode, Dual Supply (continued) PARAMETER SYMBOL TYPICAL CONDITIONS 40KB SRAM retained with RTC disabled 120KB SRAM retained with RTC disabled 200KB SRAM retained with RTC disabled -40°C +25°C +55°C +85°C +105°C VDD = 1.8V, VCORE = 0.855V 0.15 0.55 2.1 6.2 13 VDD = 3.3V, VCORE = 1.1V 1.1 2.35 6.2 15.3 29.4 VDD = 3.3V, VCORE = 0.855V 0.3 0.95 3.4 9.6 19.8 VDD = 1.8V, VCORE = 1.8V 1.1 2.35 6.2 15.3 29.4 VDD = 1.8V, VCORE = 0.855V 0.3 0.95 3.4 9.6 19.8 VDD = 3.3V, VCORE = 1.1V 2.9 5.5 12.5 28.9 54 VDD = 3.3V, VCORE = 0.855V 0.69 2 6.3 17.5 35.4 VDD = 1.8V, VCORE = 1.1V 2.9 5.5 12.5 28.9 54 VDD = 1.8V, VCORE = 0.855V 0.69 2 6.3 17.5 35.4 VDD = 3.3V, VCORE = 1.1V 4.6 8.6 18.8 42.4 79 VDD = 3.3V, VCORE = 0.855V 1.1 3.1 9.3 25.3 51 VDD = 1.8V, VCORE = 1.1V 4.6 8.6 18.8 42.4 79 VDD = 1.8V, VCORE = 0.855V 1.1 3.1 9.3 25.3 51 UNITS BACKUP Mode Table 27. Fixed VDD Current Consumption BACKUP Mode, Dual Supply PARAMETER SYMBOL Fixed VDD Current, BACKUP Mode IDD_FBKUD www.analog.com TYPICAL CONDITIONS 0KB SRAM retained with RTC disabled, retention regulator disabled VDD = 3.3V, VCORE = 1.1V -40°C +25°C +55°C +85°C +105°C 0.32 0.4 0.76 1.7 3.2 UNITS μA Analog Devices | 75 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Table 27. Fixed VDD Current Consumption BACKUP Mode, Dual Supply (continued) PARAMETER SYMBOL 20KB SRAM retained with RTC disabled 40KB SRAM retained with RTC disabled 120KB SRAM retained with RTC disabled 200KB SRAM retained with RTC disabled www.analog.com TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C VDD = 3.3V, VCORE = 0.855V 0.32 0.4 0.76 1.7 3.2 VDD = 1.8V, VCORE = 1.1V 0.14 0.16 0.34 0.97 2.2 VDD = 1.8V, VCORE = 0.855V 0.14 0.16 0.34 0.97 2.2 VDD = 3.3V, VCORE = 1.1V 0.32 0.4 0.76 1.7 3.2 VDD = 3.3V, VCORE = 0.855V 0.32 0.4 0.76 1.7 3.2 VDD = 1.8V, VCORE = 1.1V 0.14 0.16 0.34 0.97 2.2 VDD = 1.8V, VCORE = 0.855V 0.14 0.16 0.34 0.97 2.2 VDD = 3.3V, VCORE = 1.1V 0.32 0.4 0.76 1.7 3.2 VDD = 3.3V, VCORE = 0.855V 0.32 0.4 0.76 1.7 3.2 VDD = 1.8V, VCORE = 1.8V 0.14 0.16 0.34 0.97 2.2 VDD = 1.8V, VCORE = 0.855V 0.14 0.16 0.34 0.97 2.2 VDD = 3.3V, VCORE = 1.1V 0.32 0.4 0.76 1.7 3.2 VDD = 3.3V, VCORE = 0.855V 0.32 0.4 0.76 1.7 3.2 VDD = 1.8V, VCORE = 1.1V 0.14 0.16 0.34 0.97 2.2 VDD = 1.8V, VCORE = 0.855V 0.14 0.16 0.34 0.97 2.2 VDD = 3.3V, VCORE = 1.1V 0.32 0.4 0.76 1.7 3.2 UNITS Analog Devices | 76 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Table 27. Fixed VDD Current Consumption BACKUP Mode, Dual Supply (continued) PARAMETER SYMBOL TYPICAL CONDITIONS -40°C +25°C +55°C +85°C +105°C VDD = 3.3V, VCORE = 0.855V 0.32 0.4 0.76 1.7 3.2 VDD = 1.8V, VCORE = 1.1V 0.14 0.16 0.34 0.97 2.2 VDD = 1.8V, VCORE = 0.855V 0.14 0.16 0.34 0.97 2.2 UNITS STORAGE Mode Table 28. Fixed VCORE Current Consumption STORAGE Mode, Dual Supply PARAMETER VCORE Fixed Current, STORAGE Mode SYMBOL IDD_FSTOD CONDITIONS TYPICAL -40°C +25°C +55°C +85°C 105°C VDD = 3.3V, VCORE = 1.1V 0.21 0.29 1.1 3.5 7.8 VDD = 3.3V, VCORE = 0.855V 0.03 0.15 0.78 2.7 6.2 VDD = 1.8V, VCORE = 1.1V 0.21 0.29 1.1 3.5 7.8 VDD = 1.8V, VCORE = 0.855V 0.03 0.15 0.78 2.7 6.2 UNITS μA STORAGE Mode Table 29. Fixed VDD Current Consumption STORAGE Mode, Dual Supply PARAMETER VDD Fixed Current, STORAGE Mode www.analog.com SYMBOL IDD_FSTOD CONDITIONS TYPICAL -40°C +25°C +55°C +85°C 105°C VDD = 3.3V, VCORE = 1.1V 0.3 0.4 0.74 1.6 3.2 VDD = 1.8V, VCORE = 0.855V 0.3 0.4 0.74 1.6 3.2 VDD = 3.3V, VCORE = 1.1V 0.15 0.16 0.34 0.97 2.2 VDD = 1.8V, VCORE = 0.855V 0.15 0.16 0.34 0.97 2.2 UNITS μA Analog Devices | 77 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Ordering Information PART NUMBER TMR LPTMR I2C SPI UART LPUART CMP ADC INPUTS SCPBL GPIO PACKAGE MAX32672GTL+ 3 2 3 2 3 1 2 12 N 28 40 TQFN-EP 5mm x 5mm 0.4mm pitch MAX32672GTL+T 3 2 3 2 3 1 2 12 N 28 40 TQFN-EP 5mm x 5mm 0.4mm pitch MAX32672GTLBL+ 3 2 3 2 3 1 2 12 Y 28 40 TQFN-EP 5mm x 5mm 0.4mm pitch MAX32672GTLBL+T 3 2 3 2 3 1 2 12 Y 28 40 TQFN-EP 5mm x 5mm 0.4mm pitch MAX32672GTNBL+ 3 2 3 3 3 1 2 12 Y 42 56 TQFN-EP 7mm x 7mm 0.4mm pitch MAX32672GTNBL+T 3 2 3 3 3 1 2 12 Y 42 56 TQFN-EP 7mm x 7mm 0.4mm pitch All packages contain Quadrature Decoder (QDEC), 12-Channel DMA, I2S, SWD, 1024KB Flash with ECC, 160KB SRAM with ECC. TMR = Timer; LPTMR = Low-Power Timer; LPUART = Low-Power UART; CMP = Comparator; SCPBL = Secure Communications Protocol Bootloader +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. Full reel. www.analog.com Analog Devices | 78 MAX32672 High-Reliability, Tiny, Ultra-Low-Power Arm Cortex-M4F Microcontroller with 12-Bit, 1Msps ADC Revision History REVISION NUMBER REVISION DATE 0 8/21 Release for Market Intro 1/22 Updated the General Description, Benefits and Features, and Simplified Block Diagram. Added Continuous Package Power Dissipation and Package Information for the 56 TQFN-EP. Added Pin Configurations and Pin Descriptions for the 56 TQFN-EP. Updated the Clocking Scheme. Updated the Secure Communications Protocol Bootloader (SCPBL) section. Updated Bootloader Activation Table 5. Added the 56 TQFN part numbers to the Ordering Information. 5/23 Updated Benefits and Features, Simplified Block Diagram, Absolute Maximum Ratings, Electrical Characteristics, Pin Configuration, Pin Descriptions, Detailed Description, Applications Information, Ordering Information 1 2 DESCRIPTION PAGES CHANGED — 1–2, 7, 47–52, 54, 61–62 1, 2, 8, 9–32, 34, 36, 37, 39, 45, 46, 50, 56–64, 65–77, 78 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. w w w . a n a l o g . c o m Analog Devices | 79
MAX32672GTL+
PDF文档中包含以下信息:

1. 物料型号:型号为EL817,是一款光耦器件。

2. 器件简介:EL817是一种通用型晶体管输出光耦器件,具有较高的隔离电压和快速响应时间。

3. 引脚分配:EL817共有6个引脚,分别为1脚为发光二极管阳极,2脚为发光二极管阴极,3脚为输出晶体管集电极,4脚为输出晶体管发射极,5脚为输出晶体管基极,6脚为Vcc。

4. 参数特性:主要参数包括隔离电压5000Vrms,输入电流5mA,输出晶体管电流100mA,响应时间1ms。

5. 功能详解:EL817通过光电效应实现电信号的隔离传输,适用于需要电气隔离的场合。

6. 应用信息:广泛应用于通信设备、工业控制系统、医疗设备等领域。

7. 封装信息:采用DIP-6封装形式。
MAX32672GTL+ 价格&库存

很抱歉,暂时无法提供与“MAX32672GTL+”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MAX32672GTL+
    •  国内价格
    • 1+61.88400

    库存:43