Click here to ask an associate for production status of specific part numbers.
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
General Description
Benefits and Features
The MAX40213 is a transimpedance amplifier for optical
distance measurement receivers in LiDAR applications.
Low noise, high gain, low group delay, and fast recovery
from overload make this TIA ideal for distance-measurement applications. Important features include 1.1pA/√Hz
input-referred noise density, an internal 2A input clamp,
pin-selectable 150kΩ and 750kΩ transimpedance (into a
1kΩ load), and wide bandwidth (300MHz, typ). An offset
current input allows optional adjustment of input offset current. The MAX40213 has a shutdown (SD) control input
that reduces the supply current to 0.01μA. This transimpedance amplifier is available in a 8-bump WLP, and is
specified over the -40°C to +85°C operating temperature
range.
●
●
●
●
Optimized for CIN = 0.25pF to 5pF
Bandwidth = 300MHz (typ)
1.1pA/√Hz Input-Referred Noise
Two Pin-Selectable Transimpedance Values
(RL = 1kΩ)
• 150kΩ
• 750kΩ
●
●
●
●
●
●
Internal Clamp for Input Current up to 2A (Transient)
Fast Overload Recovery: 25ns at 100mA
Offset Input Provides Offset Adjust Feature
SD Input Shuts Down Internal Circuitry
3.3V Operation
1.75mm x 1.24mm, 8-Bump WLP
Applications
● Optical Distance Measurement
● LIDAR Receivers
● Industrial Safety Systems
Typical Application Circuit
3.3V
3.3V
VCC
VCC
SD
MAX40213
VCC
CURRENT
CLAMP
BIAS
BLOCK
50Ω
IN
OUTP
1kΩ
APD
VBIAS
OUTN
OFFSET
50Ω
VCC
-VPD
GND
Ordering Information appears at end of data sheet.
GAIN
19-100801; Rev 2; 11/21
© 2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2021 Analog Devices, Inc. All rights reserved.
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
TABLE OF CONTENTS
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
8 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Gain Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Gain Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Gain Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
OFFSET Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SD Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Photodiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Supply Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC-Coupled APD Receiver TIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
www.analog.com
Analog Devices | 2
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
LIST OF FIGURES
Figure 1. AC-Coupled APD Receiver TIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
www.analog.com
Analog Devices | 3
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
LIST OF TABLES
Table 1. Gain Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
www.analog.com
Analog Devices | 4
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Absolute Maximum Ratings
Voltage at VCC ...................................................... -0.3V to +3.6V
Current into IN (10ns pulse, 0.5% duty cycle) ......................... -2A
Current into IN, OFFSET (Continuous) ............. -10mA to +10mA
Current into LP, GAIN (Continuous) .................. -10mA to +10mA
Current into OUTP and OUTN (Continuous) ..... -20mA to +20mA
Voltage at OUTN, OUTP ............................................ VCC + 0.3V
Voltage at OFFSET, LP, GAIN ..................... -0.3V to VCC + 0.3V
Operating Temperature Range .............................-40°C to +85°C
Storage Temperature Range ..............................-55°C to +150°C
Soldering Temperature (reflow) ........................................ +260°C
Continuous Power Dissipation (TA = +85°C, derate 11.4mW/°C
above +70°C (multilayer board)) ................................1951.20mW
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Package Information
8 WLP
Package Code
W81D1+1
Outline Number
21-100412
Land Pattern Number
N/A
Thermal Resistance, Four-Layer Board:
Junction to Ambient (θJA)
87.71°C/W
Junction to Case (θJC)
N/A
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal
considerations, refer to www.maximintegrated.com/thermal-tutorial.
Electrical Characteristics
(VCC = +2.9V to +3.5V, 1kΩ AC-coupled load between OUTN and OUTP, TA = -40°C to +85°C, CIN = 0.5pF (Note 1))
PARAMETER
Input Bias Voltage
Transimpedance
Transimpedance
Linearity
OFFSET Input
Transimpedance
Overload Recovery
Time
Gain Change Delay
Output Common-Mode
Voltage
www.analog.com
SYMBOL
VBIAS
Z21
CONDITIONS
MIN
IN and OFFSET
TYP
MAX
UNITS
0.78
0.95
V
GAIN < VIL, IIN = 500nAP-P
80
150
220
GAIN > VIH, IIN = 100nAP-P
400
750
1100
GAIN > VIH, Z21 =
750kΩ, I1 = -0.1μA,
I2 = -0.4μA
(Note 2)
-19
GAIN < VIL, Z21 =
150kΩ, I1 = -0.5μA,
I2 = -2μA
(Note 2)
kΩ
+19
%
-4
+4
GAIN < VIL, IIN = 500nAP-P
80
150
220
GAIN > VIH, IIN = 100nAP-P
400
750
1100
IIN = 1mA
25
IIN = 10mA
25
IIN = 100mA
25
Delay from change of GAIN state to
correct selected gain.
200
VCC 0.9
VCC 0.5
kΩ
ns
ns
VCC 0.24
V
Analog Devices | 5
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Electrical Characteristics (continued)
(VCC = +2.9V to +3.5V, 1kΩ AC-coupled load between OUTN and OUTP, TA = -40°C to +85°C, CIN = 0.5pF (Note 1))
PARAMETER
SYMBOL
Differential Output
Offset
ΔVOUT
Output Impedance
ZOUT
Maximum Differential
Output Voltage Swing
Input Resistance
VOUT(MAX)
CONDITIONS
MIN
TYP
IIN = 0mA, GAIN = GND
10
IIN = 0mA, GAIN = VCC
50
Single-ended
40
IIN = 0mA to -200µA pulse, GAIN = GND
IIN = 0mA to -200µA pulse, GAIN = VCC
MAX
mV
50
65
440
900
1,470
500
1,000
1,500
RIN
UNITS
175
Ω
mV
Ω
AC SPECIFICATIONS
Bandwidth
BW
Input Noise Density
GAIN = GND (Note 3)
300
GAIN = VCC (Note 3)
300
f = 10MHz
1.1
MHz
pA/√Hz
POWER SUPPLY
Power Supply Current
Power Supply Current
ICC
GAIN = GND or
GAIN = VCC
SD = VCC
30
55
mA
GAIN = GND or
GAIN = VCC
SD = GND
0.01
2
µA
Time from SD > VIL to output commonmode voltage 90% of nominal value.
Measured at OUTP and OUTN.
Shutdown De-Assert
Delay
15
μs
LOGIC DC CHARACTERISTICS
Input Logic 0
VIL
GAIN, SD
-0.3
+0.8
V
Input Logic 1
VIH
GAIN, SD
2.0
VCC +
0.3
V
±1.0
µA
Logic Input Current
GAIN, SD, -0.3 < VIN < VCC + 0.3V
±0.001
Note 1: Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are
guaranteed by design and characterization.
Note 2: Linearity is calculated as follows:
For 150kΩ transimpedance, linearity = (large signal gain at -2μA – large signal gain at -0.5μA)/large signal gain at -0.5μA,
where large signal gain at X is (VOUT at I_IN = X - VOUT at I_IN = 0)/X. For 750kΩ transimpedance, linearity = (large signal
gain at -0.4μA – large signal gain at -0.1μA)/large signal gain at -0.1μA, where large signal gain at X is (VOUT at I_IN = X VOUT at I_IN = 0)/X.
Note 3: -3dB bandwidth is measured relative to the gain at 10MHz.
www.analog.com
Analog Devices | 6
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Typical Operating Characteristics
www.analog.com
Analog Devices | 7
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Typical Operating Characteristics (continued)
www.analog.com
Analog Devices | 8
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Typical Operating Characteristics (continued)
www.analog.com
Analog Devices | 9
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Pin Configuration
WLP
TOP VIEW
MAX40213EWA+
2
3
4
A
GAIN
OFFSET
VCC
OUTN
B
SD
IN
GND
OUTP
+
1
WLP
Pin Description
PIN
NAME
A1
GAIN
FUNCTION
A2
OFFSET
A3
VCC
A4
OUTN
B1
SD
Enable/Shutdown Input. VCC = normal operation, GND = shutdown.
B2
IN
Signal Input. Connect to photodiode cathode through a coupling capacitor when using positive bias
voltage at cathode. Connect to photodiode cathode when using negative bias voltage at anode.
Gain Select Input 1. Connect to GND or VCC to select the gain.
Offset Adjustment Input. Sink current from this input to adjust the effective input offset current. If
offset adjustment is not needed, this pin should be left unconnected.
+3.3V Supply Voltage
Negative 50Ω Output. Increasing input current causes OUT- to decrease.
B3
GND
Circuit Ground
B4
OUTP
Positive 50Ω Output. Increasing input current causes OUT+ to increase.
www.analog.com
Analog Devices | 10
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Detailed Description
Gain Stage 1
When a photodiode with negative bias voltage is connected to the TIA input, the signal current flows out of the amplifier's
summing node and into the photodiode. The input current flows through an internal load resistor to develop a voltage
that is then applied to the input of the second stage. An internal clamp circuit protects against input currents as high as
2A for a 10ns pulse at 0.5% duty cycle. (Longer pulses or higher duty cycles will reduce this value.) The clamp circuit
also maintains very fast overload recovery times (about 2ns) for input currents up to 100mA (see the Typical Operating
Characteristics).
A photodiode with positive bias voltage may be used if it is capacitively coupled to the TIA input. If a photodiode with
positive bias voltage is DC-coupled to the TIA input, the TIA will provide gain; however, the maximum input current will
be limited to about -2A at 10ns pulse and 0.5% duty cycle.
Gain Stage 2
The second gain stage provides additional gain and converts the transimpedance amplifier's single-ended output into a
differential signal.
This stage is designed to drive a 100Ω to 1kΩ differential load between OUT+ and OUT-. For optimum supply noise
rejection, the outputs should be terminated with a differential load. The outputs are not intended to drive a DC-coupled
grounded load. The outputs should be AC-coupled or terminated to VCC. If a single-ended output is required, both the
used and unused outputs should be terminated in a similar manner.
Gain Selection
The GAIN input selects the overall transimpedance as shown in Table 1. After changing the GAIN logic level, the new
gain is in effect within 200ns.
Table 1. Gain Selection
GAIN LOGIC LEVEL
NOMINAL TRANSIMPEDANCE
0
150kΩ
1
750kΩ
OFFSET Input
OFFSET is a current input. The offset input current, IOFFSET, is the current flowing from the OFFSET pin. This current
affects the TIA's output voltage with a polarity opposite that of the current flowing from IN, so it may be used to effectively
apply an offset to the output voltage (see Typical Operating Characteristics). OFFSET can be used to adjust the output
offset voltage in a negative direction. The OFFSET pin is biased to the same voltage as the IN pin.
The use of OFFSET is optional. If the OFFSET function is not required, simply leave this input unconnected. Do not
bypass this input with a capacitor.
SD Input
The MAX40213's SD (shutdown) input accepts a logic signal that can be used to shut down the TIA. Driving this input
with a logic-high enables the TIA, while a logic-low disables the circuit and reduces the supply current to 0.01µA (typ).
The transimpedance amplifier takes 15μs for the output common-mode voltage return to active mode from shutdown
mode.
www.analog.com
Analog Devices | 11
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Applications Information
Photodiode
Noise performance and bandwidth are adversely affected by capacitance on a TIA's input node. Although the MAX40213
is less sensitive than most TIAs to input capacitance, it is good practice to minimize any unnecessary capacitance. The
MAX40213 is optimized for 0.5pF to 5pF of capacitance on the input. Selecting a low-capacitance photodiode helps to
minimize the total input capacitance on the input pin, thereby improving noise and bandwidth performance.
Supply Filter
Sensitive optical receivers require wide-band power supply decoupling. Power supply bypassing should provide low
impedance between VCC and ground for frequencies between 10kHz and 700MHz. Isolate the amplifier from noise
sources with LC supply filters and shielding. Place a supply filter as close to the amplifier as possible.
Layout Considerations
Some critical layout guidelines are listed below.
● A differential microstrip is the recommended layout for the TIA's outputs with terminations done close to the outputs.
Care must be taken to avoid unwanted stubs by removing ground below the traces that are not part of the 50Ω
termination line leading into input pins. The parasitic capacitance created between traces and ground slow down and
even distort the signals by creating reflections on the path.
● The input trace connecting the photodiode to IN should be as short as possible and have ground etched or removed
underneath. This will reduce or avoid unwanted parasitic capacitance created in the PCB. Having longer trace lengths
increases the parasitic inductance in signal trace paths.
● Use a PC board with a low-impedance ground plane.
● Mount one or more 10nF ceramic capacitors between GND and VCC as close to the pins as possible. Multiple bypass
capacitors help to reduce the effect of trace impedance and capacitor ESR.
● Choose bypass capacitors for minimum inductance and ESR.
● When AC-coupling the outputs, use a 1kΩ termination resistor connected directly between OUTP and OUTN after the
AC-coupling capacitors, if practical. If the destination inputs cannot be located adjacent to the outputs, use a 100Ω
microstrip between the output pins and the termination resistor, which should be close to the inputs of the destination
component. This avoids the creation of stub beyond the termination resistor, which causes reflections. The added
length of the differential trace has less degrading effects than added stub length.
● Minimize any parasitic layout inductance.
● It is recommended to use higher performance substrate materials (e.g., Rogers).
www.analog.com
Analog Devices | 12
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Typical Application Circuits
AC-Coupled APD Receiver TIA
3.3V
3.3V
VCC
VCC
+VPD
SD
MAX40213
VCC
CURRENT
CLAMP
BIAS
BLOCK
50Ω
IN
OUTP
1kΩ
VBIAS
APD
OUTN
OFFSET
50Ω
VCC
GND
GAIN
Figure 1. AC-Coupled APD Receiver TIA
The APD's cathode is connected through a coupling capacitor to the TIA's input, with the anode connected to ground.
The bias voltage in this case is positive and is connected to the cathode through a resistor. Incident light pulses cause
current to flow from the IN pin and into the APD. This input current also flows through an internal resistor to create a
voltage, which is then amplified by the second stage to create a differential output signal that can drive a high-speed
ADC or comparator.
Ordering Information
TEMPERATURE RANGE
PIN-PACKAGE
TOP MARK
MAX40213EWA+
PART NUMBER
-40°C to +85°C
8 WLP
+AAR
MAX40213EWA+T
-40°C to +85°C
8 WLP
+AAR
+ Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape-and-reel
www.analog.com
Analog Devices | 13
MAX40213
Transimpedance Amplifier with Selectable Gain
and Input Current Clamp
Revision History
REVISION
NUMBER
REVISION
DATE
0
10/20
Release for intro
1
5/21
Changed part number and temperature range throughout; updated Typical
Operating Characteristics, Pin Configuration, and Ordering Information sections
2
11/21
Updated timing specification in SD Input section
DESCRIPTION
PAGES
CHANGED
—
1, 5–10, 13
11
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may
result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the property of
their respective owners.
w w w . a n a l o g . c o m
Analog Devices | 14