19-4754; Rev 1; 8/01
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
____________________________Features
The MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
are precision, closed-loop, gain of +2 (or -1) buffers
featuring high slew rates, high output current drive, and
low differential gain and phase error. They operate with
a single 3.15V to 11V supply or with ±1.575V to ±5.5V
dual supplies. The input common-mode voltage range
extends 100mV beyond the negative power-supply rail,
and the output swings Rail-to-Rail®.
These devices require only 5.5mA of quiescent supply
current while achieving a 230MHz -3dB bandwidth and
a 600V/µs slew rate. In addition, the MAX4215/
MAX4219 have a disable feature that reduces the supply current to 400µA per buffer. Input voltage noise is
only 10nV/√Hz, and input current noise is only
1.3pA/√Hz. This buffer family is ideal for low-power/lowvoltage applications requiring wide bandwidth, such as
video, communications, and instrumentation systems.
For space-sensitive applications, the MAX4214 comes
in a miniature 5-pin SOT23 package.
♦ Internal Precision Resistors for Closed-Loop
Gains of +2V/V or -1V/V
_______________Ordering Information
♦ High Speed
230MHz -3dB Bandwidth
90MHz 0.1dB Gain Flatness
(MAX4219/MAX4222)
600V/µs Slew Rate
♦ Single 3.3V/5.0V Operation
♦ Outputs Swing Rail-to-Rail
♦ Input Common-Mode Range Extends Beyond VEE
♦ Low Differential Gain/Phase Error: 0.03%/0.04°
♦ Low Distortion at 5MHz
-72dBc SFDR
-71dB Total Harmonic Distortion
♦ High Output Drive: ±120mA
♦ Low 5.5mA Supply Current
♦ 400µA Shutdown Supply Current
(MAX4215/MAX4219)
PINPACKAGE
TOP
MARK
♦ Space-Saving SOT23, µMAX, or QSOP Packages
MAX4214EUK-T -40°C to +85°C
5 SOT23-5
ABAH
______________________Selector Guide
MAX4215ESA
8 SO
8 µMAX
8 SO
8 µMAX
14 SO
16 QSOP
14 SO
16 QSOP
PART
MAX4215EUA
MAX4217ESA
MAX4217EUA
MAX4219ESD
MAX4219EEE
MAX4222ESD
MAX4222EEE
TEMP RANGE
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
—
—
—
—
—
—
—
—
________________________Applications
PART
NO. OF
AMPS
MAX4214
1
No
5 SOT23
MAX4215
1
Yes
8 SO/µMAX
MAX4217
2
No
8 SO/µMAX
MAX4219
3
Yes
14 SO, 16 QSOP
MAX4222
4
No
14 SO, 16 QSOP
ENABLE
PIN-PACKAGE
__________________Pin Configurations
Battery-Powered Instruments
Video Line Drivers
Analog-to-Digital Converter Interface
CCD Imaging Systems
Video Routing and Switching Systems
Video Multiplexing Applications
TOP VIEW
OUT 1
VEE 2
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
VCC
4
IN-
MAX4214
IN+ 3
Typical Application Circuit appears at end of data sheet.
5
SOT23-5
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
_________________General Description
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ..................................................12V
IN_-, IN_+, OUT_, EN_ ....................(VEE - 0.3V) to (VCC + 0.3V)
Output Short-Circuit Duration to VCC or VEE ..............Continuous
Continuous Power Dissipation (TA = +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C).............571mW
8-Pin SO (derate 5.9mW/°C above +70°C)...................471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW
14-Pin SO (derate 8.3mW/°C above +70°C)................667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, IN_- = 0, EN_ = 5V, RL = ∞ to 0, VOUT = VCC/2, noninverting configuration, TA = TMIN to TMAX, unless
otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
Operating Supply Voltage
Range
VCC to VEE, guaranteed by PSRR tests
Input Voltage Range
VIN
Input Offset Voltage
VOS
Input Offset Voltage Drift
MIN
VEE - 0.1
VCC + 0.1
RL = 50Ω
SO, QSOP
4
10
SOT23-5, µMAX
4
15
IN_+
1
mV
AV
RL ≥ 50Ω, (VEE + 0.5V) ≤ VOUT ≤ (VCC - 2.0V)
1.9
2
VCC = 5V, VEE = 0, VOUT = 2.0V
55
58
VCC = 5V, VEE = -5V, VOUT = 0
60
66
Output Current
Short-Circuit Output
Current
IOUT
ISC
Output Voltage Swing
VOUT
RL = 150Ω
RL = 2kΩ
Disabled Output
Resistance
VIL
MAX4215/MAX4219
EN_ Logic High Threshold
VIH
MAX4215/MAX4219
2
2.1
V/V
dB
25
TA = +25°C
±70
TA = TMIN to TMAX
±60
mΩ
±120
mA
±150
mA
VCC - VOH
1.60
1.90
VOL - VEE
0.04
0.075
VCC - VOH
0.75
1.00
VOL - VEE
0.04
0.075
VCC - VOH
0.06
VOL - VEE
0.06
ROUT(OFF) MAX4215/MAX4219, EN_ = 0, 0 ≤ VOUT ≤ 5V
EN_ Logic Low Threshold
µA
MΩ
45
Sinking or sourcing
RL = 50Ω
12
3
f = DC
RL = 20Ω to VCC or VEE
mV
µV/°C
5.4
VCC = 3.3V, VEE = 0, VOUT = 0.90V
V
8
Voltage Gain
ROUT
V
IN_-
IN_+, over input voltage range
Output Resistance
11.0
VCC - 2.25
RIN
PSRR
UNITS
VEE - 0.1
Input Resistance
Power-Supply
Rejection Ratio
(Note 2)
MAX
IN_+
Between any two channels for
MAX4217/MAX4219/MAX4222
IB
TYP
3.15
TCVOS
Input Offset Voltage
Matching
Input Bias Current
CONDITIONS
1
V
kΩ
VCC - 2.6
VCC - 1.6
_______________________________________________________________________________________
V
V
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
(VCC = 5V, VEE = 0, IN_- = 0, EN_ = 5V, RL = ∞ to 0, VOUT = VCC/2, noninverting configuration, TA = TMIN to TMAX, unless
otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
EN_ Logic Input Low
Current
IIL
EN_ Logic Input High
Current
IIH
Quiescent Supply
Current (per Buffer)
ICC
Shutdown Supply Current
ISD
CONDITIONS
MIN
TYP
MAX
UNITS
MAX4215/MAX4219, (VEE + 0.2V) ≤ EN_ ≤ VCC
0.5
MAX4215/MAX4219, EN_ = VEE
200
350
MAX4215/MAX4219, EN_ = VCC
0.5
10
µA
5.5
7.0
mA
400
550
µA
MAX4215/MAX4219, disabled (EN_ = VEE)
µA
Note 1: The MAX421_EU_ is 100% production tested at TA = 25°C. Specifications over temperature limits are guaranteed by design.
Note 2: PSRR for single 5V supply tested with VEE = 0, VCC = 4.5V to 5.5V; for dual ±5V supply with VEE = -4.5V to -5.5V,
VCC = 4.5V to 5.5V; and for single 3V supply with VEE = 0, VCC = 3.15V to 3.45V.
AC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, IN_- = 0, EN_ = 5V, RL = 100Ω to VCC/2, noninverting configuration, TA = TMIN to TMAX, unless otherwise noted.
Typical values are at TA = +25°C.)
PARAMETER
Small-Signal -3dB
Bandwidth
SYMBOL
BW-3dB
Full-Power -3dB
Bandwidth
FPBW
Bandwidth for 0.1dB Gain
Flatness
Slew Rate
Settling Time to 0.1%
BW0.1dB
CONDITIONS
MIN
TYP
VOUT =
100mVP-P
MAX4214/MAX4215/MAX4217
230
MAX4219/MAX4222
200
VOUT =
2VP-P
MAX4214/MAX4215/MAX4217
220
MAX4219/MAX4222
200
VOUT =
100mVP-P
MAX4214/MAX4215/MAX4217
50
MAX4219/MAX4222
90
MAX
UNITS
MHz
MHz
MHz
SR
VOUT = 2V step
600
V/µs
tS
VOUT = 2V step
45
ns
1
ns
-72
dBc
Rise/Fall Time
tR, tF
VOUT = 100mVP-P
Spurious-Free Dynamic
Range
SFDR
fC = 5MHz, VOUT = 2VP-P
Second harmonic
-72
Third harmonic
-77
Total harmonic distortion
-71
Harmonic Distortion
HD
VOUT = 2VP-P,
fC = 5MHz
Third-Order Intercept
IP3
f = 10MHz
35
dBm
f = 10MHz
11
dBm
Input 1dB Compression
Point
dBc
Differential Phase Error
DP
NTSC, RL = 150Ω
0.04
degrees
Differential Gain Error
DG
NTSC, RL = 150Ω
0.03
%
Input Noise-Voltage
Density
en
f = 10kHz
10
nV/√Hz
Input Noise-Current
Density
in
f = 10kHz
1.3
pA/√Hz
Input Capacitance
CIN
1
pF
2
pF
Disabled Output
Capacitance
COUT(OFF) MAX4215/MAX4219, EN_ = 0
_______________________________________________________________________________________
3
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
DC ELECTRICAL CHARACTERISTICS (continued)
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5V, VEE = 0, IN_- = 0, EN_ = 5V, RL = 100Ω to VCC/2, noninverting configuration, TA = TMIN to TMAX, unless otherwise noted.
Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
Output Impedance
ZOUT
Buffer Enable Time
Buffer Disable Time
CONDITIONS
All-Hostile Crosstalk
MIN
TYP
MAX
UNITS
f = 10MHz
200
mΩ
tON
MAX4215/MAX4219
100
ns
tOFF
MAX4215/MAX4219
Buffer Gain Matching
XTALK
1
µs
MAX4217/MAX4219/MAX4222, f = 10MHz,
VOUT = 100mVP-P
0.1
dB
MAX4217/MAX4219/MAX4222, f = 10MHz,
VOUT = 2VP-P
-95
dB
__________________________________________Typical Operating Characteristics
(VCC = 5V, VEE = 0, AVCL = 2V/V, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
VOUT = 100mVP-P
8
6.4
6.3
10
9
7
6.1
6
4
GAIN (dB)
6.2
5
6.0
5
5.9
4
3
5.8
3
2
5.7
2
1
5.6
1
100k
1M
10M
100M
100k
1M
10M
100M
100k
1G
1M
10M
100M
1G
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
MAX4219/MAX4222
SMALL-SIGNAL GAIN vs. FREQUENCY
MAX4219/MAX4222
GAIN FLATNESS vs. FREQUENCY
MAX4219/MAX4222
LARGE-SIGNAL GAIN vs. FREQUENCY
8
6.4
VOUT = 100mVP-P
10
6.3
9
6.1
6
4
GAIN (dB)
7
6
GAIN (dB)
6.2
6.0
5.9
5
4
3
5.8
3
2
5.7
2
1
5.6
1
0
5.5
100k
1M
10M
FREQUENCY (Hz)
100M
1G
100k
1M
10M
FREQUENCY (Hz)
100M
1G
VOUT = 2VP-P
RL = 100Ω
8
7
5
MAX4214 toc06
VOUT = 100mVP-P
MAX4214 toc05
6.5
MAX4214 toc04
10
9
0
5.5
1G
VOUT = 2VP-P
8
6
0
4
VOUT = 100mVP-P
7
GAIN (dB)
GAIN (dB)
6.5
MAX4214 toc02
9
MAX4214 toc01
10
MAX4214/MAX4215/MAX4217
LARGE-SIGNAL GAIN vs. FREQUENCY
MAX4214/MAX4215/MAX4217
GAIN FLATNESS vs. FREQUENCY
MAX4214 toc03
MAX4214/MAX4215/MAX4217
SMALL-SIGNAL GAIN vs. FREQUENCY
GAIN (dB)
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
0
100k
1M
10M
FREQUENCY (Hz)
_______________________________________________________________________________________
100M
1G
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
-30
-40
-50
-60
2ND HARMONIC
-80
3RD HARMONIC
-90
-20
-30
-40
-50
-60
2ND HARMONIC
-70
-80
0
-10
3RD HARMONIC
-90
-100
1M
10M
100M
f = 5MHz
-20
-30
-40
-50
-60
2ND HARMONIC
-70
-80
3RD HARMONIC
-90
-100
-100
0 100 200 300 400 500 600 700 800 900
1k
0.5
1.0
1.5
2.0
2.5
3.0
FREQUENCY (Hz)
RESISTIVE LOAD (Ω)
VOLTAGE SWING (Vp-p)
VOLTAGE-NOISE DENSITY
vs. FREQUENCY
CURRENT-NOISE DENSITY
vs. FREQUENCY
MAX4217/MAX4219/MAX4222
CROSSTALK vs. FREQUENCY
10
10
3.5
50
30
10
CROSSTALK (dB)
NOISE (pA/ √Hz)
MAX4214 toc10
100
MAX4214 toc11
100k
NOISE (nV/√Hz)
VOUT = 2VP-P
f = 5MHz
MAX4214 toc12
-70
0
-10
HARMONIC DISTORTION (dBc)
-20
HARMONIC DISTORTION
vs. VOLTAGE SWING
MAX4214 toc08
VOUT = 2VP-P
HARMONIC DISTORTION (dBc)
HARMONIC DISTORTION (dBc)
MAX4214 toc07
0
-10
HARMONIC DISTORTION
vs. RESISTIVE LOAD
MAX4214 toc09
HARMONIC DISTORTION
vs. FREQUENCY
-10
-30
-50
-70
-90
-110
-130
-150
1
1
10
100
1k
10k 100k
1M
1
10M
10
100
-30
-40
-50
-60
10M
100M
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
100
-10
1G
10
-20
IMPEDANCE (Ω)
-20
1M
MAX4215/MAX4219
OFF-ISOLATION vs. FREQUENCY
MAX4214 toc14
0
-10
100k
10M
FREQUENCY (Hz)
0
OFF-ISOLATION (dB)
POWER-SUPPLY REJECTION (dB)
10
1M
10
MAX4214 toc13
20
10k 100k
FREQUENCY (Hz)
FREQUENCY (Hz)
POWER-SUPPLY REJECTION
vs. FREQUENCY
1k
MAX4214 toc15
1
-30
-40
-50
-60
1
0.1
-70
-70
-80
-80
-90
100k
1M
10M
FREQUENCY (Hz)
100M
0.01
100k
1M
10M
FREQUENCY (Hz)
100M
100k
1M
10M
100M
1G
FREQUENCY (Hz)
_______________________________________________________________________________________
5
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
_____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 2V/V, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
_____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 2V/V, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
CLOSED-LOOP BANDWIDTH
vs. LOAD RESISTANCE
-0.01
100
DIFF. PHASE (deg)
0
IRE
0.02
0.00
-0.02
VOUT = 100mVP-P
RL = 150Ω
VCM = 1.35V
-0.04
-0.06
0
5.0
300
250
200
150
100
4.5
50
4.0
3.5
3.0
2.5
2.0
1.5
0
100
MAX4214 toc18
350
OUTPUT SWING (Vp-p)
0.01
0.00
OUTPUT SWING
vs. LOAD RESISTANCE
MAX4214 toc17
RL = 150Ω
VCM = 1.35V
CLOSED-LOOP BANDWIDTH (MHz)
0.04
0.03
0.02
MAX4214 toc16
DIFF. GAIN (%)
DIFFERENTIAL GAIN AND PHASE
1.0
IRE
200
300
400
LOAD RESISTANCE (Ω)
SMALL-SIGNAL PULSE RESPONSE
LARGE-SIGNAL PULSE RESPONSE
0
100
500
25
50
75 100 125 150 175 200 225 250
LOAD RESISTANCE (Ω)
ENABLE RESPONSE TIME
MAX4214 toc19
MAX4214 toc20
MAX4214 toc21
5.0V
(ENABLE)
IN
EN_
0
(DISABLE)
25mV/div
500mV/div
IN
OUT
OUT
1V
OUT
0
20ns/div
1µs/div
VCM = 0.9V, RL = 100Ω to GROUND
SMALL-SIGNAL PULSE RESPONSE
(CL = 5pF)
VIN = 0.5V
LARGE-SIGNAL PULSE RESPONSE
(CL = 5pF)
MAX4214 toc22
VOLTAGE SWING vs. TEMPERATURE
MAX4214 toc23
5.0
MAX4214 toc24
20ns/div
VCM = 1.25V, RL = 100Ω to GROUND
RL = 150Ω to 0
IN
VOLTAGE SWING (Vp-p)
4.8
500mV/div
IN
25mV/div
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
OUT
OUT
4.6
4.4
4.2
4.0
6
20ns/div
20ns/div
VCM = 1.25V, RL = 100Ω to 0
VCM = 1.75V, RL = 100Ω to 0
-50
-25
0
25
50
TEMPERATURE (°C)
_______________________________________________________________________________________
75
100
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
INPUT BIAS CURRENT (µA)
3
2
1
0
INPUT OFFSET CURRENT
vs. TEMPERATURE
5.5
5.0
4.5
0.20
0.16
0.12
0.08
0.04
0
4.0
0
25
50
TEMPERATURE (°C)
75
100
-50
-25
0
25
50
TEMPERATURE (°C)
75
POWER-SUPPLY CURRENT (PER AMPLIFIER)
vs. POWER-SUPPLY VOLTAGE
8
6
4
2
0
-50
-25
0
25
50
TEMPERATURE (°C)
75
100
POWER-SUPPLY CURRENT (PER AMPLIFIER)
vs. TEMPERATURE
7
POWER-SUPPLY CURRENT (mA)
10
100
MAX4214 toc29
-25
MAX4214 toc28
-50
MAX4214 toc27
MAX4214 toc26
6.0
MAX4214 toc25
4
POWER-SUPPLY CURRENT (mA)
INPUT OFFSET VOLTAGE (mV)
5
INPUT BIAS CURRENT
vs. TEMPERATURE
INPUT OFFSET CURRENT (µA)
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
6
5
4
3
3
4
5
6
7
8
9
10
POWER-SUPPLY VOLTAGE (V)
11
-50
-25
0
25
50
TEMPERATURE (°C)
75
100
_______________________________________________________________________________________
7
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
_____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 2V/V, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
_______________________________________________________________Pin Description
PIN
8
NAME
FUNCTION
8, 9
N.C.
No Connection. Not internally connected. Tie to ground or leave open.
—
—
OUT
Amplifier Output
13
11
13
VEE
Negative Power Supply or Ground (in
single-supply operation)
—
—
—
—
IN+
Noninverting Input
—
—
—
—
IN-
Inverting Input
MAX4214
MAX4215
MAX4217
SOT23-5
SO/µMAX
SO/µMAX
SO
MAX4219
QSOP
SO
MAX4222
QSOP
—
1, 5
—
—
8, 9
—
1
6
—
—
—
2
4
4
11
3
3
—
4
2
—
5
7
8
4
4
4
4
VCC
Positive Power Supply
—
8
—
—
—
—
—
EN
Enable Amplifier
—
—
—
1
1
—
—
ENA
Enable Amplifier A
—
—
—
3
3
—
—
ENB
Enable Amplifier B
—
—
—
2
2
—
—
ENC
Enable Amplifier C
—
—
1
7
7
1
1
OUTA
Amplifier A Output
—
—
2
6
6
2
2
INA-
Amplifier A Inverting Input
—
—
3
5
5
3
3
INA+
Amplifier A Noninverting Input
—
—
7
8
10
7
7
OUTB
Amplifier B Output
—
—
6
9
11
6
6
INB-
Amplifier B Inverting Input
—
—
5
10
12
5
5
INB+
Amplifier B Noninverting Input
—
—
—
14
16
8
10
OUTC
Amplifier C Output
—
—
—
13
15
9
11
INC-
Amplifier C Inverting Input
—
—
—
12
14
10
12
INC+
Amplifier C Noninverting Input
—
—
—
—
—
14
16
OUTD
Amplifier D Output
—
—
—
—
—
13
15
IND-
Amplifier D Inverting Input
—
—
—
—
—
12
14
IND+
Amplifier D Noninverting Input
_______________________________________________________________________________________
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
The MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
are single-supply, rail-to-rail output, voltage-feedback,
closed-loop buffers that employ current-feedback techniques to achieve 600V/µs slew rates and 230MHz
bandwidths. These buffers use internal 500Ω resistors
to provide a preset closed-loop gain of 2V/V in the noninverting configuration or -1V/V in the inverting configuration. Excellent harmonic distortion and differential
gain/phase performance make them an ideal choice for
a wide variety of video and RF signal-processing applications.
Local feedback around the buffer’s output stage
ensures low output impedance, which reduces gain
sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for ±120mA drive capability, while constraining
total supply current to less than 7mA.
Since the inverting input exhibits a 500Ω input impedance, terminate the input with a 56Ω resistor when configured for an inverting gain in 50Ω applications
(terminate with 88Ω in 75Ω applications). Terminate the
input with a 49.9Ω resistor in the noninverting case.
Output terminating resistors should directly match
cable impedances in either configuration.
Layout Techniques
Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure the PC
board does not degrade the buffer’s performance,
design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following guidelines
when designing the board:
• Don’t use wire-wrapped boards. They are too inductive.
___________Applications Information
• Don’t use IC sockets. They increase parasitic capacitance and inductance.
Power Supplies
• Use surface-mount instead of through-hole components for better high-frequency performance.
These devices operate from a single 3.15V to 11V
power supply or from dual supplies of ±1.575V to
±5.5V. For single-supply operation, bypass the VCC pin
to ground with a 0.1µF capacitor as close to the pin as
possible. If operating with dual supplies, bypass each
supply with a 0.1µF capacitor.
• Use a PC board with at least two layers; it should be
as free from voids as possible.
• Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.
Selecting Gain Configuration
Input Voltage Range and Output Swing
Each buffer in the MAX4214 family can be configured
for a voltage gain of 2V/V or -1V/V. For a gain of 2V/V,
ground the inverting terminal. Use the noninverting terminal as the signal input of the buffer (Figure 1a).
Grounding the noninverting terminal and using the
inverting terminal as the signal input configures the
buffer for a gain of -1V/V (Figure 1b).
The MAX4214 family’s input range extends from
(VEE - 100mV) to (VCC - 2.25V). Input ground sensing
increases the dynamic range for single-supply applications. The outputs drive a 2kΩ load to within 60mV of
the power-supply rails. With smaller resistive loads, the
output swing is reduced as shown in the Electrical
Characteristics and Typical Operating Characteristics.
IN+
IN
IN+
OUT
RTIN
RTO
OUT
OUT
RS
RTO
RO
OUT
RO
500Ω
500Ω
500Ω
IN
IN-
500Ω
IN-
RTIN
MAX42_ _
Figure 1a. Noninverting Gain Configuration (AV = +2V/V)
MAX42_ _
Figure 1b. Inverting Gain Configuration (AV = -1V/V)
_______________________________________________________________________________________
9
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
________________Detailed Description
As the load resistance decreases, the useful input range
is effectively limited by the output drive capability, since
the buffers have a fixed voltage gain of 2V/V or -1V/V.
For example, a 50Ω load can typically be driven from
40mV above VEE to 1.6V below VCC, or 40mV to 3.4V
when operating from a single 5V supply. If the buffer is
operated in the noninverting, gain of 2V/V configuration
with the inverting input grounded, the useful input voltage range becomes 20mV to 1.7V instead of the
-100mV to 2.75V indicated by the Electrical Characteristics. Beyond the useful input range, the buffer output
is a nonlinear function of the input, but it will not undergo phase reversal or latchup.
Enable
sists of five back-to-back Schottky diodes between
IN_+ and IN_-. These diodes reduce the disabled output resistance from 1kΩ to 500Ω when the output voltage is 3V greater or less than the voltage at IN_+.
Under these conditions, the input protection diodes will
be forward biased, lowering the disabled output resistance to 500Ω.
Output Capacitive Loading and Stability
The MAX4214 family provides maximum AC performance with no load capacitance. This is the case when
the load is a properly terminated transmission line.
These devices are designed to drive up to 20pF of load
capacitance without oscillating, but AC performance
will be reduced under these conditions.
The MAX4215/MAX4219 have an enable feature (EN_)
that allows the buffer to be placed in a low-power state.
When the buffers are disabled, the supply current is
reduced to 400µA per buffer.
As the voltage at the EN_ pin approaches the negative
supply rail, the EN_ input current rises. Figure 2 shows
a graph of EN_ input current versus EN_ pin voltage.
Figure 3 shows the addition of an optional resistor in
series with the EN pin, to limit the magnitude of the current increase. Figure 4 displays the resulting EN pin
input current to voltage relationship.
ENABLE
10kΩ
EN_
IN+
OUT
MAX42_ _
Disabled Output Resistance
The MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
include internal protection circuitry that prevents damage to the precision input stage from large differential
input voltages (Figure 5). This protection circuitry con-
500Ω
0
0
-1
-20
-2
-40
-60
-80
-100
500Ω
Figure 3. Circuit to Reduce Enable Logic-Low Input Current
20
-3
-4
-5
-6
-7
-120
-8
-140
-9
-10
-160
0
100
200
300
400
500
VIL (mV ABOVE VEE)
Figure 2. Enable Logic-Low Input Current vs. Enable LogicLow Threshold
10
IN-
INPUT CURRENT (µA)
INPUT CURRENT (µA)
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
0
100
200
300
400
500
VIL (mV ABOVE VEE)
Figure 4. Enable Logic-Low Input Current vs. Enable LogicLow Threshold with 10kΩ Series Resistor
______________________________________________________________________________________
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
5
MAX4214
MAX4215
MAX4217
MAX4219
MAX4222
OUT
NORMALIZED GAIN (dB)
IN+
CL = 15pF
4
3
CL = 10pF
2
1
0
CL = 5pF
-1
-2
-3
IN500Ω
-4
500Ω
100k
1M
10M
100M
1G
FREQUENCY (Hz)
Figure 5. Input Protection Circuit
Figure 6. Small-Signal Gain vs. Frequency with Load
Capacitance and No Isolation Resistor
16
14
500Ω
12
500Ω
RISO (Ω)
10
RISO
6
VOUT
MAX42_ _
VIN
8
4
CL
2
RTIN
50Ω
0
0
50
100
150
CLOAD (pF)
200
250
Figure 7. Driving a Capacitive Load Through an Isolation
Resistor
Figure 8. Isolation Resistance vs. Capacitive Load
Driving large capacitive loads increases the chance of
oscillations occurring in most amplifier circuits. This is
especially true for circuits with high loop gains, such as
voltage followers. The buffer’s output resistance and the
load capacitor combine to add a pole and excess phase
to the loop response. If the frequency of this pole is low
enough to interfere with the loop response and degrade
phase margin sufficiently, oscillations can occur.
A second problem when driving capacitive loads
results from the amplifier’s output impedance, which
looks inductive at high frequencies. This inductance
forms an L-C resonant circuit with the capacitive load,
which causes peaking in the frequency response and
degrades the amplifier’s gain margin.
Figure 6 shows the devices’ frequency response under
different capacitive loads. To drive loads with greater
than 20pF of capacitance or to settle out some of
the peaking, the output requires an isolation resistor
like the one shown in Figure 7. Figure 8 is a graph of
the Optimal Isolation Resistor vs. Load Capacitance.
Figure 9 shows the frequency response of the
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
when driving capacitive loads with a 27Ω isolation
resistor.
Coaxial cables and other transmission lines are easily
driven when properly terminated at both ends with their
characteristic impedance. Driving back-terminated
transmission lines essentially eliminates the lines’
capacitance.
______________________________________________________________________________________
11
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
6
3
2
_________Typical Application Circuit
RISO = 27Ω
CL = 47pF
1
NORMALIZED GAIN (dB)
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
0
IN+
75Ω
CL = 68pF
-1
-2
VOUT
CL = 120pF
-3
75Ω
MAX4214
-4
IN-
-5
500Ω
500Ω
-6
-7
100k
1M
10M
100M
1G
GAIN OF +2 VIDEO/RF CABLE DRIVER
FREQUENCY (Hz)
Figure 9. Small-Signal Gain vs. Frequency with Load
Capacitance and 27Ω Isolation Resistor
Chip Information
MAX4214 TRANSISTOR COUNT: 95
MAX4215 TRANSISTOR COUNT: 95
MAX4217 TRANSISTOR COUNT: 190
MAX4219 TRANSISTOR COUNT: 299
MAX4222 TRANSISTOR COUNT: 362
SUBSTRATE CONNECTED TO VEE
12
______________________________________________________________________________________
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
TOP VIEW
N.C. 1
IN- 2
8
EN
OUTA 1
7
VCC
INA- 2
MAX4215
8
VCC
7
OUTB
MAX4217
IN+ 3
6
OUT
INA+ 3
6
INB-
VEE 4
5
N.C.
VEE 4
5
INB+
SO/µMAX
SO/µMAX
ENA 1
14 OUTC
ENA 1
16 OUTC
ENC 2
13 INC-
ENC 2
15 INC-
12 INC+
ENB 3
11 VEE
VCC 4
10 INB+
INA+ 5
12 INB+
ENB 3
VCC 4
MAX4219
INA+ 5
14 INC+
MAX4219
13 VEE
INA- 6
9
INB-
INA- 6
11 INB-
OUTA 7
8
OUTB
OUTA 7
10 OUTB
9
N.C. 8
N.C.
SO
QSOP
OUTA 1
16 OUTD
13 IND-
INA- 2
15 IND-
12 IND+
INA+ 3
14 IND+
11 VEE
VCC 4
INB+ 5
10 INC+
INB+ 5
12 INC+
INB- 6
9
INC-
INB- 6
11 INC-
OUTB 7
8
OUTC
OUTB 7
10 OUTC
OUTA 1
14 OUTD
INA- 2
INA+ 3
VCC 4
MAX4222
MAX4222
N.C. 8
13 VEE
9
N.C.
SO
QSOP
______________________________________________________________________________________
13
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
_______________________________________________Pin Configurations (continued)
__________________________________________________Tape-and-Reel Information
D
P0
W
P2
B0
t
D1
F
P
NOTE: DIMENSIONS ARE IN MM.
AND FOLLOW EIA481-1 STANDARD.
3.988
±0.102
40.005
±0.203
P2
2.007
±0.051
t
0.254
±0.127
8.001
+0.305
-0.102
±0.102
P0
3.505
±0.051
P010
K0
1.397
±0.102
P
3.988
±0.102
3.200
±0.102
B0
3.099
±0.102
F
D
1.499
+0.102
+0.000
D1
0.991
+0.254
+0.000
A0
K0
A0
E
1.753
W
5 SOT23-5
E
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
SOT5L.EPS
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
14
______________________________________________________________________________________
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
E
ÿ 0.50±0.1
8
INCHES
DIM
A
A1
A2
b
H
c
D
e
E
H
0.6±0.1
1
L
1
α
0.6±0.1
S
BOTTOM VIEW
D
MIN
0.002
0.030
MAX
0.043
0.006
0.037
0.010
0.014
0.005
0.007
0.116
0.120
0.0256 BSC
0.116
0.120
0.188
0.198
0.016
0.026
6∞
0∞
0.0207 BSC
8LUMAXD.EPS
4X S
8
MILLIMETERS
MAX
MIN
0.05
0.75
1.10
0.15
0.95
0.25
0.36
0.13
0.18
2.95
3.05
0.65 BSC
2.95
3.05
4.78
5.03
0.41
0.66
0∞
6∞
0.5250 BSC
TOP VIEW
A1
A2
e
FRONT VIEW
A
α
c
b
L
SIDE VIEW
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, 8L uMAX/uSOP
APPROVAL
DOCUMENT CONTROL NO.
REV.
J
1
1
SOICN.EPS
21-0036
______________________________________________________________________________________
15
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
QSOP.EPS
MAX4214/MAX4215/MAX4217/MAX4219/MAX4222
High-Speed, Single-Supply, Gain of 2,
Closed-Loop, Rail-to-Rail Buffers with Enable
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2001 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.