0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX44246ASA+

MAX44246ASA+

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOIC-8

  • 描述:

    通用 放大器 2 电路 满摆幅 8-SOIC

  • 数据手册
  • 价格&库存
MAX44246ASA+ 数据手册
EVALUATION KIT AVAILABLE MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps General Description The MAX44241/MAX44243/MAX44246 are 36V, ultraprecision, low-noise, low-drift, single/quad/dual operational amplifiers that offer near-zero DC offset and drift through the use of patented chopper stabilized and auto-zeroing techniques. This method constantly measures and compensates the input offset, eliminating drift over time and temperature and the effect of 1/f noise. These single/quad/dual devices feature rail-to-rail outputs, operate from a single 2.7V to 36V supply or dual ±1.35V to ±18V supplies, and consume only 0.42mA per channel, with only 9nV/√Hz input-referred voltage noise. The ICs are available in 8-pin FMAXM or SO packages and are rated over the -40NC to +125NC temperature range. Applications Transducer Amplifiers Battery-Powered Equipment Load Cell Amplifiers PLC Analog I/O Modules Precision Instrumentation Benefits and Features S Reduces Noise-Sensitive Precision Applications • Low 9nV/√Hz Noise at 1kHz • Integrated EMI Filter S Eliminates Cost of Calibration with Increased Accuracy and Patented Auto-Zero Circuitry • Ultra-Low Input VOS: 5µV (max) • Low 20nV/°C (max) of Offset Drift S Suitable for High-Bandwidth Applications • 1µs Fast Settling Time • 5MHz Gain-Bandwidth Product S Low 0.55mA Per Channel (max) Quiescent Current S Wide Supply for High-Voltage Front-Ends • 2.7V to 36V Supply Range S Rail-to-Rail Output Ordering Information appears at end of data sheet. For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX44241.related. µMAX is a registered trademark of Maxim Integrated Products, Inc. Typical Operating Circuit 15V 3.3V ½ MAX44246 R1 BUFFER R 15V -15V 50RG BUFFER R VREF VIN+ MICROPROCESSOR MAX11211 OUTPUT 15V R BUFFER VDD 15V R 50RG VOUT MAX6126 VDD RG 3V 1.5V -15V VIN- VSS ½ MAX44246 C1 ½ MAX44246 -15V For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com. 19-6375; Rev 7; 4/15 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps ABSOLUTE MAXIMUM RATINGS Supply Voltage (VDD to GND) ..............................-0.3V to +40V All Other Pins.................................(GND - 0.3V) to (VDD + 0.3V) Short-Circuit Duration, OUTA, OUTB to Either Supply Rail………………………….............. 1s Continuous Input Current (Any Pin) ...................................20mA Differential Input Current.................................................. Q20mA Differential Input Voltage (Note 1)........................................ .Q6V Continuous Power Dissipation (TA = +70NC) 5-Pin SOT23 (derate 3.9mW/NC above +70NC).......312.6mW 8-Pin FMAX (derate 4.8mW/NC above +70NC).........387.8mW 8-Pin SO (derate 7.60mW/NC above +70NC)...........606.1mW 14-Pin SO (derate 12.30mW/NC above +70NC).......987.7mW 14-Pin TSSOP (derate 10mW/NC above +70NC)......796.8mW Operating Temperature Range......................... -40NC to +125NC Junction Temperature .....................................................+150NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering,10s)..................................+300NC Soldering Temperature (reflow).......................................+260NC Note 1: The amplifier inputs are connected by internal back-to-back clamp diodes. In order to minimize noise in the input stage, current-limiting resistors are not used. If differential input voltages exceeding ±1V are applied, limit input current to 20mA. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS (Note 2) µMAX Junction-to-Ambient Thermal Resistance (qJA)......206.3NC/W Junction-to-Case Thermal Resistance (qJC) ...............42NC/W SO-8 Junction-to-Ambient Thermal Resistance (qJA).........132NC/W Junction-to-Case Thermal Resistance (qJC) ...............38NC/W SO-14 Junction-to-Ambient Thermal Resistance (qJA)...........81NC/W Junction-to-Case Thermal Resistance (qJC) ...............32NC/W SOT23 Junction-to-Ambient Thermal Resistance (qJA)......255.9NC/W Junction-to-Case Thermal Resistance (qJC) ...............81NC/W TSSOP Junction-to-Ambient Thermal Resistance (qJA)......100.4NC/W Junction-to-Case Thermal Resistance (qJC) ...............30NC/W Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. ELECTRICAL CHARACTERISTICS (VDD = 30V, VGND = 0V, VIN+ = VIN- = VDD /2, RL = 5kΩ to VDD /2, TA = -40°C to +125°C, unless otherwise noted. Typical values at TA = +25°C.) (Note 3) PARAMETER Supply Voltage Range Power-Supply Rejection Ratio (Note 4) SYMBOL VDD PSRR Quiescent Current per Amplifier IDD Power-Up Time tON CONDITIONS MIN Guaranteed by PSRR 2.7 VDD = 2.7V to 36V, TA = +25NC 148 VDD = 2.7V to 36V, -40NC < TA < +125NC 146 RL = J TA = +25NC TYP MAX UNITS 36 V 166 0.42 -40NC < TA < +125NC dB 0.55 0.60 20 mA Fs DC SPECIFICATIONS Input Common-Mode Range Common-Mode Rejection Ratio (Note 4) Input Offset Voltage (Note 4) Maxim Integrated VCM CMRR VOS Guaranteed by CMRR test VCM = (V GND - 0.05V) to (VDD - 1.5V) (V GND - 0.05) 146 (VDD - 1.5) 166 1 V dB 5 FV   2 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps ELECTRICAL CHARACTERISTICS (continued) (VDD = 30V, VGND = 0V, VIN+ = VIN- = VDD /2, RL = 5kΩ to VDD /2, TA = -40°C to +125°C, unless otherwise noted. Typical values at TA = +25°C.) (Note 3) PARAMETER Input Offset Voltage Drift (Note 4) SYMBOL IB Input Offset Current (Note 4) IOS AVOL Output Short-Circuit Current Output Voltage Low Output Voltage High MIN TC VOS Input Bias Current (Note 4) Open-Loop Gain (Note 4) CONDITIONS TA = +25NC VOH MAX UNITS 1 20 nV/NC 300 600 -40NC < TA < +125NC 1250 TA = +25NC 600 -40NC < TA < +125NC (V GND + 0.5V) P VOUT P (VDD – 0.5V) Noncontinuous VOL TYP 2500 154 168 Sinking 40 Sourcing 30 TA = +25NC 90 -40NC < TA < +125NC TA = +25NC -40NC < TA < +125NC 1200 pA dB mA 115 180 (VDD 0.17) (VDD 0.25) pA (VDD 0.13) mV V AC SPECIFICATIONS Input Voltage-Noise Density eN 9 nV/√Hz 117 nVP-P CIN 2 pF GBW 5 MHz 60 Degrees Input Voltage Noise Input Capacitance Gain-Bandwidth Product Phase Margin f = 1kHz 0.1Hz < f < 10Hz PM CL = 20pF Slew Rate SR AV = 1V/V, VOUT = 4VP-P 3.8 V/Fs Capacitive Loading CL No sustained oscillation, AV = 1V/V 300 pF Total Harmonic Distortion THD VOUT = 4VP-P, AV = +1V/V f = 1kHz -96 f = 20kHz -77 VOUT = 2VP-P, AV = +1V/V f = 1kHz -91 f = 20kHz -76 dB dB ELECTRICAL CHARACTERISTICS (VDD = 10V, VGND = 0V, VIN+ = VIN- = VDD /2, RL = 5kΩ to VDD /2, TA = -40°C to +125°C, unless otherwise noted. Typical values at TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX 0.42 0.55 UNITS POWER SUPPLY Quiescent Current per Amplifier IDD Power-Up Time tON Maxim Integrated RL = J TA = +25NC -40NC < TA < +125NC 0.60 20 mA Fs   3 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps ELECTRICAL CHARACTERISTICS (continued) (VDD = 10V, VGND = 0V, VIN+ = VIN- = VDD /2, RL = 5kΩ to VDD /2, TA = -40°C to +125°C, unless otherwise noted. Typical values at TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS (VDD – 1.5) V DC SPECIFICATIONS Input Common-Mode Range Common-Mode Rejection Ratio (Note 4) Input Offset Voltage (Note 4) Input Offset Voltage Drift (Note 4) VCM CMRR 158 dB 1 5 FV 2.4 20 nV/NC 300 600 Input Offset Current (Note 4) IOS AVOL Output Short-Circuit Current Output Voltage High 140 TC VOS IB Output Voltage Low VCM = (V GND - 0.05V) to (VDD - 1.5V) (VGND - 0.05) VOS Input Bias Current (Note 4) Open-Loop Gain (Note 4) Guaranteed by CMRR test TA = +25NC -40NC < TA < +125NC TA = +25NC VOH 600 -40NC < TA < +125NC (V GND + 0.5V) ≤ VOUT ≤ (VDD - 0.5V) Noncontinuous VOL 1100 1200 2200 144 164 Sinking 40 Sourcing 30 TA = +25NC 30 -40NC < TA < +125NC (VDD 0.06) -40NC < TA < +125NC (VDD 0.09) (VDD 0.05) pA dB mA 40 60 TA = +25NC pA mV V AC SPECIFICATIONS Input Voltage-Noise Density eN Input Voltage Noise Input Capacitance Gain-Bandwidth Product f = 1kHz 0.1Hz < f < 10Hz 9 117 nV/√Hz nVP-P CIN 2 pF GBW 5 MHz 60 Degrees Phase Margin PM Slew Rate SR AV = +1V/V, VOUT = 2VP-P, 10% to 90% 3.8 V/µs Capacitive Loading CL No sustained oscillation, AV = 1V/V f = 1kHz VOUT = 2VP-P, AV = 1V/V f = 20kHz 300 pF Total Harmonic Distortion Settling Time THD CL = 20pF To 0.01%, VOUT = 2V step, AV = 1V/V -92 -76 1 dB µs Note 3: All devices are 100% production tested at TA = +25°C. Temperature limits are guaranteed by design. Note 4: Guaranteed by design. Maxim Integrated   4 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Typical Operating Characteristics (VDD = 10V, VGND = 0V, VIN+ = VIN- = VDD/2, RL = 5kΩ to VDD/2, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) INPUT OFFSET VOLTAGE DRIFT HISTOGRAM 20 15 10 5 -1.0 -1.5 MAX44241 toc02 400 30 25 20 15 -0.5 0 0.5 1.0 300 250 200 150 10 100 5 50 0 0 0.002 0.003 0.005 5 10 15 20 25 30 OFFSET VOLTAGE DRIFT (µV/°C) SUPPLY VOLTAGE (V) SUPPLY CURRENT PER AMPLIFIER vs. TEMPERATURE INPUT OFFSET VOLTAGE vs. INPUT COMMON-MODE VOLTAGE INPUT OFFSET VOLTAGE vs. TEMPERATURE 440 430 420 410 1 0 -1 40 100 125 MAX44241 toc06 2 35 5 INPUT OFFSET VOLTAGE (µV) 450 3 INPUT OFFSET VOLTAGE (µV) VIN = VDD/2 NO LOAD 460 -0.006 -0.004 -0.002 1.5 VIN = VDD/2 NO LOAD 350 OFFSET VOLTAGE (µV) MAX44241 toc04 470 0 -2 400 0 25 50 100 -3 125 -5 0 1 2 3 4 5 6 7 8 9 -50 -25 0 25 50 75 TEMPERATURE (°C) VCM (V) TEMPERATURE (°C) INPUT BIAS CURRENT vs. VCM vs. TEMPERATURE INPUT BIAS CURRENT vs. TEMPERATURE COMMON-MODE REJECTION RATIO vs. TEMPERATURE IB- (TA = +25°C) IB- (TA = +125°C) IB- (TA = -40°C) 0 1 2 3 VCM (V) Maxim Integrated IB+ (TA = +25°C) IB+ (TA = -40°C) 4 5 6 7 700 8 9 600 toc08 180 170 IB+ 500 160 400 150 300 140 200 100 IB- 0 130 120 110 -100 100 -200 90 -300 MAX44241 toc09 INPUT BIAS CURRENT (pA) IB+ (TA = +125°C) -1 75 INPUT BIAS CURRENT (pA) 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 -600 -800 -1000 -25 MAX44241 toc07 -50 CMRR (dB) SUPPLY CURRENT (µA) 35 450 0 0 390 500 SUPPLY CURRENT (µA) 25 40 MAX44241 toc05 PERCENT OCCURENCE (%) 30 45 PERCENT OCCURRENCE (%) MAX44241 toc01 35 SUPPLY CURRENT PER AMPLIFIER vs. SUPPLY VOLTAGE MAX44241 toc03 INPUT OFFSET VOLTAGE HISTOGRAM 80 -50 0 50 100 TEMPERATURE (°C) 150 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C)   5 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VGND = 0V, VIN+ = VIN- = VDD/2, RL = 5kΩ to VDD/2, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) POWER-SUPPLY REJECTION RATIO vs. TEMPERATURE 170 140 60 40 120 110 0 100 -20 90 -40 1 10 100 1k 10k 100k 1M 10M -25 25 50 75 100 OUTPUT VOLTAGE LOW vs. OUTPUT SINK CURRENT OUTPUT VOLTAGE HIGH vs. OUTPUT SOURCE CURRENT 300 250 200 150 100 70 MAX44241 toc14 350 60 50 300 250 200 150 0 4 6 8 0 10 2 4 6 8 OUTPUT VOLTAGE HIGH vs. TEMPERATURE 2 MAX44241 toc16 9.965 9.960 0 -2 NORMALIZED GAIN, VIN = 100mVP-P 9.955 9.950 9.945 9.935 9.930 50 75 TEMPERATURE (°C) Maxim Integrated 100 125 25 50 75 100 125 LARGE-SIGNAL GAIN vs. FREQUENCY 0 -5 NORMALIZED GAIN, VIN = 2VP-P -10 -6 -8 -10 -12 -15 -20 -25 -30 -35 -14 9.940 25 0 5 MAGNITUDE (dB) MAGNITUDE (dB) -4 0 -25 TEMPERATURE (°C) SMALL-SIGNAL GAIN vs. FREQUENCY 9.970 -25 -50 OUTPUT SOURCE CURRENT (mA) OUTPUT SINK CURRENT (mA) -50 0 10 MAX44241 toc17 2 30 10 50 0 40 20 100 0 10 100 1k 10k 100k 1M 10M100M OUTPUT VOLTAGE LOW vs. TEMPERATURE VOL (mV) 350 400 OUTPUT VOLTAGE HIGH (mV) MAX44241 toc13 400 0.01 0.1 1 125 FREQUENCY (Hz) 450 50 OUTPUT VOLTAGE HIGH (V) 0 TEMPERATURE (°C) 450 50 -50 -50 FREQUENCY (Hz) 500 100 0 80 0.1 OUTPUT VOLTAGE LOW (mV) 130 20 150 MAX44241 toc15 80 VIN = 100mVP-P MAX44241 toc18 150 MAGNITUDE (dB) 160 100 PSRR (dB) MAGNITUDE (dB) 120 OPEN-LOOP GAIN vs. FREQUENCY 200 MAX44241 toc11 100mVP-P 140 180 MAX44241 toc10 160 MAX44241 toc12 COMMON-MODE REJECTION RATIO vs. FREQUENCY -16 -40 -18 -45 -50 -20 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 100M 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz)   6 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VGND = 0V, VIN+ = VIN- = VDD/2, RL = 5kΩ to VDD/2, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) INPUT VOLTAGE NOISE vs. FREQUENCY MAX44241 toc19 INPUT VOLTAGE NOISE (nV/√Hz) INPUT VOLTAGE 0.1Hz TO 10Hz NOISE MAX44241 toc20 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 200nV/div 1 10 100 1k 100k 10k 1s/div FREQUENCY (Hz) LARGE-SIGNAL (2VP-P) STEP RESPONSE vs. TIME SMALL-SIGNAL (100mVP-P) STEP RESPONSE vs. TIME MAX44241 toc22 MAX44241 toc21 VIN 50mV/div VIN 1V/div VOUT 50mV/div VOUT 1V/div 1µs/div 1µs/div STABILITY vs. CAPACITIVE AND RESISTIVE LOAD IN PARALLEL STABILITY vs. CAPACITIVE LOAD AND SERIES ISOLATION RESISTANCE 10 RISO (I) 10 RESISTIVE LOAD (kI) STABLE UNSTABLE 1 POWER-UP TIME MAX44246 toc24 100 MAX44241 toc23 100 MAX44241 toc25 VDD = VSS = 0V VDD = 10V 5V/div 1 UNSTABLE 0.1 STABLE VIN = VOUT = 0V 0.01 200mV/div 0.001 0.1 100 1k 10k CAPACITIVE LOAD (pF) Maxim Integrated 100k 100 1k 10k CAPACITIVE LOAD (pF) 100k 20µs   7 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VGND = 0V, VIN+ = VIN- = VDD/2, RL = 5kΩ to VDD/2, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) TOTAL HARMONIC DISTORTION vs. OUTPUT AMPLITUDE MAX44241 toc27 -40 -50 -40 -60 -70 -120 100 1k 10k 1 2 3 4 5 6 7 8 OUTPUT AMPLITUDE (V) 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) MAX44241 toc29 90 80 70 -40 -50 -60 -70 -80 -90 -100 -110 60 50 40 30 2VP-P INPUT 20 4VP-P INPUT 10 0 -120 10 100 1k FREQUENCY (Hz) Maxim Integrated 1 10 100 EMIRR (dB) THD (dB) -20 -30 9 EMIRR vs. FREQUENCY (VDD = 3.3V) TOTAL HARMONIC DISTORTION vs. FREQUENCY VDD = 30V -100 -160 0 FREQUENCY (Hz) 0 -10 -80 -140 -120 100k -60 -120 -100 4VP-P OUTPUT 10 -60 -80 2VP-P OUTPUT -40 MAX44246 toc30 -80 -90 -100 -110 -20 CROSSTALK (dB) -20 THD (dB) THD (dB) -20 -30 CROSSTALK vs. FREQUENCY 0 0 MAX44241 toc26 0 -10 MAX44241 toc28 TOTAL HARMONIC DISTORTION vs. FREQUENCY 10k 100k 1 10 100 1000 10,000 FREQUENCY (MHz)   8 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Pin Configurations TOP VIEW + N.C. 1 INA- 2 INA+ 3 VSS 4 + MAX44241 8 N.C. 7 VDD 6 OUTA 5 N.C. OUTA 1 VSS 2 INA+ 3 5 VDD 4 INA- MAX44241 µMAX SOT-23 OUTA 1 + 14 OUTD INA- 2 INA+ 3 13 IND- MAX44243 12 IND+ OUTA 1 + 14 OUTD INA- 2 13 IND- INA+ 3 12 IND+ 11 VSS MAX44243 VDD 4 11 VSS VDD 4 INB+ 5 10 INC+ INB+ 5 10 INC+ INB- 6 9 INC- OUTB 7 8 OUTC INB- 6 9 INC- OUTB 7 8 OUTC TSSOP SO + OUTA 1 8 VDD INA- 2 7 OUTB INA+ 3 6 INB- GND 4 5 INB+ MAX44246 µMAX/SO Maxim Integrated   9 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Pin Descriptions PIN MAX44241 MAX44243 MAX44246 NAME FUNCTION SOT23-5 µMAX-8 SO-14 TSSOP-14 SO-8 µMAX-8 1 6 1 1 1 1 OUTA 2 4 11 11 4 4 VSS Negative Supply Voltage 3 3 3 3 3 3 INA+ Channel A Positive Input 4 2 2 2 2 2 INA- Channel A Negative Input 5 7 4 4 8 8 VDD Positive Supply Voltage — — 5 5 5 5 INB+ Channel B Positive Input — — 6 6 6 6 INB- Channel B Negative Input — — 7 7 7 7 OUTB Channel B Output — — 8 8 — — OUTC Channel C Output — — 9 9 — — INC- Channel C Negative Input — — 10 10 — — INC+ Channel C Positive Input — — 12 12 — — IND+ Channel D Positive Input — — 13 13 — — IND- Channel D Negative Input — — 14 14 — — OUTD — 1, 5, 8 — — — — N.C. Maxim Integrated Channel A Output Channel D Output No Connection. Not internally connected.   10 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Detailed Description The MAX44241/MAX44243/MAX44246 are high-precision amplifiers that provide below 5µV of maximum inputreferred offset and low flicker noise. These characteristics are achieved by using a combination of proprietary auto-zeroing and chopper stabilized techniques. This combination of auto-zeroing and chopping ensures that these amplifiers give all the benefits of zero-drift amplifiers, while still ensuring low noise, minimizing chopper spikes, and providing wide bandwidth. Offset voltages due to power ripple/spikes as well as common-mode variation, are corrected resulting in excellent PSRR and CMRR specifications. Noise Suppression Flicker noise, inherent in all active devices, is inversely proportional to frequency present. Charges at the oxide-silicon interface that are trapped-and-released by MOSFET oxide occurs at low frequency more often. For this reason, flicker noise is also called 1/f noise. The MAX44241/MAX44243/MAX44246 eliminate the 1/f noise internally, thus making them ideal choices for DC or subHz precision applications. The 1/f noise appears as a slow varying offset voltage and is eliminated by the chopping technique used. Electromagnetic interference (EMI) noise occurs at higher frequency, resulting in malfunction or degradation of electrical equipment. The ICs have an input EMI filter to avoid the output being affected by radio frequency interference. The EMI filter composed of passive devices, presents significant higher impedance to higher frequency. Applications Information ADC Buffer Amplifier The MAX44241/MAX44243/MAX44246 have low input offset voltage, low noise, and fast settling time that make these amplifiers ideal for ADC buffers. Weight scales are one application that often requires a low-noise, highvoltage amplifier in front of an ADC. The Typical Operating Maxim Integrated VSUPPLY ILOAD ½ MAX44246 OUT RSENSE R2 R1 Figure 1. Low-Side Current Sensing Circuit details an example of a load cell and amplifier driven from the same ±10V supplies, along with the MAX11211 18-bit delta sigma ADC. Load cells produce a very small voltage change at their outputs; therefore driving the excitation source with a higher voltage produces a wider dynamic range that can be measured at the ADC inputs. The MAX11211 ADC operates from a single 2.7V to 3.6V analog supply, offers 18-bit noise-free resolution and 0.86mW power dissipation. The MAX11211 also offers > 100dB rejection at 50Hz and 60Hz. This ADC is part of a family of 16-, 18-, 20-, and 24-bit delta sigma ADCs with high precision and < 1mW power dissipation. The low input offset voltage and low noise of MAX44241/ MAX44243/MAX44246 allow a gain circuit to precede the MAX11211 without losing any dynamic range at the ADC. See the Typical Operating Circuit. Precision Low-Side Current Sensing The ICs’ ultra-low offset voltage and drift make them ideal for precision current-sensing applications. Figure 1 shows the ICs in a low-side current-sense configuration. This circuit produces an accurate output voltage, VOUT equal to ILOAD x RSENSE x (1 + R2 /R1).   11 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Layout Guidelines The MAX44241/MAX44243/MAX44246 feature ultra-low offset voltage and noise. Therefore, to get optimum performance follow the following layout guidelines. Avoid temperature gradients at the junction of two dissimilar metals. The most common dissimilar metals used on a PCB are solder-to-component lead and solder-toboard trace. Dissimilar metals create a local thermocouple. A variation in temperature across the board can cause an additional offset due to Seebeck effect at the solder junctions. To minimize the Seebeck effect, place the amplifier away from potential heat sources on the board, if possible. Orient the resistors such that both the ends are heated equally. It is a good practice to match the input signal path to ensure that the type and number of thermoelectric junctions remain the same. For example, consider using dummy 0Ω resistors oriented in such a way that the thermoelectric sources, due to the real resistors in the signal path, are cancelled. It is recommended to flood the PCB with ground plane. The ground plane ensures that heat is distributed uniformly reducing the potential offset voltage degradation due to Seebeck effect. Maxim Integrated Ordering Information TOP MARK -40NC to +125NC PINPACKAGE 8 FMAX -40NC to +125NC 5 SOT23 AFMQ MAX44243ASD+ -40NC to +125NC 14 SO — MAX44243AUD+ -40NC to +125NC 14 TSSOP — MAX44246ASA+ -40NC to +125NC 8 SO — MAX44246AUA+ -40NC to +125NC 8 FMAX — PART TEMP RANGE MAX44241AUA+ MAX44241AUK+ — +Denotes a lead(Pb)-free/RoHS-compliant package. Chip Information PROCESS: BiCMOS Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 5 SOT23 U5+1 21-0057 90-0174 8 SO S8+4 21-0041 90-0096 8 µMAX U8+1 21-0036 90-0092 14 SO S14M+4 21-0041 90-0112 14 TSSOP U14M+1 21-0066 90-0113   12 MAX44241/MAX44243/MAX44246 36V, Low-Noise, Precision, Single/Quad/Dual Op Amps Revision History REVISION NUMBER REVISION DATE 0 7/12 Initial release 1 9/12 Revised the Electrical Characteristics and the Typical Operating Characteristics. 2 2/13 Revised the Typical Operating Characteristics. 3 5/13 Updated General Description, Typical Application Circuit, and Pin Description. 1, 9 4 9/13 Added the MAX44241/MAX44243 to the data sheet. Revised the Typical Operating Circuit. 1–13 5 1/14 Revised Electrical Characteristics and the Typical Operating Characteristics. 2, 5 6 12/14 Revised Benefits and Features section. 1 7 4/15 Revised Ordering Information 13 DESCRIPTION PAGES CHANGED — 1, 2, 3, 5 8 Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 ©  2015 Maxim Integrated 13 The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.
MAX44246ASA+ 价格&库存

很抱歉,暂时无法提供与“MAX44246ASA+”相匹配的价格&库存,您可以联系我们找货

免费人工找货