0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX77958EWV+T

MAX77958EWV+T

  • 厂商:

    AD(亚德诺)

  • 封装:

    WLP30

  • 描述:

    独立USB Type-c和USB供电控制器 WLP30

  • 数据手册
  • 价格&库存
MAX77958EWV+T 数据手册
EVALUATION KIT AVAILABLE Click here to ask an associate for production status of specific part numbers. MAX77958 Standalone USB Type-C and USB Power Delivery Controller General Description Benefits and Features The MAX77958 is a robust solution for USB Type-C CC detection and power delivery (PD) protocol implementation. It detects connected accessories or devices by using Type-C CC detection and USB PD messaging. The IC protects against overvoltage and overcurrent, and detects moisture and prevents corrosion on the USB TypeC connector. The IC also has a D+/D- USB switch and BC1.2 detection to support legacy USB standards. It contains VCONN switches for USB PD and an enable pin for an external VCONN boost or buck converter. When the USB PD negotiation is complete, the IC configures an alternate mode setting for external multiplexers. ● Supports Autonomous or MCU Based Configuration • No Firmware Development Needed in Autonomous Configuration • Customizable Based on Application Requirements The IC is compliant with USB Type-C Specification Release 1.3 and PD 3.0. It can be customized easily without affecting the compliance. The IC has an I2C master that can read and write to other devices in the system so that its firmware can configure related devices without the main processor's assistance. For example, it can configure an external charger based on BC1.2 detection, CC detection, and PD communication. The IC has an interrupt output pin to report event detection and status changes. It also has an I2C interface that the system can use to read/write and configure internal registers. The IC has nine configurable GPIOs that can be used for detection, as interrupts, and as the enable/disable pin for external devices, or as ADC inputs. The IC is available in a 3.10mm x 2.65mm, 0.5mm pitch, wafer-level package (WLP). Applications ● ● ● ● ● ● ● ● ● ● ● Smartphones Tablets Cameras Game Players Power Banks Industrial Equipment PoE to USB Type-C Adapters Handheld Devices Portable Devices Monitors Healthcare and Medical Devices Other USB Type-C Devices Ordering Information appears at end of data sheet. ● Customizable Firmware • USB Compliant Default Embedded Firmware • Supports Customizable Actions on Events • Firmware Updates for Future Specification Revisions ● USB Type-C Support and USB-PD Support • USB Type-C Version 1.3 and PD3.0 Compliant • Mode Configuration: Sink/Source/Dual Role Port • Programmable Power Supply (PPS) Sink Support • Fast Role Swap (FRS) Initial Sink Support • Alternate Mode Support • Cable Orientation and Power Role Detection • Integrated VCONN Switch with OCP • Support Try.Snk State • Audio and Debug Accessory Sink/Source Mode ● Supports BC1.2 Legacy/Proprietary Charger Detection • Supports HVDCP • Integrated D+/D- Switches ● ● ● ● ● ● ● Moisture Detection/Corrosion Prevention High Voltage VBUS (28V) Short to VBUS Protection on CC Pins (22V) Dead Battery Support Dual Supply Inputs from SYS and VBUS I2C Programmable Configuration I2C Master to Control External Charger or Direct Charge IC ● Nine Configurable GPIOs • SuperSpeed Mux/Detection/IRQ • Configuration for Alternate Mode • ENABLE/DISABLE External Switches or Devices ● 30-Bump, 6x5, 0.5mm Pitch WLP 19-100687; Rev 5; 11/22 © 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2022 Analog Devices, Inc. All rights reserved. MAX77958 Standalone USB Type-C and USB Power Delivery Controller Simplified Block Diagram USB TYPE-C CONNECTOR VBUS 1µF 35V MAX77958 VBUS 1µF 35V DN DP CC1 CC2 DN DP CC1 CC2 GPIO2 VDD1P1 2.2µF 10V 1µF 6.3V 1µF 6.3V GND_D VIO1 1µF 6.3V SCL SDA INTB DN1 DP2 2.2kΩ VDD1P8 INTB 2.2kΩ AVL VIO SCL_M SDA_M GPIO8 200kΩ VCIN GPIO0* GPIO1* GPIO3* GPIO4 GPIO5 GPIO6* GPIO7 1µF 10V 2.2kΩ 1µF 6.3V 2.2kΩ VCIN VIO2 27pF 25V VCIN EN CHARGER 200kΩ 27pF 25V VSYS SYS VIO AP GND_A (*) THESE PINS ARE CONFIGURED FOR SPECIFIC FUNCTIONS BY DEFAULT. SEE PIN DESCRIPTION FOR DETAILS ON USING AS GPIO www.analog.com Analog Devices | 2 MAX77958 Standalone USB Type-C and USB Power Delivery Controller TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 MAX77958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 USB Type-C Interface and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CC/USB PD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 USB Type-C Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Detecting Connected DFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Detecting Connected UFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Try.SNK Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Audio Accessory Mode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DebugAcessory.SRC Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DebugAcessory.SNK Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Moisture Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 USB BC1.2 D+/D- Adapter Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Charger Type Detection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VCONN Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 USB Type-C Interface and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Automatic Accessory Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Autoconfiguration Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 USB Power Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 IC Wakeup events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Interrupt Output (INTB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Interconnected Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 System Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 www.analog.com Analog Devices | 3 MAX77958 Standalone USB Type-C and USB Power Delivery Controller TABLE OF CONTENTS (CONTINUED) VIO Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Reset Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 WDT Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Clock Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 General Call Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Communication Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Writing to Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Reading from a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Reading from Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Engaging HS-Mode for Operation up to 3.4MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 D+/D- USB 2.0 Switch Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 HVDCP Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Push-Button Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 External Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 MAX77958 IC Firmware Update with Dongle Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 FW Recovery Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2/3-Cell Configurable Charger Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2/3-Cell Autonomous Charger Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Autonomous DC-DC Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 PD Power Adapter Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 www.analog.com Analog Devices | 4 MAX77958 Standalone USB Type-C and USB Power Delivery Controller LIST OF FIGURES Figure 1. Standalone System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 2. MCU Based System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 3. SBU Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 4. VCONN Overcurrent Protection Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 5. Interconnected Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 6. Functional Logic Diagram for Communications Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 7. I2C Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 8. I2C Start and Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 9. Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 10. Writing to Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 11. Reading from a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 12. Reading from Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 13. Engaging HS-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 14. I2C Operating Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 15. Configurable Charger Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 16. Autonomous Charger Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Figure 17. Autonomous DC-DC Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Figure 18. Adapter Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 www.analog.com Analog Devices | 5 MAX77958 Standalone USB Type-C and USB Power Delivery Controller LIST OF TABLES Table 1. Rp/Rp Charging Current Values for a DTS Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 2. BC1.2 Adapter Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 3. I2C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 4. D+/D- Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 www.analog.com Analog Devices | 6 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Absolute Maximum Ratings TOP and Interface Logic SYS to GND ..................................................... -0.3V to +22.0V VBUS to GND ................................................... -0.3V to +30.0V AVL to GND ....................................................... -0.3V to +6.0V VDD1P8 to GND ................................................ -0.3V to +2.2V VIO1 to GND ...................................................... -0.3V to +6.0V VIO2 to GND ...................................................... -0.3V to +6.0V SCL, SDA, INTB to GND ......................... -0.3V to VIO1 + 0.3V GND_A, GND_D to GND ................................... -0.3V to +0.3V USB Type-C VCIN to GND ..................................................... -0.3V to +6.0V DN, DP, DN1, DP2 to GND................................ -0.3V to +6.0V CC1, CC2 to GND ............................................ -0.3V to +22.0V VDD1P1 to GND ................................ -0.3V to VDD1P8 + 0.3V SCL_M, SDA_M to GND ..........................-0.3V to VIO2 + 0.3V GPIO0, GPIO1, GPIO2, GPIO3, GPIO8 to GND ......... -0.3V to VIO2 + 0.3V GPIO4, GPIO5, GPIO6, GPIO7 to GND ..-0.3V to VIO1 + 0.3V Thermal Absolute Maximum Rating Continuous Power Dissipation (Multilayer Board) (TA = +70°C, derate 24.4mW/°C above +70°C.) ............. 21.0mW to 24.4mW Operating Temperature Range .........................-40°C to +85°C Storage Temperature Range...........................-65°C to +150°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information WLP Package Code W302B3+1 Outline Number 21-0016 Land Pattern Number Refer to Application Note 1891 Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 41°C/W Junction to Case (θJC) N/A www.analog.com Analog Devices | 7 MAX77958 Standalone USB Type-C and USB Power Delivery Controller E D S S SIDE VIEW SD SE E TOP VIEW D SE B E SD D B M S BOTTOM VIEW For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. www.analog.com Analog Devices | 8 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS +20 V GENERAL ELECTRICAL CHARACTERISTICS SYS Operating Voltage AVLUVL VSYS OR AVL UVLO Rising AVLUVLOR AVL 2.6 2.7 2.8 V AVL UVLO Falling AVLUVLOF AVL 2.4 2.5 2.6 V AVLUVLOHYS AVL AVL UVLO Hysteresis AVL Operating Voltage SYS OV HR Rising SYS OV HR Falling SYS OV HR Hysteresis SYS OV LR Rising SYS OV LR Falling SYS OV LR Hysteresis SYS Factory Ship Supply Current SYS Dead Battery Supply Current SYS Shutdown Supply Current www.analog.com 200 AVLUVL VAVL SYS_OV_HR_ R SYS_OV_HR_ F SYS_OV_HR_ H SYS_OV_LR_ R SYS_OV_LR_ F SYS_OV_LR_ H IFSHIP IDEADBAT ISHDN OF mV +5.5 V SYS 4.60 4.87 5.15 V SYS 4.40 4.71 5.05 V SYS 160 mV SYS 3.60 3.87 4.15 V SYS 3.50 3.75 4.00 V SYS VIO1 = VIO2 = 0V, CCdetEn = 0, chgDetEn = 0,VBUS = 0V VIO1 = VIO2 = 0V, CCdetEn = 0, chgDetEn = 0,VBUS = 0V VIO1 = VIO2 = 0V, CCdetEn = 0, chgDetEn = 0,VBUS = 0V VIO1 = VIO2 = 0V, CCdetEn = 0, chgDetEn = 0, VBUS = 0V 115 SYS = 4.2V 7 SYS = 8.4V 14 SYS = 12.6V 19 SYS = 16.8V 25 SYS = 4.2V, SYS_OV_HR 87 SYS = 8.4V 51 SYS = 12.6V 59 SYS = 16.8V 67 SYS = 4.2V, SYS_OV_HR 146 SYS = 8.4V 109 SYS = 12.6V 117 SYS = 16.8V 124 mV μA μA μA Analog Devices | 9 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYS Standby Supply Current VBUS Operating Voltage SYMBOL ISTANDBY CONDITIONS Sink mode, CCdetEn = 1, chgDetEn = 1, VIO1 = VIO2 = 1.8V, VBUS = 0V MIN TYP SYS = 4.2V, SYS_OV_LR 110 SYS = 4.2V, SYS_OV_HR 158 SYS = 8.4V 120 SYS = 12.6V 128 SYS = 16.8V 135 VBDET_ VBUS R MAX UNITS μA +28 V V VBUS Detect Rising VBDET_R 550mV hysteresis VBUS 3.6 3.8 4.0 VBUS Detect Falling VBDET_F 550mV hysteresis VBUS 2.95 3.25 3.55 VBUS Detect Hysteresis VBDET_H 550mV hysteresis VBUS 525 150 ISTANDBY VBUS = 5V, VIO1 = 1.8V, VIO2 = 1.8V, CCdetEn = 1, sink only, STOP mode VSYS = 4.2V VBUS Supply Current VSYS = 16.8V 192 V mV μA VBUS Debounce tVBDeb 9 10 11 ms VIO Low Voltage VIO_LV VIO1, VIO2 1.7 1.8 1.9 V VIO High Voltage VIO_HV VIO1, VIO2 2.4 3.8 5.5 V VIO_OK_LV_ R VIO1, VIO2, rising 1.0 1.30 1.65 VIO_OK_LV_ F VIO1, VIO2, falling 0.8 1.0 1.4 VIO_OK_LV_ H VIO1, VIO2, hysteresis VIO_OK_HV_ R VIO1, VIO2, rising 1.3 1.55 1.80 VIO_OK_HV_ F VIO1, VIO2, falling 1.25 1.52 1.8 VIO_OK_HV_ H VIO1, VIO2, hysteresis 25 mV tVIO_OK_DEB Debounce 50 μs VIO_OK Output Low Voltage INTB 225 mV V ISINK = 1mA VINTB = 5.5V, TA = +25°C Output High Leakage INTB VDD_OK V 0.4 -1000 VINTB = 5.5V, TA = +85°C 0 +1000 100 VDD_OK_R VDD1P8, rising 1.30 1.65 1.70 VDD_OK_F VDD1P8, falling 1.15 1.55 1.65 VDD_OK_H VDD1P8, hysteresis 100 V nA V mv INTERFACE / I2C INTERFACE AND INTERRUPT SCL, SDA Input Low Level www.analog.com TA = +25°C 0.3 x VIO1 V Analog Devices | 10 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS SCL, SDA Input High Level TA = +25°C SCL, SDA Input Hysteresis TA = +25°C SCL, SDA Logic Input Current SDA = SCL = 5.5V SDA Output Low Voltage MIN TYP MAX 0.7 x VIO1 UNITS V 0.05 x VIO1 -10 V +10 μA Sinking 20mA 0.4 V Output Low Voltage INTB ISINK = 1mA 0.4 V Output High Leakage INTB VINTB = 5.5V, TA = +25°C +1000 nA 1000 kHz -1000 INTERFACE / I2C-COMPATIBLE INTERFACE TIMING FOR STANDARD, FAST, AND FAST-MODE PLUS Clock Frequency Hold Time (Repeated) START Condition fSCL tHD;STA 260 ns CLK Low Period tLOW 500 ns CLK High Period tHIGH 260 ns Setup Time Repeated START Condition tSU;STA 260 ns DATA Hold Time tHD:DAT 0 ns DATA Valid Time tVD:DAT 450 ns DATA Valid Acknowledge Time tVD:ACK 450 ns Rise/Fall Time of SCL tSCL 120 ns Rise/Fall Time of SDA tSDA 120 ns DATA Setup time tSU;DAT 50 ns Setup Time for STOP Condition tSU;STO 260 ns tBUF 500 ns Bus-Free Time Between STOP and START Pulse Width of Spikes that Must be Suppressed by the Input Filter 50 ns INTERFACE / I2C-COMPATIBLE INTERFACE TIMING FOR HS-MODE (CB = 100pF) Clock Frequency fSCL 3.4 MHz Setup Time Repeated START Condition tSU;STA 160 ns Hold Time (Repeated) START Condition tHD;STA 160 ns CLK Low Period tLOW 160 ns CLK High Period tHIGH 60 ns www.analog.com Analog Devices | 11 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DATA Set-Up time tSU;DAT 10 ns DATA Hold Time tHD:DAT 0 ns Rise/Fall time of SCL tSCL 10 40 ns Rise/Fall time of SDA tSDA 10 80 ns Set-Up Time for STOP Condition tSU;STO 160 Pulse Width of Spikes that Must be Suppressed by the Input Filter ns 10 ns INTERFACE / I2C-COMPATIBLE INTERFACE TIMING FOR HS-MODE (CB = 400pF) Clock Frequency fSCL 1.7 MHz Setup Time Repeated START Condition tSU;STA 160 ns Hold Time (Repeated) START Condition tHD;STA 160 ns CLK Low Period tLOW 320 ns CLK High Period tHIGH 120 ns DATA Set-Up time tSU;DAT 10 ns DATA Hold Time tHD:DAT 0 Rise/Fall Time of SCL tSCL 20 80 ns Rise/Fall Time of SDA tSDA 10 160 ns Setup Time for STOP Condition tSU;STO 160 Pulse Width of Spikes that Must be Suppressed by the Input Filter ns ns 10 ns USB TYPE-C / CHARGER DETECTION BC1.2 State Timeout tTMO 180 200 220 ms Data Contact Detect Timeout tDCDtmo 700 800 900 ms tPDSDWait 27 35 39 ms Charger Detection Debounce tCDDeb 45 50 55 ms IWEAK Current IWEAK 10 100 500 nA Primary to Secondary Timer RDM_DWN Resistor IDP_SRC Current IDM_SINK Current 14.25 20 24.8 kΩ IDP_SRC/IDCD RDM_DWN Accurate over 0V to 2.5V -13 -10 -7 μA IDM_SINK/IDAT Accurate over 0.15V to 3.6V 50 80 110 μA 1.62 1.7 1.9 V SINK VLGC Threshold VLGC VLGC Hysteresis VLGC_H www.analog.com DCDCpl = 0b1 (default), DCDCpl = 0b0 0.015 V Analog Devices | 12 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN MAX UNITS 0.32 0.4 V VDAT_REF Threshold VDAT_REF VDAT_REF Hysteresis VDAT_REF_H OVDX Comparator Falling Threshold VOVDX_THF Falling DP/DN threshold with respect to AVL -40 +80 mV OVDX Comparator Rising Threshold VOVDX_THR Rising DP/DN threshold with respect to AVL 0 150 mV DP/DN Overvoltage Debounce tOVDxDeb DN/DP Load Resistor VD33 Voltage VSRC33ILIM Current Limit RUSB 0.25 TYP 0.015 Load resistor on DP/DN VDP/ DM_3p3VSRC/ VSRC33 Tested at zero load and at 200μA load ILIMVSRC33 Force 1.6V on DP/DN, measure current VDN_SRC Voltage VDN_SRC/VSR VDP_SRC Voltage VDP_SRC/VSR C06 C06 V 90 100 110 μs 3 6.1 12 MΩ 2.6 3.0 3.3 V 1.5 3 mA Accurate over ILOAD = 0 to 200μA 0.5 0.6 0.7 V Accurate over ILOAD = 0 to 200μA 0.5 0.6 0.7 V USB TYPE-C / CC DETECTION CC Pin Voltage, in DFP 1.5A Mode VCC_PIN Measured at CC pins with 126kΩ load, IDFP1.5_CC enable and VAVL ≥ 2.6V 1.85 V CC Pin Voltage, in DFP 3.0A Mode VCC_PIN Measured at CC pins with 126kΩ load, IDFP3.0_CC enable and AVL ≥ 3.65V 3.1 V CC Pin Clamp Voltage VCC_ClAMP 60μA ≤ ICC ≤ 600μA 0.88 1.1 1.32 V -10% 5.1 +10% kΩ CC UFP Pulldown Resistance RPD_UFP CC DFP Low-Power Mode VDFPLP_CC CC DFP Ultra-LowPower Current Source IDFPULP_CC CC DFP 0.5A Current Source AVL ≥ 2.6V, IDFPULP_CC current source enabled, 1.1V 1.2 V Measured at CC = 0.5V -10% 1 +10% Measured at CC = 1.0V, TA = +25°C -10% 1 +10% Measured at CC = 1.0V -12% 1 +12% IDFP0.5_CC -20% 80 +20% μA CC DFP 1.5A Current Source IDFP1.5_CC -8% 180 +8% μA CC DFP 3A Current Source IDFP3A_CC -8% 330 +8% μA CC RA RD Threshold VRA_RD0.5 0.15 0.2 0.25 V CC UFP 0.5A RD Threshold VUFP_RD0.5 0.61 0.66 0.7 V CC UFP 0.5A RD Hysteresis VUFP_RD0.5_H CC UFP 1.5A RD Threshold VUFP_RD1.5 www.analog.com 0.015 1.16 1.23 μA V 1.31 V Analog Devices | 13 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN CC UFP 1.5A RD Hysteresis VUFP_RD1.5_H CC DFP VOPEN Detect Threshold VDFP_VOPEN CC DFP VOPEN Detect Hysteresis VDFP_VOPEN_ CC DFP VOPEN With 3.0A Detect Threshold VDFP_VOPEN3 CC DFP VOPEN With 3.0A Detect Hysteresis VDFP_VOPEN3 VBUS Discharge Value Threshold VSAFE0V VBUS Discharge Value Hysteresis VSAFE0V_h Rising hysteresis CC Pin Power-Up Time tClampSwap Max time allowed from removal of voltage clamp until a 5.1kΩ resistor attached CC Detection Debounce tCCDeb 100 Type-C Debounce tPDDeb 10 Type-C Quick Debounce tQDeb VSAFE0V Debounce Type-C Error Recovery Delay Type-C DRP Toggle Time A_H 1.5 1.575 V 1.65 0.030 VAVL ≥ 3.5V 2.45 VAVL ≥ 3.5V Falling voltage level where a connected UFP finds the VBUS removed 2.6 0.67 V V 2.75 0.030 0.6 UNITS V V 0.75 40 V mV 15 ms 119 200 ms 15 20 ms 0.9 1 1.1 ms tVSAFE0VDeb 9 10 11 ms tErrorRecovery 25 tDRP 50 Programmable from 35% to 50% in 5% step, CCDRPPhase = 0b00 DFP Duty Cycle at DRP Type-C DRP Try MAX 0.015 H A TYP tDRPtry DRP Transition Time tDRPTrans VCONN Enable Time tVCONNON VCONN Disable Time tVCONNOFF ms 75 100 35 90 100 ms % 110 ms 1 ms 2 ms Time from UFP detached or as directed by I2C command until VCONN is removed 35 ms Time for a role swap from DFP to UFP or the reverse is completed CC Pin Current Change Time ISINKADJ Time from CC pin changes state in UFP mode until current drawn from DFP reaches a new value 60 ms VBUS On Time tVBUSON Time from UFP is attached until VBUS ON 275 ms VBUS Off Time tVBUSOFF Time from UFP is detached until VBUS reaches VSAFE0V 650 ms VBUS Input SelfDischarge Resistance www.analog.com RVBUS_SD_US B 10 kΩ Analog Devices | 14 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CC1/2 Water Comp Threshold VCC_Comp CC1/2 Water Comp Hysteresis VCC_Comp_ H CC_OVP Threshold CC_OVP CC_OVP Hysteresis CC_OVP_H CONDITIONS MIN TYP MAX 1.0V Comp -8% 1.00 +8% 0.8V Comp -8% 0.8 +8% 0.6V Comp -8% 0.6 +8% 0.4V Comp -8% 0.4 +8% 0.015 UNITS V V Rising 5.375 5.735 6.325 Falling 5.175 5.670 6.275 85 V mV USB TYPE-C / VCONN SWITCH VCIN_PRES VCIN_PRES_R Rising 0.75 1.38 2.45 VCIN_PRES_F Falling 0.45 0.75 1.75 VCIN_PRES_H Hysteresis 600 mV tVCIN_PRES_D Debounce 50 μs EB CC_VCIN_OK_ R CC_VCIN_OK_ VCIN_OK F CC_VCIN_OK_ H tVCIN_OK_DEB Rising 2.40 2.75 3.00 Falling 2.35 2.72 3.00 V Hysteresis 30 mV Debounce 50 μs VCONN Source Requirements VCONN SW Ron 3.0 RONVCONNS W OCP Accuracy V VCIN = 5.0V, ICC = 0.5A VCIN = 5.0V, TA = +25°C 500 V 900 mΩ -20 % 700 mA 100 mA From detecting OCP to generating INT 2 ms From generating INT to turning OFF VCONN switch 12 ms OCP_ShortCircuit Protection ISCP OCP Programmable Step ISTEP Programmable range is 200mA to 500mA OCP Interrupt Debounce Time T1 tDeb1 Wait Time Before Turn Off T2 tDeb2 -40 5.5 Startup Time At 90% Time from VCONN switch enable to CC settled at 90% of final value with VCIN = 3.0V 0.05 0.2 ms Turn Off Time At 10% Time from VCONN switch disable to CC settled at 10% of final value with VCIN = 3.0V 0.05 0.06 ms VCIN Leakage Current VCIN detection disabled, VCIN = 4.4V +2000 nA www.analog.com -2000 Analog Devices | 15 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 23 μs USB TYPE-C / PD CONTROLLER Time Until BMC Bus Drive End tEndDriveBMC Time to cease driving the line after the end of the last bit of the frame, Min value is limited by tHoldLowBMC Transmit Hold Time tHoldLowBMC Time to cease driving the line after the final high-to-low transition 1 BMC TX Rise Time tRise 10% to 90% with no load on CC wires 300 410 540 ns BMC TX Fall Time tFall 90% to 10% with no load on CC wires 300 410 540 ns VSWING Applies to no load and with max load defined by cable/receiver model for both Sink and Source 1.05 1.125 1.2 V zDriver Source output impedance at the Nyquist frequency of [USB 2.0] low speed (750kHz) 42 75 Ω BMC TX Swing BMC Driver Output Impedance BMC Receiver Noise Filter Time To Detect Non-Idle Bus tRXFilter Time constant of noise filter in RX path tTransitionWind μs 100 ns 12 ow 20 μs Receiver Detect Rising Threshold in SRC Mode 0.63 0.66 0.68 V Receiver Detect Falling Threshold in SRC Mode 0.56 0.58 0.61 V Receiver Detect Rising Threshold SNK Mode 0.51 0.54 0.56 V Receiver Detect Falling Threshold in SNK Mode 0.44 0.46 0.49 V Hysteresis of BMC RX RX_Hys 60 mV USB TYPE-C / VBUS ADC VBUS ADC Threshold 1 THVBUS_01 ADCIN_SEL = 0 VBADC = 0b00000 3.0 3.5 4.0 V VBUS ADC Threshold 2 THVBUS_02 ADCIN_SEL = 0 VBADC = 0b00001 4.0 4.5 5.0 V VBUS ADC Threshold 3 THVBUS_03 ADCIN_SEL = 0 VBADC = 0b00010 5.0 5.5 6.0 V VBUS ADC Threshold 4 THVBUS_04 ADCIN_SEL = 0 VBADC = 0b00011 6.0 6.5 7.0 V VBUS ADC Threshold 5 THVBUS_05 ADCIN_SEL = 0 VBADC = 0b00100 7.0 7.5 8.0 V VBUS ADC Threshold 6 THVBUS_06 ADCIN_SEL = 0 VBADC = 0b00101 8.0 8.5 9.0 V VBUS ADC Threshold 7 THVBUS_07 ADCIN_SEL = 0 VBADC = 0b00110 9.0 9.5 10.0 V VBUS ADC Threshold 8 THVBUS_08 ADCIN_SEL = 0 VBADC = 0b00111 10.0 10.5 11.0 V VBUS ADC Threshold 9 THVBUS_09 ADCIN_SEL = 0 VBADC = 0b01000 11.0 11.5 12.0 V VBUS ADC Threshold 10 THVBUS_10 ADCIN_SEL = 0 VBADC = 0b01001 12.0 12.5 13.0 V VBUS ADC Threshold 11 THVBUS_11 ADCIN_SEL = 0 VBADC = 0b01010 13.0 13.5 14.0 V VBUS ADC Threshold 12 THVBUS_12 ADCIN_SEL = 0 VBADC = 0b01011 14.0 14,5 15.0 V www.analog.com Analog Devices | 16 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VBUS ADC Threshold 13 THVBUS_13 ADCIN_SEL = 0 VBADC = 0b01100 15.0 15.5 16.0 V VBUS ADC Threshold 14 THVBUS_14 ADCIN_SEL = 0 VBADC = 0b01101 16.0 16.5 17.0 V VBUS ADC Threshold 15 THVBUS_15 ADCIN_SEL = 0 VBADC = 0b01110 17.0 17.5 18.0 V VBUS ADC Threshold 16 THVBUS_16 ADCIN_SEL = 0 VBADC = 0b01111 18.0 18.5 19.0 V VBUS ADC Threshold 17 THVBUS_17 ADCIN_SEL = 0 VBADC = 0b10000 19.0 19.5 20.0 V VBUS ADC Threshold 18 THVBUS_18 ADCIN_SEL = 0 VBADC = 0b10001 20.0 20.5 21.0 V VBUS ADC Threshold 19 THVBUS_19 ADCIN_SEL = 0 VBADC = 0b10010 21.0 21.5 22.0 V VBUS ADC Threshold 20 THVBUS_20 ADCIN_SEL = 0 VBADC = 0b10011 22.0 22.5 23.0 V VBUS ADC Threshold 21 THVBUS_21 ADCIN_SEL = 0 VBADC = 0b10100 23.0 23.5 24.0 V VBUS ADC Threshold 22 THVBUS_22 ADCIN_SEL = 0 VBADC = 0b10101 24.0 24.5 25.0 V VBUS ADC Threshold 23 THVBUS_21 ADCIN_SEL = 0 VBADC = 0b10110 25.0 25.5 26.0 V VBUS ADC Threshold 24 THVBUS_24 ADCIN_SEL = 0 VBADC = 0b10111 26.0 26.5 27.0 V VBUS ADC Threshold 25 THVBUS_25 ADCIN_SEL = 0 VBADC = 0b11000 27.0 27.5 28.0 V VBUS ADC Hysteresis HVBUS ADCIN_SEL = 0 GPIO ADC Threshold 1 THGPIO_01 ADCIN_SEL = 1 VBADC = 0b00000 0.6 0.7 0.8 V GPIO ADC Threshold 2 THGPIO_02 ADCIN_SEL = 1 VBADC = 0b00001 0.8 0.9 1.0 V GPIO ADC Threshold 3 THGPIO_03 ADCIN_SEL = 1 VBADC = 0b00010 1.0 1.1 1.2 V GPIO ADC Threshold 4 THGPIO_04 ADCIN_SEL = 1 VBADC = 0b00011 1.2 1.3 1.4 V GPIO ADC Threshold 5 THGPIO_05 ADCIN_SEL = 1 VBADC = 0b00100 1.4 1.5 1.6 V GPIO ADC Threshold 6 THGPIO_06 ADCIN_SEL = 1 VBADC = 0b00101 1.6 1.7 1.8 V GPIO ADC Threshold 7 THGPIO_07 ADCIN_SEL = 1 VBADC = 0b00110 1.8 1.9 2.0 V GPIO ADC Threshold 8 THGPIO_08 ADCIN_SEL = 1 VBADC = 0b00111 2.0 2.1 2.2 V GPIO ADC Threshold 9 THGPIO_09 ADCIN_SEL = 1 VBADC = 0b01000 2.2 2.3 2.4 V GPIO ADC Threshold 10 THGPIO_10 ADCIN_SEL = 1 VBADC = 0b01001 2.4 2.5 2.6 V GPIO ADC Threshold 11 THGPIO_11 ADCIN_SEL = 1 VBADC = 0b01010 2.6 2.7 2.8 V GPIO ADC Threshold 12 THGPIO_12 ADCIN_SEL = 1 VBADC = 0b01011 2.8 2.9 3.0 V 150 mV USB TYPE-C / ADCIN ADC www.analog.com Analog Devices | 17 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS GPIO ADC Threshold 13 THGPIO_13 ADCIN_SEL = 1 VBADC = 0b01100 3.0 3.1 3.2 V GPIO ADC Threshold 14 THGPIO_14 ADCIN_SEL = 1 VBADC = 0b01101 3.2 3.3 3.4 V GPIO ADC Threshold 15 THGPIO_15 ADCIN_SEL = 1 VBADC = 0b01110 3.4 3.5 3.6 V GPIO ADC Threshold 16 THGPIO_16 ADCIN_SEL = 1 VBADC = 0b01111 3.6 3.7 3.8 V GPIO ADC Threshold 17 THGPIO_17 ADCIN_SEL = 1 VBADC = 0b10000 3.8 3.9 4.0 V GPIO ADC Threshold 18 THGPIO_18 ADCIN_SEL = 1 VBADC = 0b10001 4.0 4.1 4.2 V GPIO ADC Threshold 19 THGPIO_19 ADCIN_SEL = 1 VBADC = 0b10010 4.2 4.3 4.4 V GPIO ADC Threshold 20 THGPIO_20 ADCIN_SEL = 1 VBADC = 0b10011 4.4 4.5 4.6 V GPIO ADC Threshold 21 THGPIO_21 ADCIN_SEL = 1 VBADC = 0b10100 4.6 4.7 4.8 V GPIO ADC Threshold 22 THGPIO_22 ADCIN_SEL = 1 VBADC = 0b10101 4.8 4.9 5.0 V GPIO ADC Threshold 23 THGPIO_23 ADCIN_SEL = 1 VBADC = 0b10110 5.0 5.1 5.2 V GPIO ADC Threshold 24 THGPIO_24 ADCIN_SEL = 1 VBADC = 0b10111 5.2 5.3 5.4 V GPIO ADC Threshold 25 THGPIO_25 ADCIN_SEL = 1 VBADC = 0b11000 5.4 5.5 5.6 V GPIO ADC Hysteresis HGPIO ADCIN_SEL= 1 25 mV USB TYPE-C / CC ADC RANGE 1 CC ADC Threshold 1 THCC_01 ADCIN_SEL = 001 or 011 VBADC = 0b00000 0.312 0.362 0.416 V CC ADC Threshold 2 THCC_02 ADCIN_SEL = 001 or 011 VBADC = 0b00001 0.416 0.468 0.520 V CC ADC Threshold 3 THCC_03 ADCIN_SEL = 001 or 011 VBADC = 0b00010 0.520 0.573 0.624 V CC ADC Threshold 4 THCC_04 ADCIN_SEL = 001 or 011 VBADC = 0b00011 0.624 0.682 0.728 V CC ADC Threshold 5 THCC_05 ADCIN_SEL = 001 or 011 VBADC = 0b00100 0.728 0.783 0.832 V CC ADC Threshold 6 THCC_06 ADCIN_SEL = 001 or 011 VBADC = 0b00101 0.832 0.885 0.936 V CC ADC Threshold 7 THCC_07 ADCIN_SEL = 001 or 011 VBADC = 0b00110 0.936 0.988 1.040 V CC ADC Threshold 8 THCC_08 ADCIN_SEL = 001 or 011 VBADC = 0b00111 1.040 1.093 1.144 V www.analog.com Analog Devices | 18 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS CC ADC Threshold 9 THCC_09 ADCIN_SEL = 001 or 011 VBADC = 0b01000 1.144 1.196 1.248 V CC ADC Threshold 10 THCC_10 ADCIN_SEL = 001 or 011 VBADC = 0b01001 1.248 1.308 1.352 V CC ADC Threshold 11 THCC_11 ADCIN_SEL = 001 or 011 VBADC = 0b01010 1.352 1.408 1.456 V CC ADC Threshold 12 THCC_12 ADCIN_SEL = 001 or 011 VBADC = 0b01011 1.456 1.513 1.560 V CC ADC Threshold 13 THCC_13 ADCIN_SEL = 001 or 011 VBADC = 0b01100 1.560 1.618 1.664 V CC ADC Threshold 14 THCC_14 ADCIN_SEL = 001 or 011 VBADC = 0b01101 1.664 1.725 1.768 V CC ADC Threshold 15 THCC_15 ADCIN_SEL = 001 or 011 VBADC = 0b01110 1.768 1.823 1.872 V CC ADC Threshold 16 THCC_16 ADCIN_SEL = 001 or 011 VBADC = 0b01111 1.872 1.930 1.976 V CC ADC Threshold 17 THCC_17 ADCIN_SEL = 001 or 011 VBADC = 0b10000 1.976 2.026 2.080 V CC ADC Threshold 18 THCC_18 ADCIN_SEL = 001 or 011 VBADC = 0b10001 2.080 2.143 2.184 V CC ADC Threshold 19 THCC_19 ADCIN_SEL = 001 or 011 VBADC = 0b10010 2.184 2.240 2.288 V CC ADC Threshold 20 THCC_20 ADCIN_SEL = 001 or 011 VBADC = 0b10011 2.288 2.345 2.392 V CC ADC Threshold 21 THCC_21 ADCIN_SEL = 001 or 011 VBADC = 0b10100 2.392 2.450 2.496 V CC ADC Threshold 22 THCC_22 ADCIN_SEL = 001 or 011 VBADC = 0b10101 2.496 2.550 2.600 V CC ADC Threshold 23 THCC_23 ADCIN_SEL = 001 or 011 VBADC = 0b10110 2.600 2.660 2.704 V CC ADC Threshold 24 THCC_24 ADCIN_SEL = 001 or 011 VBADC = 0b10111 2.704 2.757 2.808 V CC ADC Threshold 25 THCC_25 ADCIN_SEL = 001 or 011 VBADC = 0b11000 2.808 2.858 2.912 V CC ADC Hysteresis HCC ADCIN_SEL = 001 or 011 15 mV USB TYPE-C / CC ADC RANGE 2 CC ADC Threshold 1 THCC_01 ADCIN_SEL = 001 or 011 VBADC = 0b00000 0.189 0.220 0.252 V CC ADC Threshold 2 THCC_02 ADCIN_SEL = 001 or 011 VBADC = 0b00001 0.252 0.284 0.315 V CC ADC Threshold 3 THCC_03 ADCIN_SEL = 001 or 011 VBADC = 0b00010 0.315 0.347 0.378 V CC ADC Threshold 4 THCC_04 ADCIN_SEL = 001 or 011 VBADC = 0b00011 0.378 0.413 0.441 V www.analog.com Analog Devices | 19 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS CC ADC Threshold 5 THCC_05 ADCIN_SEL = 001 or 011 VBADC = 0b00100 0.441 0.475 0.504 V CC ADC Threshold 6 THCC_06 ADCIN_SEL = 001 or 011 VBADC = 0b00101 0.504 0.536 0.567 V CC ADC Threshold 7 THCC_07 ADCIN_SEL = 001 or 011 VBADC = 0b00110 0.567 0.599 0.630 V CC ADC Threshold 8 THCC_08 ADCIN_SEL = 001 or 011 VBADC = 0b00111 0.630 0.662 0.693 V CC ADC Threshold 9 THCC_09 ADCIN_SEL = 001 or 011 VBADC = 0b01000 0.693 0.724 0.756 V CC ADC Threshold 10 THCC_10 ADCIN_SEL = 001 or 011 VBADC = 0b01001 0.756 0.792 0.819 V CC ADC Threshold 11 THCC_11 ADCIN_SEL = 001 or 011 VBADC = 0b01010 0.819 0.853 0.882 V CC ADC Threshold 12 THCC_12 ADCIN_SEL = 001 or 011 VBADC = 0b01011 0.882 0.917 0.945 V CC ADC Threshold 13 THCC_13 ADCIN_SEL = 001 or 011 VBADC = 0b01100 0.945 0.980 1.008 V CC ADC Threshold 14 THCC_14 ADCIN_SEL = 001 or 011 VBADC = 0b01101 1.008 1.045 1.071 V CC ADC Threshold 15 THCC_15 ADCIN_SEL = 001 or 011 VBADC = 0b01110 1.071 1.104 1.134 V CC ADC Threshold 16 THCC_16 ADCIN_SEL = 001 or 011 VBADC = 0b01111 1.134 1.166 1.197 V CC ADC Threshold 17 THCC_17 ADCIN_SEL = 001 or 011 VBADC = 0b10000 1.197 1.227 1.260 V CC ADC Threshold 18 THCC_18 ADCIN_SEL = 001 or 011 VBADC = 0b10001 1.260 1.293 1.323 V CC ADC Threshold 19 THCC_19 ADCIN_SEL = 001 or 011 VBADC = 0b10010 1.323 1.357 1.386 V CC ADC Threshold 20 THCC_20 ADCIN_SEL = 001 or 011 VBADC = 0b10011 1.386 1.421 1.449 V CC ADC Threshold 21 THCC_21 ADCIN_SEL = 001 or 011 VBADC = 0b10100 1.449 1.484 1.512 V CC ADC Threshold 22 THCC_22 ADCIN_SEL = 001 or 011 VBADC = 0b10101 1.512 1.545 1.575 V CC ADC Threshold 23 THCC_23 ADCIN_SEL = 001 or 011 VBADC = 0b10110 1.575 1.612 1.638 V CC ADC Threshold 24 THCC_24 ADCIN_SEL = 001 or 011 VBADC = 0b10111 1.638 1.671 1.701 V CC ADC Threshold 25 THCC_25 ADCIN_SEL = 001 or 011 VBADC = 0b11000 1.701 1.731 1.764 V CC ADC Hysteresis www.analog.com HCC ADCIN_SEL = 001 or 011 15 mV Analog Devices | 20 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS USB TYPE-C / CC ADC RANGE 3 CC ADC Threshold 1 THCC_01 ADCIN_SEL = 001 or 011 VBADC = 0b00000 0.150 0.175 0.200 V CC ADC Threshold 2 THCC_02 ADCIN_SEL = 001 or 011 VBADC = 0b00001 0.200 0.225 0.250 V CC ADC Threshold 3 THCC_03 ADCIN_SEL = 001 or 011 VBADC = 0b00010 0.250 0.275 0.300 V CC ADC Threshold 4 THCC_04 ADCIN_SEL = 001 or 011 VBADC = 0b00011 0.300 0.325 0.350 V CC ADC Threshold 5 THCC_05 ADCIN_SEL = 001 or 011 VBADC = 0b00100 0.350 0.375 0.400 V CC ADC Threshold 6 THCC_06 ADCIN_SEL = 001 or 011 VBADC = 0b00101 0.400 0.425 0.450 V CC ADC Threshold 7 THCC_07 ADCIN_SEL = 001 or 011 VBADC = 0b00110 0.450 0.475 0.500 V CC ADC Threshold 8 THCC_08 ADCIN_SEL = 001 or 011 VBADC = 0b00111 0.500 0.525 0.550 V CC ADC Threshold 9 THCC_09 ADCIN_SEL = 001 or 011 VBADC = 0b01000 0.550 0.575 0.600 V CC ADC Threshold 10 THCC_10 ADCIN_SEL = 001 or 011 VBADC = 0b01001 0.600 0.625 0.650 V CC ADC Threshold 11 THCC_11 ADCIN_SEL = 001 or 011 VBADC = 0b01010 0.650 0.675 0.700 V CC ADC Threshold 12 THCC_12 ADCIN_SEL = 001 or 011 VBADC = 0b01011 0.700 0.725 0.750 V CC ADC Threshold 13 THCC_13 ADCIN_SEL = 001 or 011 VBADC = 0b01100 0.750 0.775 0.800 V CC ADC Threshold 14 THCC_14 ADCIN_SEL = 001 or 011 VBADC = 0b01101 0.800 0.825 0.850 V CC ADC Threshold 15 THCC_15 ADCIN_SEL = 001 or 011 VBADC = 0b01110 0.850 0.875 0.900 V CC ADC Threshold 16 THCC_16 ADCIN_SEL = 001 or 011 VBADC = 0b01111 0.900 0.925 0.950 V CC ADC Threshold 17 THCC_17 ADCIN_SEL = 001 or 011 VBADC = 0b10000 0.950 0.975 1.000 V CC ADC Threshold 18 THCC_18 ADCIN_SEL = 001 or 011 VBADC = 0b10001 1.000 1.025 1.050 V CC ADC Threshold 19 THCC_19 ADCIN_SEL = 001 or 011 VBADC = 0b10010 1.050 1.075 1.100 V CC ADC Threshold 20 THCC_20 ADCIN_SEL = 001 or 011 VBADC = 0b10011 1.100 1.125 1.150 V CC ADC Threshold 21 THCC_21 ADCIN_SEL = 001 or 011 VBADC = 0b10100 1.150 1.175 1.200 V CC ADC Threshold 22 THCC_22 ADCIN_SEL = 001 or 011 VBADC = 0b10101 1.200 1.225 1.250 V www.analog.com Analog Devices | 21 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS CC ADC Threshold 23 THCC_23 ADCIN_SEL = 001 or 011 VBADC = 0b10110 1.250 1.275 1.300 V CC ADC Threshold 24 THCC_24 ADCIN_SEL = 001 or 011 VBADC = 0b10111 1.300 1.325 1.350 V CC ADC Threshold 25 THCC_25 ADCIN_SEL = 001 or 011 VBADC = 0b11000 1.350 1.375 1.400 V CC ADC Hysteresis HCC ADCIN_SEL = 001 or 011 7 mV USB TYPE-C / USB ANALOG SWITCH (DN1/DP2) Analog Signal Range VDN1, VDP2 0 RONUSB AVL = 3.0V, IDN/IDP = 10mA, VDN/VDP = 0V to 3.0V On-Resistance Match Between Channels ΔRONUSB AVL = 3.0V, IDN/IDP = 10mA, VDN/VDP = 400mV On-Resistance Flatness RFLATUSB AVL = 3.0V, IDN/IDP = 10mA, VDN/VDP = 0V to 3.0V Off Leakage Current ILUSBOFF AVL = 4.2V; Switch opened; VDN1 or VDP2 = 0.3V, 2.5V; VDN or VDP = 2.5V, 0.3V On-Resistance 3 0.1 -360 VAVL V 6 Ω 0.5 Ω 0.4 Ω +360 nA USB TYPE-C / DYNAMIC PERFORMANCE Analog Switch Turn On Time tON I2C stop to switch on; RL = 50Ω 0.1 0.3 ms Analog Switch Turn Off Time tOFF I2C stop to switch off; RL = 50Ω 0.1 0.3 ms 0.3 x VIO2 V USB TYPE-C / GPIO0, 1, 2, 3, 8 Input Low Voltage VIL Input High Voltage VIH Input Hysteresis (Schmitt) Output Low Voltage Output High Voltage Input Leakage Current 0.7 x VIO2 VIHYS VOL V 250 ISINK = 2mA VOH ISINK = 2mA IL TA = +25°C mV 0.4 0.7 x VIO2 V V 100 nA Input Pullup Resistor RPU 100 kΩ Input Pulldown Resistor RPD 100 kΩ USB TYPE-C / GPIO4, 5, 6, 7 Input Low Voltage VIL Input High Voltage VIH Input Hysteresis (Schmitt) www.analog.com VIHYS 0.3 x VIO1 0.7 x VIO1 V V 250 mV Analog Devices | 22 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER Output Low Voltage Output High Voltage Input Leakage Current SYMBOL VOL CONDITIONS MIN TYP ISINK = 2mA VOH ISINK = 2mA IL TA = +25°C MAX UNITS 0.4 V 0.7 x VIO1 V 100 μA Input Pullup Resistor RPU 100 kΩ Input Pulldown Resistor RPD 100 kΩ USB TYPE-C / I2C MASTER / I2C LOGIC LEVEL SCL_M, SDA_M Input Low Level TA = +25°C SCL_M, SDA_M Input High Level TA = +25°C SCL_M, SDA_M Input Hysteresis TA = +25°C SCL_M, SDA_M Logic Input Current SCL_M = SD_AM = VIO2 = 5.5V 0.7 x VIO2 V VIO2 V 0.05 x VIO2 -1000 SCL_M, SDA_M Input Capacitance V +1000 10 SCL_M, SDA_M Output Low Voltage SCL_M, SDA_M Input Leakage Current 0.3 x VIO2 Sinking 3mA ILK TA = +25°C pF VIO = HV 0.4 VIO = LV 0.2 x VIO -1000 TA = +85°C nA +1000 100 V nA USB TYPE-C / I2C MASTER / I2C TIMING FOR STANDARD, FAST, AND FAST-MODE PLUS Clock Frequency Hold Time (Repeated) START Condition fSCL tHD;STA 1000 kHz 0.26 μs CLK Low Period tLOW 0.5 μs CLK High Period tHIGH 0.26 μs Setup Time Repeated START Condition tSU;STA 0.26 μs DATA Hold Time tHD:DAT 0 DATA Valid Time tVD:DAT 0.45 μs DATA Valid Acknowledge Time tVD:ACK 0.45 μs DATA Setup time tSU;DAT 50 ns Setup Time for STOP Condition tSU;STO 0.26 μs tBUF 0.5 μs Bus-Free Time Between STOP and START Pulse Width of Spikes that Must be Suppressed by the Input Filter www.analog.com μs 50 ns Analog Devices | 23 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Electrical Characteristics (continued) (Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 4.7 5.15 5.5 V USB TYPE-C / MTP VCIN Input Supply VCIN Current Consumption MTP Erasing/ Programming Time VCIN_MTP Reading, erasing, programming IVCIN_MTP_E RASE Erasing 8 IVCIN_MTP_P ROG Programming 16 tMTP_ERASE Erasing (1 page = 128 x 32-bits word) 100 ms tMTP_PROG Programing 500 μs/32-bit word mA MTP Write Capacity NWrite VDD1P8 = 2V, VCIN = 5.5V 100 Write MTP Data Retention tMTP VDD1P8 = 2V, VCIN = 5.5V 10 Year USB TYPE-C / POWER SUPPLY LDO—Output Voltage IL = 1mA LDO—Current Limit 1.05 1.125 1.2 V -19 -11 -5 mA 5 12 μA 300 μs LDO—Power Up Consumption LDO—Turn On Time From BMC_PWDN_LDO = 0 to V1P1 = 95% of final value LDO—Output Pulldown Current VDD1P1 = 1.125V and BMC_LDO_LOAD = 1 330 μA ESD RATINGS Human Body Model (HBM) All pins ± 4000 V Charged Device Model (CDM) All pins ± 1000 V CC1 and CC2 ± 4000 DP and DN ± 2000 CC1 and CC2 ± 14000 DP and DN ± 2000 IEC Contact Discharge IEC Air Discharge www.analog.com V V Analog Devices | 24 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Pin Configuration MAX77958 TOP VIEW (BUMP SIDE DOWN) MAX77958 INTB VDD1P1 CC1 CC2 VCIN VBUS VIO1 SCL SDA GPIO1 VDD1P8 SYS VIO2 SCL_M SDA_M GPIO8 GND_A AVL DN DP GPIO7 GPIO6 GPIO3 GND_D DN1 DP2 GPIO5 GPIO4 GPIO2 GPIO0 WLP (3.1mm X 2.65mm 0.5mm PITCH) Pin Description PIN NAME B1 VIO1 System IO Voltage Input. Connect a 1μF/6.3V ceramic capacitor to GND. C1 VIO2 System IO Voltage Input. Connect a 1μF/6.3V ceramic capacitor to GND. A6 VBUS VBUS Input. VBUS provides power for internal circuitry when SYS is less than VBUS. Bypass VBUS to GND with a 1μF (min) ceramic capacitor. B6 SYS Power Input. SYS provides power for internal circuitry when VBUS is less than SYS. Bypass SYS to GND with a 1μF (min) ceramic capacitor. C6 AVL Analog Voltage Level. Output of the on-chip LDO is used to power the on-chip and low-noise circuits. Bypass with a 2.2μF/10V ceramic capacitor to GND. Powering external loads from AVL is not recommended, other than pullup resistors. B5 VDD1P8 1.8V Internal LDO Output. Bypass the pin to ground with a 1μF/6.3V ceramic capacitor. A2 VDD1P1 Digital Supply Voltage of 1.1V. Bypass with a 1μF/6.3V ceramic capacitor. B3 SDA I2C Serial Data. Add an external 2.2kΩ pullup resistor to VIO1. B2 SCL I2C Serial Clock. Add an external 2.2kΩ pullup resistor to VIO1. www.analog.com FUNCTION Analog Devices | 25 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Pin Description (continued) PIN NAME A1 INTB Interrupt Output. Active-low open-drain output. Add a 200kΩ pullup resistor to VIO1. E1 DN1 USB Input 1 for D- E2 DP2 USB Input 2 for D+ D1 DN Common Negative Output 1. Connect to D- on USB Type-C connector. D2 DP Common Positive Output 2. Connect to D+ on USB Type-C connector. A3 CC1 USB Type‐C CC Pin 1 A4 CC2 USB Type‐C CC Pin 2 A5 VCIN MTP and VCONN power supply input. Apply 5V power to VCIN. Required for MTP program and to generate VCONN power supply to unused CC pin if required. E6 GPIO0 GPIO0—ADC Input 0. Used for Moisture detection functionality as default. If Moisture detection is disabled, this pin is freed up for use as GPIO. B4 GPIO1 GPIO1—ADC Input 1. Used for Moisture detection functionality as default. If Moisture detection is disabled, this pin is freed up for use as GPIO. E5 GPIO2 GPIO2 D5 GPIO3 GPIO3. Used for Moisture detection functionality as default. If Moisture detection is disabled, this pin is freed up for use as GPIO. E4 GPIO4 GPIO4 E3 GPIO5 GPIO5 D4 GPIO6 Used for I2C Slave ID (SID) Selection at Power Up. Tie this pin to GND, pullup, pulldown with an external 470kΩ ±10% resistor. See Table 3. After power up is complete, this pin can be used for GPIO. D3 GPIO7 GPIO7 C4 GPIO8 GPIO8 C5 GND_A Analog GND D6 GND_D Digital GND C3 SDA_M Master I2C Serial Data. Add an external 2.2kΩ pullup resistor to VIO2. C2 SCL_M Master I2C Serial Clock. Add an external 2.2kΩ pullup resistor to VIO2. www.analog.com FUNCTION Analog Devices | 26 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Detailed Description The MAX77958 is a robust solution for USB Type-C CC detection and power delivery (PD) protocol implementation. It detects connected accessories or devices by using Type-C CC detection and USB PD messaging. The IC protects against overvoltage and overcurrent, and detects moisture and prevents corrosion on the USB Type-C connector. The IC also has a D+/D- USB switch and BC1.2 detection to support legacy USB standards. It contains VCONN switches for USB PD and an enable pin for an external VCONN boost or buck converter. The IC can be used in sink mode to determine the source capabilities of the connected device to optimize power into the sink device. The IC can also be used in source mode to advertise the power capabilities of the source to connected devices and accessories. The IC is compliant with USB Type-C Version 1.3 and PD 3.0. It can be further customized without affecting the compliance. The embedded default firmware in the MAX77958 is able to support operations that are expected in the Type-C and PD applications. The default firmware operations are as follows: ● BC1.2, Type-C, and PD adapter detection ● Automatic PD negotiation ● Default sink PDOs: 5V/3A, 9V/3A, and 15V/3A. If there are multiple source PDOs matching to the MAX77958 sink PDO list, the MAX77958 requests the highest power of PDO. ● Automatic role setting according to port partner's role In addition to the default operation, operation of the IC can be customized for specific applications. This is accomplished using the customization script in the evaluation kit (EV kit) GUI to support different Maxim chargers. The MAX77958 supports both standalone and MCU based systems. In the standalone system (see Figure 1), the MAX77958 plays a role as system MCU along with the customization script that can be generated through the GUI SW. The customization script is stored in the MTP. In response to events that are happening in the Type-C connector, the customization script automatically executes commands specified by the designer. All sequential control operations are possible without the need for MCU. USB TYPE-C PORT MAX77958 I2C_M I2C_S POWER FLOW COMMUNICATION MAX77962 SYS BAT Figure 1. Standalone System www.analog.com Analog Devices | 27 MAX77958 Standalone USB Type-C and USB Power Delivery Controller In the MCU based system (see Figure 2), the MCU controls the peripheral ICs. In response to port events, the MAX77958 interrupts the MCU and controls the MAX77958 and MAX77962 according to system needs. IRQB USB TYPE-C PORT MAX77958 INT I2C_S I2C_M MCU I2C_S POWER FLOW COMMUNICATION MAX77962 SYS BAT Figure 2. MCU Based System USB Type-C Interface and Control The MAX77958 is a complete solution for USB port charger detection and High-Power USB charging on a single USB Type-C connector. It can also be used in any power sink or source application. The USB Type-C is an internal block that detects connected accessories by using USB Type-C, USB PD messaging and USB BC1.2 charger detection. The USB Type-C block auto-configures switches for common connected accessories including USB cables (SDP/CDP/DCP). CC/USB PD Interface The MAX77958 works as a Dual Role Port (DRP) compliant to USB Type-C Version 1.3. The USB Type-C functions are controlled by a logic state machine which follows the USB Type-C requirements. There is support for the optional Try.Sink function which places priority on the sink role. This creates the appearance of legacy operation when the device is connected to another DRP. The IC automatically becomes a sink and draws power from the source. The IC firmware can optionally set an external charger's input current limit based on the current advertised on the CC lines through the master I2C interface. USB Type-C Definitions ● ● ● ● ● UFP—Upstream Facing Port. Typical USB device role for data transfer. DFP—Down Stream Facing Port. Typical USB host role for data transfer. DRP—Dual Role Port. USB Type-C port that can operate in either DFP or UFP roles. Source—Initial power state for a DFP. Power role can be swapped by USB Power Delivery command. Sink—Initial power state for a UFP. Power role can be swapped by USB Power Delivery command. DRP The USB Type-C connector management block supports DRP operation. The port cycles between advertising DFP/ source and UFP/sink operations while waiting for a port to be connected. The internal state machine handles all the www.analog.com Analog Devices | 28 MAX77958 Standalone USB Type-C and USB Power Delivery Controller tasks of detecting and configuring the CC pins for the correct mode. A manual mode allows forcing either DFP or UFP operation in cases where the DRP operation is not appropriate Detecting Connected DFP When a DFP is detected (either from DRP mode or force UFP mode), the USB Type-C Connection State Machine detects the active CC line and reports this with an interrupt to the host application processor (AP). The AP then uses this information to de-mux the SuperSpeed USB lines as required. The USB Type-C Connection State Machine also auto detects the DFP advertised current (default, 1.5A and 3.0A). Upon detection of a change in the advertised current, an interrupt is sent to the AP. Detecting Connected UFP When a UFP is detected (either from DRP mode or force DFP mode), the USB Type-C State Machine detects the active CC line. If the Interrupt is enabled, and an AP is present, the IC toggles the INT line to report this to the host AP. Additionally, if an active cable is connected, the IC detects the presence of RA on the unconnected CC line to determine if it is necessary to turn on VCONN. The advertised initial supply current is the default USB current (500mA/900mA depending on if SuperSpeed is active). The advertised current can be changed through an I2C command or automatically to 1.5A. 3.0A is optionally available but is disabled by default. Controls Reported Status and Interrupts ● ● ● ● ● Connected Device Detection Active CC Line VCONN Enabled (RA Present) Advertised Current in UFP (Source) Mode Error State Operation Controls ● ● ● ● Force Source (DFP) or Sink (UFP) State Control Swap of Power Role or VCONN Role Enable/Disable of Audio or Debug Accessories Set Advertisement of CC Pin Current in Source Role Try.SNK Support The MAX77958 operates as a DRP by default. This type of port can act as either a Power Sink/USB Data Peripheral or a Power Source/USB Data Host. The USB Type-C logic state machine cycles between Source and Sink at a rate typically around 75ms. This means that when the IC is connected to another device, which is also a DRP (for example, PC with a C port), the source and sink roles are randomly assigned. The customer prefers that the mobile phone assumes the sink role if connected to a PC. The IC includes support for Try.SNK, which allows it to be set to strongly prefer the sink role if connected to a standard DRP. If two devices with Try.SNK enable are connected, the role setting is again random. Audio Accessory Mode Support The IC detects an audio accessory device when both the CC1 and CC2 pins are pulled down to ground by an RA resistor from the connected device. DebugAcessory.SRC Support The IC detects a connection to a debug and test system (DTS) when it operates in source power role. A debug accessory device is detected when the CC1 and CC2 pins are pulled down to ground by an RD resistor from the connected device. DebugAcessory.SNK Support The IC detects a connection to a DTS when it operates in sink power role. A debug accessory device is detected when the CC1 and CC2 pins are pulled up by an Rp resistor from the connected device. The voltage levels on the CC1 and CC2 pins give the orientation and current capability. www.analog.com Analog Devices | 29 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Table 1. Rp/Rp Charging Current Values for a DTS Source MODE OF OPERATION CC1 CC2 Default USB Power Rp for 3A Rp for 1.5A USB Type-C Current at 1.5A Rp for 1.5A Rp for Default USB Type-C Current at 3A Rp for 3A Rp for Default Moisture Detection The MAX77958 features Moisture and Dry detection on the USB Type-C receptacle. When the Moisture detection feature is enabled (enabled as default), the MAX77958 is monitoring CC1/CC2 and SBU1/SBU2 for 1 DRP source cycle periodically. In case the impedance on these pins are less than Moisture threshold, the MAX77958 runs its unique algorithm until Dry is detected on the receptacle. When Moisture and Dry are detected, the MAX77958 reports to the AP by setting CC_STATUS1[1]. To take advantage of the MAX77958 Moisture detection feature, external resistor configuration on the SBU1 and SBU2 are required. GPIO3 649kΩ 649kΩ 120kΩ 120kΩ GPIO0 SBU1 GPIO1 SBU2 Figure 3. SBU Configuration USB BC1.2 D+/D- Adapter Detection Description The USB adapter detection is USB BC1.2 compliant with the ability to automatically detect common charger types. USB adapter detection has the following controls in the I2C register file: ● Charger detection enable (ChgDetEn) ● Charger detection manual—request a new run of charger detection (ChgDetMan) The Adapter Detection State Machine follows USB BC1.2 requirements and detects SDP, CDP, and DCP types. If the D+/D- lines are detected as open, the adapter detection state machine indicates SDP as required by BC1.2 requirements. With a USB BC1.2 compliant state machine, the IC reports that a DCP is detected based on the bias voltage. The IC default firmware can automatically set an external charger's input current limit based on the BC1.2 adapter type that was detected. The IC also reports the operation status of the Adapter Detection State Machine in the ChgTypRun interrupt bit in the I2C register map. www.analog.com Analog Devices | 30 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Charger Type Detection Table Table 2. BC1.2 Adapter Detection USB BC1.2 DETECTED ADAPTER TYPE ChgTyp VALUE CHARGER DETECTED 00 No VBUS 01 SDP 10 CDP 11 DCP Note: Adapter Detect running state is indicated until the Adapter Detection State Machine is complete. VCONN Switch Description The MAX77958 integrates the VCONN switch which connects VCIN to one of CC1 and CC2. Once CC detection identifies Ra/Ra on CC1 and CC2, the VCONN switch routes VCIN to the pin that is not connected to the CC line in the cable. The MAX77958 also provides programmable VCONN switch current limit from 200mA to 500mA in 100mA step. If VCONN load current exceeds the current limit for 3ms, then an interrupt is generated to the Application Processor (AP). If AP wants to keep supplying VCONN power, then the AP must configure a higher current limit or no current limit within 12ms. If not, the VCONN switch is turned OFF in 12ms after an Interrupt is generated. VCONN(CCx) NEW VCONN I LIMIT OLD VCONN I LIMIT VCONN LOAD 3ms 12ms VCONN INT Figure 4. VCONN Overcurrent Protection Operation www.analog.com Analog Devices | 31 MAX77958 Standalone USB Type-C and USB Power Delivery Controller USB Type-C Interface and Control Automatic Accessory Detection Autoconfiguration Details CCDetEn = 0 or ChgDetEn = 0 1. Nothing happens when VBUS is attached. Nothing occurs when ChgDetMan is set to 1. CCDetEn = 1 and ChgDetEn = 1 1. 2. 3. 4. Charger detection runs automatically when VBUS is attached If VBUS voltage enters the valid range, all switches connected to DP/DN are opened Charger detection algorithm begins. When charger detection finishes, DP/DN switch settings are restored. USBAuto = 0 1. No automatic switch configuration happens USBAuto = 1 1. Operates only after charger detection completes, SDP or CDP is found, and if no special charger is found (SpChgTyp = 000 unknown). 2. Set DP/DN connected to DP2/DN1, over-riding any previous switch setting. 3. At any time, the AP is allowed to change these switch settings. 4. If AP has not changed the switch settings when VBUS drops below the valid level, DP/DN sets to Hi-Z. USB Power Delivery Description The IC supports USB Power Delivery Revision 3.0. The power delivery subsystem is separated into 2 parts: Automatic Power Control and Application Processor Message Passthrough. Application Processor Message Passthrough There are many USB PD messages that are unrelated to power control. These messages pass on to the AP to decode and reply. USB PD messages have time critical components and the IC automatically handles these time critical events. IC Wakeup events The IC automatically operates in the lowest possible power state. The IC power consumption depends on the following conditions: ● Request has been made across the I2C bus ● USB Type-C end-to-end detection is valid ● VBUS is present The lowest possible power consumption state is no VBUS, CCDetEn = 0, and no I2C traffic requests. www.analog.com Analog Devices | 32 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Interrupt Output (INTB) INTB is an open-drain and active-low output. It reports an interrupt event to the main microprocessor. Individual interrupt sources can be masked. Once the main microprocessor reads the interrupt registers, the INTB pin is cleared. Interconnected Block Diagram DN1 DP2 DD+ CC1 16-BIT MAXQ CPU BC1.2 DIGITAL BC1.2 ANALOG USB Type-C DIGITAL USB Type-C ANALOG CC2 MTP/ROM DATA RAM SFR GATE CP CONTROL I2C MASTER VCIN 9 GPIOs USB PD DIGITAL USB PD ANALOG Figure 5. Interconnected Block Diagram System Faults The IC monitors the system for the following faults: ● Undervoltage lockout ● VIO fault Undervoltage Lockout When the VAVL falls below AVLUVLOF (2.6V max) for more than 8ms, the MAX77958 enters into a shutdown state. Once the VAVL voltage is higher than AVLUVLOR (2.8V max), the MAX77958 exits shutdown state to be functional. VIO Fault When VIO1 and VIO2 fall below 1.0V, the IC goes into shutdown state. Once VIO1 and VIO2 voltages rise higher than 1.3V, the IC comes out of shutdown state. www.analog.com Analog Devices | 33 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Reset Conditions The IC has different levels of reset as follows: ● Type S: Registers are reset each time when VDD1P8 < VDD_OKF ● Type O: Registers are reset each time when VDD1P8 < VDD_OKF or when the software reset command is transmitted (SW_RESET = 0x0F) WDT Reset 1. Firmware restarts a watchdog timer in 1.86s. 2. If the watchdog timer is not kicked in 1.86s, it executes the following actions: a.) MAX77958 reboots b.) MAX77958 notifies MA_SYSERROR_BOOT_WDT I2C Serial Interface The I2C serial bus consists of a bidirectional serial-data line (SDA) and a serial clock (SCL). I2C is an open-drain bus. SDA and SCL require pullup resistors (500Ω or greater). Optional 24Ω resistors in series with SDA and SCL help to protect the device inputs from high voltage spikes on the bus lines. Series resistors also minimize crosstalk and undershoot on bus lines. System Configuration The I2C bus is a multi-master bus. The maximum number of devices that can attach to the bus is only limited by bus capacitance. Figure 6 shows an example of a typical I2C system. A device on the I2C bus that sends data to the bus is called a transmitter. A device that receives data from the bus is called a receiver. The device that initiates a data transfer and generates SCL clock signals to control the data transfer is a master. Any device that is being addressed by the master is considered a slave. When the MAX77958 I2C-compatible interface is operating, it is a slave on the I2C bus and it can be both a transmitter and a receiver. SDA SCL MASTER TRANSMITTER/ RECEIVER SLAVE RECEIVER SLAVE TRANSMITTER SLAVE TRANSMITTER/ RECEIVER MASTER TRANSMITTER / RECEIVER Figure 6. Functional Logic Diagram for Communications Controller www.analog.com Analog Devices | 34 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Bit Transfer One data bit is transferred for each SCL clock cycle. The data on SDA must remain stable during the high portion of the SCL clock pulse. Changes in SDA while SCL is high are control signals (START and STOP conditions). DATA LINE STABLE DATA VALID CHANGE OF DATA ALLOWED SDA SCL Figure 7. I2C Bit Transfer START and STOP Conditions When the I2C serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high. A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission by issuing a NOT ACKNOWLEDGE followed by a STOP condition. A STOP condition frees the bus. To issue a series of commands to the slave, the master can issue REPEATED START (Sr) commands instead of a STOP command in order to maintain control of the bus. In general, a REPEATED START command is functionally equivalent to a regular START command. When a STOP condition or incorrect address is detected, the IC internally disconnects SCL from the I2C serial interface until the next START condition, minimizing digital noise and feed-through. S Sr P SDA tSU_START SCL tHD_START tHD_START tSU_STOP Figure 8. I2C Start and Stop www.analog.com Analog Devices | 35 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Acknowledge Both the I2C bus master and the IC (slave) generate acknowledge bits when receiving data. The acknowledge bit is the last bit of each nine bit data packet. To generate an ACKNOWLEDGE (A), the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock pulse. To generate a NOT-ACKNOWLEDGE (nA), the receiving device allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse. Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time. Slave Address The IC acts as a slave transmitter/receiver. The slave address of the IC is 0x4Ah/0x4Bh,0x4Ch/0x4Dh and 0x4Eh/0x4Fh depending on configuration of GPIO6.The least significant bit is the read/write indicator (1 for read, 0 for write). Table 3. I2C Slave Address GPIO6 SLAVE ADDRESS (7-BIT) SLAVE ADDRESS (WRITE) SLAVE ADDRESS (READ) GND 010 0101 0x4A (0100 1010) 0x4B (0100 1011) Pullup (470kΩ ±10%) to VIO1 010 0110 0x4C (0100 1100) 0x4D (0100 1101) Pulldown (470kΩ ±10%) to GND 010 0111 0x4E (0100 1110) 0x4F (0100 1111) Clock Stretching In general, the clock signal generation for I2C bus is the responsibility of the master device. I2C specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The IC does not use any form of clock stretching to hold down the clock line. General Call Address The IC does not implement an I2C specification general call address. If the IC sees general call address (00000000b), it does not issue an ACKNOWLEDGE (A). Communication Speed The IC provides I2C 3.0-compatible (1MHz) serial interface. ● I2C Revision 3 Compatible Serial Communications Channel • 0Hz to 100kHz (Standard Mode) • 0Hz to 400kHz (Fast Mode) • 0Hz to 1MHz (Fast-Mode Plus) ● Does not Support I2C Clock Stretching Operating in standard mode, fast mode, and fast-mode plus does not require any special protocols. The main consideration when changing the bus speed through this range is the combination of the bus capacitance and pullup resistors. Higher time constants created by the bus capacitance and pullup resistance (C x R) slow the bus operation. Therefore, when increasing bus speeds the pullup resistance must be decreased to maintain a reasonable time constant. Refer to the “Pullup Resistor Sizing” section of the I2C revision 3.0 specification for detailed guidance on the pullup resistor selection. In general, for bus capacitance of 200pF, a 100kHz bus needs 5.6kΩ pullup resistors, a 400kHz bus needs about 1.5kΩ pullup resistors, and a 1MHz bus needs 680Ω pullup resistors. Note that the pullup resistor dissipates power when the open-drain bus is low. The lower the value of the pullup resistor, the higher the power dissipation (V2/R). www.analog.com Analog Devices | 36 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Operating in high-speed mode requires some special considerations. For the full list of considerations, see the I2C 3.0 specification. The major considerations with respect to the IC are: ● I2C bus master uses current source pullups to shorten the signal rise times. ● I2C slave must use a different set of input filters on its SDA and SCL lines to accommodate for the higher bus speed. ● The communication protocols need to utilize the high-speed master code. At power-up and after each STOP condition, the IC input filters are set for standard mode, fast mode, or fast-mode plus (i.e., 0Hz to 1MHz). To switch the input filters for high-speed mode, use the high-speed master code protocols that are described in the Communication Protocols section. Communication Protocols The IC supports both writing and reading from its registers. Writing to a Single Register Figure 9 shows the protocol for the I2C master device to write one byte of data to the IC. This protocol is the same as SMBus specification’s “Write Byte” protocol. The “Write Byte” protocol is as follows: 1. 2. 3. 4. 5. 6. 7. The master sends a START command (S). The master sends the 7-bit slave address followed by a write bit (R/W = 0). The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low. The master sends an 8-bit register pointer. The slave acknowledges the register pointer. The master sends a data byte. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active. 8. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state. LEGEND MASTER TO SLAVE 1 7 S SLAVE ADDRESS SLAVE TO MASTER * P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤ 1MHz MODE. Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE. 1 1 8 1 8 1 1 0 A REGISTER POINTER A DATA A P or Sr * R/nW SDA NUMBER OF BITS THE DATA IS LOADED INTO THE TARGET REGISTER AND BECOMES ACTIVE DURING THIS RISING EDGE. B1 B0 A ACKNOWLEDGE SCL 7 8 9 Figure 9. Writing to a Single Register www.analog.com Analog Devices | 37 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Writing to Sequential Registers Figure 10 shows the protocol for writing to sequential registers. This protocol is similar to the “Write Byte” protocol, except the master continues to write after it receives the first byte of data. When the master is done writing, it issues a STOP or REPEATED START. The “Writing to Sequential Registers” protocol is as follows: 1. 2. 3. 4. 5. 6. 7. The master sends a START command (S). The master sends the 7-bit slave address followed by a write bit (R/W = 0). The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low. The master sends an 8-bit register pointer. The slave acknowledges the register pointer. The master sends a data byte. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active. 8. Steps 6 to 7 are repeated as many times as the master requires. 9. During the last acknowledge related clock pulse, the slave issues an ACKNOWLEDGE (A). 10. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state. LEGEND MASTER TO SLAVE 1 7 S SLAVE ADDRESS SLAVE TO MASTER *P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤1MHz MODE. Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE. 1 1 8 1 8 1 0 A REGISTER POINTER X A DATA 1 A 8 1 8 1 DATA 2 A DATA 3 A R/nW NUMBER OF BITS α NUMBER OF BITS REGISTER POINTER = X + 1α REGISTER POINTER = X + 2 α 8 1 8 1 SDA B1 DATA N-1 A DATA N REGISTER POINTER = X + (N-2) α REGISTER POINTER = X + (N-1) B0 A A NUMBER OF BITS 1 P or Sr* β THE DATA IS LOADED INTO THE TARGET REGISTER AND BECOMES ACTIVE DURING THIS RISING EDGE. B9 ACKNOWLEDGE SCL 7 8 9 1 DETAIL: α THE DATA IS LOADED INTO THE TARGET REGISTER AND BECOMES ACTIVE DURING THIS RISING EDGE. SDA B1 B0 A ACKNOWLEDGE SCL 7 8 9 DETAIL: β Figure 10. Writing to Sequential Registers www.analog.com Analog Devices | 38 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Reading from a Single Register The I2C master device reads one byte of data to the IC. This protocol is the same as SMBus specification’s “Read Byte” protocol. The “Read Byte” protocol is as follows: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. The master sends a START command (S). The master sends the 7-bit slave address followed by a write bit (R/W = 0). The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low. The master sends an 8-bit register pointer. The slave acknowledges the register pointer. The master sends a REPEATED START command (Sr). The master sends the 7-bit slave address followed by a read bit (R/W = 1). The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low. The addressed slave places 8-bits of data on the bus from the location specified by the register pointer. The master issues a NOT-ACKNOWLEDGE (nA). The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state. LEGEND MASTER TO SLAVE 1 7 S SLAVE ADDRESS SLAVE TO MASTER *P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤1MHz MODE. Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE. 1 1 8 1 1 7 0 A REGISTER POINTER A Sr SLAVE ADDRESS R/nW 1 1 8 1 A DATA 1 1 NUMBER OF BITS nA P or Sr* R/nW Figure 11. Reading from a Single Register Reading from Sequential Registers Figure 12 shows the protocol for reading from sequential registers. This protocol is similar to the “Read Byte” protocol except the master issues an ACKNOWLEDGE (A) to signal the slave that it wants more data—when the master has all the data it requires, it issues a NOT-ACKNOWLEDGE (nA) and a STOP (P) to end the transmission. The “Continuous Read from Sequential Registers” protocol is as follows: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. The master sends a START command (S). The master sends the 7-bit slave address followed by a write bit (R/W = 0). The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low. The master sends an 8-bit register pointer. The slave acknowledges the register pointer. The master sends a REPEATED START command (Sr). The master sends the 7-bit slave address followed by a read bit (R/W =1). The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low. The addressed slave places 8-bits of data on the bus from the location specified by the register pointer. The master issues an ACKNOWLEDGE (A) signaling the slave that it wishes to receive more data. Steps 9 to 10 are repeated as many times as the master requires. Following the last byte of data, the master must issue a NOT-ACKNOWLEDGE (nA) to signal that it wishes to stop receiving data. 12. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state. www.analog.com Analog Devices | 39 MAX77958 Standalone USB Type-C and USB Power Delivery Controller LEGEND MASTER TO SLAVE *P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤1MHz MODE. Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE. SLAVE TO MASTER 1 7 S SLAVE ADDRESS 1 1 8 1 1 7 0 A REGISTER POINTER X A Sr SLAVE ADDRESS R/nW R/nW 8 1 8 DATA 2 A DATA 3 1 1 8 1 1 A DATA 1 A 1 8 1 A DATA 4 A REGISTER POINTER = X + 1 REGISTER POINTER = X + 2 8 1 8 1 DATA N-2 A REGISTER POINTER = X + (N-3) DATA N-1 A REGISTER POINTER = X + (N-2) REGISTER POINTER = X + 3 8 1 DATA N NUMBER OF BITS NUMBER OF BITS 1 NUMBER OF BITS nA P or Sr* REGISTER POINTER = X + (N-1) Figure 12. Reading from Sequential Registers Engaging HS-Mode for Operation up to 3.4MHz Figure 13 shows the protocol for engaging HS-Mode operation. HS-Mode operation allows for a bus operating speed up to 3.4MHz. The “Engaging HS-Mode” protocol is as follows: 1. 2. 3. 4. 5. Begin the protocol while operating at a bus speed of 1MHz or lower. The master sends a START command (S). The master sends the 8-bit master code of 0000 1xx0b, where ‘xx’ are don’t care bits. The addressed slave issues a NOT-ACKNOWLEDGE (nA). The master may now increase its bus speed up to 3.4MHz and issue any read/write operation. The master may continue to issue high-speed read/write operations until a STOP (P) is issued. Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation. LEGEND MASTER TO SLAVE SLAVE TO MASTER 1 8 1 1 S HS MASTER CODE nA Sr FAST MODE 1 ANY READ/WRITE PROTOCOL FOLLOWED BY Sr Sr 1 ANY READ/WRITE PROTOCOL FOLLOWED BY Sr HS MODE Sr 1 ANY READ/WRITE PROTOCOL P FAST MODE Figure 13. Engaging HS-Mode www.analog.com Analog Devices | 40 MAX77958 Standalone USB Type-C and USB Power Delivery Controller The MAX77958 I2C supports the HS mode extension feature. The HS extension feature keeps the high-speed operation even after a ‘STOP’ condition. This eliminates the need for HS master code issued by the I2C master controller when the I2C master controller wants to stay in HS mode for multiple read/write cycles. As shown in Figure 14, the HS extension mode can be enabled by setting HS_EXT bit in I2C_CFG register (ADDR 0x15) from LS mode only (entering HS extension mode from HS mode is not supported). HS MASTER CODE LS MODE (HS_EXT = 0) HS MODE (HS_EXT = 0) STOP CONDITION SET HS_EXT = 0 SET HS_EXT = 1 LS MODE (HS_EXT = 1) SET HS_EXT = 0 HS MODE (HS_EXT = 1) HS MASTER CODE Figure 14. I2C Operating Mode State Diagram www.analog.com Analog Devices | 41 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Register Map Register Map I2C Slave Address The MAX77958 has a total of 3 slave addresses. See Table 3 for more information. Functional Reset Conditions The IC has different levels of reset as follows: ● Type S: Registers are reset each time when VDD1P8 < VDD_OKF ● Type O: Registers are reset each time when VDD1P8 < VDD_OKF or when the software reset command is transmitted (SW_RESET = 0x0F) Functional Register Reset Type Summary REGISTER ADDRESS (HEX) REGISTER FUNCTION REGISTER NAME RESET TYPE USBC SID (functional registers) USBC 0x00 USBC DEVICE_ID S USBC 0x01 USBC DEVICE_REV S USBC 0x02 USBC FW_REV S USBC 0x03 USBC FW_SUB_VER S USBC 0x04 USBC UIC_INT O USBC 0x05 USBC CC_INT O USBC 0x06 USBC PD_INT O USBC 0x07 USBC ACTION_INT O USBC 0x08 USBC USBC_STATUS1 S USBC 0x09 USBC USBC_STATUS2 S USBC 0x0A USBC BC_STATUS S USBC 0x0B USBC DP_STATUS S USBC 0x0C USBC CC_STATUS0 S USBC 0x0D USBC CC_STATUS1 S USBC 0x0E USBC PD_STATUS0 S USBC 0x0F USBC PD_STATUS1 S USBC 0x10 USBC UIC_INT_M O USBC 0x11 USBC CC_INT_M O USBC 0x12 USBC PD_INT_M O USBC 0x13 USBC ACTION_INT_M O USBC 0x21 USBC AP_DATAOUT0 O USBC 0x22 USBC AP_DATAOUT1 O USBC 0x23 USBC AP_DATAOUT2 O USBC 0x24 USBC AP_DATAOUT3 O USBC 0x25 USBC AP_DATAOUT4 O USBC 0x26 USBC AP_DATAOUT5 O USBC 0x27 USBC AP_DATAOUT6 O USBC 0x28 USBC AP_DATAOUT7 O www.analog.com Analog Devices | 42 MAX77958 Standalone USB Type-C and USB Power Delivery Controller REGISTER ADDRESS (HEX) REGISTER FUNCTION REGISTER NAME RESET TYPE USBC 0x29 USBC AP_DATAOUT8 O USBC 0x2A USBC AP_DATAOUT9 O USBC 0x2B USBC AP_DATAOUT10 O USBC 0x2C USBC AP_DATAOUT11 O USBC 0x2D USBC AP_DATAOUT12 O USBC 0x2E USBC AP_DATAOUT13 O USBC 0x2F USBC AP_DATAOUT14 O USBC 0x30 USBC AP_DATAOUT15 O USBC 0x31 USBC AP_DATAOUT16 O USBC 0x32 USBC AP_DATAOUT17 O USBC 0x33 USBC AP_DATAOUT18 O USBC 0x34 USBC AP_DATAOUT19 O USBC 0x35 USBC AP_DATAOUT20 O USBC 0x36 USBC AP_DATAOUT21 O USBC 0x37 USBC AP_DATAOUT22 O USBC 0x38 USBC AP_DATAOUT23 O USBC 0x39 USBC AP_DATAOUT24 O USBC 0x3A USBC AP_DATAOUT25 O USBC 0x3B USBC AP_DATAOUT26 O USBC 0x3C USBC AP_DATAOUT27 O USBC 0x3D USBC AP_DATAOUT28 O USBC 0x3E USBC AP_DATAOUT29 O USBC 0x3F USBC AP_DATAOUT30 O USBC 0x40 USBC AP_DATAOUT31 O USBC 0x41 USBC AP_DATAOUT32 O USBC 0x51 USBC AP_DATAIN0 S USBC 0x52 USBC AP_DATAIN1 S USBC 0x53 USBC AP_DATAIN2 S USBC 0x54 USBC AP_DATAIN3 S USBC 0x55 USBC AP_DATAIN4 S USBC 0x56 USBC AP_DATAIN5 S USBC 0x57 USBC AP_DATAIN6 S USBC 0x58 USBC AP_DATAIN7 S USBC 0x59 USBC AP_DATAIN8 S USBC 0x5A USBC AP_DATAIN9 S USBC 0x5B USBC AP_DATAIN10 S USBC 0x5C USBC AP_DATAIN11 S USBC 0x5D USBC AP_DATAIN12 S USBC 0x5E USBC AP_DATAIN13 S USBC 0x5F USBC AP_DATAIN14 S USBC 0x60 USBC AP_DATAIN15 S www.analog.com Analog Devices | 43 MAX77958 Standalone USB Type-C and USB Power Delivery Controller REGISTER ADDRESS (HEX) REGISTER FUNCTION REGISTER NAME RESET TYPE USBC 0x61 USBC AP_DATAIN16 S USBC 0x62 USBC AP_DATAIN17 S USBC 0x63 USBC AP_DATAIN18 S USBC 0x64 USBC AP_DATAIN19 S USBC 0x65 USBC AP_DATAIN20 S USBC 0x66 USBC AP_DATAIN21 S USBC 0x67 USBC AP_DATAIN22 S USBC 0x68 USBC AP_DATAIN23 S USBC 0x69 USBC AP_DATAIN24 S USBC 0x6A USBC AP_DATAIN25 S USBC 0x6B USBC AP_DATAIN26 S USBC 0x6C USBC AP_DATAIN27 S USBC 0x6D USBC AP_DATAIN28 S USBC 0x6E USBC AP_DATAIN29 S USBC 0x6F USBC AP_DATAIN30 S USBC 0x70 USBC AP_DATAIN31 S USBC 0x71 USBC AP_DATAIN32 S USBC 0x80 USBC SW_RESET S ADDRESS NAME MSB LSB USBC_FUNC 0x00 DEVICE_ID[7:0] 0x01 DEVICE_REV[7:0] DeviceId[7:0] 0x02 FW_REV[7:0] 0x03 FW_SUB_VER[7:0] 0x04 UIC_INT[7:0] APCmdR esI SYSMsgI VBUSDe tI VbADCI DCDTmo I StopMod eI ChgTypI Attached HoldI 0x05 CC_INT[7:0] VCONN OCPI VSAFE0 VI DetAbrtI WtrI CCPinSt atI CCIStatI CCVcnSt atI CCStatI 0x06 PD_INT[7:0] PDMsgI PSRDYI DataRole I RSVD RSVD DisplayP ortI – – 0x07 ACTION_INT[7:0] – – – – Extende dActionI Action2I Action1I Action0I 0x08 USBC_STATUS1[7:0] 0x09 USBC_STATUS2[7:0] 0x0A BC_STATUS[7:0] DeviceRev[7:0] FwRev[7:0] FwSubRev[7:0] VbADC[4:0] SYSMsg[7:0] VBUSDet DP_Exit Mode RSVD DP_Atte ntion 0x0B DP_STATUS[7:0] 0x0C CC_STATUS0[7:0] CCPinStat[1:0] 0x0D CC_STATUS1[7:0] RSVD[1:0] 0x0E PD_STATUS0[7:0] www.analog.com RSVD[2:0] PrChgTyp[2:0] DP_Conf igure DP_Stat us CCIStat[1:0] VCONN OCP VCONNS C DP_Ente rMode DCDTmo DP_Disc overMod e CCVcnSt at VSafeOV ChgTyp[1:0] DP_Disc overSVI D DP_Disc overIdent ity CCStat[2:0] DetAbrt Wtr RSVD PDMsg[7:0] Analog Devices | 44 MAX77958 ADDRESS Standalone USB Type-C and USB Power Delivery Controller NAME MSB LSB 0x0F PD_STATUS1[7:0] DataRole PowerRo le VCONN S PSRDY – – – – 0x10 UIC_INT_M[7:0] APCmdR esM SYSMsg M VBUSDe tM VbADCM DCDTmo M StopMod eM ChgTyp M Attached HoldM 0x11 CC_INT_M[7:0] VCONN OCPM VSAFE0 VM DetAbrt M WtrM CCPinSt atM CCIStat M CCVcnSt atM CCStatM 0x12 PD_INT_M[7:0] PDMsgM PSRDY M DataRole M RSVD RSVD DisplayP ortM – – 0x13 ACTION_INT_M[7:0] Extende dActionM Action2M Action1M Action0M 0x21 AP_DATAOUT0[7:0] AP_REQUEST_OPCODE[7:0] 0x22 AP_DATAOUT1[7:0] OPCODE_DATAOUT_01[7:0] 0x23 AP_DATAOUT2[7:0] OPCODE_DATAOUT_02[7:0] 0x24 AP_DATAOUT3[7:0] OPCODE_DATAOUT_03[7:0] 0x25 AP_DATAOUT4[7:0] OPCODE_DATAOUT_04[7:0] 0x26 AP_DATAOUT5[7:0] OPCODE_DATAOUT_05[7:0] 0x27 AP_DATAOUT6[7:0] OPCODE_DATAOUT_06[7:0] 0x28 AP_DATAOUT7[7:0] OPCODE_DATAOUT_07[7:0] 0x29 AP_DATAOUT8[7:0] OPCODE_DATAOUT_08[7:0] 0x2A AP_DATAOUT9[7:0] OPCODE_DATAOUT_09[7:0] 0x2B AP_DATAOUT10[7:0] OPCODE_DATAOUT_10[7:0] 0x2C AP_DATAOUT11[7:0] OPCODE_DATAOUT_11[7:0] 0x2D AP_DATAOUT12[7:0] OPCODE_DATAOUT_12[7:0] 0x2E AP_DATAOUT13[7:0] OPCODE_DATAOUT_13[7:0] 0x2F AP_DATAOUT14[7:0] OPCODE_DATAOUT_14[7:0] 0x30 AP_DATAOUT15[7:0] OPCODE_DATAOUT_15[7:0] 0x31 AP_DATAOUT16[7:0] OPCODE_DATAOUT_16[7:0] 0x32 AP_DATAOUT17[7:0] OPCODE_DATAOUT_17[7:0] 0x33 AP_DATAOUT18[7:0] OPCODE_DATAOUT_18[7:0] 0x34 AP_DATAOUT19[7:0] OPCODE_DATAOUT_19[7:0] 0x35 AP_DATAOUT20[7:0] OPCODE_DATAOUT_20[7:0] 0x36 AP_DATAOUT21[7:0] OPCODE_DATAOUT_21[7:0] 0x37 AP_DATAOUT22[7:0] OPCODE_DATAOUT_22[7:0] 0x38 AP_DATAOUT23[7:0] OPCODE_DATAOUT_23[7:0] 0x39 AP_DATAOUT24[7:0] OPCODE_DATAOUT_24[7:0] 0x3A AP_DATAOUT25[7:0] OPCODE_DATAOUT_25[7:0] 0x3B AP_DATAOUT26[7:0] OPCODE_DATAOUT_26[7:0] 0x3C AP_DATAOUT27[7:0] OPCODE_DATAOUT_27[7:0] 0x3D AP_DATAOUT28[7:0] OPCODE_DATAOUT_28[7:0] 0x3E AP_DATAOUT29[7:0] OPCODE_DATAOUT_29[7:0] 0x3F AP_DATAOUT30[7:0] OPCODE_DATAOUT_30[7:0] 0x40 AP_DATAOUT31[7:0] OPCODE_DATAOUT_31[7:0] 0x41 AP_DATAOUT32[7:0] 0x51 AP_DATAIN0[7:0] www.analog.com RSVD[3:0] OPCODE_DATAOUT_32[7:0] USBC_RESPONSE_OPCODE[7:0] Analog Devices | 45 MAX77958 ADDRESS Standalone USB Type-C and USB Power Delivery Controller NAME MSB LSB 0x52 AP_DATAIN1[7:0] OPCODE_DATAIN_01[7:0] 0x53 AP_DATAIN2[7:0] OPCODE_DATAIN_02[7:0] 0x54 AP_DATAIN3[7:0] OPCODE_DATAIN_03[7:0] 0x55 AP_DATAIN4[7:0] OPCODE_DATAIN_04[7:0] 0x56 AP_DATAIN5[7:0] OPCODE_DATAIN_05[7:0] 0x57 AP_DATAIN6[7:0] OPCODE_DATAIN_06[7:0] 0x58 AP_DATAIN7[7:0] OPCODE_DATAIN_07[7:0] 0x59 AP_DATAIN8[7:0] OPCODE_DATAIN_08[7:0] 0x5A AP_DATAIN9[7:0] OPCODE_DATAIN_09[7:0] 0x5B AP_DATAIN10[7:0] OPCODE_DATAIN_10[7:0] 0x5C AP_DATAIN11[7:0] OPCODE_DATAIN_11[7:0] 0x5D AP_DATAIN12[7:0] OPCODE_DATAIN_12[7:0] 0x5E AP_DATAIN13[7:0] OPCODE_DATAIN_13[7:0] 0x5F AP_DATAIN14[7:0] OPCODE_DATAIN_14[7:0] 0x60 AP_DATAIN15[7:0] OPCODE_DATAIN_15[7:0] 0x61 AP_DATAIN16[7:0] OPCODE_DATAIN_16[7:0] 0x62 AP_DATAIN17[7:0] OPCODE_DATAIN_17[7:0] 0x63 AP_DATAIN18[7:0] OPCODE_DATAIN_18[7:0] 0x64 AP_DATAIN19[7:0] OPCODE_DATAIN_19[7:0] 0x65 AP_DATAIN20[7:0] OPCODE_DATAIN_20[7:0] 0x66 AP_DATAIN21[7:0] OPCODE_DATAIN_21[7:0] 0x67 AP_DATAIN22[7:0] OPCODE_DATAIN_22[7:0] 0x68 AP_DATAIN23[7:0] OPCODE_DATAIN_23[7:0] 0x69 AP_DATAIN24[7:0] OPCODE_DATAIN_24[7:0] 0x6A AP_DATAIN25[7:0] OPCODE_DATAIN_25[7:0] 0x6B AP_DATAIN26[7:0] OPCODE_DATAIN_26[7:0] 0x6C AP_DATAIN27[7:0] OPCODE_DATAIN_27[7:0] 0x6D AP_DATAIN28[7:0] OPCODE_DATAIN_28[7:0] 0x6E AP_DATAIN29[7:0] OPCODE_DATAIN_29[7:0] 0x6F AP_DATAIN30[7:0] OPCODE_DATAIN_30[7:0] 0x70 AP_DATAIN31[7:0] OPCODE_DATAIN_31[7:0] 0x71 AP_DATAIN32[7:0] OPCODE_DATAIN_32[7:0] 0x80 SW_RESET[7:0] UIC_SWRST[7:0] I2C_FUNC 0xE0 I2C_CNFG[7:0] www.analog.com RSVD PAIR[2:0] RSVD[2:0] HS_EXT _EN Analog Devices | 46 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Register Details DEVICE_ID (0x0) BIT 7 6 5 4 3 Field DeviceId[7:0] Reset 0x58 Access Type BITFIELD DeviceId 2 1 0 Read Only BITS 7:0 DESCRIPTION DECODE 0x00: Reserved 0x01: Reserved 0x58: MAX77958 Device ID DEVICE_REV (0x1) BIT 7 6 5 4 3 Field DeviceRev[7:0] Reset 0x02 Access Type BITFIELD DeviceRev 2 1 0 Read Only BITS 7:0 DESCRIPTION DECODE 0x01: Initial release 0x02: Second release FW Revision FW_REV (0x2) BIT 7 6 5 4 3 Field FwRev[7:0] Reset 0x00 Access Type BITFIELD FwRev 2 1 0 Read Only BITS 7:0 DESCRIPTION DECODE 0x00: Initial release 0x01: Second release FW Revision FW_SUB_VER (0x3) BIT 7 6 5 4 3 Field FwSubRev[7:0] Reset 0x00 Access Type BITFIELD FwSubRev www.analog.com 2 1 0 Read Only BITS 7:0 DESCRIPTION FW Revision DECODE 0x00: Initial release 0x01: Second release Analog Devices | 47 MAX77958 Standalone USB Type-C and USB Power Delivery Controller UIC_INT (0x4) BIT 7 6 5 4 3 2 1 0 Field APCmdResI SYSMsgI VBUSDetI VbADCI DCDTmoI StopModeI ChgTypI AttachedHol dI Reset 0b0 0b0 0b0 0b0 0b0 0b0 0b0 0b0 Read Clears All Read Clears All Read Clears All Read Clears All Read Clears All Read Clears All Read Clears All Read Clears All Access Type BITFIELD BITS DESCRIPTION DECODE APCmdResI 7 AP Command Response Interrupt 0b0: No interrupt. 0b1: AP command response pending. SYSMsgI 6 USBC System Message Interrupt 0b0: No interrupt. 0b1: USBC system message pending. VBUSDetI 5 VBUS Detection Interrupt 0b0: No interrupt. 0b1: New VBUSDet status interrupt. VbADCI 4 VBUS Voltage ADC Interrupt 0b0: No interrupt. 0b1: New VbADC status interrupt. DCDTmoI 3 DCD Timer Interrupt 0b0: No interrupt. 0b1: New DCDTmo status interrupt. StopModeI 2 Stop Mode Interrupt 0b0: No interrupt. 0b1: New stop mode status interrupt. ChgTypI 1 Charger Type Interrupt 0b0: No interrupt. 0b1: New ChgTyp status interrupt. AttachedHold I 0 Attached Hold Interrupt 0b0: No interrupt. 0b1: New attached hold status interrupt. CC_INT (0x5) BIT 7 6 5 4 3 2 1 0 Field VCONNOC PI VSAFE0VI DetAbrtI WtrI CCPinStatI CCIStatI CCVcnStatI CCStatI Reset 0b0 0b0 0b0 0b0 0b0 0b0 0b0 0b0 Read Clears All Read Clears All Read Clears All Read Clears All Read Clears All Read Clears All Read Clears All Read Clears All Access Type BITFIELD BITS DESCRIPTION DECODE VCONNOCPI 7 VCONN OCP Interrupt 0b0: No interrupt. 0b1: New VCONNOCP status interrupt. VSAFE0VI 6 VSAFE0V Interrupt 0b0: No interrupt. 0b1: New VSAFE0V status interrupt. DetAbrtI 5 CC Detection Abort Interrupt 0b0: No interrupt. 0b1: New CC detection abort interrupt. WtrI 4 Moisture/Dry Interrupt 0b0: No interrupt. 0b1: New moisture/dry status interrupt. CCPinStatI 3 CC Pin State Interrupt 0b0: No interrupt. 0b1: New CCPinStat status interrupt. CCIStatI 2 CCIStat Interrupt 0b0: No interrupt. 0b1: New CCIStat status interrupt. CCVcnStatI 1 CCVcnStat Interrupt 0b0: No interrupt. 0b1: New CCVcnStat status interrupt. www.analog.com Analog Devices | 48 MAX77958 BITFIELD Standalone USB Type-C and USB Power Delivery Controller BITS CCStatI 0 DESCRIPTION DECODE 0b0: No interrupt. 0b1: New CCStat status interrupt. CCStat Interrupt PD_INT (0x6) BIT Field Reset Access Type BITFIELD 7 6 5 4 3 2 1 0 PDMsgI PSRDYI DataRoleI RSVD RSVD DisplayPortI – – 0b0 0b0 0x0 – – Read Only Read Clears All – – 0b0 0b0 0b0 Read Clears All Read Clears All Read Clears All BITS Read Only DESCRIPTION DECODE PDMsgI 7 PD Message Interrupt 0b0: No interrupt. 0b1: New PD message issued. PSRDYI 6 PSRDY Interrupt 0b0: No interrupt. 0b1: New PSRDY message issued. DataRoleI 5 Data Role Change Interrupt 0b0: No interrupt. 0b1: DataRole status is changed. RSVD 4 Spare RSVD 3 Spare DisplayPortI 2 Display Port Interrupt 0x0: No interrupt. 0x1: New DisplayPort status update interrupt. ACTION_INT (0x7) BIT 7 6 5 4 3 2 1 0 Field – – – – ExtendedAc tionI Action2I Action1I Action0I Reset – – – – 0b0 0b0 0b0 0b0 Access Type – – – – Read Clears All Read Clears All Read Clears All Read Clears All BITFIELD BITS DESCRIPTION DECODE ExtendedActi onI 3 Extended Action Table Interrupt 0b0: No interrupt. 0b1: Extended action table interrupt. Action2I 2 Action Table Interrupt 2 0b0: No interrupt. 0b1: Action table set interrupt 2. Action1I 1 Action Table Interrupt 1 0b0: No interrupt 0b1: Action table set interrupt 1. Action0I 0 Action Table Interrupt 0 0b0: No interrupt. 0b1: Action table set interrupt 0. USBC_STATUS1 (0x8) BIT 7 6 5 4 3 2 1 0 Field VbADC[4:0] RSVD[2:0] Reset 0x0 0b111 Read Only Read Only Access Type www.analog.com Analog Devices | 49 MAX77958 BITFIELD Standalone USB Type-C and USB Power Delivery Controller BITS VbADC 7:3 RSVD 2:0 DESCRIPTION DECODE 0x00: VBUS < 3.5V 0x01: 3.5V ≤ VBUS < 4.5V 0x02: 4.5V ≤ VBUS < 5.5V 0x03: 5.5V ≤ VBUS < 6.5V 0x04: 6.5V ≤ VBUS < 7.5V 0x05: 7.5V ≤ VBUS < 8.5V 0x06: 8.5V ≤ VBUS < 9.5V 0x07: 9.5V ≤ VBUS < 10.5V 0x08: 10.5V ≤ VBUS < 11.5V 0x09: 11.5V ≤ VBUS < 12.5V 0x0A: 12.5V ≤ VBUS < 13.5V 0x0B: 13.5V ≤ VBUS < 14.5V 0x0C: 14.5V ≤ VBUS < 15.5V 0x0D: 15.5V ≤ VBUS < 16.5V 0x0E: 16.5V ≤ VBUS < 17.5V 0x0F: 17.5V ≤ VBUS < 18.5V 0x10: 18.5V ≤ VBUS < 19.5V 0x11: 19.5V ≤ VBUS < 20.5V 0x12: 20.5V ≤ VBUS < 21.5V 0x13: 21.5V ≤ VBUS < 22.5V 0x14: 22.5V ≤ VBUS < 23.5V 0x15: 23.5V ≤ VBUS < 24.5V 0x16: 24.5V ≤ VBUS < 25.5V 0x17: 25.5V ≤ VBUS < 26.5V 0x18: 26.5V ≤ VBUS < 27.5V 0x19: 27.5V ≤ VBUS 0x1A: RSVD Indicates Value on VBUS Input USBC_STATUS2 (0x9) BIT 7 6 5 4 3 Field SYSMsg[7:0] Reset 0x00 Access Type BITFIELD SYSMsg www.analog.com 2 1 0 Read Only BITS 7:0 DESCRIPTION SYSMsg DECODE 0x00: SYSERROR_NONE 0x01: Reserved 0x02: Reserved 0x03: SYSERROR_BOOT_WDT 0x04: SYSERROR_BOOT_SWRSTREQ 0x05: SYSMSG_BOOT_POR 0x10: SYSERROR_HV_NOVBUS 0x11: SYSERROR_HV_FMETHOD_RXPERR 0x12: SYSERROR_HV_FMETHOD_RXBUFOW 0x13: SYSERROR_HV_FMETHOD_RXTFR 0x14: SYSERROR_HV_FMETHOD_MPNACK 0x15: SYSERROR_HV_FMETHOD_RESET_FAIL 0x20: SYSMsg_AFC_Done 0x30: SYSERROR_SYSPOS 0x31: SYSERROR_APCMD_UNKNOWN 0x32: SYSERROR_APCMD_INPROGRESS 0x33: SYSERROR_APCMD_FAIL Analog Devices | 50 MAX77958 Standalone USB Type-C and USB Power Delivery Controller BC_STATUS (0xA) 7 6 Field BIT VBUSDet RSVD PrChgTyp[2:0] DCDTmo ChgTyp[1:0] Reset 0b0 0b0 0b000 0b0 0b00 Read Only Read Only Read Only Read Only Read Only Access Type BITFIELD BITS 5 7 Status of VBUS Detection RSVD 6 Spare 5:3 DCDTmo ChgTyp 2 1:0 3 2 DESCRIPTION VBUSDet PrChgTyp 4 1 0 DECODE 0b0: VBUS < VBDET 0b1: VBUS > VBDET Output of Proprietary Charger Detection 0b000: Unknown 0b001: RSVD 0b010: RSVD 0b011: RSVD 0b100: RSVD 0b101: RSVD 0b110: 3A DCP (If enabled AND chgTyp=DCP) 0b111: Nikon TA (If enabled AND chgTyp=SDP) During Charger Detection, DCD Detection Timed Out. Indicates D+/D- are open. BC1.2 detection continues as required by BC1.2 specification but SDP most likely is found. 0b0: No timeout or detection has not run. 0b1: DCD timeout occurred. Output of Charger Detection 0b00: Nothing attached. 0b01: SDP, USB cable attached. 0b10: CDP, Charging Downstream Port: current depends on USB operating speed. 0b11: DCP, Dedicated Charger: current up to 1.5A. DP_STATUS (0xB) BIT 7 6 5 4 3 2 1 0 Field DP_ExitMo de DP_Attentio n DP_Configu re DP_Status DP_EnterM ode DP_Discove rMode DP_Discove rSVID DP_Discove rIdentity Reset 0b0 0b0 0b0 0b000 0b0 0b0 0b0 0x00 Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only Access Type BITFIELD BITS DP_ExitMod e 7 Display Port Exit Mode 0b0: No interrupt. 0b1: DisplayPort Exit mode message. DP_Attention 6 Display port Attention Message 0b0: No interrupt. 0b1: DisplayPort Attention message. DP_Configur e 5 Display port Configure message 0b0: No interrupt. 0b1: DisplayPort Configure message. DP_Status 4 Display Port Status message 0b0: No interrupt. 0b1: DisplayPort Status message. DP_EnterMo de 3 Display Port Enter Mode 0b0: No interrupt 0b1: DisplayPort Enter mode message. DP_Discover Mode 2 Display Port Discover Mode 0b0: No interrupt 0b1: DisplayPort Discover mode message. www.analog.com DESCRIPTION DECODE Analog Devices | 51 MAX77958 Standalone USB Type-C and USB Power Delivery Controller BITFIELD BITS DESCRIPTION DECODE DP_Discover SVID 1 Display Port Discover SVID 0b0: No interrupt 0b1: DisplayPort Discover SVID message. DP_Discover Identity 0 Display Port Discover Identity 0b0: No interrupt. 0b1: DisplayPort Discovers Identity message. CC_STATUS0 (0xC) BIT 7 6 5 4 3 2 1 0 Field CCPinStat[1:0] CCIStat[1:0] CCVcnStat CCStat[2:0] Reset 0b00 0b00 0b0 0b000 Read Only Read Only Read Only Read Only Access Type BITFIELD CCPinStat CCIStat CCVcnStat CCStat BITS DESCRIPTION DECODE 7:6 Output of Active CC Pin 0b00: No determination 0b01: CC1 Active 0b10: CC2 Active 0b11: RFU 5:4 CC Pin Detected and Allows VBUS Current in UFP Mode 0b00: Not in UFP mode 0b01: 500mA 0b10: 1.5A 0b11: 3.0A Status of VCONN Output 0b0: VCONN disabled 0b1: VCONN enabled CC Pin State Machine Detection 0b000: No connection 0b001: SINK 0b010: SOURCE 0b011: Audio accessory 0b100: DebugSrc accessory 0b101: Error 0b110: Disabled 0b111: DebugSnk accessory 3 2:0 CC_STATUS1 (0xD) BIT 7 6 5 4 3 2 1 0 VCONNSC VSafeOV DetAbrt Wtr RSVD Field RSVD[1:0] VCONN OCP Reset 0b00 0b0 0b0 0b0 0b0 0b0 0b0 Read Only Read Only Read Only Read Only Read Only Read Only Read Only Access Type BITFIELD RSVD BITS 7:6 DESCRIPTION DECODE Spare VCONN OCP 5 VCONN Overcurrent Detection 0b0: VCONN current < VCONN_ILIM 0b1: VCONN current > VCONN_ILIM VCONNSC 4 VCONN Short-Circuit Detection 0b0: VCONN current < VCONN_SC 0b1: VCONN current > VCONN_SC VSafeOV 3 Status of VBUS Detection. Valid only in Attached.SRC_CCx, Attached.SNK_CCx state. 0b0: VBUS < VSAFE0V 0b1: VBUS > VSAFE0V www.analog.com Analog Devices | 52 MAX77958 BITFIELD Standalone USB Type-C and USB Power Delivery Controller BITS DESCRIPTION DECODE DetAbrt 2 Charger Detection Abort Status 0b0: Charger detection runs if CHGDetEn = 1 and VBUS is valid for the debounce time. 0b1: Charger detection is aborted by USB Type-C State Machine. Charger does not run if CHGDetEn = 1 and VBUS is valid for the debounce time. CHGDetMan allows manual run of charger detection. If charger detection is in progress, DetAbrt = 1 immediately stops the in progress detection. Wtr 1 Moisture/Dry Status 0x0: Dry 0x1: Moisture RSVD 0 Spare PD_STATUS0 (0xE) BIT 7 6 5 4 3 Field PDMsg[7:0] Reset 0x00 Access Type www.analog.com 2 1 0 Read Only Analog Devices | 53 MAX77958 BITFIELD PDMsg www.analog.com Standalone USB Type-C and USB Power Delivery Controller BITS 7:0 DESCRIPTION PD Message DECODE 0x00: Nothing happened 0x01: Sink_PD_PSRdy_Received 0x02: Sink_PD_Error_Recovery 0x03: Sink_PD_SenderResponseTimer_Timeout 0x04: Source_PSRdy_Sent 0x05: Source_PD_Error_Recovery 0x06: Source_PD_SenderResponseTimer_Timeout 0x07: PD_DR_Swap_Request_Received 0x08: PD_PR_Swap_Request_Received 0x09: PD_VCONN_Swap_Request_Received 0X11: VDM Attention_Message_Received 0x0A: Received PD Message in illegal state 0x0B: Sink_PD_Evaluate_State, SrcCap_Received 0x11: VDM Attention Message Received 0x12: Reject_Received 0x13: Not_Supported_Received 0x14: PD_PR_Swap_SNKTOSRC_Cleanup 0x15: PD_PR_Swap_SRCTOSNK_Cleanup 0x16: HardReset_Received 0x17: PD_PowerSupply_VbusEnable 0x18: PD_PowerSupply_VbusDisable 0x19: HardReset_Sent 0x1A: PD_PR_Swap_SRCTOSWAP 0x1B: PD_PR_Swap_SWAPTOSNK 0x1C: PD_PR_Swap_SNKTOSWAP 0x1D: PD_PR_Swap_SWAPTOSRC 0x20: Sink_PD_Disabled 0x21: Source_PD_Disabled 0x30: Get_Source_Capabilities_Extended_Received 0x31: Get_Status_Received 0x32: Get_Battery_Cap_Received 0x33: Get_Battery_Status_Received 0x34: Get_Manufacturer_Info_Received 0x35: Source_Capabilities_Extended_Received 0x36: Status_Received 0x37: Battery_Capabilities_Received 0x38: Battery_Status_Received 0x39: Manufacturer_Info_Received 0x3A: Security_Request_Received 0x3B: Security_Response_Received 0x3C: Firmware_Update_Request_Received 0x3D: Firmware_Update_Response_Received 0x3E: Alert_Received 0x40: VDM_NAK_Received 0x41: VDM_BUSY_Received 0x42: VDM_ACK_Received 0x43: VDM_REQ_Received 0x63: DiscoverMode_Received 0x65: PD_Status_Received Analog Devices | 54 MAX77958 Standalone USB Type-C and USB Power Delivery Controller PD_STATUS1 (0xF) 7 6 5 4 3 2 1 0 Field BIT DataRole PowerRole VCONNS PSRDY – – – – Reset 0b0 0b0 0b0 0b0 – – – – Read Only Read Only Read Only Read Only – – – – Access Type BITFIELD BITS DESCRIPTION DECODE DataRole 7 Current Data Role 0b0: UFP 0b1: DFP PowerRole 6 Power Role 0b0: Sink 0b1: Source VCONNS 5 VCONNS 0b0: VCONN Sink 0b1: VCONN Source PSRDY 4 PSRDY Received as Sink 0b0: Nothing happened 0b1: PSRDY received UIC_INT_M (0x10) BIT 7 6 5 4 3 2 1 0 Field APCmdRes M SYSMsgM VBUSDetM VbADCM DCDTmoM StopModeM ChgTypM AttachedHol dM Reset 0b1 0b0 0b1 0b1 0b1 0b1 0b1 0b1 Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Access Type BITFIELD BITS DESCRIPTION DECODE APCmdResM 7 APCmdRes Interrupt Mask 0b0: Unmask 0b1: Mask SYSMsgM 6 SYSMsg Interrupt Mask 0b0: Unmask 0b1: Mask VBUSDetM 5 VBUSDet Interrupt Mask 0 = Unmask 1 = Mask VbADCM 4 VbADC Interrupt Mask 0 = Unmask 1 = Mask DCDTmoM 3 DCDTmo Interrupt Mask 0 = Unmask 1 = Mask StopModeM 2 Fake VBUS Interrupt Mask ChgTypM 1 ChgTyp Interrupt Mask 0 = Unmask 1 = Mask AttachedHold M 0 UIDADC Interrupt Mask 0 = Unmask 1 = Mask www.analog.com Analog Devices | 55 MAX77958 Standalone USB Type-C and USB Power Delivery Controller CC_INT_M (0x11) BIT 7 6 5 4 2 1 0 CCPinStatM CCIStatM CCVcnStat M CCStatM 0b1 0b1 0b1 0b1 0b1 Write, Read Write, Read Write, Read Write, Read Write, Read Field VCONNOC PM VSAFE0VM DetAbrtM WtrM Reset 0b1 0b1 0b1 Write, Read Write, Read Write, Read Access Type 3 BITFIELD BITS DESCRIPTION DECODE VCONNOCP M 7 VCONNOCP Interrupt Mask 0b0: Unmask 0b1: Mask VSAFE0VM 6 VSAFE0V Interrupt Mask 0b0: Unmask 0b1: Mask DetAbrtM 5 DetAbrt Interrupt Mask 0b0: Unmask 0b1: Mask WtrM 4 Wtr Interrupt Mask 0b0: Unmask 0b1: Mask CCPinStatM 3 CCPinStat Interrupt Mask 0b0: Unmask 0b1: Mask CCIStatM 2 CCIStat Interrupt Mask 0b0: Unmask 0b1: Mask CCVcnStatM 1 CCVcnStat Interrupt Mask 0b0: Unmask 0b1: Mask CCStatM 0 CCStat Interrupt Mask 0b0: Unmask 0b1: Mask PD_INT_M (0x12) BIT 7 6 5 4 3 2 1 0 Field PDMsgM PSRDYM DataRoleM RSVD RSVD DisplayPort M – – Reset 0b1 0b1 0b1 0b1 0b1 0b1 – – Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read – – Access Type BITFIELD BITS DESCRIPTION DECODE PDMsgM 7 PDMsg Interrupt Mask 0b0: Unmask 0b1: Mask PSRDYM 6 PDRDY Interrupt Mask 0b0: Unmask 0b1: Mask DataRoleM 5 DataRole Interrupt Mask 0b0: Unmask 0b1: Mask RSVD 4 Spare 0b0: Unmask 0b1: Mask RSVD 3 Spare 0b0: Unmask 0b1: Mask DisplayPortM 2 Display Port Interrupt Mask 0b0: Unmask 0b1: Mask www.analog.com Analog Devices | 56 MAX77958 Standalone USB Type-C and USB Power Delivery Controller ACTION_INT_M (0x13) BIT 7 6 5 4 3 2 1 0 Action2M Action1M Action0M Field RSVD[3:0] ExtendedAc tionM Reset 0xF 0b1 0b1 0b1 0b1 Write, Read Write, Read Write, Read Write, Read Write, Read Access Type BITFIELD RSVD BITS DESCRIPTION DECODE 7:4 ExtendedActi onM 3 Extended Action Table Interrupt Mask 0b0: Unmask 0b1: Mask Action2M 2 Action Table Interrupt 2 Mask 0b0: Unmask 0b1: Mask Action1M 1 Action Table Interrupt 1 Mask 0b0: Unmask 0b1: Mask Action0M 0 Action Table Interrupt 0 Mask 0b0: Unmask 0b1: Mask AP_DATAOUT0 (0x21) BIT 7 6 5 4 3 2 Field AP_REQUEST_OPCODE[7:0] Reset 0x00 Access Type BITFIELD AP_REQUEST_OPCO DE www.analog.com 1 0 Write, Read BITS DESCRIPTION 7:0 All configuration and control commands to the USBC are sent and received as a packet using an opcode to identify the packet. A. Messages sent to the USBC • 0x21—Opcode sent to USBC. • 0x22 to 0x41—Message sent to USBC. • Message size can be as short as 1 byte (Opcode only) and up to 33 bytes (Opcode plus 32 bytes). But all messages must write to all bytes even if the rest of the message is stuffed with 0s. • Registers 0x21 to 0x41 act as a scratch pad for writing the message to the USBC. The message is latched in when a value is written to register 0x41. • All messages are acknowledged by the USBC by sending and generating an interrupt. • Data written to 0x21 to 0x41 is not auto cleared—the data remains in the registers until the application processor overwrites it with a new message. B. Messages received from USBC • 0x51—Opcode identifying the message type. • 0x52 to 0x71—Message sent to application processor. • Message size can be as short as 1 byte (Opcode only) and up to 33 bytes (Opcode plus 32 bytes). • Data written to 0x51 to 0x71 is not auto cleared—the data remains in the registers until the USBC overwrites them with a new message. Analog Devices | 57 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAOUT1 (0x22) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_01[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Write, Read BITFIELD BITS OPCODE_DATAOUT_0 1 7:0 DESCRIPTION AP_DATAOUT2 (0x23) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_02[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_0 2 7:0 DESCRIPTION AP_DATAOUT3 (0x24) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_03[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_0 3 7:0 DESCRIPTION AP_DATAOUT4 (0x25) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_04[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_0 4 7:0 www.analog.com DESCRIPTION Analog Devices | 58 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAOUT5 (0x26) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_05[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Write, Read BITFIELD BITS OPCODE_DATAOUT_0 5 7:0 DESCRIPTION AP_DATAOUT6 (0x27) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_06[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_0 6 7:0 DESCRIPTION AP_DATAOUT7 (0x28) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_07[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_0 7 7:0 DESCRIPTION AP_DATAOUT8 (0x29) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_08[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_0 8 7:0 www.analog.com DESCRIPTION Analog Devices | 59 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAOUT9 (0x2A) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_09[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Write, Read BITFIELD BITS OPCODE_DATAOUT_0 9 7:0 DESCRIPTION AP_DATAOUT10 (0x2B) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_10[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_1 0 7:0 DESCRIPTION AP_DATAOUT11 (0x2C) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_11[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_1 1 7:0 DESCRIPTION AP_DATAOUT12 (0x2D) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_12[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_1 2 7:0 www.analog.com DESCRIPTION Analog Devices | 60 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAOUT13 (0x2E) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_13[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Write, Read BITFIELD BITS OPCODE_DATAOUT_1 3 7:0 DESCRIPTION AP_DATAOUT14 (0x2F) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_14[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_1 4 7:0 DESCRIPTION AP_DATAOUT15 (0x30) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_15[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_1 5 7:0 DESCRIPTION AP_DATAOUT16 (0x31) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_16[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_1 6 7:0 www.analog.com DESCRIPTION Analog Devices | 61 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAOUT17 (0x32) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_17[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Write, Read BITFIELD BITS OPCODE_DATAOUT_1 7 7:0 DESCRIPTION AP_DATAOUT18 (0x33) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_18[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_1 8 7:0 DESCRIPTION AP_DATAOUT19 (0x34) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_19[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_1 9 7:0 DESCRIPTION AP_DATAOUT20 (0x35) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_20[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_2 0 7:0 www.analog.com DESCRIPTION Analog Devices | 62 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAOUT21 (0x36) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_21[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Write, Read BITFIELD BITS OPCODE_DATAOUT_2 1 7:0 DESCRIPTION AP_DATAOUT22 (0x37) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_22[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_2 2 7:0 DESCRIPTION AP_DATAOUT23 (0x38) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_23[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_2 3 7:0 DESCRIPTION AP_DATAOUT24 (0x39) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_24[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_2 4 7:0 www.analog.com DESCRIPTION Analog Devices | 63 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAOUT25 (0x3A) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_25[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Write, Read BITFIELD BITS OPCODE_DATAOUT_2 5 7:0 DESCRIPTION AP_DATAOUT26 (0x3B) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_26[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_2 6 7:0 DESCRIPTION AP_DATAOUT27 (0x3C) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_27[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_2 7 7:0 DESCRIPTION AP_DATAOUT28 (0x3D) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_28[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_2 8 7:0 www.analog.com DESCRIPTION Analog Devices | 64 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAOUT29 (0x3E) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_29[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Write, Read BITFIELD BITS OPCODE_DATAOUT_2 9 7:0 DESCRIPTION AP_DATAOUT30 (0x3F) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_30[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_3 0 7:0 DESCRIPTION AP_DATAOUT31 (0x40) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_31[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_3 1 7:0 DESCRIPTION AP_DATAOUT32 (0x41) BIT 7 6 5 4 3 2 Field OPCODE_DATAOUT_32[7:0] Reset 0x00 Access Type Write, Read BITFIELD BITS OPCODE_DATAOUT_3 2 7:0 www.analog.com DESCRIPTION Analog Devices | 65 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN0 (0x51) BIT 7 6 5 4 3 2 Field USBC_RESPONSE_OPCODE[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Read Only BITFIELD BITS USBC_RESPONSE_O PCODE DESCRIPTION 7:0 AP_DATAIN1 (0x52) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_01[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_01 DESCRIPTION 7:0 AP_DATAIN2 (0x53) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_02[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_02 DESCRIPTION 7:0 AP_DATAIN3 (0x54) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_03[7:0] Reset 0x00 Access Type BITFIELD OPCODE_DATAIN_03 www.analog.com Read Only BITS DESCRIPTION 7:0 Analog Devices | 66 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN4 (0x55) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_04[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Read Only BITFIELD BITS OPCODE_DATAIN_04 DESCRIPTION 7:0 AP_DATAIN5 (0x56) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_05[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_05 DESCRIPTION 7:0 AP_DATAIN6 (0x57) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_06[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_06 DESCRIPTION 7:0 AP_DATAIN7 (0x58) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_07[7:0] Reset 0x00 Access Type BITFIELD OPCODE_DATAIN_07 www.analog.com Read Only BITS DESCRIPTION 7:0 Analog Devices | 67 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN8 (0x59) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_08[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Read Only BITFIELD BITS OPCODE_DATAIN_08 DESCRIPTION 7:0 AP_DATAIN9 (0x5A) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_09[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_09 DESCRIPTION 7:0 AP_DATAIN10 (0x5B) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_10[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_10 DESCRIPTION 7:0 AP_DATAIN11 (0x5C) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_11[7:0] Reset 0x00 Access Type BITFIELD OPCODE_DATAIN_11 www.analog.com Read Only BITS DESCRIPTION 7:0 Analog Devices | 68 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN12 (0x5D) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_12[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Read Only BITFIELD BITS OPCODE_DATAIN_12 DESCRIPTION 7:0 AP_DATAIN13 (0x5E) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_13[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_13 DESCRIPTION 7:0 AP_DATAIN14 (0x5F) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_14[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_14 DESCRIPTION 7:0 AP_DATAIN15 (0x60) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_15[7:0] Reset 0x00 Access Type BITFIELD OPCODE_DATAIN_15 www.analog.com Read Only BITS DESCRIPTION 7:0 Analog Devices | 69 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN16 (0x61) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_16[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Read Only BITFIELD BITS OPCODE_DATAIN_16 DESCRIPTION 7:0 AP_DATAIN17 (0x62) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_17[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_17 DESCRIPTION 7:0 AP_DATAIN18 (0x63) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_18[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_18 DESCRIPTION 7:0 AP_DATAIN19 (0x64) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_19[7:0] Reset 0x00 Access Type BITFIELD OPCODE_DATAIN_19 www.analog.com Read Only BITS DESCRIPTION 7:0 Analog Devices | 70 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN20 (0x65) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_20[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Read Only BITFIELD BITS OPCODE_DATAIN_20 DESCRIPTION 7:0 AP_DATAIN21 (0x66) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_21[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_21 DESCRIPTION 7:0 AP_DATAIN22 (0x67) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_22[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_22 DESCRIPTION 7:0 AP_DATAIN23 (0x68) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_23[7:0] Reset 0x00 Access Type BITFIELD OPCODE_DATAIN_23 www.analog.com Read Only BITS DESCRIPTION 7:0 Analog Devices | 71 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN24 (0x69) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_24[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Read Only BITFIELD BITS OPCODE_DATAIN_24 DESCRIPTION 7:0 AP_DATAIN25 (0x6A) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_25[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_25 DESCRIPTION 7:0 AP_DATAIN26 (0x6B) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_26[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_26 DESCRIPTION 7:0 AP_DATAIN27 (0x6C) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_27[7:0] Reset 0x00 Access Type BITFIELD OPCODE_DATAIN_27 www.analog.com Read Only BITS DESCRIPTION 7:0 Analog Devices | 72 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN28 (0x6D) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_28[7:0] Reset 0x00 Access Type 1 0 1 0 1 0 1 0 Read Only BITFIELD BITS OPCODE_DATAIN_28 DESCRIPTION 7:0 AP_DATAIN29 (0x6E) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_29[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_29 DESCRIPTION 7:0 AP_DATAIN30 (0x6F) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_30[7:0] Reset 0x00 Access Type Read Only BITFIELD BITS OPCODE_DATAIN_30 DESCRIPTION 7:0 AP_DATAIN31 (0x70) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_31[7:0] Reset 0x00 Access Type BITFIELD OPCODE_DATAIN_31 www.analog.com Read Only BITS DESCRIPTION 7:0 Analog Devices | 73 MAX77958 Standalone USB Type-C and USB Power Delivery Controller AP_DATAIN32 (0x71) BIT 7 6 5 4 3 2 Field OPCODE_DATAIN_32[7:0] Reset 0x00 Access Type 1 0 1 0 Read Only BITFIELD BITS OPCODE_DATAIN_32 DESCRIPTION 7:0 SW_RESET (0x80) BIT 7 6 5 4 3 Field UIC_SWRST[7:0] Reset 0x00 Access Type 2 Write, Read BITFIELD BITS UIC_SWRST 7:0 DESCRIPTION DECODE When AP writes 0x0F, UIC is reset (registers and MAXQ). UIC (and MAXQ) Software Reset I2C_CNFG (0xE0) Spare mask register. BIT 7 6 5 4 3 2 1 0 Field RSVD PAIR[2:0] RSVD[2:0] HS_EXT_E N Reset 0b0 0b000 0b000 0b0 Write, Read Write, Read Write, Read Write, Read Access Type BITFIELD RSVD www.analog.com BITS 7 DESCRIPTION DECODE Spare Analog Devices | 74 MAX77958 BITFIELD Standalone USB Type-C and USB Power Delivery Controller BITS DESCRIPTION DECODE PAIR[2]: Pair address mode of Shared Bus 3 channel: Slave ID 3 Functional Pair address mode option at burst write operation on customer registers. 1 = Pair address mode is enabled for the channel. 0 = Pair address mode is disabled and sequential mode is used. PAIR 6:4 I2C Pair Address Mode Control PAIR[1]: Pair address mode of Shared Bus 2 channel: Slave ID 2 Functional Pair address mode option at burst write operation on customer registers. 1 = Pair address mode is enabled for the channel. 0 = Pair address mode is disabled and sequential mode is used. PAIR[0]: Pair address mode of Shared Bus 1 channel: Slave ID 1 Functional Pair address mode option at burst write operation on customer registers. 1 = Pair address mode is enabled for the channel. 0 = Pair address mode is disabled and sequential mode is used. RSVD HS_EXT_EN www.analog.com 3:1 0 Spare HS-mode Extension Control 0x0: HS-mode Extension is disabled. (I2C Rev. 4 Compliant) 0x1: HS-mode Extension is enabled. HS-mode is enabled without HS-mode entrance code and keeps HS-mode during STOP condition. Analog Devices | 75 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Applications Information D+/D- USB 2.0 Switch Control The integrated D+/D- switches in the MAX77958 are automatically configured by BC1.2 detection results. Table 4. D+/D- Configuration PART NUMBER MAX77958 MAX77958C/D BC1.2 DETECTION RESULTS SDP and CDP DCP D+/D- SWITCH CONFIGURATION OPEN SDP and CDP CLOSED DCP OPEN The configured D+/D- switch based on the BC1.2 detection result can be overridden by the AP through OP-Command 0x05. Refer to the User Guide for more information. HVDCP Configuration The MAX77958 supports adjustable high voltage adaptor (HVDCP) configuration, and the device provides D+/D- manual control. To control D+/D-, OP-Command 0x03 should be set by AP. Refer to the User Guide for more information. Push-Button Function The MAX77958C/D supports the Push-Button function with GPIO7. When the Push-Button function is enabled by AP or MCU, the GPIO7 pin starts the monitoring status. When a Falling Edge or Rising Edge transition is detected, the MAX77958C/D interrupts AP through ACTION_INT[1]=1. See the Ordering Information table and the OP-Command 0x64 in the User Guide for more information. External Interrupt The MAX77958C/D supports an external interrupt function with GPIO8. This is useful when an external device such as a companion charger needs to interrupt the MAX77958C/D to perform an operation specified by the application. When the external interrupt function is enabled by AP or MCU, the GPIO8 pin starts the monitoring interrupt request. When the interrupt request is detected, the MAX77958C/D sets the register ACTION_INT[0]=1. See the Ordering Information table and the OP-Command 0x64 in the User Guide for more information. MAX77958 IC Firmware Update with Dongle Board The MAX77958C/D provides a firmware update capability through the dongle board. To update firmware through the dongle board, the dongle board and evaluation kit GUI are required. Refer to the User Guide for more information. FW Recovery Function The MAX79758D features a FW recovery function. When the FW update fails, the FW version reads as FF.00, and it can be recovered as ROM FW 58.03. To retrieve production FW, the AP requires the following: Case 1: The FW update fails while the AP is updating (battery is a power source in the system) 1) The AP sends an Op command: 0xDF 0xDA 0xA5 0xAD 0xC3 or Plug TA (apply VBUS) Case 2: The FW update fails due to a dead battery event 1) Insert TA to provide VBUS for the system to power-up 2) The AP sends an Op command: 0xDF 0xDA 0xA5 0xAD 0xC3 The FW recovery Op command is only valid for the FW FF.00 case. Analog Devices provides a sample kernel driver to achieve the FW recovery. www.analog.com Analog Devices | 76 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Typical Application Circuits 2/3-Cell Configurable Charger Application Figure 15 illustrates a configurable charger application diagram using the MAX77958 and buck-boost charger devices. In this application, the USB Type-C connector is used for SINK as well as SOURCE. The SINK role is automatically active when the battery is charged using USB Type-C SOURCE that is connected to the USB Type-C connector in Figure 15. Based on the CC detection result, the SOURCE advertises its capability. The IC negotiates power contract with the SOURCE connected to the USB Type-C connector. AP can choose appropriate SOURCE PDO and configure charging current in the buck-boost charger accordingly. The SOURCE role is active when SINK device is attached to the UBS Type-C connector as shown in Figure 15. The IC becomes a power provider with the SOURCE role and advertises its capability to a device connected to USB Type-C connector. In this scenario, AP configures the buck-boost charger as reverse-buck mode to provide OTG voltage to the device connected to the USB Type-C connector. The communication between the IC. USB TYPE-C CONNECTOR 3.5V TO 24V VBUS CHGIN BST1 LX1 1µF 35V VBUS DN DP 2.2kΩ VCIN EN 200kΩ 5.0V SCL_M I2 C MASTER SDA_M USB TYPE-C 27pF 25V 1µF 6.3V 2.2kΩ CC1 CC2 CC1 CC2 27pF 25V MAX77958 SYS 1µF 35V VIO 200kΩ VSYS VIO2 AVL LX2 MAX77960/ MAX77961/ MAX77962 BST2 SYS VSYS BATSP PK+ SCL SDA INTB GND BATSN + PK- PD GPIO2 VCONN SW CONTROL DN DP BC 1.2 VCIN AVL VDD1P8 I2 C SLAVE SCL SDA INTB DN1 DP2 VIO1 MAXQ MTP GPIO6 APPLICATION PROCESSOR USB 2.0 VIO 1µF 6.3V VDD1P1 2.2µF 10V 1µF 6.3V GPIOs 1µF 6.3V GND GPIO SS TX1/RX1 SS TX/RX USB 3.1 MUX SS TX2/RX2 VSYS VCONN BUCK CONVERTER SS TX/RX 5.0V VCIN VCIN EN Figure 15. Configurable Charger Application www.analog.com Analog Devices | 77 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Typical Application Circuits (continued) 2/3-Cell Autonomous Charger Application Figure 16 illustrates an autonomous charger application diagram using the MAX77958 and a buck-boost charger device. In this application, the USB Type-C connector is used for SINK as well as SOURCE. The SINK role is automatically active when the battery is charged using the USB Type-C SOURCE that is connected to the USB Type-C connector. Based on the CC detection result, the SOURCE advertises its capability. The IC negotiates a power contract with the SOURCE connected to the USB Type-C connector. The IC chooses an appropriate SOURCE PDO, and configures charging current in the buck-boost charger accordingly through the master I2C interface in the IC. The SOURCE role is active when a SINK device is attached to the USB Type-C connector as shown in Figure 16. The IC becomes a power provider with the SOURCE role and advertises its capability to a device connected to USB Type-C connector. In this scenario, the IC configures the buck-boost charger to reverse-buck mode to provide OTG voltage to the device connected to the USB Type-C connector. USB TYPE-C CONNECTOR 3.5V TO 24V VBUS CHGIN BST1 LX1 1µF 35V VBUS VCIN EN PD VCIN GPIO2 DN DP DN DP AVL VDD1P8 2.2kΩ 5.0V 1µF 6.3V SCL_M I2 C MASTER SDA_M GPIO8 USB TYPE-C 27pF 25V VIO2 200kΩ CC1 CC2 CC1 CC2 27pF 25V MAX77958 SYS 1µF 35V 2.2kΩ VSYS I2 C SLAVE VCONN SW CONTROL AVL LX2 MAX77960/ MAX77961/ MAX77962 BST2 SYS VSYS BATSP PK+ SCL SDA INTB GND BATSN + PK- SCL SDA VSYS VCONN BUCK CONVERTER 5.0V VCIN DN1 BC 1.2 DP2 VIO1 MAXQ MTP GPIO6 VCIN EN VIO 1µF 6.3V VDD1P1 2.2µF 10V 1µF 6.3V 1µF 6.3V GPIOs GND Figure 16. Autonomous Charger Application www.analog.com Analog Devices | 78 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Typical Application Circuits (continued) Autonomous DC-DC Application Figure 17 illustrates an autonomous DC-DC application diagram using the MAX77958. In this application, the USB TypeC connector is used for SINK. Based on the CC detection result, the SOURCE advertises its capability. The IC negotiates a power contract with the SOURCE connected to the USB Type-C connector. The IC chooses an appropriate SINK PDO among PDOs as shown in Figure 17. The IC then sets the Enable on the DC-DC converter to supply power to the application device. USB TYPE-C CONNECTOR VBUS VIN 1µF 35V DC/DC CONVERTER VBUS CC1 CC2 CC1 CC2 27pF 25V I2 C MASTER USB TYPE-C PD DN DP AVL VDD1P8 I2 C SLAVE DN1 BC 1.2 DP2 VIO1/2 MAXQ MTP VDD1P1 1µF 6.3V ENABLE GPIO GND VCONN SW CONTROL 2.2µF 10V SYSTEM MAX77958 27pF 25V DN DP VOUT 1µF 6.3V GPIOs VIO 1µF 6.3V GPIO6 GND Figure 17. Autonomous DC-DC Application www.analog.com Analog Devices | 79 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Typical Application Circuits (continued) PD Power Adapter Application Figure 18 illustrates an adapter application diagram using the MAX77958 device. In this application, the USB Type-C connector is only used for SOURCE. The IC negotiates a power contract with the SINK connected to the USB TypeC connector. When SINK is attached, the IC advertises its SOURCE PDO to the SINK. Based on contracts, the IC controls GPIOs to adjust VBUS that the SINK is requesting. When disconnection happens, the IC also controls GPIOs to disconnect the power path on the VBUS path and discharges capacitors on the VBUS path to meet the USB Type-C specification. USB TYPE-C CONNECTOR VBUS 100kΩ 10kΩ 10kΩ MAX77958 VDD GPIO4 GPIO5 PD GPIO3 AC/DC CONTROLLER GPIO7 VCONN SW CONTROL GPIO8 GPIO6 I2 C MASTER VDD GPIO3 GPIO7 GPIO8 VBUS LOW HIGH LOW LOW HIGH LOW LOW 5V 9V HIGH LOW 15V HIGH HIGH HIGH 20V VIO1 VIO2 SYS 1µF 6.3V BC 1.2 VDD1P1 1µF 6.3V 27pF 25V DP MAXQ MTP VDD1P8 1µF 6.3V 27pF 25V DN I2 C SLAVE AVL 2.2µF 10V CC1 CC2 USB TYPE-C 9 GPIOs GND NOTE: RESISTOR VALUE IS SELECTED BASED ON PRIMARY SIDE CONTROLLER DESIGN Figure 18. Adapter Application www.analog.com Analog Devices | 80 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Ordering Information PART NUMBER TEMP RANGE PINPACKAGE FW VERSION DP/DN SWITCH SETTING GPIO7/GPIO8 FUNCTIONALITY DONGLE BOARD FIRMWARE UPDATE FW Recovery FUNCTIONALITY MAX77958EWV+T MAX77958EWV+ MAX77958CEWV+T MAX77958CEWV+ MAX77958DEWV+T MAX77958DEWV+ -40°C to +85°C 6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm -40°C to +85°C 6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm -40°C to +85°C 6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm -40°C to +85°C -40°C to +85°C -40°C to +85°C 6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm 6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm 6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm 06.2C* SDP/CDP: Open GPO Disabled No GPO Disabled No GPIO8: External Interrupt GPIO7: Pushbutton Enabled No Enabled No Enabled Yes Enabled Yes DCP: Open 06.2C* SDP/CDP: Open DCP: Open SDP/CDP: Close 06.54* DCP: Open SDP/CDP: Close 06.54* DCP: Open SDP/CDP: Close 58.04** DCP: Open SDP/CDP: Close 58.04** DCP: Open (Falling/Rising Edge) GPIO8: External Interrupt GPIO7: Pushbutton (Falling/Rising Edge) GPIO8: External Interrupt GPIO7: Pushbutton (Falling/Rising Edge) GPIO8: External Interrupt GPIO7: Pushbutton (Falling/Rising Edge) +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. *Not compatible with MAX77958DEWV+ **Not compatible with MAX77958EWV+ and MAX77958CEWV+ www.analog.com Analog Devices | 81 MAX77958 Standalone USB Type-C and USB Power Delivery Controller Revision History REVISION NUMBER REVISION DATE PAGES CHANGED 0 12/19 Initial release 1 4/20 Updated data sheet title, updated VCIN_OK and added USB Type-C/MTP section to the Electrical Characteristics table, updated AVL in the Pin Description section, updated the Detailed Description and Register Map sections, updated Typical Application Circuits Figures 11, 12, and 13 1–73 2 1/21 Updated General Description and Benefits and Features sections, Simplified Block Diagram, Electrical Characteristics tables, Pin Description table, Detailed Description section, Register Map tables, Detecting Connected DFP section, and Figures 11, 12, 13, added Moisture Detection section 1, 2, 15, 24, 25, 27, 29, 30, 33, 35, 41, 45, 51, 72–75 3 5/21 Updated General Description and Benefits and Features sections, added USB BC1.2 D+/D- Adapter Detection, VCONN Switch, and Applications Information section, updated decode in PD_STATUS0 (0xE) table, updated Ordering Information table 1, 30, 31, 42, 54, 75, 76, 80, 81 4 3/22 Updated Benefits and Features, Package Information table outline number, and Ordering Information table, added HVDCP Configuration section 1, 7, 8, 77, 82 5 11/22 Added FW Recovery Function section, deleted Automatic Power Control section, updated Table 4, Push-Button Function, External Interrupt, MAX77958 IC Firmware Update with Dongle Board, and Ordering Information table DESCRIPTION — 32, 76, 81 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. w w w . a n a l o g . c o m Analog Devices | 82 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: MAX77958EWV+ MAX77958EWV+T MAX77958CEWV+T MAX77958DEWV+T
MAX77958EWV+T 价格&库存

很抱歉,暂时无法提供与“MAX77958EWV+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货