0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX77961BEFV06+

MAX77961BEFV06+

  • 厂商:

    AD(亚德诺)

  • 封装:

    UFQFN30

  • 描述:

    - 转换器,电池供电设备 稳压器 IC 1 输出 30-FC2QFN(4x4)

  • 数据手册
  • 价格&库存
MAX77961BEFV06+ 数据手册
EVALUATION KIT AVAILABLE Click here to ask about the production status of specific part numbers. MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries General Description Benefits and Features The MAX77960B/MAX77961B are high-performance wide-input 3A (MAX77960B)/6A (MAX77961B) buckboost chargers with Smart Power Selector™ and operate as a reverse buck converter without an additional inductor, allowing the ICs to power USB on-the-go (OTG) accessories. The devices integrate low-loss power switches and provide high efficiency, low heat, and fast battery charging in a small solution size. The reverse buck has true load disconnect and is protected by an adjustable output current limit. The devices are highly flexible and programmable through I2C configuration or autonomously through resistor configuration. ● 3.5V to 25.4V Input Operating Range, 30VDC Withstand ● 97% Peak Efficiency for 2S Battery at 9VIN/7.4VOUT/1.5AOUT ● 97% Peak Efficiency for 3S Battery at 15VIN/12.6VOUT/2AOUT ● MAX77960B • 100mA to 3.15A Programmable Input Current Limit • 100mA to 3A Programmable Constant Current Charge The battery charger includes the Smart Power Selector to accommodate a wide range of battery sizes and system loads. The Smart Power Selector allows the system to start up smoothly when an input source is available even when the battery is deeply discharged (dead battery) or missing. For battery safety/authentication reasons, the ICs can be configured to keep charging disabled, and allow the DC-DC to switch and regulate the SYS voltage. The system processor can later enable charging using I2C commands as appropriate. Alternatively, the ICs can be configured to automatically start charging. Applications ● USB Type-C Powered Wide-Input Charging Applications ● 2- and 3-Cell Battery-Powered Devices ● Smartphones, Tablets, and 2-in-1 Laptops ● Medical Devices, Health and Fitness Monitors ● Digital Still, Video, and Action Cameras ● Handheld Computers and Terminals ● Handheld Radios ● Power Tools ● Drones ● Battery Backup ● Wireless Speakers ● MAX77961B • 100mA to 6.3A Programmable Input Current Limit • 100mA to 6A Programmable Constant Current Charge ● Remote Differential Voltage Sensing ● 600kHz or 1.2MHz Switching Frequency Options ● System Instant On with Smart Power Selector Power Path ● Charge Safety Timer ● Die Temperature Regulation with Thermal Foldback Loop ● Input Power Management with Adaptive Input Current Limit (AICL) and Input Voltage Regulation ● 10mΩ BATT to SYS Switch, Up to 10A Overcurrent Threshold ● Reverse Buck Mode 5.1V/3A to Support USB OTG ● JEITA Compliant with NTC Thermistor Monitor ● I2C or Resistor Programmable ● 4mm x 4mm, 30-Lead FC2QFN Ordering Information appears at end of data sheet. Smart Power Selector is a trademark of Maxim Integrated Products, Inc. 19-101123; Rev 0; 6/21 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries LX2 BST2 LX1 BST1 Simplified Block Diagram SYS CHGIN VBUS VSYS SYSA Q1 CSINN CSINP VPVL Q3 PGND Q2 Q4 PVL VAVL AVL QBAT BATT BIAS AND REFERENCE VAVL OPTIONAL I2C COMMUNICATION JEITA SCL SCL SDA SDA INTB INTB OTGEN DISQBAT STBY STAT I2C INTERFACE AND INTERRUPT THM THM BATSP PK+ CHARGER AND OTG CONTROL BATSN OTGEN PK2/3-CELL LI-ION BATTERY DISQBAT ISET ITO INLIM VSET STBY STAT OPTIONAL RESISTOR PROGRAMMABILITY CNFG VPVL INOKB INOKB MAX77960B MAX77961B www.maximintegrated.com VBATT GATE DRIVER UVLO OVLO OCP THERMAL SHDN THERMAL MONITOR GND Maxim Integrated | 2 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 30-Lead FC2QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 MAX77960B/MAX77961B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Charger Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Device Configuration Input (CNFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CHGIN Standby Input (STBY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Battery to SYS QBAT Disable Input (DISQBAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 QBAT and DC-DC Control—Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Thermistor Input (THM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Autonomous Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Charger Input Current Limit Setting Input (INLIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fast-Charge Current Setting Input (ISET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Top-Off Current Setting Input (ITO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Charge Termination Voltage Setting Input (VSET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Switch Mode Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Smart Power Selector (SPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CHGIN Regulation Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SYS Regulation Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Powering Up with the Charger Disabled by Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Input Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Adaptive Input Current Limit (AICL) and Input Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Input Self-Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 System Self-Discharge with No Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Charger States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 No Input Power or Charger Disabled Idle State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Precharge State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Trickle Charge State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Fast-Charge Constant Current State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 www.maximintegrated.com Maxim Integrated | 3 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries TABLE OF CONTENTS (CONTINUED) Fast-Charge Constant Voltage State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Top-Off State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Done State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Timer Fault State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Watchdog Timer Suspend State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Thermal Shutdown State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Thermal Foldback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 JEITA Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Factory Ship Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Minimum System Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Battery Differential Voltage Sense (BATSP, BATSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Battery Overcurrent Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Charger Interrupt Debounce Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Input Power-OK/OTG Power-OK Output (INOKB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Charge Status Output (STAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Reverse Buck Mode (OTG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 OTG Enable (OTGEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Analog Low-Noise Power Input (AVL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Low-Side Gate Driver Power Supply (PVL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 System Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Interrupt Output (INTB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Clock Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 General Call Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Communication Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Writing to Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Writing Multiple Bytes using Register-Data Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Reading from a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Reading from Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 www.maximintegrated.com Maxim Integrated | 4 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries TABLE OF CONTENTS (CONTINUED) FUNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 CHGIN Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 SYS Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Battery Insertion Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Wide-Input I2C Programmable Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Wide-Input I2C Programmable Charger with Charger Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Wide-Input Autonomous Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 www.maximintegrated.com Maxim Integrated | 5 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries LIST OF FIGURES Figure 1. Li Battery Charge Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 2. Charger State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 3. Charge Currents vs. Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 4. JEITA Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 5. B2SOVRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 6. Functional Logic Diagram for Communications Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 7. I2C Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 8. I2C Start Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 9. Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 10. Writing to Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 11. Writing to Multiple Registers with “Multiple Byte Register-Data Pairs” Protocol . . . . . . . . . . . . . . . . . . . . . . 47 Figure 12. Reading from a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 13. Reading from Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 14. Battery Insertion Protection with 2S Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 15. Battery Insertion Protection with 3S Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 16. PCB Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 www.maximintegrated.com Maxim Integrated | 6 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries LIST OF TABLES Table 1. CNFG Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 2. QBAT and DC-DC Control Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 3. Trip Temperatures for Different Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 4. INLIM, ITO, ISET, and VSET Pin Connections for Autonomous Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 5. INLIM Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 6. ISET Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 7. ITO Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 8. VSET Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 9. List of Charger Interrupt Debounce Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 10. Charge Status Indicator by STAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 11. Recommended Inductance for Combinations of Switching Frequency and Maximum Nominal CHGIN Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 12. Suggested Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 13. Suggested CHGIN Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 14. Suggested SYS Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 www.maximintegrated.com Maxim Integrated | 7 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Absolute Maximum Ratings CHGIN to GND .................................................... -0.3V to +30.0V CSINP, CSINN to CHGIN ...................................... -0.3V to +0.3V LX1 to PGND ....................................................... -0.3V to +30.0V LX2 to PGND ....................................................... -0.3V to +16.0V BST1 to PVL ........................................................ -0.3V to +30.0V BST2 to PVL ........................................................ -0.3V to +16.0V BST_ to LX ............................................................ -0.3V to +2.2V SYS, SYSA to GND ............................................. -0.3V to +16.0V BATT to GND ...................................................... -0.3V to +16.0V SYS to BATT ....................................................... -0.3V to +16.0V BATSP to GND .......................................... -0.3V to VBATT + 0.3V BATSN, PGND to GND ......................................... -0.3V to +0.3V PVL, AVL, ISET, VSET, INLIM, ITO, CNFG, THM to GND . -0.3V to +2.2V AVL to PVL ............................................................ -0.3V to +0.3V DISQBAT, OTGEN, STBY, STAT, INOKB, INTB, SDA, SCL to GND ....................................................................... -0.3V to +6.0V CHGIN Continuous Current ........................................... 6.5ARMS LX_, PGND Continuous Current .................................... 6.5ARMS SYS, BATT Continuous Current .................................. 10.0ARMS Continuous Power Dissipation (Multilayer Board) (TA = +70°C, derate 40.37mW/°C above +70°C.) ...........................3229.71mW Operating Temperature Range .............................-40°C to +85°C Storage Temperature Range ..............................-65°C to +150°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 30-Lead FC2QFN Package Code F304A4F+1 Outline Number 21-100278 Land Pattern Number 90-100100 Thermal Resistance, Four-Layer Board: Junction-to-Ambient (θJA) 24.77°C/W Junction-to-Case Thermal Resistance (θJC) 1.67°C/W www.maximintegrated.com Maxim Integrated | 8 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial. www.maximintegrated.com Maxim Integrated | 9 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 25.4 V 26.7 V GENERAL ELECTRICAL CHARACTERISTICS CHGIN Voltage Range VCHGIN Operating voltage 3.5 25.4 CHGIN Overvoltage Threshold VCHGIN_OVLO VCHGIN rising, 365mV hysteresis CHGIN Overvoltage Delay tD_CHGIN_OVL VCHGIN rising, 100mV overdrive 10 μs O VCHGIN falling, 100mV overdrive 7 ms CHGIN Undervoltage Threshold VCHGIN_UVLO CHGIN Quiescent Current (ISYS = 0A) ICHGIN 0.075 VCHGIN = 9.0V, charger disabled 0.17 0.5 VCHGIN = 9.0V, charger enabled, VSYS = VBATT = 8.7V (2S configuration), no switching 2.7 4 2.3 5.0 DISQBAT = low, I2C enabled, VCHGIN = 0V, ISYS = 0A, VBATT = 13.5V 100 200 VSYS = 7.6V, VBATT = 0V, charger disabled, TA = +25°C 0.01 10 VSYS = 7.6V, VBATT = 0V, charger disabled, TA = +85°C 10 VCHGIN = 9V, VBATT = 8.4V, QBAT is off, battery overcurrent protection disabled, charger is enabled but in its done mode, TA = +25°C 57 VCHGIN = 9V, VBATT = 8.4V, QBAT is off, battery overcurrent protection disabled, charger is enabled but in its done mode, TA = +85°C 57 Guaranteed by VSYSUVLO and VSYSOVLO SYSUVL O rising VSYSUVLO VSYS falling, 530mV hysteresis 3.95 VSYS rising, 430mV hysteresis, 2S battery VSYS rising, 267mV hysteresis, 3S battery VSYSOVLO VPVL TSHDN TJ rising V mA 1 VSYS Thermal Shutdown Threshold www.maximintegrated.com VCHGIN = 2.4V, the input is undervoltage and RINSD is the only loading FSHIP_MODE = 1 or DISQBAT = high, VCHGIN = 0V, ISYS = 0A, VBATT = 13.5V PVL Output Voltage Thermal Shutdown Hysteresis 3.57 ISHDN IBATTDN SYS Overvoltage Lockout Threshold 3.5 MODE[3:0] = 0x0 (DC-DC off), STBY = H or STBY_EN = 1, VCHGIN = 5V BATT Quiescent Current (ISYS = 0A) SYS Undervoltage Lockout Threshold 3.43 ICHGIN_STBY IBATT SYS Operating Voltage VCHGIN rising, 20% hysteresis 26.05 µA 65 SYSOVL O rising V 4.1 4.25 V 10.65 10.9 11.15 13.75 14.1 14.45 1.7 1.8 1.9 V V 165 °C 15 °C Maxim Integrated | 10 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (continued) (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER CHGIN Self-Discharge Resistance SYMBOL RINSD CONDITIONS MIN TYP MAX UNITS VCHGIN = 3V 44 kΩ BATT Self-Discharge Resistance RBATSD VCHGIN = 9V, VSYS = VBATT = 5V 600 Ω SYS Self-Discharge Resistance RSYSSD VCHGIN = 9V, VSYS = VBATT = 5V 600 Ω 300 ms Self-Discharge Latch Time SWITCH MODE CHARGER / CHARGER BATT Regulation Voltage Range VBATTREG BATT Regulation Voltage Accuracy Programmable from 8.0V to 9.26V (2S battery) and 12.0V to 13.05V (3S battery), production tested at 8V, 8.38V, 8.8V and 9.26V only (2S battery) and 12V, 12.57V, 13.2V, and 13.89V only (3S battery) 8.00 8.8V or 13.2V settings, TA = +25°C -0.9 -0.3 +0.3 8.8V or 13.2V settings, TA = 0°C to +85°C (Note 1) -1 -0.3 +0.5 13.05 V % BATT Overvoltage Lockout Threshold VBATTOVLO VBATT rising above VBATTREG, 2% hysteresis 75 240 375 mV/cell BATT Undervoltage Lockout Threshold VBATTUVLO VBATT rising, 100mV hysteresis 2.0 2.5 3.0 V MAX77960B; 100mA to 3A; production tested at 100mA, 200mA, 500mA, 1000mA, 1500mA, 2000mA, and 3000mA settings 0.10 MAX77961B; 100mA to 6A; production tested at 100mA, 200mA, 500mA, 1000mA, 1500mA, 2000mA, 3000mA, 3500mA, and 3800mA settings 0.10 Fast-Charge Current Program Range Fast-Charge Current Accuracy www.maximintegrated.com IFC 3 A 6 TA = +25°C, VBATT > VSYSMIN, programmed for 100mA 80 100 120 TA = +25°C, VBATT > VSYSMIN, programmed for 200mA 180 200 220 TA = +25°C, VBATT > VSYSMIN, programmed for 500mA 481 500 519 TA = +25°C, VBATT > VSYSMIN, programmed for 1000mA 962 1000 1038 TA = +25°C, VBATT > VSYSMIN, programmed for 2000mA 1925 2000 2075 TA = +25°C, VBATT > VSYSMIN, programmed for 3000mA 2887 3000 3113 MAX77961B. TA = +25°C, VBATT > VSYSMIN, programmed for 3500mA 3369 3500 3631 MAX77961B. TA = +25°C, VBATT > VSYSMIN, programmed for 3800mA 3657 3800 3943 mA Maxim Integrated | 11 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (continued) (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL Fast-Charge Current Accuracy (Over Temperature) CHGIN Adaptive Voltage Regulation Range VCHGIN_REG CHGIN Adaptive Voltage Regulation Accuracy CHGIN Current Limit Range CHGIN_ILIM CHGIN Current Limit Accuracy CHGIN Current Limit Accuracy (Over Temperature) Precharge Voltage Threshold VPRECHG Precharge Current IPRECHG Prequalification Threshold Hysteresis www.maximintegrated.com VPQ-H CONDITIONS MIN TYP MAX UNITS -40°C < TA < +85°C, VBATT > VSYSMIN, programmed for 200mA or less (Note 1) -20 +20 mA -40°C < TA < +85°C, VBATT > VSYSMIN, programmed for greater than 200mA (Note 1) -5 +5 % I2C programmable 4.025 19.05 V 4.55V setting 4.42 4.68 V MAX77960B; programmable; production tested at 100mA, 150mA, 200mA, 500mA, 1000mA, 1500mA, and 3000mA settings only 0.1 MAX77961B; programmable; production tested at 100mA, 150mA, 200mA, 500mA, 1000mA, 1500mA, 3000mA, 4000mA, and 6300mA settings only 0.1 Charger enabled, 100mA input current setting, TA = +25°C 88 98 108 Charger enabled, 200mA input current setting, TA = +25°C 175 195 215 Charger enabled, 500mA input current setting, TA = +25°C 475 488 500 Charger enabled, 1000mA input current setting, TA = +25°C 950 975 1000 Charger enabled, 3000mA input current setting, TA = +25°C 2850 2925 3000 MAX77961B; charger enabled, 4000mA input current setting, TA = +25°C 3800 3900 4000 MAX77961B; charger enabled, 6300mA input current setting, TA = +25°C 5985 6143 6300 Charger enabled, 200mA or less input current setting, -40°C < TA < +85°C (Note 1) -22.5 Charger enabled, greater than 200mA input current setting, -40°C < TA < +85°C (Note 1) -7.5 VBATT rising, voltage threshold per cell 2.4 2.5 2.6 V/Cell 35 50 65 mA Applies to VPRECHG 4.55 3.15 A 6.3 mA +17.5 % +2.5 150 mV/Cell Maxim Integrated | 12 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (continued) (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER Minimum SYS Voltage Accuracy Trickle Charge Current Top-Off Current Program Range Charge Termination Deglitch Time Charger Restart Threshold Range SYMBOL CONDITIONS MIN VSYSMIN Programmable from 5.535V to 6.970V (2S battery) and 8.303V to 10.455V (3S battery), VBATT = 5.6V (2S battery) or 8.4V (3S battery), tested at 3V/cell setting -3 Default setting = enabled; ITRICKLE[1:0] = 00 75 100 125 Default setting = enabled; ITRICKLE[1:0] = 01 (Note 1) 150 200 250 Default setting = enabled; ITRICKLE[1:0] = 10 (Note 1) 225 300 375 Default setting = enabled; ITRICKLE[1:0] = 11 300 400 500 Programmable from 100mA to 600mA 100 ITRICKLE ITO tTERM VRSTRT Charger Restart Deglitch Time Charger State Change Interrupt Deglitch Time tSCIDG MAX UNITS +3 % mA 2mV overdrive, 100ns rise/fall time Program options for disabled, 100mV/ cell, 150mV/cell, and 200mV/cell with CHG_RSTRT[1:0] TYP 600 160 100 mA ms 200 mV/cell 10mV overdrive, 100ns rise time 130 ms Excludes transition to timer fault state, watchdog timer state 30 ms SWITCH MODE CHARGER / CHARGE TIMER Prequalification Time tPQ Applies to both low-battery prequalification and dead-battery prequalification modes 30 min Fast-Charge Constant Current + Fast-Charge Constant Voltage Time tFC Adjustable from 3hrs, 4hrs, 5hrs, 6hrs, 7hrs, 8hrs, 10hrs including a disable setting; 3hrs default 3 hrs Top-Off Time tTO Adjustable from 30s to 70min in 10min steps 30 min SWITCH MODE CHARGER / WATCHDOG TIMER Watchdog Timer Period tWD (Note 2) 80 s SWITCH MODE CHARGER / BUCK-BOOST CHGIN OK to Start Switching Delay Buck-Boost Current Limit tSTART HSILIM Delay from INOKB H → L to LX_ start switching 150 ms MAX77960B, VCHGIN = 9V, VSYS = VBATT = 7.6V 4.3 5 5.7 MAX77961B, VCHGIN = 9V, VSYS = VBATT = 7.6V 8.6 10 11.4 16.5 26 A SWITCH MODE CHARGER / BUCK-BOOST / SWITCH IMPEDANCE AND LEAKAGE CURRENT LX1 High-Side Resistance www.maximintegrated.com RLX1_HS VCHGIN = 9V, VSYS = VBATT = 7.6V mΩ Maxim Integrated | 13 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (continued) (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS LX1 Low-Side Resistance RLX1_LS VCHGIN = 9V, VSYS = VBATT = 7.6V 17 30 mΩ LX2 High-Side Resistance RLX2_HS VCHGIN = 9V, VSYS = VBATT = 7.6V 9 18 mΩ LX2 Low-Side Resistance RLX2_LS VCHGIN = 9V, VSYS = VBATT = 7.6V 21 33 mΩ LX1 = PGND or CHGIN, LX2 = PGND or SYS, TA = +25°C 0.01 10 LX1 = PGND or CHGIN, LX2 = PGND or SYS, TA = +85°C 1 LX_ Leakage Current BST_ Leakage Current SYS, SYSA Leakage Current CSINP, CSINN Leakage Current ICSINP, ICSINN µA BST_ = 1.8V, TA = +25°C 0.01 BST_ = 1.8V, TA = +85°C 1 VSYS = VSYSA = 8.4V, VBATT = 0V, charger disabled, TA = +25°C 0.01 VSYS = VSYSA = 8.4V, VBATT = 0V, charger disabled, TA = +85°C 1 VCHGIN = 26.05V, VCSINP = VCSINN = 26.05V, TA = +25°C 10 µA 10 µA -1 +1 µA 17 mΩ SWITCH MODE CHARGER / SMART POWER SELECTOR BAT to SYS Dropout Resistance BATT to SYS Reverse Regulation Voltage RBAT2SYS 10 VBSREG 90 mV SWITCH MODE CHARGER / BATT TO SYS OVERCURRENT ALERT Battery Overcurrent Threshold Range IBOVCR Programmable from 3A to 10A. Option to disable. Battery Overcurrent Debounce Time tBOVRC Response time for generating the overcurrent interrupt (Note 2) 3 10 A 3.3 ms 130 °C SWITCH MODE CHARGER / THERMAL FOLDBACK Junction Temperature Thermal Regulation Loop Setpoint Program Range www.maximintegrated.com TREG Junction temperature when charge current is reduced; programmable from 85°C to 130°C in 5°C steps; default value is 115°C 85 Maxim Integrated | 14 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (continued) (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER Thermal Regulation Gain SYMBOL CONDITIONS ATJREG The charge current is decreased 5% of the fast-charge current setting for every degree that the junction temperature exceeds the thermal regulation temperature. This slope ensures that the full-scale current of 3A (MAX77960B)/6A (MAX77961B) is reduced to 0A by the time the junction temperature is 20°C above the programmed loop set point. For lower programmed charge currents such as 480mA, this slope is valid for charge current reductions down to 80mA; below 100mA the slope becomes shallower but the charge current still reduced to 0A if the junction temperature is 20°C above the programmed loop set point. MIN TYP MAX -5 UNITS %/°C SWITCH MODE CHARGER / THERMISTOR MONITOR THM Threshold, COLD THM_COLD VTHM/VAVL rising, 1% hysteresis (thermistor temperature falling) 73.36 74.56 75.76 % THM Threshold, COOL THM_COOL VTHM/VAVL rising, 1% hysteresis (thermistor temperature falling) 58.8 60 61.2 % THM Threshold, WARM THM_WARM VTHM/VAVL falling, 1% hysteresis (thermistor temperature rising) 33.68 34.68 35.68 % THM_HOT VTHM/VAVL falling, 1% hysteresis (thermistor temperature rising) 21.59 22.5 23.41 % THM Threshold, HOT THM Threshold, Disabled VTHM/AVL falling, 1% hysteresis, THM function is disabled below this voltage 4.9 5.9 6.9 % THM Threshold, Battery Removal Detection VTHM/VAVL rising, 1% hysteresis, battery removal 85.6 87 88.4 % THM Input Leakage Current VTHM = GND or VAVL; TA = +25°C 0.1 1 VTHM = GND or VAVL; TA = +85°C 0.1 µA REVERSE BUCK Buck Current Limit HSILIM_REV Reverse Buck Quiescent Current 4.3 Not switching: output forced 200mV above its target regulation voltage Minimum BATT Voltage in OTG Mode VBATT.MIN.OT CHGIN Voltage in OTG Mode VCHGIN.OTG CHGIN Undervoltage Threshold in OTG Mode VCHGIN.OTG.U CHGIN Overvoltage Threshold in OTG Mode VCHGIN.OTG. www.maximintegrated.com fSW = 600kHz G V OV 5 5.7 1150 A µA VBATT = VSYS, SYS UVLO falling threshold in OTG mode 5.96 6.14 6.32 V VBATT = VBATT.MIN.OTG, OTGEN = high 4.94 5.1 5.26 V VCHGIN falling, OTGEN = high 85 % VCHGIN rising, OTGEN = high 110 % Maxim Integrated | 15 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (continued) (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER CHGIN Output Current Limit in OTG Mode SYMBOL ICHGIN.OTG.LI M CHGIN Output Voltage Ripple in OTG Mode CONDITIONS MIN TYP MAX VBATT = VBATT.MIN.OTG, TA = +25°C, OTG_ILIM[2:0] = 0b000, OTGEN = high 500 550 VBATT = VBATT.MIN.OTG, TA = +25°C, OTG_ILIM[2:0] = 0b001, OTGEN = high 900 990 VBATT = VBATT.MIN.OTG, TA = +25°C, OTG_ILIM[2:0] = 0b011, OTGEN = high 1500 1650 VBATT = VBATT.MIN.OTG, TA = +25°C, OTG_ILIM[2:0] = 0b111, OTGEN = high 3000 3300 Discontinuous inductor current (i.e., skip mode), OTGEN = high ±150 Continuous inductor current, OTGEN = high ±150 UNITS mA mV IO CHARACTERISTICS RINLIM, RISET, RVSET, RTO, RCNFG Resistor Range RPROG_ Output Low Voltage INOKB, STAT ISINK = 1mA, TA = +25°C 5.5V, TA = +25°C Output High Leakage INOKB, STAT -1 5.5V, TA = +85°C DISQBAT, OTGEN, STBY Logic Input Low Threshold VIL DISQBAT, OTGEN, STBY Logic Input High Threshold VIH DISQBAT, OTGEN, STBY Logic Input Leakage Current DISQBAT, OTGEN, STBY Pulldown Resistor 5.49 0 226 kΩ 0.4 V +1 0.1 0.4 1.4 5.5V (including current through pulldown resistor) RDISQBAT µA V V 5.5 10 µA 1000 1200 kΩ 0.3 x VAVL V INTERFACE / I2C INTERFACE AND INTERRUPT SCL, SDA Input Low Level SCL, SDA Input High Level 0.7 x VAVL SCL, SDA Input Hysteresis SCL, SDA Logic Input Current 0.05 x VAVL SDA = SCL = 5.5V SCL, SDA Input Capacitance SDA Output Low Voltage www.maximintegrated.com V -10 V +10 10 Sinking 20mA µA pF 0.4 V Maxim Integrated | 16 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (continued) (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL Output Low Voltage INTB CONDITIONS MIN TYP ISINK = 1mA VINTB = 5.5V, TA = +25°C Output High Leakage INTB -1 VINTB = 5.5V, TA = +85°C 0 MAX UNITS 0.4 V +1 0.1 μA INTERFACE / I2C COMPATIBLE INTERFACE TIMING FOR STANDARD, FAST, AND FAST-MODE PLUS Clock Frequency Hold Time (Repeated) START Condition fSCL 1000 kHz tHD;STA 0.26 µs CLK Low Period tLOW 0.5 µs CLK High Period tHIGH 0.26 µs Set-Up Time Repeated START Condition tSU;STA 0.26 µs DATA Hold Time tHD:DAT 0 DATA Valid Time tVD:DAT 0.45 µs DATA Valid Acknowledge Time tVD:ACK 0.45 µs DATA Set-Up time tSU;DAT 50 ns Set-Up Time for STOP Condition tSU;STO 0.26 µs tBUF 0.5 µs Bus-Free Time Between STOP and START Pulse Width of Spikes that Must be Suppressed by the Input Filter µs 50 ns INTERFACE / I2C COMPATIBLE INTERFACE TIMING FOR HS-MODE (CB = 100pF) Clock Frequency fSCL 3.4 MHz Set-Up Time Repeated START Condition tSU;STA 160 ns Hold Time (Repeated) START Condition tHD;STA 160 ns CLK Low Period tLOW 160 ns CLK High Period tHIGH 60 ns DATA Set-Up Time tSU;DAT 10 ns DATA Hold Time tHD:DAT 0 ns Set-Up Time for STOP Condition tSU;STO 160 ns Pulse Width of Spikes that Must be Suppressed by the Input Filter 10 ns INTERFACE / I2C COMPATIBLE INTERFACE TIMING FOR HS-MODE (CB = 400pF) Clock Frequency www.maximintegrated.com fSCL 1.7 MHz Maxim Integrated | 17 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Electrical Characteristics (continued) (VSYS = 7.6V, VBATT = 7.6V, VCHGIN = 9V, TA = -40°C to +85°C. TA = +25°C (typ). Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Set-Up Time Repeated START Condition tSU;STA 160 ns Hold Time (Repeated) START Condition tHD;STA 160 ns tLOW 320 ns CLK Low Period CLK High Period tHIGH 120 ns DATA Set-Up time tSU;DAT 10 ns DATA Hold Time tHD:DAT 0 ns Set-Up Time for STOP Condition tSU;STO 160 ns Pulse Width of Spikes that Must be Suppressed by the Input Filter 10 ns Note 1: Guaranteed by design. Not production tested. Note 2: Guaranteed by design. Production tested through scan. www.maximintegrated.com Maxim Integrated | 18 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Typical Operating Characteristics (CCHGIN = 10μF, CSYS = 2 x 47μF, L = 3.3μH (PA5007.332NLT) or 1.5μH (PA5003.152NLT), TA = +25°C unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 19 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Pin Configuration MAX77960B/MAX77961B BST1 1 CHGIN 2 LX1 3 CSINP STBY PVL AVL ITO VSET ISET 30 29 28 27 26 25 24 23 MAX77960B MAX77961B 9 10 11 12 13 14 SCL 8 THM 7 BATT 6 BATSP SYS BATSN 5 BST2 LX2 DISQBAT 4 OTGEN PGND CSINN TOP VIEW 22 CNFG 21 INLIM 20 GND 19 SYSA 18 INTB 17 INOKB 16 STAT 15 SDA 30-LEAD FC2QFN (4mm x 4mm) Pin Description PIN NAME 1 BST1 www.maximintegrated.com FUNCTION High-Side Input MOSFET Driver Supply. Bypass BST1 to LX1 with a 0.22μF/6.3V capacitor. Maxim Integrated | 20 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Pin Description (continued) PIN NAME FUNCTION Buck-Boost Charger Input. CHGIN is also the buck output when the charger is operating in the reverse mode. Bypass with two 10μF/35V ceramic capacitors from CHGIN to PGND. 2 CHGIN 3 LX1 4 PGND 5 LX2 Inductor Connection Two. Connect an inductor between LX1 and LX2. 6 SYS System Supply Output. Bypass SYS to PGND with a minimum of two 47µF/25V ceramic capacitors. 7 OTGEN Active-High Input. Connect the OTGEN pin to high enables the OTG function. When OTGEN pin is pulled low, the OTG enable function is controlled by I2C. To pull the OTGEN pin low with a pulldown resistor, the resistance must be lower than 44kΩ. 8 DISQBAT Active-High Input. Connect high to disable the integrated QBAT FET between SYS and BATT. Charging is disabled when DISQBAT connects to high. When DISQBAT is pulled low, QBAT FET control is defined in the QBAT and DC-DC Control—Configuration Table. To pull the DISQBAT pin low with a pulldown resistor, the resistance must be lower than 44kΩ. 9 BST2 10 BATSN Battery Voltage Differential Sense Negative Input. Connect to the negative terminal of the battery pack. 11 BATSP Battery Voltage Differential Sense Positive Input. Connect to the positive terminal of the battery pack. 12 BATT Battery Power Connection. Connect to the positive terminal of the battery pack. Bypass BATT to PGND with a 10μF/25V capacitor. All BATT pins must be connected together externally. 13 THM Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor from THM to GND. Connect a resistor equal to the thermistor +25°C resistance from THM to AVL. JEITA-controlled charging available with JEITA_EN = 1. Charging is suspended when the thermistor voltage is outside of the hot and cold limits. Connect THM to GND to disable the thermistor temperature sensor. Connect THM to AVL to emulate battery removal and prevent charging. 14 SCL Serial Interface I2C Clock Input 15 SDA Serial Interface I2C Data. Open-drain output. Inductor Connection One. Connect an inductor between LX1 and LX2. Power Ground for Buck-Boost Low-Side MOSFETs High-Side Output MOSFET Driver Supply. Bypass BST2 to LX2 with a 0.22μF/6.3V capacitor. Charger Status Output. Active-low, open-drain output, connect to the pullup through a 10kΩ resistor. Pulls low when the charging is in progress. Otherwise, STAT is high impedance. 16 STAT 17 INOKB STAT toggles between low and high (when connected to a pullup rail) during charge. STAT becomes low when top-off threshold is detected and charger enters the done state. STAT becomes high (when connected to a pullup rail) when charge faults are detected. Input Power-OK/OTG Power-OK Output. Active-low, open-drain output pulls low when the CHGIN voltage is valid. 18 INTB Active-Low Open-Drain Interrupt Output. Connect a pullup resistor to the pullup power source. 19 SYSA SYS Voltage Sensing Input for SYS UVLO and OVLO Detection 20 GND Analog Ground 21 INLIM Charger Input Current Limit Setting Input. Connect a resistor (RINLIM) from INLIM to GND programs the charger input current limit. Refer to Table 5. 22 CNFG 23 ISET www.maximintegrated.com Device Configuration Input. Connect a resistor (RCNFG) from CNFG to GND to program the following parameter, see Table 1. ● Switching frequency (600kHz or 1.2MHz) ● Number of battery cells in series connection (2S or 3S) Fast-Charge Current Setting Input. Connect a resistor (RISET) from ISET to GND programs the fast charge current. See Table 6. Maxim Integrated | 21 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Pin Description (continued) PIN NAME FUNCTION Charge Termination Voltage Setting Input. Connect a resistor (RVSET) from VSET to GND programs the charge termination voltage. See Table 8. 24 VSET 25 ITO Top-Off Current Setting Input. Connect a resistor (RITO) from ITO to GND programs the top-off current. See Table 7. 26 AVL Analog Voltage Supply for On-Chip, Low-Noise Circuits. Bypass with a 4.7μF/6.3V ceramic capacitor to GND and connect AVL to PVL with a 4.7Ω resistor. 27 PVL Internal Bias Regulator High Current Output Bypass. Supports internal noisy and high current gate drive loads. Bypass to GND with a minimum 4.7μF/6.3V ceramic capacitor, and connect AVL to PVL with a 4.7Ω resistor. Powering external loads from PVL is not recommended, other than pullup resistors. 28 STBY Active-High Input. Connect high to disable the DC-DC between CHGIN input and SYS output. Battery supplies the system power if the QBAT is on. See Table 2. Connect low to control the DCDC with the power-path state machine. To pull the STBY pin low with a pulldown resistor, the resistance must be lower than 44kΩ. 29 CSINP Input Current-Sense Positive Input 30 CSINN Input Current-Sense Negative Input www.maximintegrated.com Maxim Integrated | 22 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Detailed Description Charger Configuration The MAX77960B/MAX77961B are highly flexible, highly integrated switch mode charger. Autonomous charging inputs configure the charger without host I2C interface, see the Autonomous Charging section for more details. The MAX77960B/MAX77961B have an I2C interface that allows the host controller to program and monitor the charger. Charger configuration registers, interrupt, interrupt mask, and status registers are described in the Register Map. Device Configuration Input (CNFG) CNFG is the MAX77960B/MAX77961B's configuration input for the following parameters: ● Switching frequency (600kHz or 1.2MHz) ● Number of battery cells in series connection (2S or 3S) Connect a resistor (RCNFG) from CNFG to GND to program. See Table 1. Note that for 1.2MHz switching frequency, only 2S battery is supported. Table 1. CNFG Program Options Lookup Table PART NUMBER SWITCHING FREQUENCY (MHz) MAX77960BEFV06+ MAX77961BEFV06+ 0.6 MAX77960BEFV12+ MAX77961BEFV12+ 1.2 NUMBER OF SERIES BATTERY CELLS RCNFG (Ω) 2 Tied to PVL or 86600 3 8660 2 Tied to PVL or 69800 CHGIN Standby Input (STBY) The host can reduce the MAX77960B/MAX77961B's CHGIN supply current by driving STBY pin to high or setting STBY_EN bit to 1. When STBY is pulled high or STBY_EN bit is set to 1, the DC-DC turns off. When STBY is pulled low and STBY_EN bit is set to 0, the DC-DC is controlled by the power-path state machine. To pull the STBY pin low with a pulldown resistor, the resistance must be lower than 44kΩ. Battery to SYS QBAT Disable Input (DISQBAT) The host can disable the QBAT switch by setting DISIBS bit to 1 or driving DISQBAT pin to high. Charging stops when QBAT switch is disabled. When DISQBAT is pulled low and DISIBS bit is set to 0, QBAT FET control is defined in Table 2. To pull the DISQBAT pin low with a pulldown resistor, the resistance must be lower than 44kΩ. QBAT and DC-DC Control—Configuration Table The QBAT control and the DC-DC control depend on both hardware pins (OTGEN, DISQBAT, and STBY) and their associated I2C registers. Table 2. QBAT and DC-DC Control Configuration Table OTGEN (PIN) OR MODE [3:0] = 0xA (I2C) DISQBAT (PIN) OR DISIBS (I2C) STBY (PIN) OR STBY_EN (I2C) 0 0 0 www.maximintegrated.com QBAT Power-path state machine/internal logic control DC-DC Power-path state machine/internal logic control Maxim Integrated | 23 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Table 2. QBAT and DC-DC Control Configuration Table (continued) OTGEN (PIN) OR MODE [3:0] = 0xA (I2C) DISQBAT (PIN) OR DISIBS (I2C) STBY (PIN) OR STBY_EN (I2C) 0 0 1 Enable (SYS is powered from battery through QBAT switch while DC-DC is disabled) Disable 0 1 0 Disable Power-path state machine/internal logic control Disable Power-path state machine/internal logic control QBAT 0 1 1 Disable (SYS is powered from battery through QBAT body diode while DC-DC is disabled) 1 x x Enable DC-DC Thermistor Input (THM) The thermistor input can be utilized to achieve functions that include charge suspension, JEITA-compliant charging, and battery removal detection. Thermistor monitoring feature can be disabled by connecting the THM pin to ground. Charge Suspension The THM input connects to an external negative temperature coefficient (NTC) thermistor to monitor battery or system temperature. Charging stops when the thermistor temperature is out of range (T < TCOLD or T > THOT). The charge timers are reset and the CHG_DTLS[3:0], CHG_OK register bits report the charging suspension status and CHG_I interrupt bit is set. When the thermistor comes back into range (TCOLD < T < THOT), charging resumes and the charge timer restarts. JEITA-Compliant Charging JEITA-compliant charging is available with JEITA_EN = 1. See the JEITA Compliance section for more details. Battery Removal Detection Connecting THM to AVL emulates battery removal and prevents charging. Disable Thermistor Monitoring Connecting THM to GND disables the thermistor monitoring function, and JEITA-controlled charging is unavailable in this configuration. The MAX77960B/MAX77961B detect an always-connected battery when THM is grounded, and charging starts automatically when a valid adapter is plugged in. In applications with removable batteries, do not connect THM to GND because the MAX77960B/MAX77961B cannot detect battery removal when THM is grounded. Instead, connecting THM to the thermistor pin in the battery pack is recommended. www.maximintegrated.com Maxim Integrated | 24 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Since the thermistor monitoring circuit employs an external bias resistor from THM to AVL, the thermistor is not limited only to 10kΩ (at +25ºC). Any resistance thermistor can be used as long as the value is equivalent to the thermistors +25ºC resistance. For example, with a 10kΩ at RTB resistor, the charger enters a temperature suspend state when the thermistor resistance falls below 3.97kΩ (too hot) or rises above 28.7kΩ (too cold). This corresponds to 0ºC to +50ºC range when using a 10kΩ NTC thermistor with a beta of 3500. The general relation of thermistor resistance to temperature is defined by the following equation: RT = R25xe {βx( 1 1 − )} T + 273 ° C 298 ° C where: RT = The resistance in Ω of the thermistor at temperature T in Celsius R25 = The resistance in Ω of the thermistor at +25ºC β = The material constant of the thermistor, which typically ranges from 3000k to 5000k T = The temperature of the thermistor in °C Some designs might prefer other thermistor temperature limits. Threshold adjustment can be accommodated by changing RTB, connecting a resistor in series and/or in parallel with the thermistor, or using a thermistor with different β. For example, a +45ºC hot threshold and 0°C cold threshold can be realized by using a thermistor with a β to 4250 and connecting 120kΩ in parallel. Since the thermistor resistance near 0ºC is much higher than it is near +50ºC, a large parallel resistance lowers the cold threshold, while only slightly lowering the hot threshold. Conversely, a small series resistance raises the cold threshold, while only slightly raising the hot threshold. Raising RTB raises both the hot and cold threshold, while lowering RTB lowers both thresholds. Since AVL is active whenever a valid power is provided at CHGIN or BATT, thermistor bias current flows at all times, even when charging is disabled. When using a 10kΩ thermistor and a 10kΩ pullup to AVL, this results in an additional 90μA load. This load can be reduced to 9μA by instead using a 100kΩ thermistor and 100kΩ pullup resistor. Table 3. Trip Temperatures for Different Thermistors THERMISTOR TRIP TEMPERATURES R25 (Ω) β RTB (Ω) R15 (Ω) R45 (Ω) TCOLD (˚C) TCOOL (˚C) TWARM (˚C) THOT (˚C) 10000 3380 10000 14826 4900 -0.8 +14.7 +42.6 +61.4 10000 3940 10000 15826 4354 +2.6 +16.1 +40.0 +55.7 47000 4050 47000 75342 19993 +3.2 +16.4 +39.6 +54.8 100000 4250 100000 164083 40781 +4.1 +16.8 +38.8 +53.2 Autonomous Charging The MAX77960B/MAX77961B support autonomous charging without I2C. In applications without I2C serial communication, use the following pins to configure the MAX77960B/MAX77961B charger: CNFG, INLIM, ITO, ISET, VSET, OTGEN, DISQBAT, STBY. The INLIM, ITO, ISET, and VSET pins are used to program the charger's input current limit, top-off current, constant charging current, and termination voltage. Connect a valid resistor from each of these pins to ground to program the charger. See the Pin Description for details. Connect all four pins (INLIM, ITO, ISET, VSET) to PVL to use the default values for the associated charger registers. For autonomous charging, it is considered an abnormal condition if some of these pins (INLIM, ITO, ISET, VSET) connect to a valid resistor, but others do not (for example open or connects to PVL or connects to a resistor that is out of range). When this happens, the MAX77960B/MAX77961B allow the DC-DC to switch and regulate the SYS voltage, but disable charging for safety reasons. The STAT pin reports no charge. www.maximintegrated.com Maxim Integrated | 25 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Table 4. INLIM, ITO, ISET, and VSET Pin Connections for Autonomous Charging INLIM PIN ITO PIN ISET PIN VSET PIN AUTONOMOUS CHARGING Valid resistor Valid resistor Valid resistor Valid resistor Normal, charger configuration is programmed by resistors Tied to PVL Tied to PVL Tied to PVL Tied to PVL Normal, charger configuration uses default values All other connections Abnormal, no charging Charger Input Current Limit Setting Input (INLIM) When a valid charge source is applied to CHGIN, the MAX77960B/MAX77961B limit the current drawn from the charge source to the value programmed with INLIM pin. The default charger input current limit is programmed with the resistance from INLIM to GND. See Table 5. If I2C is used in the application, the CHGIN input current limit can also be reprogrammed with CHGIN_ILIM[6:0] register bits after the devices power up. Connect INLIM pin to PVL to use I2C default settings. Table 5. INLIM Program Options Lookup Table RINLIM (Ω) MAX77960B CHGIN INPUT CURRENT LIMIT (mA) DEFAULT VALUE OF CHGIN_ILIM[6:0] MAX77961B CHGIN INPUT CURRENT LIMIT (mA) DEFAULT VALUE OF CHGIN_ILIM[6:0] Tied to PVL 500 500 226000 100 100 178000 200 200 140000 300 300 110000 400 400 86600 500 500 69800 1000 1000 54900 1500 1500 39200 2000 2000 22600 2500 2500 17800 3000 3000 14000 N/A 3500 11000 N/A 4000 8660 N/A 4500 6980 N/A 5000 5490 N/A 6000 Fast-Charge Current Setting Input (ISET) When a valid input source is present, the battery charger attempts to charge the battery with a fast-charge current programmed with ISET pin. The default fast-charge current is programmed with the resistance from ISET to GND. See Table 6. If I2C is used in the application, the fast-charge current can also be reprogrammed with CHGCC[5:0] register bits after the devices power up. Connect ISET pin to PVL to use I2C default settings. Table 6. ISET Program Options Lookup Table RISET (Ω) MAX77960B FAST-CHARGE CURRENT SELECTION (mA) DEFAULT VALUE OF CHGCC[5:0] MAX77961B FAST-CHARGE CURRENT SELECTION (mA) DEFAULT VALUE OF CHGCC[5:0] Tied to PVL 450 450 226000 100 100 www.maximintegrated.com Maxim Integrated | 26 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Table 6. ISET Program Options Lookup Table (continued) RISET (Ω) MAX77960B FAST-CHARGE CURRENT SELECTION (mA) DEFAULT VALUE OF CHGCC[5:0] MAX77961B FAST-CHARGE CURRENT SELECTION (mA) DEFAULT VALUE OF CHGCC[5:0] 178000 200 200 140000 300 300 110000 400 400 86600 500 500 69800 1000 1000 54900 1500 1500 39200 2000 2000 22600 2500 2500 17800 3000 3000 14000 N/A 3500 11000 N/A 4000 8660 N/A 4500 6980 N/A 5000 5490 N/A 6000 Top-Off Current Setting Input (ITO) When the battery charger is in the top-off state, the top-off charge current is programmed by ITO pin. The default top-off charge current is programmed with the resistance from ITO to GND. See Table 7. If I2C is used in the application, the top-off current can also be reprogrammed with TO_ITH[2:0] register bits after the device powers up. Connect ITO pin to PVL to use I2C default settings. Table 7. ITO Program Options Lookup Table RITO (Ω) TOP-OFF CURRENT THRESHOLD (mA) DEFAULT VALUE OF TO_ITH[2:0] Tied to PVL 100 226000 100 178000 200 140000 300 110000 400 86600 500 69800 600 Charge Termination Voltage Setting Input (VSET) The default charge termination voltage is programmed with the resistance from VSET to GND. See Table 8. If I2C is used in the application, the charge termination voltage can also be reprogrammed with CHG_CV_PRM[5:0] register bits after the device powers up. Connect the VSET pin to PVL to use I2C default settings. www.maximintegrated.com Maxim Integrated | 27 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Table 8. VSET Program Options Lookup Table RVSET (Ω) CHARGE TERMINATION VOLTAGE SETTING - 2S (V) DEFAULT VALUE OF CHG_CV_PRM[5:0] CHARGE TERMINATION VOLTAGE SETTING - 3S (V) DEFAULT VALUE OF CHG_CV_PRM[5:0] Tied to PVL 8.0 12.0 226000 8.0 12.0 178000 8.1 12.15 140000 8.2 12.3 110000 8.3 12.45 86600 8.4 12.6 69800 8.5 12.75 54900 8.6 12.9 39200 8.7 13.05 22600 8.8 N/A 17800 8.9 N/A 14000 9.0 N/A 11000 9.1 N/A 8660 9.2 N/A 6980 9.26 N/A 5490 9.26 N/A Switch Mode Charger The MAX77960B/MAX77961B feature a switch mode buck-boost charger for a two-cell or three-cell lithium ion (Li+) or lithium polymer (Li-polymer) battery. The charger operates from a wide input range from 3.5V to 25.4V, ideal for USB-C charging applications. The charger input current limit is programmable from 100mA to 3.15A (MAX77960B)/100mA to 6.3A (MAX77961B), which is flexible to operate from either an AC-to-DC wall charger or a USB-C adapter. The MAX77960B/MAX77961B offer a high level of integration and do not require any external MOSFETs to operate, which significantly reduces the solution size. They operate with a programmable switching frequency of 600kHz or 1.2MHz, which is ideal for portable devices that benefit from small solution size and high efficiency. The battery charging current is programmable from 100mA to 3A (MAX77960B)/100mA to 6A (MAX77961B) to accommodate small or large capacity batteries. When the input source is not available, the MAX77960B/MAX77961B can be enabled in a reverse buck mode, delivering energy from the battery to the input, CHGIN, commonly known as USB on-the-go (OTG). In OTG mode, the regulated CHGIN voltage is 5.1V with programmable current limit up to 3A. Maxim’s Smart Power Selector architecture makes the best use of the limited adapter power and the battery power to power the system. Adapter power that is not used for the system charges the battery. When system load exceeds the input limit, battery provides additional current to the system up to the BATT to SYS overcurrent threshold, programmable with B2SOVRC[3:0] I2C register bits. All power switches for charging and switching the system load between battery and adapter power are integrated on chip—no external MOSFETs required. Maxim’s proprietary process technology allows for low-RDSON devices in a small solution size. The resistance between BATT and SYS is 10mΩ (typ), allowing low power dissipation and long battery life. A multitude of safety features ensure reliable charging. Features include charge timers, watchdog, junction thermal regulation, and over-/undervoltage protection. www.maximintegrated.com Maxim Integrated | 28 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Smart Power Selector (SPS) The smart power selector (SPS) architecture includes a network of internal switches and control loops that efficiently distributes energy between an external power source (CHGIN), the battery (BAT) and the system (SYS). This architecture allows power path operation with system instant on with a dead battery. The Simplified Block Diagram shows the smart power selector switches and gives them the following names: Q1, Q2, Q3, Q4 and QBAT. Power Switches and Current Sense Resistor Descriptions ● CHGIN Current-Sense Resistor: As shown in the Simplified Block Diagram, the CHGIN current is monitored with the input current sensing resistor, RS1, connected between CSINP and CSINN pins. ● DC-DC Switches: Q1, Q2, Q3, and Q4 are the DC-DC switches that can operate as a buck (step down) or a boost (step up), depending on the external power source and battery voltage conditions. ● Battery-to-System Switch: QBAT is used to control battery charging and discharging operations. I2C Configuration Register Bits ● MODE[3:0] configures the Smart Power Selector mode to be Charging, OTG or DC-DC mode respectively. See MODE[3:0] register bits in the Register Map for details. ● VCHGIN_REG[4:0] sets the CHGIN regulation voltage, when the MAX77960B/MAX77961B operate in forward mode (CHGIN has a valid power source). See the CHGIN Regulation Voltage section for details. ● MINVSYS[2:0] sets the minimum system regulation voltage. See the SYS Regulation Voltage section for details. ● B2SOVRC[3:0] sets the battery to system discharge overcurrent protection threshold. Energy Distribution Priority ● With a valid external power source at CHGIN: • The external power source is the primary source of energy. • The battery is the secondary source of energy. • Energy delivery to SYS has the highest priority. • Any remaining energy from the power source that is not required by the system is available to the battery charger. ● With no valid external power source at CHGIN: • The battery is the primary source of energy. • When OTG mode is enabled, energy delivery to SYS has the highest priority. • Any remaining energy from the battery that is not required by the system is available to power the CHGIN. CHGIN Regulation Voltage ● In forward mode (when CHGIN is powered from a valid external source), CHGIN voltage is regulated to VCHGIN_REG[4:0] when a high impedance or current limited source is applied. VCHGIN might experience significant voltage droop from the high-impedance source when the MAX77960B/MAX77961B extract high power from the source. Regulating VCHGIN allows the MAX77960B/MAX77961B to extract the most power from the power source. See the Adaptive Input Current Limit (AICL) and Input Voltage Regulation section for more detail. ● In reverse mode (OTG), CHGIN voltage is regulated to 5.1V with programmable current limit up to 3A (OTG_ILIM[2:0]). SYS Regulation Voltage With a valid external power source at CHGIN: ● When the DC-DC is disabled (MODE[3:0] = 0x00 or STBY_EN = 0b1 or STBY pin = high), the QBAT switch is fully on and VSYS = VBATT - IBATT x RBAT2SYS. ● When the DC-DC is enabled and the charger is disabled (MODE[3:0] = 0x04), VSYS is regulated to VBATTREG (CHG_CV_PRM) and QBAT is off. ● When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05), but in a noncharging state such as Done, Thermistor Suspend, Watchdog Suspend, or Timer Fault, VSYS is regulated to VBATTREG (CHG_CV_PRM) and QBAT is off. ● When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05) and in a valid charging state such as www.maximintegrated.com Maxim Integrated | 29 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Precharge or Trickle Charge (VBATT < VSYSMIN - 500mV), VSYS is regulated to VBATTREG (CHG_CV_PRM). The charger operates as a linear regulator, and the power dissipation can be calculated with P = (VBATTREG - VBATT) x IBATT. ● When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05) and in a valid charging state such as Fast Charge (CC or CV) or Top-Off (VBATT > VSYSMIN - 500mV), the QBAT switch is fully on, and VSYS = VBATT + IBATT x RBAT2SYS. ● In all the modes described above when the power demand on SYS exceeds the input source power limit, the battery automatically provides supplemental power to the system. If the QBAT switch is initially off when VSYS drops to VBATT - VBSREG, the QBAT switch turns on, and VSYS is regulated to VBATT - VBSREG. Without a valid external power source at CHGIN, including with OTG mode (MODE[3:0] = 0x0A): ● The QBAT switch is fully on, and VSYS = VBATT - IBATT x RBAT2SYS. Power States The MAX77960B/MAX77961B transition between power states as input/battery and load conditions dictate. The MAX77960B/MAX77961B provide four (4) power states and one (1) no power state. Under power limited conditions, the power path feature maintains SYS and USB-OTG loads at the expense of battery charge current. In addition, the battery supplements the input power when needed. See the Smart Power Selector (SPS) section for more details. As shown, transitions between power states are initiated by detection/removal of valid power sources, OTG events, and undervoltage conditions. 1. NO INPUT POWER, MODE[3:0] = undefined: No input adapter or battery is detected. The charger and system are off. Battery is disconnected. 2. BATTERY-ONLY, MODE[3:0] = any mode: CHGIN is invalid or outside the input voltage operating range. Battery is connected to power the SYS load (QBAT = on). 3. NO CHARGE - DC-DC in FORWARD mode, MODE[3:0] = 0x04: CHGIN input is valid, DC-DC supplies power to SYS. DC-DC operates from a valid input. Battery is disconnected (QBAT = off) when SYS load is less than the power that DCDC can supply. 4. CHARGE - DC-DC in FORWARD mode, MODE[3:0] = 0x05: CHGIN input is valid, DC-DC supplies power to SYS and charges the battery with IBATT. DC-DC operates from a valid input. 5. OTG - DC-DC in REVERSE mode (OTG), MODE[3:0] = 0x0A: OTG is active. Battery is connected to support SYS and OTG loads (QBAT = on), and charger operates in REVERSE buck mode. Powering Up with the Charger Disabled by Default The MAX77960B/MAX77961B's default power state is CHARGE - DC-DC in FORWARD mode, MODE[3:0] = 0x05. For battery authentication/safety purposes, the MAX77960B/MAX77961B can be configured to keep charging disabled while allowing the DC-DC to switch and regulate the SYS voltage when power is applied to CHGIN. To implement this and enable the charger when appropriate: ● Connect at least one of the INLIM, ITO, ISET or VSET pins to a valid resistor while tying the others (at least one) to PVL. CHG_DTLS = 0x05 and CHG_OK = 0. ● The system processor can configure the charger through the I2C interface. ● The system processor enables charging by setting COMM_MODE to 1 (default is 0). See Wide-Input I2C Programmable Charger with Charger Disabled for a pin connection example. Pin INLIM is connected to a valid resistor while ITO, ISET and VSET tie to PVL. The default input current limit is programmed by RINLIM, while default top-off current, constant charging current, and termination voltage use their default value. The system processor can re-program all four settings through the I2C interface if needed. www.maximintegrated.com Maxim Integrated | 30 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Input Validation The charger input is compared with several voltage thresholds to determine if it is valid. A charger input must meet the following characteristics to be valid: ● CHGIN must be above VCHGIN_UVLO to be valid. Once CHGIN is above UVLO threshold, the information is latched and can only be reset when charger is in adaptive input current loop (AICL) and input current is lower than IULO threshold of 30mA. ● CHGIN must be below its overvoltage lockout threshold (VCHGIN_OVLO). The devices generate a CHGIN_I interrupt (maskable with CHGIN_M bit) when the CHGIN status changes. Read the CHGIN input status with CHGIN_OK and CHGIN_DTLS[1:0] register bits. Adaptive Input Current Limit (AICL) and Input Voltage Regulation The MAX77960B/MAX77961B feature input power management to extract maximum input power while avoiding input source overload. The adaptive input current limit (AICL) and the input voltage regulation (CHGIN_REG) features allow the charger to extract more energy from relatively high resistance charge sources with long cables, noncompliant USB hubs or current limited adapters. In addition, the input power management allows the MAX77960B/MAX77961B to perform well with adapters that have poor transient load responses. With a high-resistance source, the charger input voltage drops substantially when it draws large current from the source. The charger's input voltage regulation loop automatically reduces the current drawn from the input to regulate the input voltage at VCHGIN_REG. If the input current is reduced to ICHGIN_REG_OFF (50mA typ) and the input voltage is still below VCHGIN_REG, the charger input turns off. VCHGIN_REG is programmable with VCHGIN_REG[4:0] register bits. With a current limited source, if the MAX77960B/MAX77961B’s input current limit is programmed above the current limit of the adapter, the charger input voltage starts to drop when the input current drawn exceeds the source current limit. The charger's input voltage regulation loop allows the MAX77960B/MAX77961B to reduce its input current and operate at the current limit of the adapter. When operating with the input voltage regulation loop active, an AICL_I interrupt is generated, AICL_OK sets to 0. The device prioritize system energy delivery over battery charging. See the Smart Power Selector (SPS) section for more details. To extract most input power from a current limited charge source, monitor the AICL_OK status while decreasing the CHGIN_ILIM[6:0] register setting. Setting the CHGIN_ILIM[6:0] to a reduced to a value below the current limit of the adapter causes the input voltage to rise. Although the CHGIN_ILIM[6:0] is lowered, more power can be extracted from the adapter when the input voltage rises. Input Self-Discharge To ensure that a rapid removal and reinsertion of a charge source always results in a charger input interrupt, the charger input presents loading to the input capacitor to ensure that when the charge source is removed, the input voltage decays below the UVLO threshold in a reasonable time (tINSD). The input self-discharge is implemented by with a 44kΩ resistor (RINSD) from CHGIN input to ground. System Self-Discharge with No Power To ensure a timely, complete, repeatable, and reliable reset behavior when the system has no power, the MAX77960B/ MAX77961B actively discharge the BATT and SYS nodes when the adapter is missing, the battery is removed and VSYS is less than VSYSUVLO. The BATT and SYS discharge resistors are both 600Ω. Charger States The MAX77960B/MAX77961B utilize several charging states to safely and quickly charge batteries as shown in Figure 1 and Figure 2. Figure 1 shows an exaggerated view of a Li+/Li-Poly battery progressing through the following charge states when there is no system load and the die and battery are close to room temperature: Prequalification → Fastcharge → Top-off → Done. www.maximintegrated.com Maxim Integrated | 31 BATTERY CHARGE CURRENT BATTERY VOLTAGE IPRECHG CHARGER ENABLED www.maximintegrated.com DONE CHG_DTLS[3:0] = 0b0100 TOP-OFF CHG_DTLS[3:0] = 0b0011 RESTART FAST CHARGE (CV) CHG_DTLS[3:0] = 0b0010 DONE CHG_DTLS[3:0] = 0b0100 TOP-OFF CHG_DTLS[3:0] = 0b0011 FAST CHARGE (CV) CHG_DTLS[3:0] = 0b0010 FAST CHARGE (CC) CHG_DTLS[3:0] = 0b0001 TRICKLE CHARGE CHG_DTLS[3:0] = 0b0000 PRECHARGE CHG_DTLS[3:0] = 0b0000 STATES MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries VBATTREG VRSTRT VSYSMIN - 500mV VPRECHG 0V TIME ICHG ≤ ISET ITRICKLE ITO 0A TIME NOT TO SCALE, VCHGIN = 5.0V, ISYS = 0A, TJ = +25°C Figure 1. Li Battery Charge Profile Maxim Integrated | 32 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries IDLE (POR) CHG_DTLS = 0x8 CHG_OK = 1 ICHG = 0 CHG TIMER = 0 WD TIMER = 0 MODE[3:0] PROGRAMS THE CHARGER ON AND CHG_EN = 1 AND CONV_RDY = 1 VPRECHG ≤ VBATT AND PQEN = 0 (SOFT-START) TJ < TSHDN (RESET O-TYPE REGISTERS) THERMAL SHUTDOWN CHG_DTLS = 0xA CHG_OK = 0 ICHG = 0 VBATT < VPRECHG (SOFT-START) TJ ≥ TSHDN VBATT < VSYSMIN - 500mV WATCHDOG SUSPEND CHG_DTLS = 0xB CHG_OK = 0 ICHG = 0 VPRECHG ≤ VBATT AND PQEN = 1 (SOFT-START) CHG TIMER ≥ tPQ CHG TIMER SUSPEND WD TIMER SUSPEND TRICKLE CHARGE CHG_DTLS = 0x0 CHG_OK = 1 ICHG ≤ ITRICKLE CHG TIMER = 0 IF CHG_DTLS TRANSITIONS FROM 0x01 WDTCLR = 1 OR WDTEN = 0 TJ ≥ TSHDN CHG TIMER SUSPEND WD TIMER SUSPEND CHG TIMER ≥ tPQ CHG TIMER SUSPEND WD TIMER SUSPEND PRECHARGE CHG_DTLS = 0x0 CHG_OK = 1 ICHG ≤ IPRECHG AND VPRECHG ≤ VBATT AND PQEN = 1 VSYSMIN - 500mV ≤ VBATT (SOFT-START) OR PQEN = 0 TIMER FAULT CHG_DTLS = 0x6 CHG_OK = 0 ICHG = 0 VBATT < VPRECHG (SOFT-START) MODE[3:0] PROGRAMS THE CHARGER OFF OR CHG_EN = 0 OR CONV_RDY = 0 CHG TIMER SUSPEND WD TIMER SUSPEND WDTEN = 1 AND WD TIMER > tWD CHG TIMER SUSPEND WD TIMER SUSPEND VBATTREG ≤ VBATT IFC < ICHG ANY STATE FAST CHARGE (CV) CHG_DTLS = 0x2 CHG_OK = 1 ITO < ICHG ≤ IFC CHG_EN INTERNAL SIGNAL TO ENABLE CHARGER; REFER TO TRUTH TABLE CONV_RDY CONV_RDY = 1 WHEN ADC CONVERSION COMPLETES AND CHARGER TARGET THRESHOLDS ARE SET, EITHER BASED ON PIN OR I2C OUTPUT VOLTAGE LOOP IN CONTROL AND ICHG TOP OFF CHG_DTLS = 0x3 CHG_OK = 1 ICHG ≤ ITO CHG TIMER = 0 IF CHG_DTLS TRANSITIONS FROM 0x02 CHARGER STATE WHERE CHARGE IS ENABLED (BATTERY CHARGE ON-GOING) CHG TIMER = 0 CHG TIMER ≥ tFC CHG TIMER SUSPEND WD TIMER SUSPEND ≤ ITO FOR tTERM CHARGER STATE WHERE CHARGE IS DISABLED (BATTERY CHARGE STOPPED) VBATT < VPQLB CHG TIMER ≥ tFC CHG TIMER SUSPEND WD TIMER SUSPEND FAST CHARGE (CC) CHG_DTLS = 0x1 CHG_OK = 1 ICHG ≤ IFC CHG TIMER = 0 IF CHG_DTLS TRANSITIONS FROM 0x00 OR 0x03 OR 0x04 CONDITION NEEDED TO TRANSITION BETWEEN 2 CHARGER STATES CHG TIMER AND WD TIMER STATE STATUS TRANSITION BETWEEN 2 CHARGER STATES VBATT < (VBATTREG - VRSTRT) OR ICHG > ITO (NO SOFT-START) CHG TIMER ≥ tTO CHG TIMER SUSPEND WD TIMER SUSPEND DONE CHG_DTLS = 0x4 CHG_OK = 0 ICHG = 0 CHG TIMER = 0 WD TIMER = 0 VBATT < (VBATTREG - VRSTRT) (NO SOFT-START) CHG TIMER RESUME WD TIMER RESUME Figure 2. Charger State Diagram No Input Power or Charger Disabled Idle State From any state shown in Figure 2 except thermal shutdown, the no input power or charger disabled state is entered whenever the charger is programmed to be off or the charger input CHGIN is invalid. After being in this state for tSCIDG, CHG_DTLS is set to 0x08 and CHG_OK is set to 1. A CHG_I interrupt is generated if CHG_OK was 0 previously. While in the no input power or charger disabled state, the charger current is 0mA, the watchdog and charge timers are forced to 0, and the power to the system is provided by either the battery or the adapter. When both battery and adapter power are available, the adapter provides primary power to the system and the battery contributes supplemental energy to the system if necessary. www.maximintegrated.com Maxim Integrated | 33 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries To exit the no input power or charger disabled state, the charger input must be valid and the charger must be enabled. Precharge State As shown in Figure 2, the charger enters the precharge state when the battery voltage is less than VPRECHG. After being in this state for tSCIDG, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1 and CHG_DTLS is set to 0x00. In the precharge state, charge current into the battery is IPRECHG. The following events cause the state machine to exit this state: ● Battery voltage rises above VPRECHG and the charger enters the next state in the charging cycle: Trickle Charge. ● If the battery charger remains in this state for longer than tPQ, the charger state machine transitions to the Timer Fault state. ● If the watchdog timer is not serviced, the charger state machine transitions to the “Watchdog Suspend” state. Note that the precharge state works with battery voltages down to 0V. The 0V operation typically allows this battery charger to recover batteries that have an open internal pack protector. Typically, a battery pack's internal protection circuit opens if the battery has seen an overcurrent, undervoltage, or overvoltage. When a battery with an open internal pack protector is used with this charger, the precharge mode current flows into the 0V battery; this current raises the pack’s terminal voltage to the level where the internal pack protection switch closes. Note that a normal battery typically stays in the precharge state for several minutes or less. Therefore a battery that stays in the precharge for longer than tPQ might be experiencing a problem. Trickle Charge State As shown in Figure 2, the charger state machine is in trickle charge state when VPRECHG< VBATT < VSYSMIN - 500mV. After being in this state for tSCIDG, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1 and CHG_DTLS = 0x00. With PQEN = 1 (default) and the MAX77960B/MAX77961B are in the trickle charge state, the current in the battery is less than or equal to ITRICKLE. When PQEN = 0, the charger skips trickle charge state and transitions directly to fast charge state and the battery charging current is less than or equal to IFC. Charge current may be less than ITRICKLE/IFC for any of the following reasons: ● ● ● ● The charger input is in input current limit. The charger input voltage is low. The charger is in thermal foldback. The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current. Typical systems operate with PQEN = 1. When operating with PQEN = 0, the system’s software usually sets IFC to a low value such as 200mA and then monitors the battery voltage. When the battery exceeds a relatively low voltage such as 6V, then the system’s software usually increases IFC. The following events cause the state machine to exit this state: ● When the battery voltage rises above VSYSMIN - 500mV or the PQEN bit is cleared, the charger enters the next state in the charging cycle: Fast Charge (CC). ● If the battery charger remains in this state for longer than tPQ, the charger state machine transitions to the Timer Fault state. ● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Suspend state. Note that a normal battery typically stays in the trickle charge state for several minutes or less. Therefore, a battery that stays in trickle charge for longer than tPQ might be experiencing a problem. Fast-Charge Constant Current State As shown in Figure 2, the charger enters the fast-charge constant current (CC) state when VSYSMIN - 500mV (typ) < VBATT < VBATTREG. After being in the fast-charge CC state for tSCIDG, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1 and CHG_DTLS = 0x01. In the fast-charge CC state, the battery charging current is less than or equal to IFC. Charge current can be less than IFC for any of the following reasons: www.maximintegrated.com Maxim Integrated | 34 MAX77960B/MAX77961B ● ● ● ● 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries The charger input is in input current limit. The charger input voltage is low. The charger is in thermal foldback. The system load is consuming adapter current. Note that the system load always gets priority over the battery charging current. The following events cause the state machine to exit this state: ● When the battery voltage rises above VBATTREG, the charger enters the next state in the charging cycle: Fast Charge (CV). ● If the battery charger remains in this state for longer than tFC, the charger state machine transitions to the Timer Fault state. ● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Suspend state. The battery charger dissipates the most power in the fast-charge constant current state, which causes the die temperature to rise. If the die temperature exceeds TREG, the thermal foldback loop is engaged and IFC is reduced. See the Thermal Foldback section for more information. Fast-Charge Constant Voltage State As shown in Figure 2, the charger enters the fast-charge constant voltage (CV) state when the battery voltage rises to VBATTREG from the fast-charge CC state. After being in the fast-charge CV state for tSCIDG, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1 and CHG_DTLS = 0x02. In the fast-charge CV state, the battery charger maintains VBATTREG across the battery and the charge current is less than or equal to IFC. As shown in Figure 1, charger current decreases exponentially in this state as the battery becomes fully charged. The smart power selector control circuitry can reduce the charge current for any of the following reasons: ● ● ● ● The charger input is in input current limit. The charger input voltage is low. The charger is in thermal foldback. The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current. The following events cause the state machine to exit this state: ● When the charger current is below ITO for tTERM, the charger enters the Top-Off State. ● If the battery charger remains in this state for longer than tFC, the charger state machine transitions to the Timer Fault State. ● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Timer Suspend State. Top-Off State As shown in Figure 2, the top-off state can only be entered from the fast-charge CV state when the charger current decreases below ITO for tTERM. After being in the top-off state for tSCIDG, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x03. In the top-off state the battery charger maintains VBATTREG across the battery and typically the charge current is less than or equal to ITO. The smart power selector control circuitry can reduce the charge current for any of the following reasons: ● ● ● ● The charger input is in input current limit. The charger input voltage is low. The charger is in thermal foldback. The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current. www.maximintegrated.com Maxim Integrated | 35 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries The following events cause the state machine to exit this state: ● After being in this state for the top-off time (tTO), the charger enters the Done State. ● If VBATT < VBATTREG - VRSTRT, the charger goes back to the Fast-Charge Constant Current State. ● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Timer Suspend State. Done State As shown in Figure 2, the battery charger enters its done state after the charger has been in the top-off state for tTO. After being in this state for tSCIDG, a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 0 and CHG_DTLS = 0x04. The following events cause the state machine to exit this state: ● If VBATT < VBATTREG - VRSTRT, the charger goes back to the Fast-Charge Constant Current State. ● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Timer Suspend State. In the done state, the battery charging current (ICHG) is 0A and the charger presents a very low load (IMBDN) to the battery. If the system load presented to the battery is low ( VBATTREG - VRSTRT and TJ < TSHDN 0x05: Charger is off because at least one pin of INLIM, ITO, ISET, or VSET has valid resistance while others don't (invalid resistance, open or tied to PVL). Configure charger with I2C, then set COMM_MODE to 1 enables charging. CHG_OK = 0 0x06: Charger is in timer fault mode CHG_OK = 0 and if BAT_DTLS = 0b001 then VBATT < VSYSMIN - 500mV or VBATT < VPRECHG and TJ < TSHDN 0x07: Charger is suspended because QBAT is disabled (DISQBAT = high or DISIBS = 1) CHG_OK = 0 0x08: Charger is off, charger input invalid and/or charger is disabled CHG_OK = 1 0x09: Reserved 0x0A: Charger is off and the junction temperature is > TSHDN CHG_OK = 0 0x0B: Charger is off because the watchdog timer expired CHG_OK = 0 0x0C: Charger is suspended or charge current or voltage is reduced based on JEITA control. This condition is also reported in THM_DTLS. CHG_OK = 0 0x0D: Charger is suspended because battery removal is detected on THM pin. This condition is also reported in THM_DTLS. CHG_OK = 0 0x0E: Reserved 0x0F: Reserved Maxim Integrated | 57 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries CHG_DETAILS_02 (0x15) BIT 7 6 5 4 3 2 1 0 Field SPR THM_DTLS[2:0] APP_MOD E_DTLS Reset 0x0 0x2 0x0 0x0 0x0 Read Only Read Only Read Only Read Only Read Only Access Type BITFIELD SPR BITS 7 THM_DTLS 6:4 APP_MODE _DTLS 3 FSW_DTLS[1:0] NUM_CELL _DTLS DESCRIPTION DECODE Spare bit Thermistor Status. This is also reported in the CHG_DTLS as 0x0C. 0b000: Low temperature and charging suspended (COLD) 0b001: Low temperature charging (cool) 0b010: Normal temperature charging (normal) 0b011: High temperature charging (warm) 0b100: High temperature and charging suspended (hot) 0b101: Battery removal detected on THM pin 0b110: Thermistor monitoring is disabled 0b111: Reserved Application Mode Status 0b0: Device is configured to operate as a standalone DC-DC converter. 0b1: Device is configured to operate as a charger. 0x0: 600kHz FSW_DTLS 2:1 Programmed Switching Frequency Details 0x1: 1.2MHz 0x2: Reserved 0x3: Reserved NUM_CELL_ DTLS 0 Number of Serially Connected Battery Cells Details 0b0: Device is configured to support a 2-cell battery. 0b1: Device is configured to support a 3-cell battery. CHG_CNFG_00 (0x16) Charger configuration 0 BIT 7 6 5 4 Field COMM_MO DE DISIBS STBY_EN WDTEN MODE[3:0] Reset 0x0 0x0 0x0 0x0 0x5 Write, Read Write, Read Write, Read Write, Read Write, Read Access Type www.maximintegrated.com 3 2 1 0 Maxim Integrated | 58 MAX77960B/MAX77961B BITFIELD BITS 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION DECODE 0b0: Autonomous Mode CHGIN_ILIM, CHGCC, CHG_CV_PRM, and TO_ITH registers are programmed by external resistors on INLIM, ISET, VSET and ITO pins. COMM_MOD E 7 I2C Mode Enable Writing 0 to COMM_MODE is ignored. 0b1: I2C Mode Enabled CHGIN_ILIM, CHGCC, CHG_CV_PRM and TO_ITH registers are programmed by I2C. Writing 1 to COMM_MODE is allowed. Writting COMM_MODE=1 clears any charger suspension due to invalid resistance detected on INLIM, ISET, VSET, and ITO pins. Charger starts with I2C programmed settings in CHGIN_ILIM, CHGCC, CHG_CV_PRM, and TO_ITH registers. DISIBS 6 STBY_EN 5 BATT to SYS FET Disable Control Read back value of DISIBS register bit reflects the actual DISIBS command or DISQBAT PIN state. CHGIN Standby Enable Read back value of the STBY_EN register bit reflects the actual CHGIN standby setting. 0b0: BATT to SYS FET is controlled by the power path state machine. 0b1: BATT to SYS FET is forced off. 0b0: DC-DC is controlled by the power path state machine. 0b1: Force DC-DC off. Device goes to CHGIN low quiescent current standby. Watchdog Timer Enable. WDTEN 4 www.maximintegrated.com While enabled, the system controller must reset the watchdog timer within the timer period (tWD) for the charger to operate normally. Reset the watchdog timer by programming WDTCLR = 0x01. 0b0: Watchdog timer disabled 0b1: Watchdog timer enabled Maxim Integrated | 59 MAX77960B/MAX77961B BITFIELD MODE BITS 3:0 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION DECODE Smart Power Selector Configuration. Read back value of the MODE register reflects the actual smart power selector configuration. 0x0: Charger = off, OTG = off, DC-DC = off. When the QBAT switch is on (DISQBAT = low and DISIBS = 0), the battery powers the system. 0x1: Same as 0b0000 0x2: Same as 0b0000 0x3: Same as 0b0000 0x4: Charger = off, OTG = off, DC-DC = on. When there is a valid input, the DC-DC converter regulates the system voltage to be the maximum of (VSYSMIN and VBATT + 4%). 0x5: Charger = on,OTG = off, DC-DC = on. When there is a valid input, the battery is charging. VSYS is the larger of VSYSMIN and ~VBATT + IBATT x RBAT2SYS. 0x6: Same as 0b0101 0x7: Same as 0b0101 0x8: RSVD 0x9: RSVD 0xA: Charger = off, OTG = on, DC-DC = off. The QBAT switch is on to allow the battery to support the system, the charger's DC-DC operates in reverse mode as a buck converter. The OTG output, CHGIN, can source current up to ICHGIN.OTG.LIM. The CHGIN target voltage is VCHGIN.OTG. 0xB: RSVD 0xC: RSVD 0xD: RSVD 0xE: RSVD 0xF: RSVD CHG_CNFG_01 (0x17) Charger configuration 1 BIT 7 6 Field PQEN LPM CHG_RSTRT[1:0] STAT_EN FCHGTIME[2:0] Reset 0x1 0x0 0x1 0x1 0x1 Write, Read Write, Read Write, Read Write, Read Write, Read Access Type BITFIELD BITS 5 4 DESCRIPTION 3 2 1 0 DECODE PQEN 7 Low-Battery Prequalification Mode Enable 0b0: Low-Battery Prequalification mode is disabled. 0b1: Low-Battery Prequalification mode is enabled. LPM 6 Low Power Mode control 0b0: QBAT charge pump runs in Normal mode. 0b1: QBAT charge pump is in Low Power Mode. Charger Restart Threshold 0b00: 100mV/cell below the value programmed by CHG_CV_PRM 0b01: 150mV/cell below the value programmed by CHG_CV_PRM 10: 200mV/cell below the value programmed by CHG_CV_PRM 11: Disabled Charge Indicator Output Enable 0b0: Disable STAT output 0b1: Enable STAT output CHG_RSTR T STAT_EN 5:4 3 www.maximintegrated.com Maxim Integrated | 60 MAX77960B/MAX77961B BITFIELD FCHGTIME BITS 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION 2:0 DECODE Fast-Charge Timer setting (tFC, hrs) 0b000: Disable 0b001: 3 0b010: 4 0b011: 5 0b100: 6 0b101: 7 0b110: 8 0b111: 10 CHG_CNFG_02 (0x18) Charger configuration 2 BIT 7 6 5 4 3 2 Field SPR[1:0] CHGCC[5:0] Reset 0x0 0x7 Write, Read Write, Read Access Type BITFIELD SPR BITS 7:6 www.maximintegrated.com DESCRIPTION 1 0 DECODE Spare Bit Maxim Integrated | 61 MAX77960B/MAX77961B BITFIELD CHGCC BITS 5:0 www.maximintegrated.com 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION Fast-Charge Current Selection (mA). When the charger is enabled, the charge current limit is set by these bits. Read back value of the CHGCC register reflects the actual fast charge current programmed in the charger. The thermal foldback loop can reduce the battery charger’s target current by ATJREG. DECODE 0x00: 100 0x01: 150 0x02: 200 0x03: 250 0x04: 300 0x05: 350 0x06: 400 0x07: 450 0x08: 500 0x09: 600 0x0A: 700 0x0B: 800 0x0C: 900 0x0D: 1000 0x0E: 1100 0x0F: 1200 0x10: 1300 0x11: 1400 0x12: 1500 0x13: 1600 0x14: 1700 0x15: 1800 0x16: 1900 0x17: 2000 0x18: 2100 0x19: 2200 0x1A: 2300 0x1B: 2400 0x1C: 2500 0x1D: 2600 0x1E: 2700 0x1F: 2800 0x20: 2900 0x21: 3000 0x22: 3100 0x23: 3200 0x24: 3300 0x25: 3400 0x26: 3500 0x27: 3600 0x28: 3700 0x29: 3800 0x2A: 3900 0x2B: 4000 0x2C: 4100 0x2D: 4200 0x2E: 4300 0x2F: 4400 0x30: 4500 0x31: 4600 0x32: 4700 0x33: 4800 0x34: 4900 0x35: 5000 0x36: 5100 0x37: 5200 0x38: 5300 0x39: 5400 0x3A: 5500 Maxim Integrated | 62 MAX77960B/MAX77961B BITFIELD BITS 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION DECODE 0x3B: 5600 0x3C: 5700 0x3D: 5800 0x3E: 5900 0x3F: 6000 CHG_CNFG_03 (0x19) Charger configuration 3 BIT 7 6 Field SYS_TRAC K_DIS B2SOVRC_ DTC TO_TIME[2:0] TO_ITH[2:0] Reset 0x1 0x0 0x3 0x0 Write, Read Write, Read Write, Read Write, Read Access Type BITFIELD SYS_TRACK _DIS B2SOVRC_D TC TO_TIME TO_ITH BITS 5 4 3 2 DESCRIPTION 1 0 DECODE 7 SYS Tracking Disable Control 0x0: SYS tracking is enabled. SYS is regulated to MAX of (VBATT + 4%, VSYSMIN). This is also valid in Charge Done state. 0x1: SYS tracking is disabled. SYS is regulated to VCHG_CV_PRM. 6 Battery to SYS Overcurrent Debounce Time Control. While under OVRC condition, after tOCP switcher (and therfore charge) is disabled. 0x0: tOCP = 6ms 0x1: tOCP = 100ms 5:3 Top-Off Timer Setting (min) 0b000: 30s 0b001: 10 0b010: 20 0b011: 30 0b100: 40 0b101: 50 0b110: 60 0b111: 70 2:0 Top-Off Current Threshold (mA). The charger transitions from its fast-charge constant voltage mode to its top-off mode when the charger current decays to the value programmed by this register. This transition generates a CHG_I interrupt and causes the CHG_DTLS register to report top-off mode. This transition also starts the top-off time as programmed by TO_TIME. Read back value of the TO_ITH register reflects the actual top-off current programmed in the charger. 0b000: 100 0b001: 200 0b010: 300 0b011: 400 0b100: 500 0b101: 600 0b110: 600 0b111: 600 CHG_CNFG_04 (0x1A) Charger configuration 4 www.maximintegrated.com Maxim Integrated | 63 MAX77960B/MAX77961B BIT 7 6 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries 5 4 3 2 Field SPR[1:0] CHG_CV_PRM[5:0] Reset 0x0 0x00 Write, Read Write, Read Access Type BITFIELD SPR BITS 7:6 www.maximintegrated.com DESCRIPTION 1 0 DECODE Spare Bit Maxim Integrated | 64 MAX77960B/MAX77961B BITFIELD CHG_CV_P RM BITS 5:0 www.maximintegrated.com 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION Charge Termination Voltage Setting (V). Read back value of the CHG_CV_PRM register reflects the actual charge termination voltage programmed in the charger when JEITA_EN = 0. When JEITA_EN = 1, charge termination voltage is controlled by VCHGCV_COOL and VCHGCV_WARM register settings. DECODE 2 Cell Battery 0x00: 8.000 0x01: 8.020 0x02: 8.040 0x03: 8.060 0x04: 8.080 0x05: 8.100 0x06: 8.120 0x07: 8.140 0x08: 8.160 0x09: 8.180 0x0A: 8.200 0x0B: 8.220 0x0C: 8.240 0x0D: 8.260 0x0E: 8.280 0x0F: 8.300 0x10: 8.320 0x11: 8.340 0x12: 8.360 0x13: 8.380 0x14: 8.400 0x15: 8.420 0x16: 8.440 0x17: 8.460 0x18: 8.480 0x19: 8.500 0x1A: 8.520 0x1B: 8.540 0x1C: 8.560 0x1D: 8.580 0x1E: 8.600 0x1F: 8.620 0x20: 8.640 0x21: 8.660 0x22: 8.680 0x23: 8.700 0x24: 8.720 0x25: 8.740 0x26: 8.760 0x27: 8.780 0x28: 8.800 0x29: 8.820 0x2A: 8.840 0x2B: 8.860 0x2C: 8.880 0x2D: 8.900 0x2E: 8.920 0x2F: 8.940 0x30: 8.960 0x31: 8.980 0x32: 9.000 0x33: 9.020 0x34: 9.040 0x35: 9.060 0x36: 9.080 0x37: 9.100 0x38: 9.120 0x39: 9.140 Maxim Integrated | 65 MAX77960B/MAX77961B BITFIELD BITS 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION DECODE 0x3A: 9.160 0x3B: 9.180 0x3C: 9.200 0x3D: 9.220 0x3E: 9.240 0x3F: 9.260 3 Cell Battery 0x00: 12.000 0x01: 12.030 0x02: 12.060 0x03: 12.090 0x04: 12.120 0x05: 12.150 0x06: 12.180 0x07: 12.210 0x08: 12.240 0x09: 12.270 0x0A: 12.300 0x0B: 12.330 0x0C: 12.360 0x0D: 12.390 0x0E: 12.420 0x0F: 12.450 0x10: 12.480 0x11: 12.510 0x12: 12.540 0x13: 12.570 0x14: 12.600 0x15: 12.630 0x16: 12.660 0x17: 12.690 0x18: 12.720 0x19: 12.750 0x1A: 12.780 0x1B: 12.810 0x1C: 12.840 0x1D: 12.870 0x1E: 12.900 0x1F: 12.930 0x20: 12.960 0x21: 12.990 0x22: 13.020 0x23: 13.050 CHG_CNFG_05 (0x1B) Charger configuration 5 BIT 7 6 5 4 3 2 1 Field RESERVED[1:0] ITRICKLE[1:0] B2SOVRC[3:0] Reset 0x1 0x0 0x4 Write, Read Write, Read Write, Read Access Type BITFIELD RESERVED BITS 7:6 www.maximintegrated.com DESCRIPTION 0 DECODE Reserved Maxim Integrated | 66 MAX77960B/MAX77961B BITFIELD ITRICKLE B2SOVRC 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries BITS 5:4 3:0 DESCRIPTION DECODE Trickle Charge Current Selection (mA) 0b00: 100 0b01: 200 0b10: 300 0b11: 400 BATT to SYS Overcurrent Threshold (A) 0x00: Disable 0x01: 3.000 0x02: 3.500 0x03: 4.000 0x04: 4.500 0x05: 5.000 0x06: 5.500 0x07: 6.000 0x08: 6.500 0x09: 7.000 0x0A: 7.500 0x0B: 8.000 0x0C: 8.500 0x0D: 9.000 0x0E: 9.500 0x0F: 10.000 CHG_CNFG_06 (0x1C) Charger configuration 6 BIT 7 6 5 4 3 2 1 0 Field SPR7 RESERVED[1:0] SPR4 CHGPROT[1:0] WDTCLR[1:0] Reset 0x0 0x0 0x0 0x0 0x0 Write, Read Write, Read Write, Read Write, Read Write, Read Access Type BITFIELD SPR7 RESERVED SPR4 BITS DESCRIPTION 7 Spare bit 6:5 Reserved 4 Spare bit DECODE Charger Settings Protection Bit. CHGPROT WDTCLR 3:2 1:0 Writing 11 to these bits unlocks the write capability for the registers that are Protected with CHGPROT. Writing any value besides 11 locks the protected registers. Watchdog Timer Clear Bit. Writing 01 to these bits clears the watchdog timer when the watchdog timer is enabled. 0b00: Write capability locked 0b01: Write capability locked 0b10: Write capability locked 0b11: Write capability unlocked 0b00: the watchdog timer is not cleared 0b01: the watchdog timer is cleared 0b10: the watchdog timer is not cleared 0b11: the watchdog timer is not cleared CHG_CNFG_07 (0x1D) Charger configuration 7 www.maximintegrated.com Maxim Integrated | 67 MAX77960B/MAX77961B BIT 7 6 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries 5 4 3 2 1 0 Field JEITA_EN REGTEMP[3:0] VCHGCV_ COOL ICHGCC_C OOL FSHIP_MO DE Reset 0x0 0x6 0x0 0x1 0x0 Write, Read Write, Read Write, Read Write, Read Write, Read Access Type BITFIELD JEITA_EN REGTEMP BITS 7 6:3 DESCRIPTION DECODE JEITA Enable 0b0: JEITA disabled. Fast-charge current and charge termination voltage do not change based on thermistor temperature. 0b1: JEITA enabled. Fast-charge current and charge termination voltage change based on thermistor temperature. Junction Temperature Thermal Regulation (ºC). The charger's target current limit starts to foldback and the TREG bit is set if the junction temperature is greater than the REGTEMP setpoint. 0x0: 85 0x1: 90 0x2: 95 0x3: 100 0x4: 105 0x5: 110 0x6: 115 0x7: 120 0x8: 125 0x9: 130 VCHGCV_C OOL 2 JEITA-Controlled Battery Termination Voltage When Thermistor Temperature is Between TCOLD and TCOOL 0b0: Battery termination voltage is set by CHG_CV_PRM. 0b1: Battery termination voltage is set by (CHG_CV_PRM - 180mV/cell). ICHGCC_CO OL 1 JEITA-Controlled Battery Fast-Charge Current When Thermistor Temperature is Between TCOLD and TCOOL 0b0: Battery fast-charge current is set by CHGCC 0b1: Battery fast-charge current is reduced to 50% of CHGCC FSHIP_MOD E 0 Factory Ship Mode Enable 0b0: Disable factory ship mode 0b1: Enable factory ship mode CHG_CNFG_08 (0x1E) Charger configuration 8 BIT 7 6 5 4 3 Field RESERVED CHGIN_ILIM[6:0] Reset 0x1 0x0B Write, Read Write, Read Access Type BITFIELD RESERVED BITS 7 www.maximintegrated.com DESCRIPTION 2 1 0 DECODE Reserved Maxim Integrated | 68 MAX77960B/MAX77961B BITFIELD CHGIN_ILIM BITS 6:0 www.maximintegrated.com 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION CHGIN Input Current Limit (mA). Read back value of the CHGIN_ILIM register reflect the actual input current limit programmed in the charger. DECODE 0x00: 100 0x01: 100 0x02: 100 0x03: 100 0x04: 150 0x05: 200 0x06: 250 0x07: 300 0x08: 350 0x09: 400 0x0A: 450 0x0B: 500 0x0C: 550 0x0D: 600 0x0E: 650 0x0F: 700 0x10: 750 0x11: 800 0x12: 850 0x13: 900 0x14: 950 0x15: 1000 0x16: 1050 0x17: 1100 0x18: 1150 0x19: 1200 0x1A: 1250 0x1B: 1300 0x1C: 1350 0x1D: 1400 0x1E: 1450 0x1F: 1500 0x20: 1550 0x21: 1600 0x22: 1650 0x23: 1700 0x24: 1750 0x25: 1800 0x26: 1850 0x27: 1900 0x28: 1950 0x29: 2000 0x2A: 2050 0x2B: 2100 0x2C: 2150 0x2D: 2200 0x2E: 2250 0x2F: 2300 0x30: 2350 0x31: 2400 0x32: 2450 0x33: 2500 0x34: 2550 0x35: 2600 0x36: 2650 0x37: 2700 0x38: 2750 0x39: 2800 0x3A: 2850 Maxim Integrated | 69 MAX77960B/MAX77961B BITFIELD BITS 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION DECODE 0x3B: 2900 0x3C: 2950 0x3D: 3000 0x3E: 3050 0x3F: 3100 0x40: 3150 0x41: 3200 0x42: 3250 0x43: 3300 0x44: 3350 0x45: 3400 0x46: 3450 0x47: 3500 0x48: 3550 0x49: 3600 0x4A: 3650 0x4B: 3700 0x4C: 3750 0x4D: 3800 0x4E: 3850 0x4F: 3900 0x50: 3950 0x51: 4000 0x52: 4050 0x53: 4100 0x54: 4150 0x55: 4200 0x56: 4250 0x57: 4300 0x58: 4350 0x59: 4400 0x5A: 4450 0x5B: 4500 0x5C: 4550 0x5D: 4600 0x5E: 4650 0x5F: 4700 0x60: 4750 0x61: 4800 0x62: 4850 0x63: 4900 0x64: 4950 0x65: 5000 0x66: 5050 0x67: 5100 0x68: 5150 0x69: 5200 0x6A: 5250 0x6B: 5300 0x6C: 5350 0x6D: 5400 0x6E: 5450 0x6F: 5500 0x70: 5550 0x71: 5600 0x72: 5650 0x73: 5700 0x74: 5750 0x75: 5800 www.maximintegrated.com Maxim Integrated | 70 MAX77960B/MAX77961B BITFIELD BITS 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries DESCRIPTION DECODE 0x76: 5850 0x77: 5900 0x78: 5950 0x79: 6000 0x7A: 6050 0x7B: 6100 0x7C: 6150 0x7D: 6200 0x7E: 6250 0x7F: 6300 CHG_CNFG_09 (0x1F) Charger configuration 9 BIT 7 6 5 4 3 2 1 Field INLIM_CLK[1:0] OTG_ILIM[2:0] MINVSYS[2:0] Reset 0x2 0x3 0x3 Write, Read Write, Read Write, Read Access Type BITFIELD INLIM_CLK OTG_ILIM MINVSYS BITS 7:6 5:3 2:0 DESCRIPTION 0 DECODE Input Current Limit Soft-Start Period (μs) Between Consecutive Increments of 25mA 0b00: 8 0b01: 256 0b10: 1024 0b11: 4096 OTG Mode Current Limit Setting (mA) 0b000: 500 0b001: 900 0b010: 1200 0b011: 1500 0b100: 2000 0b101: 2250 0b110: 2500 0b111: 3000 Minimum System Regulation Voltage (V) 2 Cell Battery 0b000: 5.535 0b001: 5.740 0b010: 5.945 0b011: 6.150 0b100: 6.355 0b101: 6.560 0b110: 6.765 0b111: 6.970 3 Cell Battery 0b000: 8.303 0b001: 8.610 0b010: 8.918 0b011: 9.225 0b100: 9.533 0b101: 9.840 0b110: 10.148 0b111: 10.455 CHG_CNFG_10 (0x20) Charger configuration 10 www.maximintegrated.com Maxim Integrated | 71 MAX77960B/MAX77961B BIT 7 6 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries 5 4 3 2 1 0 Field SPR[1:0] VCHGIN_REG[4:0] DISKIP Reset 0x0 0x04 0x0 Write, Read Write, Read Write, Read Access Type BITFIELD SPR VCHGIN_RE G DISKIP BITS 7:6 5:1 0 www.maximintegrated.com DESCRIPTION DECODE Spare Bit CHGIN Voltage Regulation Threshold (V) 0x00: 4.025 0x01: 4.200 0x02: 4.375 0x03: 4.550 0x04: 4.725 0x05: 4.900 0x06: 5.425 0x07: 5.950 0x08: 6.475 0x09: 7.000 0x0A: 7.525 0x0B: 8.050 0x0C: 8.575 0x0D: 9.100 0x0E: 9.625 0x0F: 10.150 0x10: 10.675 0x11: 10.950 0x12: 11.550 0x13: 12.150 0x14: 12.750 0x15: 13.350 0x16: 13.950 0x17: 14.550 0x18: 15.150 0x19: 15.750 0x1A: 16.350 0x1B: 16.950 0x1C: 17.550 0x1D: 18.150 0x1E: 18.750 0x1F: 19.050 Charger Skip Mode Disable 0b0: Autoskip mode 0b1: Disable skip mode Maxim Integrated | 72 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Applications Information Inductor Selection Buck-boost allows a range of inductance for different combinations of switching frequency and maximum nominal CHGIN voltage. See Table 11 for recommendations. The lower the inductor DCR is, the higher the buck-boost efficiency is. The user needs to weigh the trade-offs between inductor size and DCR value and choose a suitable inductor for the buckboost. See Table 12 for inductor recommendations. Table 11. Recommended Inductance for Combinations of Switching Frequency and Maximum Nominal CHGIN Voltage SWITCHING FREQUENCY (kHz) MAXIMUM NOMINAL CHGIN VOLTAGE (V) 600 1200 RECOMMENDED NOMINAL INDUCTANCE (µH) 15 or lower 2.2, 3.3 Higher than 15 3.3 15 or lower 1.0, 1.5, 2.2, 3.3 Higher than 15 1.5, 2.2, 3.3 Table 12. Suggested Inductors ROOT PART NUMBER MAX77960B MAX77961B MFGR. NOMINAL INDUCTANCE (µH) SERIES TYPICAL DC RESISTANCE (mΩ) CURRENT RATING (A) -30% (ΔL/L) CURRENT RATING (A) ΔT = +40°C RISE DIMENSIONS LxWxH (mm) TDK VLS3012HBX-1R0M 1.0 39.0 6.11 5.13 3.0 x 3.0 x 1.2 Coilcraft XAL4020-152ME 1.5 21.5 7.1 7.5 4.0 x 4.0 x 2.1 Coilcraft XAL4020-222ME 2.2 35.2 5.6 5.5 4.0 x 4.0 x 2.1 Coilcraft XAL4030-332ME 3.3 26.0 5.5 6.6 4.0 x 4.0 x 3.1 Pulse PA5002.102NLT 1.0 12.0 12.8 10.5 5.5 x 5.3 x 1.8 Pulse PA5003.152NLT 1.5 10.1 12.5 10.5 5.5 x 5.3 x 2.9 Cyntec CMLE063T-2R2MS 2.2 11.0 14.0 10.0 6.95 x 6.6 x 2.8 Pulse PA5007.332NLT 3.3 16.3 15.0 10.0 7.8 x 7.6 x 2.9 CHGIN Capacitor Selection The CHGIN capacitor, CCHGIN, reduces the current peaks drawn from the input power source and reduces switching noise in the device. In OTG mode, it also reduces the output voltage ripple and ensures regulation loop stability. The impedance of CCHGIN at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications, a 10μF capacitor is sufficient. See Table 13 for CHGIN capacitor recommendations. Table 13. Suggested CHGIN Capacitors MFGR. SERIES NOMINAL CAPACITANCE (µF) RATED VOLTAGE (V) TEMPERATURE CHARACTERISTICS CASE SIZE (in) DIMENSIONS LxWxH (mm) Murata GRM32ER7YA106KA12 10 35 X7R 1210 3.2 x 2.5 x 2.5 Murata GRT31CR6YA106KE01 10 35 X5R 1206 3.2 x 1.6 x 1.6 Murata GRM21BR6YA106ME43 10 35 X5R 0805 2.0 x 1.25 x 1.25 www.maximintegrated.com Maxim Integrated | 73 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries SYS Capacitor Selection The SYS capacitor, CSYS, is required to keep the output voltage ripple small and to ensure regulation loop stability. The CSYS must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. For stable operation, buck-boost requires 40μF of minimum effective output capacitance. Considering the DC bias characteristic of ceramic capacitors, 2 x 47μF (1210) or 3 x 47μF (1206) or 7 x 22μF (0805) capacitors are recommended for 2-cell applications, and 3 x 47μF (1210) or 4 x 47μF (1206) capacitors are recommended for 3-cell applications. See Table 14 for SYS capacitor recommendations. Table 14. Suggested SYS Capacitors MFGR. SERIES NOMINAL CAPACITANCE (µF) RATED VOLTAGE (V) TEMPERATURE CHARACTERISTICS CASE SIZE (in) DIMENSIONS LxWxH (mm) Taiyo Yuden EMK325ABJ476MM8P 47 16 X5R 1210 3.2 x 2.5 x 2.5 Murata GRM31CR61C476ME44 47 16 X5R 1206 3.2 x 1.6 x 1.6 Murata GRM21BR61C226ME44 22 16 X5R 0805 2.0 x 1.25 x 1.25 Battery Insertion Protection When the battery hot inserts into the MAX77960B/MAX77961B, it creates high inrush current flowing through the body diode of QBAT FET. The inrush current peaks at tens of amperes and lasts for less than a few hundreds of microseconds. Such current can possibly damage the QBAT FET. For IC protection, the following battery insertion protection is required on the board: ● For system designs with a 2S battery, include an external 3A Schottky diode from BATT to SYS. The Schottky diode has low forward voltage drop when conducting high current in the forward direction. It diverts the inrush current from BATT to SYS at battery insertion. The inrush current flowing through the QBAT FET is greatly reduced and therefore the IC is protected. See Figure 14. ● For system designs with a 3S battery, the inrush current is higher than a 2S battery due to higher battery voltage. In addition to the 3A Schottky diode from BATT to SYS, it is required to include an inrush protection circuit. The inrush protection circuit consists of an FET and RC network. See Figure 15 for a complete solution. At battery hot insertion, VGS of the FET is slowly charged by the RC network. The FET gradually turns on and limits the inrush current. For FET selection, check the current and voltage rating of the FET to guarantee that it satisfies the system specification. www.maximintegrated.com Maxim Integrated | 74 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries MAX77960B MAX77961B PGND SYS QBAT BATT PACK+ HOT INSERTION 3A SCHOTTKY DIODE 2S BATTERY PACK- Figure 14. Battery Insertion Protection with 2S Battery www.maximintegrated.com Maxim Integrated | 75 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries MAX77960B MAX77961B PGND SYS QBAT BATT PACK+ 3A SCHOTTKY DIODE 470K INRUSH PROTECTION CIRCUIT HOT INSERTION 3S BATTERY 1K 0.047µF 910K PACK- Figure 15. Battery Insertion Protection with 3S Battery PCB Layout Guidelines Careful circuit board layout is critical to achieve low switching power losses and clean, stable operation. Figure 16 shows a PCB layout example. When designing the PCB, follow these guidelines: 1. Place the CHGIN capacitor (CCHGIN) and SYS capacitors (CSYS) immediately next to the CHGIN pin and SYS pin of the IC, respectively. Since the IC operates at a high switching frequency, this placement is critical for minimizing parasitic inductance within the input and output current loops which can cause high voltage spikes and can damage the internal switching MOSFETs. 2. Place the inductor next to the LX pins and make the traces between the LX pins and the inductor short and wide to minimize PCB trace impedance. Excessive PCB impedance reduces converter efficiency. When routing LX traces on a separate layer, make sure to include enough vias to minimize trace impedance. Routing LX traces on multiple layers is recommended to further reduce trace impedance. Furthermore, do not make LX traces take up an excessive amount of area. The voltage on this node switches very quickly and additional area creates more radiated emissions. 3. Route LX nodes to their corresponding bootstrap capacitors (CBST) as short as possible. Prioritize CBST placement to reduce trace length to the IC. 4. Route CSINP and CSINN traces as symmetrical as possible. Having the same trace parasitics improves accuracy of the differential CHGIN current sensing. 5. Place the PVL capacitor (CPVL) immediately next to the PVL pin. Proximity to the IC provides a stable supply for the internal circuitry. 6. Place the BATT capacitor (CBATT) and SYSA capacitor (CSYSA) immediately next to the BATT pin and SYSA pin of the IC, respectively. www.maximintegrated.com Maxim Integrated | 76 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries 7. Keep the power traces and load connections short and wide. This is essential for high converter efficiency. 8. Do not neglect ceramic capacitor DC voltage derating. Choose capacitor values and case sizes carefully. See the SYS Capacitor Selection section and refer to Tutorial 5527 for more information. CSINP CSINN RCSINN 0402 CCSINP 0402 CCSINN 0402 RCSINP 0402 CDIFF 0402 CPVL 0402 RSENSE 1206 BST1 CHGIN CBST1 0402 RAVL 0402 AVL PVL CCHGIN 1210 LX1 CSYSA 0402 GND SYSA LX2 CSYS 1210 PGND CSYS 1210 L (2.2uH) 6.95 x 6.6mm CAVL 0402 VBUS CBST2 0402 BST2 SYS CBATT 0805 BATT Figure 16. PCB Layout Example www.maximintegrated.com Maxim Integrated | 77 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Typical Application Circuits Wide-Input I2C Programmable Charger MAX77960B MAX77961B 10mΩ 1206 3.5V TO 25.4V VBUS 10µF 35V 1210 CHGIN LX1 CSINN CSINP VPVL 4.7µF 6.3V 0402 PVL 4.7Ω VAVL 0402 AVL 2.2µH 8A ISAT LX2 0.22µF 6.3V 0402 BST2 SYS 47µF 16V 1210 SYSA 4.7µF 6.3V 0402 SCL SCL SDA SDA INTB INTB BATT INOKB 200kΩ 0402 VSYS 3A IF VBATT 10µF 16V 0805 VAVL 200kΩ 0402 STAT 47µF 16V 1210 PGND INOKB VPVL 0.22µF 6.3V 0402 BST1 THM PK+ THM BATSP 10kΩ GND STAT OTGEN DISQBAT STBY www.maximintegrated.com OTGEN DISQBAT STBY BATSN ISET ITO INLIM VSET VPVL INRUSH PROTECTION CIRCUIT (FOR 3S BATTERY) PK2/3-CELL LI-ION BATTERY CNFG Maxim Integrated | 78 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Typical Application Circuits (continued) Wide-Input I2C Programmable Charger with Charger Disabled MAX77960B MAX77961B 10mΩ 1206 3.5V TO 25.4V VBUS 10µF 35V 1210 CHGIN LX1 CSINN CSINP VPVL 4.7µF 6.3V 0402 PVL 4.7Ω VAVL 0402 AVL 2.2µH 8A ISAT LX2 0.22µF 6.3V 0402 BST2 SYS 47µF 16V 1210 SYSA 4.7µF 6.3V 0402 SCL SCL SDA SDA INTB INTB BATT INOKB 200kΩ 0402 VSYS 3A IF VBATT 10µF 16V 0805 VAVL 200kΩ 0402 STAT 47µF 16V 1210 PGND INOKB VPVL 0.22µF 6.3V 0402 BST1 THM PK+ THM BATSP 10kΩ GND STAT BATSN OTGEN DISQBAT STBY www.maximintegrated.com OTGEN DISQBAT STBY ISET ITO INLIM VSET CNFG VPVL INRUSH PROTECTION CIRCUIT (FOR 3S BATTERY) PK2/3-CELL LI-ION BATTERY Maxim Integrated | 79 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Typical Application Circuits (continued) Wide-Input Autonomous Charger MAX77960B MAX77961B 10mΩ 1206 3.5V TO 25.4V VBUS 10µF 35V 1210 CHGIN LX1 CSINN CSINP VPVL 4.7µF 6.3V 0402 PVL 4.7Ω VAVL 0402 AVL 2.2µH 8A ISAT LX2 0.22µF 6.3V 0402 BST2 SYS 47µF 16V 1210 SYSA 4.7µF 6.3V 0402 SCL SDA INTB BATT INOKB 200kΩ 0402 VSYS 3A IF VBATT 10µF 16V 0805 VAVL 200kΩ 0402 STAT 47µF 16V 1210 PGND INOKB VPVL 0.22µF 6.3V 0402 BST1 THM PK+ THM BATSP 10kΩ GND STAT OTGEN DISQBAT STBY www.maximintegrated.com OTGEN DISQBAT STBY BATSN ISET ITO INLIM VSET CNFG INRUSH PROTECTION CIRCUIT (FOR 3S BATTERY) PK2/3-CELL LI-ION BATTERY Maxim Integrated | 80 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Ordering Information PART NUMBER TEMP RANGE PIN-PACKAGE SWITCHING FREQUENCY NUMBER OF SERIES BATTERY CELLS MAXIMUM CHARGING CURRENT MAX77960BEFV06+ -40°C to +85°C 4mm x 4mm, 30-Lead FC2QFN 600kHz 2, 3 3A MAX77960BEFV06+T -40°C to +85°C 4mm x 4mm, 30-Lead FC2QFN 600kHz 2, 3 3A MAX77960BEFV12+ -40°C to +85°C 4mm x 4mm, 30-Lead FC2QFN 1.2MHz 2 3A MAX77960BEFV12+T -40°C to +85°C 4mm x 4mm, 30-Lead FC2QFN 1.2MHz 2 3A MAX77961BEFV06+ -40°C to +85°C 4mm x 4mm, 30-Lead FC2QFN 600kHz 2, 3 6A MAX77961BEFV06+T -40°C to +85°C 4mm x 4mm, 30-Lead FC2QFN 600kHz 2, 3 6A MAX77961BEFV12+ -40°C to +85°C 4mm x 4mm, 30-Lead FC2QFN 1.2MHz 2 5A MAX77961BEFV12+T -40°C to +85°C 4mm x 4mm, 30-Lead FC2QFN 1.2MHz 2 5A +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. www.maximintegrated.com Maxim Integrated | 81 MAX77960B/MAX77961B 25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries Revision History REVISION NUMBER REVISION DATE 0 6/21 DESCRIPTION Initial release PAGES CHANGED — For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2021 Maxim Integrated Products, Inc.
MAX77961BEFV06+ 价格&库存

很抱歉,暂时无法提供与“MAX77961BEFV06+”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MAX77961BEFV06+
    •  国内价格
    • 1470+26.40000

    库存:2940

    MAX77961BEFV06+
    •  国内价格 香港价格
    • 1+81.802241+10.14753
    • 10+56.4980210+7.00856
    • 25+49.9538425+6.19675
    • 80+43.6416480+5.41373
    • 230+39.37927230+4.88498
    • 490+36.98796490+4.58834
    • 980+35.18478980+4.36466
    • 2450+34.427662450+4.27074

    库存:41