MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
General Description
Benefits and Features
●● Ultra-Low Total Supply Current
• 0.85μA (MAX9019/MAX9020)
• 1.0μA (MAX9015A/MAX9016A)
• 1.2μA (MAX9017/MAX9018)
●● Guaranteed Operation Down to 1.8V
●● Precision VOS < 5mV (max)
●● Internal 1.236V ±1% Reference (A Grade)
●● Input Voltage Range Extends 200mV
Beyond-the-Rails
●● CMOS Push-Pull Output with ±6mA Drive Capability
(MAX9015/MAX9017/MAX9019)
●● Open-Drain Output Versions Available
(MAX9016/MAX9018/MAX9020)
●● Crowbar-Current-Free Switching
●● Internal 4mV Hysteresis for Clean Switching
●● No Phase Reversal for Overdriven Inputs
●● Dual Versions in Space-Saving 8-Pin SOT23 Package
The single MAX9015/MAX9016 and dual MAX9017–
MAX9020 nanoPower comparators in space-saving
SOT23 packages feature Beyond-the-Rails™ inputs and
are guaranteed to operate down to 1.8V. The A-grade
packages feature an on-board 1.236V ±1% reference,
while the B-grade packages feature a 1.24V ±1.75%
reference. An ultra-low supply current of 0.85μA (MAX9019/
MAX9020), 1μA (MAX9015/MAX9016), or 1.2μA (MAX9017/
MAX9018) makes this product family of comparators ideal
for all 2-cell battery monitoring/management applications.
The unique design of the devices output stage limits supplycurrent surges while switching, which virtually eliminates
the supply glitches typical of many other comparators.
This design also minimizes overall power consumption
under dynamic conditions. The MAX9015/MAX9017/
MAX9019 have a push-pull output stage that sinks and
sources current. Large internal output drivers allow railto-rail output swing with loads up to 6mA. The MAX9016/
MAX9018/MAX9020 have an open-drain output stage
that makes them suitable for mixed-voltage system
design. All devices are available in the ultra-small 8-pin
SOT23 package.
●● AEC-Q100 Grade 3 Qualified, Refer to Ordering
Information for the List of /V Parts
Applications
●● Window Detectors
●● Sensing at Ground or
●● 2-Cell Battery
Supply Line
Monitoring/Management
●
●
Telemetry and Remote
●● Ultra-Low Power Systems
Systems
●● Mobile Communications
●
●
Medical Instruments
●● Notebooks and PDAs
●● Threshold Detectors/
Discriminators
Refer to the MAX9117–MAX9120 data sheet for similar
single comparators with or without reference in a tiny
SC70 package.
Ordering Information at end of data sheet
Functional Diagrams
7
8
VCC
VCC
8
VCC
3 INA+
3 INA+
3 IN+
OUTA 1
OUT 6
2
OUTA 1
2 REF/INA-
2 INA-
5 INB+
5 INB+
IN-
MAX9015
MAX9016
1 REF
REF
1.24V
VEE
4
OUTB 7
OUTB 7
6 INB-
6 INBREF
1.24V
MAX9017
MAX9018
VEE
4
Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.
19-2874; Rev 6; 3/18
MAX9019
MAX9020
VEE
4
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Absolute Maximum Ratings
Supply Voltage (VCC to VEE)...................................................6V
IN+, IN-, INA+, INB+, INA-, INB-,
REF/INA-, REF........................... (VEE - 0.3V) to (VCC + 0.3V)
Output Voltage (OUT_)
MAX9015A, MAX9017_, MAX9019....(VEE - 0.3V) to (VCC + 0.3V)
MAX9016A, MAX9018_, MAX9020...........(VEE - 0.3V) to +6V
Output Current (REF, OUT_, REF/INA-)...........................±50mA
Output Short-Circuit Duration (REF, OUT_, REF/INA-)......... 10s
Continuous Power Dissipation (TA = +70°C)
8-Pin SOT23 (derate 9.1mW/°C above +70°C)...........727mW
Operating Temperature Range............................ -40°C to +85°C
Storage Temperature Range............................. -65°C to +150°C
Junction Temperature.......................................................+150°C
Lead Temperature (soldering, 10s).................................. +300°C
Soldering Temperature (reflow)........................................+260°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Electrical Characteristics—MAX9015–MAX9018 (Single and Duals with REF)
(VCC = 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
Supply Voltage Range
SYMBOL
VCC
CONDITIONS
Inferred from the PSRR test
MAX9015A/
MAX9016A
Supply Current
MIN
TYP
1.8
MAX9017_/
MAX9018_
UNITS
5.5
V
VCC = 1.8V, TA = +25°C
1.0
1.5
VCC = 5.0V, TA = +25°C
1.1
1.7
VCC = 5.0V,
TA = TMIN to TMAX
ICC
MAX
2.0
VCC = 1.8V, TA = +25°C
1.2
1.9
VCC = 5.0V, TA = +25°C
1.4
2.3
VCC = 5.0V,
TA = TMIN to TMAX
µA
2.8
Input Common-Mode
Voltage Range
(MAX9015A/MAX9016A)
VCM
Inferred from VOS test
VEE 0.2
VCC +
0.2
V
IN+ Voltage Range
(MAX9017_/MAX9018_)
VIN+
Inferred from the output swing test
VEE 0.2
VCC +
0.2
V
Input Offset Voltage
VOS
VEE - 0.2V < VCM < TA = +25°C
VCC + 0.2V (Note 2) TA = TMIN to TMAX
0.15
Input-Referred Hysteresis
VHB
VEE - 0.2V < VCM < VCC + 0.2V (Note 3)
4
Input Bias Current (IN+,
IN-, INA+, INB+, INB-)
IB
Power-Supply Rejection
Ratio
PSRR
Output Voltage Swing High
(MAX9015A/MAX9017_)
Output Voltage Swing Low
(MAX9015A/MAX9016A/
MAX9017_/MAX9018_)
www.maximintegrated.com
VCC - VOH
VOL
TA = +25°C
5
10
±0.15
TA = TMIN to TMAX
mV
±1
±2
VCC = 1.8V to 5.5V
VCC = 1.8V,
ISOURCE = 1mA
TA = +25°C
VCC = 5.0V,
ISOURCE = 6mA
TA = +25°C
VCC = 1.8V,
ISINK = 1mA
TA = +25°C
VCC = 5.0V,
ISINK = 6mA
TA = +25°C
0.1
1
100
200
TA = TMIN to TMAX
300
250
TA = TMIN to TMAX
350
nA
mV/V
mV
450
105
TA = TMIN to TMAX
TA = TMIN to TMAX
mV
200
300
285
350
mV
450
Maxim Integrated │ 2
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Electrical Characteristics—MAX9015–MAX9018 (Single and Duals with REF)
(continued)
(VCC = 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
Output Leakage Current
(MAX9016A/MAX9018_)
Output Short-Circuit Current
High-to-Low Propagation
Delay (Note 4)
SYMBOL
ILEAK
ISC
tPD-
CONDITIONS
VCC = 5.5V, VOUT = 5.5V
TYP
MAX
UNITS
0.001
1
µA
Sourcing, VOUT =
VEE (MAX9015A/
MAX9017_ only)
VCC = 1.8V
3
VCC = 5.0V
35
Sinking,
VOUT = VCC
VCC = 1.8V
3
VCC = 5.0V
33
VCC = 1.8V
7
VCC = 5.0V
6
VCC = 1.8V
Low-to-High Propagation
Delay (Note 4)
MIN
tPD+
VCC = 5.0V
MAX9015A/MAX9017_
11
MAX9016A/MAX9018_,
RPULLUP = 100kΩ to VCC
12
MAX9015A/MAX9017_
28
MAX9016A/MAX9018_,
RPULLUP = 100kΩ to VCC
31
mA
µs
µs
Rise Time
tRISE
CL = 15pF (MAX9015A/MAX9017_)
1.6
Fall Time
tFALL
CL = 15pF
0.2
µs
1.2
ms
Power-Up Time
Reference Voltage
(Note 5)
Reference Voltage
Temperature Coefficient
tON
MAX901_A
VREF
MAX901_B
1.224
TA = TMIN to TMAX, 2.5%
1.205
TA = +25°C, 1.75%
1.218
TA = TMIN to TMAX, 4.5%
1.184
TCREF
1.236
1.248
1.267
1.240
1.262
V
1.296
40
ppm/°C
BW = 10Hz to 1kHz, CREF = 1nF
29
BW = 10Hz to 6kHz, CREF = 1nF
60
∆VREF/
∆VCC
1.8V ≤ VCC ≤ 5.5V
0.5
mV/V
∆VREF/
∆IOUT
IOUT = 0 to 100nA
0.03
mV/nA
Reference Output Voltage
Noise
EN
Reference Line Regulation
Reference Load Regulation
www.maximintegrated.com
TA = +25°C, 1.0%
µs
µVRMS
Maxim Integrated │ 3
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Electrical Characteristics—MAX9019/MAX9020 (Duals without REF)
(VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
Supply Voltage Range
Supply Current
SYMBOL
CONDITIONS
VCC
Inferred from the PSRR test
ICC
MAX9019/
MAX9020
1.50
1.70
VCC = 5.0V,
TA = TMIN to TMAX
VOS
VEE - 0.2V < VCM <
VCC + 0.2V (Note 2)
Input-Referred Hysteresis
VHB
VEE - 0.2V < VCM < VCC + 0.2V (Note 3)
Input Bias Current
(INA-, INA+, INB+, INB-)
IB
Power-Supply Rejection
Ratio
PSRR
Output Leakage Current
(MAX9020 Only)
Output Short-Circuit Current
ILEAK
ISC
High-to-Low Propagation
Delay (Note 4)
tPD-
1
TA = TMIN to TMAX
4
TA = +25°C
1
VCC = 5.0V,
ISOURCE = 6mA
TA = +25°C
VCC = 1.8V,
ISINK = 1mA
TA = +25°C
VCC = 5.0V,
ISINK = 6mA
TA = +25°C
0.1
1
55
200
TA = TMIN to TMAX
300
190
TA = TMIN to TMAX
mV
350
nA
mV/V
mV
450
55
TA = TMIN to TMAX
200
300
190
TA = TMIN to TMAX
VCC = 5.5V, VOUT = 5.5V
V
mV
2
VCC = 1.8V,
ISOURCE = 1mA
350
mV
450
0.001
Sourcing, VOUT = VEE VCC = 1.8V
(MAX9019 only)
VCC = 5.0V
35
VCC = 1.8V
3
VCC = 5.0V
33
1
µA
3
VCC = 1.8V
7
VCC = 5.0V
6
tPD+
5
10
0.15
VCC = 1.8V to 5.5V
VCC = 5.0V
www.maximintegrated.com
VCC + 0.2
TA = TMIN to TMAX
VCC = 1.8V
Low-to-High Propagation
Delay (Note 4)
TA = +25°C
µA
2.0
VEE - 0.2
TA = +25°C
Sinking, VOUT = VCC
V
1.1
Input Offset Voltage
VOL
UNITS
5.5
0.85
Inferred from VOS test
Output Voltage Swing Low
MAX
VCC = 5.0V, TA = +25°C
VCM
VCC - VOH
TYP
1.8
VCC = 1.8V, TA = +25°C
Input Common-Mode
Voltage Range
Output Voltage Swing High
(MAX9019 Only)
MIN
MAX9019
11
MAX9020, RPULLUP =
100kΩ to VCC
12
MAX9019
28
MAX9020, RPULLUP =
100kΩ to VCC
31
mA
µs
µs
Maxim Integrated │ 4
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Electrical Characteristics—MAX9019/MAX9020 (Duals without REF) (continued)
(VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Rise Time
tRISE
CL = 15pF (MAX9019 only)
1.6
Fall Time
tFALL
CL = 15pF
0.2
µs
1.2
ms
Power-Up Time
tON
µs
Note 1: All devices are 100% tested at TA = +25°C. Specifications over temperature (TA = TMIN to TMAX) are guaranteed by design,
not production tested.
Note 2: VOS is defined as the center of the hysteresis band at the input.
Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of the
band (i.e., VOS) (Figure 1).
Note 4: Specified with an input overdrive (VOVERDRIVE) of 100mV, and a load capacitance of CL = 15pF. VOVERDRIVE is defined
above and beyond the offset voltage and hysteresis of the comparator input.
Note 5: High current traces should not be routed in the vicinity of or below MAX9018. There is a chance of voltage reference being
overloaded resulting in drop of output voltage.
Typical Operating Characteristics
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
TA = -40°C
1.5
2.0
2.5 3.0 3.5 4.0 4.5
SUPPLY VOLTAGE (V)
5.0
5.5
MAX9015/MAX9016
SUPPLY CURRENT vs. TEMPERATURE
VCC = 5V
VCC = 3V
VCC = 1.8V
-40
-15
10
35
60
TEMPERATURE (°C)
www.maximintegrated.com
85
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
TA = +25°C
TA = -40°C
1.5
2.0
2.5 3.0 3.5 4.0 4.5
SUPPLY VOLTAGE (V)
5.0
5.5
MAX9017/MAX9018
SUPPLY CURRENT vs. TEMPERATURE
VCC = 5V
VCC = 3V
VCC = 1.8V
-40
-15
10
35
60
TEMPERATURE (°C)
85
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
MAX9015 toc03
MAX9015 toc02
TA = +85°C
SUPPLY CURRENT (µA)
1.3
1.2
1.1
1.0
0.9
0.8
1.6
1.5
SUPPLY CURRENT (µA)
SUPPLY CURRENT (µA)
TA = +25°C
1.8
1.7
1.6
1.5
1.4
MAX9019/MAX9020
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX9015 toc05
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
TA = +85°C
MAX9015 toc04
0.9
0.8
0.7
0.6
0.5
0.4
MAX9015 toc01
1.4
1.3
1.2
1.1
1.0
2.0
1.9
SUPPLY CURRENT (µA)
SUPPLY CURRENT (µA)
SUPPLY CURRENT (µA)
1.6
1.5
MAX9017/MAX9018
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
TA = +85°C
TA = +25°C
TA = -40°C
1.5
2.0
2.5 3.0 3.5 4.0 4.5
SUPPLY VOLTAGE (V)
5.0
5.5
MAX9019/MAX9020
SUPPLY CURRENT vs. TEMPERATURE
VCC = 5V
MAX9015 toc06
MAX9015/MAX9016
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
VCC = 3V
VCC = 1.8V
-40
-15
10
35
60
TEMPERATURE (°C)
85
Maxim Integrated │ 5
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
VCC = 1.8V
30
25
20
VCC = 3V
15
VCC = 5V
10
20
15
VCC = 3V
10
1
10
100
1k
10k
0
100k
VCC = 5V
MAX9015 toc09
VCC = 5V
15
VCC = 3V
10
1
10
100
1k
10k
0
100k
1
10
100
1k
10k
100k
OUTPUT VOLTAGE HIGH
vs. SOURCE CURRENT
500
300
VCC - VOH (V)
400
TA = +85°C
200
5
6
7
8
9
0
10
0
1
2
40
MAX9015 toc13
0.6
TA = +25°C
0.4
TA = +85°C
0.2
1
2
3
4
5
6
7
SOURCE CURRENT (mA)
www.maximintegrated.com
8
5
6
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
SOURCE CURRENT (mA)
SHORT-CIRCUIT TO VCC (SINK CURRENT)
vs. TEMPERATURE
SHORT-CIRCUIT TO GND
(SOURCE CURRENT) vs.TEMPERATURE
VCC = 5V
30
25
20
VCC = 3V
15
0
0
10
SINK CURRENT (mA)
-40
-15
50
45
40
10
35
TEMPERATURE (°C)
VCC = 5V
35
30
25
20
VCC = 3V
15
10
VCC = 1.8V
5
9
VCC = 5V
0.1
10
TA = -40°C
0.1
4
35
SINK CURRENT (mA)
0.5
3
0.3
MAX9015toc15
4
VCC = 1.8V
0.4
0.2
TA = -40°C
SINK CURRENT (mA)
3
VCC = 3V
0.5
MAX9015 toc14
2
0.6
TA = +25°C
100
1
0.7
MAX9015 toc11
MAX9015 toc10
600
MAX9015 toc12
OUTPUT VOLTAGE LOW
vs. SINK CURRENT AND TEMPERATURE
OUTPUT VOLTAGE HIGH
vs. SOURCE CURRENT AND TEMPERATURE
VCC - VOH (V)
20
OUTPUT VOLTAGE LOW
vs. SINK CURRENT
VCC = 5V
0
25
5
SINK CURRENT (mA)
0
VCC = 1.8V
30
OUTPUT TRANSITION FREQUENCY (Hz)
VCC = 1.8V
0.3
35
OUTPUT TRANSITION FREQUENCY (Hz)
VCC = 3V
0
40
OUTPUT TRANSITION FREQUENCY (Hz)
VOL (mV)
VOL (mV)
750
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
VCC = 1.8V
25
MAX9019/MAX9020
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
45
5
5
0
50
SUPPLY CURRENT (µA)
35
30
SUPPLY CURRENT (µA)
40
MAX9017/MAX9018
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9015 toc08
45
SUPPLY CURRENT (µA)
35
MAX9015 toc07
50
MAX9015/MAX9016
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
VCC = 1.8V
5
60
85
0
-40
-15
10
35
60
85
TEMPERATURE (°C)
Maxim Integrated │ 6
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
1.2
0.8
VOS (mV)
5
4
3
VCC = 5V
-1.6
-1.5 -1.2 -0.9 -0.6 -0.3 0
-2.0
0.3 0.6 0.9 1.2 1.5
10
35
60
20
15
10
5
0
85
1.232 1.234 1.236 1.238 1.240
REFERENCE VOLTAGE
vs. TEMPERATURE
REFERENCE VOLTAGE
vs. SUPPLY VOLTAGE
2.5
-15
10
35
60
1.236
VCC = 3V
1.234
VCC = 5V
1.232
1.240
MAX9015 toc21
VCC = 1.8V
1.238
1.230
85
A GRADE
REFERENCE VOLTAGE (V)
REFERENCE VOLTAGE (V)
3.0
1.240
MAX9015 toc20
HYSTERESIS VOLTAGE
vs. TEMPERATURE
3.5
1.239
1.238
1.237
1.236
1.235
-40
-15
10
35
60
1.234
85
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
TEMPERATURE (°C)
SUPPLY VOLTAGE (V)
REFERENCE VOLTAGE
vs. REFERENCE SOURCE CURRENT
REFERENCE VOLTAGE
vs. REFERENCE SINK CURRENT
REFERENCE VOLTAGE vs. REFERENCE
SINK CURRENT AND TEMPERATURE
VCC = 5V
1.244
VCC = 1.8V
1.242
1.240
VCC = 5V
1.238
1.236
VCC = 3V
1.234
40
80
120
160
REFERENCE SOURCE CURRENT (nA)
www.maximintegrated.com
200
1.232
0
40
80
120
160
REFERENCE SINK CURRENT (nA)
200
VCC = 3V
TA = +85°C
1.250
REFERENCE VOLTAGE (V)
VCC = 3V
1.229
1.246
REFERENCE VOLTAGE (V)
1.235
1.255
MAX9015 toc23
MAX9015 toc22
VCC = 1.8V
1.232
1.248
MAX9015 toc24
TEMPERATURE (°C)
1.238
0
25
VREF (V)
4.0
1.226
A GRADE
TEMPERATURE (°C)
4.5
-40
-15
-40
REFERENCE VOLTAGE DISTRIBUTION
VOS (mV)
MAX9015 toc19
5.0
VHB (mV)
0
-0.4
-1.2
1
REFERENCE VOLTAGE (V)
0.4
-0.8
2
2.0
VCC = 1.8V
30
MAX9015 toc18
1.6
6
0
OFFSET VOLTAGE vs. TEMPERATURE
PERCENTAGE OF UNITS (%)
7
PERCENTAGE OF UNITS (%)
2.0
MAX9015 toc17
INPUT OFFSET VOLTAGE DISTRIBUTION
MAX9015 toc16
8
1.245
TA = +25°C
1.240
1.235
TA = -40°C
1.230
1.225
0
40
80
120
160
200
REFERENCE SINK CURRENT (nA)
Maxim Integrated │ 7
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
0.600
14
10
VCC = 1.8V
8
6
VCC = 3V
4
-0.600
2
1.5
2.5
3.5
4.5
5.5
-40
-15
INPUT BIAS VOLTAGE (IN-) (V)
140
160
140
tPD+ (µs)
VCC = 5V
80
100
80
20
0
0
0.1
1
10
100
1000
VCC = 1.8V
VCC = 5V
10
0.01
0.1
1
10
100
0
1000
VCC
20= 3V
0
10
20
30
40
INPUT OVERDRIVE (mV)
PROPAGATION DELAY (tPD+)
vs. INPUT OVERDRIVE
PROPAGATION DELAY (tPD-)
vs. PULLUP RESISTANCE
PROPAGATION DELAY (tPD+)
vs. PULLUP RESISTANCE
VCC = 5V
VCC = 1.8V
9
tPD- (µs)
VCC = 3V
20
15
7
VCC = 5V
6
10
10
20
30
INPUT OVERDRIVE (mV)
www.maximintegrated.com
40
50
4
VCC = 5V
120
VCC = 3V
80
VCC = 1.8V
40
5
VCC = 1.8V
5
160
50
VCC = 3V
8
25
200
tPD+ (µs)
MAX9015 toc31
10
30
tPD+ (µs)
20
CAPACITIVE LOAD (nF)
35
85
30
CAPACITIVE LOAD (nF)
40
0
60
40
40
20
35
50
VCC = 5V
60
40
10
VCC = 3V
120
60
0.01
-15
PROPAGATION DELAY (tPD-)
vs. INPUT OVERDRIVE
MAX9015 toc32
tPD- (µs)
100
-40
TEMPERATURE (°C)
VCC = 1.8V
180
VCC = 3V
120
85
tPD- (µs)
160
60
VCC = 1.8V
0
PROPAGATION DELAY (tPD+)
vs. CAPACITIVE LOAD
200
MAX9015 toc28
VCC = 1.8V
35
VCC = 3V
20
TEMPERATURE (°C)
PROPAGATION DELAY (tPD-)
vs. CAPACITIVE LOAD
180
10
30
MAX9015 toc30
0.5
0
VCC = 5V
10
VCC = 5V
MAX9015 toc29
-0.5
tPD+ (µs)
tPD- (µs)
-0.200
0
40
12
0.200
-1.000
50
MAX9015 toc33
IN+ = 2.5V
PROPAGATION DELAY (tPD+)
vs. TEMPERATURE
MAX9015 toc26
16
MAX9015 toc25
INPUT BIAS CURRENT (IN-) (nA)
1.000
PROPAGATION DELAY (tPD-)
vs. TEMPERATURE
MAX9015 toc27
INPUT BIAS CURRENT
vs. INPUT BIAS VOLTAGE
10k
100k
RPULLUP (Ω)
1M
10M
0
10k
100k
1M
10M
RPULLUP (Ω)
Maxim Integrated │ 8
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.)
PROPAGATION DELAY (tPD-) (VCC = 5V)
PROPAGATION DELAY (tPD+) (VCC = 5V)
MAX9015 toc34
PROPAGATION DELAY (tPD-) (VCC = 3V)
MAX9015 toc35
VIN+
50mV/div
VOUT
2V/div
10µs/div
PROPAGATION DELAY (tPD+) (VCC = 3V)
PROPAGATION DELAY (tPD+) (VCC = 1.8V)
MAX9015 toc38
MAX9015 toc39
VIN+
50mV/div
VIN+
50mV/div
VOUT
2V/div
VOUT
1V/div
10µs/div
2µs/div
1kHz RESPONSE (VCC = 5V)
VIN+
50mV/div
VOUT
1V/div
10µs/div
SLOW POWER-UP/DOWN RESPONSE
MAX9015 toc40
VOUT
2V/div
2µs/div
PROPAGATION DELAY (tPD-) (VCC = 1.8V)
MAX9015 toc37
VIN+
50mV/div
VIN+
50mV/div
VOUT
2V/div
2µs/div
MAX9015 toc36
POWER-UP RESPONSE
MAX9015 toc41
MAX9015 toc42
VCC
2V/div
IN+
50mV/div
AC-COUPLED
VCC
1V/div
VOUT
2V/div
OUT
2V/div
VREF
1V/div
VOUT
1V/div
200µs/div
www.maximintegrated.com
40µs/div
20µs/div
Maxim Integrated │ 9
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Pin Configurations
TOP VIEW
REF 1
IN- 2
IN+
3
+
MAX9015
MAX9016
VEE 4
8
N.C.
OUTA
7
VCC
REF/INA- 2
6
OUT
INA+
5
N.C.
1
3
+
MAX9017
MAX9018
VEE 4
SOT23
8
VCC
OUTA 1
7
OUTB
INA- 2
6
INB-
INA+
5
INB+
3
+
MAX9019
MAX9020
VEE 4
SOT23
8
VCC
7
OUTB
6
INB-
5
INB+
SOT23
Pin Description
PIN
MAX9015/
MAX9016
MAX9017/
MAX9018
MAX9019/
MAX9020
NAME
1
—
—
REF
2
—
—
IN-
Comparator Inverting Input
3
—
—
IN+
Comparator Noninverting Input
4
4
4
VEE
Negative Supply Voltage
5, 8
—
—
N.C.
No Connection. Not internally connected.
6
—
—
OUT
Comparator Output
7
8
8
VCC
Positive Supply Voltage
—
1
1
OUTA
Comparator A Output
—
3
3
INA+
Comparator A Noninverting Input
—
5
5
INB+
Comparator B Noninverting Input
—
6
6
INB-
Comparator B Inverting Input
—
7
7
OUTB
—
—
2
INA-
Comparator A Inverting Input
—
2
—
REF/
INA-
1.24V Reference Output. Internally connected to the inverting input of
comparator A (MAX9017/MAX9018 only).
www.maximintegrated.com
FUNCTION
1.24V Reference Output
Comparator B Output
Maxim Integrated │ 10
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Detailed Description
Output Stage Circuitry
The MAX9015–MAX9018 feature an on-board 1.24V
±0.5% (±1.45% for the B grade) reference, yet draw
an ultra-low supply current. The MAX9019/MAX9020
(duals without reference) consume just 850nA of supply
current. All devices are guaranteed to operate down to
1.8V supply. Their common-mode input voltage range
extends 200mV beyond-the-rails. An internal 4mV
hysteresis ensures clean output switching, even
with slow-moving input signals. Large internal output
drivers swing rail-to-rail with up to ±6mA loads (MAX9015/
MAX9017/MAX9019).
The output stage employs a unique design that
minimizes supply-current surges while switching, which
virtually eliminates the supply glitches typical of many
other comparators. The MAX9015/MAX9017/MAX9019
have a push-pull output stage that sinks as well as sources
current. The MAX9016/MAX9018/MAX9020 have an
open-drain output stage that can be pulled beyond VCC
up to 5.5V above VEE. These open-drain versions are
ideal for implementing wire-ORed output logic functions.
Input Stage Circuitry
The input common-mode voltage ranges extend from
VEE - 0.2V to VCC + 0.2V. These comparators operate
at any differential input voltage within these limits. Input
bias current is typically ±150pA at the trip point, if the
input voltage is between the supply rails. Comparator
inputs are protected from overvoltage by internal ESD
protection diodes connected to the supply rails. As the
input voltage exceeds the supply rails, these ESD protection diodes become forward biased and begin to conduct
increasing input bias current (see the Input Bias Current
vs. Input Bias Voltage graph in the Typical Operating
Characteristics).
The devices feature a unique break-before-make output
stage capable of driving ±8mA loads rail-to-rail. Many
comparators consume orders of magnitude more current
during switching than during steady-state operation.
However, with this device family of comparators, the supplycurrent change during an output transition is extremely
small. In the Typical Operating Characteristics, the Supply
Current vs. Output Transition Frequency graphs show the
minimal supply-current increase as the output switching
frequency approaches 1kHz. This characteristic reduces
the need for power-supply filter capacitors to reduce
glitches created by comparator switching currents. In
battery-powered applications, this characteristic results in
a substantial increase in battery life.
Reference (MAX9015–MAX9018)
The MAX9015–MAX9018s’ internal +1.24V reference
has a typical temperature coefficient of 40ppm/°C over
the full -40°C to +85°C temperature range. The reference
is a very-low-power bandgap cell, with a typical 35kΩ
output impedance. REF can source and sink up to 100nA
to external circuitry. For applications needing increased
drive, buffer REF with a low input-bias current op amp
such as the MAX4162. Most applications require no
REF bypass capacitor. For noisy environments or fast
transients, connect a 1nF to 10nF ceramic capacitor from
REF to GND.
Applications Information
Low-Voltage, Low-Power Operation
The MAX9015–MAX9020 are ideally suited for use with
most battery-powered systems. Table 1 lists a variety
of battery types, capacities, and approximate operating
times for the MAX9015–MAX9020, assuming nominal
conditions.
Table 1. Battery Applications Using the MAX9015–MAX9020
RECHARGEABLE
VFRESH
(V)
VEND-OFLIFE (V)
CAPACITY,
AA SIZE
(mA-hr)
MAX9015A/
MAX9016A
OPERATING
TIME (hr)
MAX9017/
MAX9018
OPERATING
TIME (hr)
MAX9019/
MAX9020
OPERATING
TIME (hr)
Alkaline (2 cells)
No
3.0
1.8
2000
2000k
1540k
1333k
Nickel-cadmium
(2 cells)
Yes
2.4
1.8
750
750k
570k
500k
Nickel-metal-hydride
(2 cells)
Yes
2.4
1.8
1000
1000k
770k
660k
Lithium-ion (1 cell)
Yes
3.6
2.9
1000
1000k
770k
660k
BATTERY
TYPE
www.maximintegrated.com
Maxim Integrated │ 11
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Internal Hysteresis
The hysteresis in a comparator creates two trip points:
one for the rising input voltage (VTHR) and one for the
falling input voltage (VTHF) (Figure 1). The difference
between the trip points is the hysteresis (VHB). When
the comparator’s input voltages are equal, the hysteresis
effectively causes one comparator input to move quickly
past the other, thus taking the input out of the region
where oscillation occurs. Figure 1 illustrates the case in
which the comparator’s inverting input has a fixed voltage
applied, and the noninverting input is varied. If the inputs
were reversed, the figure would be the same, except with
an inverted output.
THRESHOLDS
IN+
Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback.
Oscillations can occur when the voltage on one input is
equal or very close to the voltage on the other input. The
devices have internal 4mV hysteresis to counter parasitic
effects and noise.
VTHR
HYSTERESIS
INVTHF
OUT
Figure 1. Threshold Hysteresis Band
R3
VIN
Additional Hysteresis
(MAX9015/MAX9017/MAX9019)
(Push-Pull Outputs)
2) Choose the hysteresis band required (VHB). For this
example, choose 50mV.
3) Calculate R1 according to the following equation:
50mV
R1 =
6.2MΩ
12kΩ
=
5V
For this example, insert the values:
50mV
R1 =
6.2MΩ
12kΩ
=
5V
www.maximintegrated.com
VCC
R1
VCC
R2
The MAX9015/MAX9017/MAX9019 feature a built-in
4mV hysteresis band (VHB). Additional hysteresis can
be generated with three resistors using positive feedback (Figure 2). Use the following procedure to calculate
resistor values:
1) Select R3. Input bias current at IN_+ is less than 2nA,
so the current through R3 should be at least 0.2μA to
minimize errors caused by input bias current. The current through R3 at the trip point is (VREF - VOUT)/R3.
Considering the two possible output states in solving
for R3 yields two formulas: R3 = VREF/IR3 or R3 =
(VCC - VREF)/IR3. Use the smaller of the two resulting
resistor values. For example, when using the MAX9017
(VREF = 1.24V) and VCC = 5V, and if we choose IR3
= 0.2μA, then the two resistor values are 6.2MΩ and
19MΩ. Choose a 6.2MΩ standard value for R3.
BAND
VHB
OUT
VEE
MAX9015
MAX9017
MAX9019
VREF
Figure 2. MAX9015/MAX9017/MAX9019 Additional Hysteresis
4) Choose the trip point for VIN rising (VTHR) such that:
VHB
VTHR > VREF 1 +
VCC
where VTHR is the trip point for VIN rising. This is the
threshold voltage at which the comparator switches
its output from low to high as VIN rises above the trip
point. For this example, choose 3V.
5) Calculate R2 as follows:
R2=
1
VTHR 1 1
− −
VREF X R1 R1 R 3
1
R2
=
= 43.99kΩ
1 1
3.0 V
−
−
(1.24 V X 62kΩ ) 62kΩ 6.2MΩ
For this example, choose a 44.2kΩ standard value.
Maxim Integrated │ 12
MAX9015–MAX9020
6) Verify the trip voltages and hysteresis as follows:
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
4) Choose the trip point for VIN rising (VTHR) such that:
VIN rising: = 2.992V, which is equivalent to REF times
R1 divided by the parallel combination of R1, R2:
1 1 1
VTHR VREF x R1 +
=
+
R1 R 2 R 3
and R3.
VIN falling: = 2.942V:
R1x VCC
V=
THF VTHR −
R3
V
VTHR > VREF 1 + HB
VCC
(VTHR is the trip point for VIN rising). This is the threshold
voltage at which the comparator switches its output
from low to high as VIN rises above the trip point. For
this example, choose 3V:
5) Calculate R2 as follows:
R2=
Hysteresis = VTHR - VTHF = 50mV.
Additional Hysteresis
(MAX9016/MAX9018/MAX9020)
(Open-Drain Outputs)
The MAX9016/MAX9018/MAX9020 feature a built-in 4mV
hysteresis band. These devices have open-drain outputs
and require an external pullup resistor (Figure 3). Additional
hysteresis can be generated using positive feedback, but
the formulas differ slightly from those of the MAX9015/
MAX9017/MAX9019. Use the following procedure to
calculate resistor values:
1) Select R3. Input bias current at IN_+ is less than 2nA,
so the current through R3 should be at least 0.2μA
to minimize errors caused by input bias current. The
current through R3 at the trip point is (VREF - VOUT)/
R3. Considering the two possible output states in solving
for R3 yields two formulas: R3 = VREF/IR3 or R3 =
[(VCC - VREF)/IR3] - R4. Use the smaller of the two
resulting resistor values. For example, when using
the MAX9018 (VREF = 1.24V) and VCC = 5V, and
if we choose IR3 = 0.2μA, and R4 = 1MΩ, then the
two resistor values are 6.2MΩ and 18MΩ. Choose a
6.2MΩ standard value for R3.
R2
=
1
VTHR 1 1
− −
VREF x R1 R1 R 3
1
= 51.1kΩ
1 1
3.0 V
−
−
1.24 V x 72kΩ 72kΩ 6.2MΩ
For this example, choose a 49.9kΩ standard value.
6) Verify the trip voltages and hysteresis as follows:
1 1 1
VIN rising
: V THR VREF x R1 +
=
+
R1 R 2 R 3
= 3.043 V
1 1 1
VIN falling
: VTHF VREF x R1 +
=
+
R1 R 2 R 3
−
R1
x VCC =
2.993 V
R3 +R4
Hysteresis
= V THR − V THF = 50mV .
VCC
2) Choose the hysteresis band required (VHB).
3) Calculate R1 according to the following equation.
For this example, insert the values:
VHB
=
R1 ( R 3 + R 4 )
VCC
50mV
R1
= ( 6.2MΩ + 1MΩ )
=
72kΩ
5V
R3
VIN
R1
R4
VCC
R2
VREF
OUT
VEE
MAX9016
MAX9018
MAX9020
Figure 3. MAX9016/MAX9018/MAX9020 Additional Hysteresis
www.maximintegrated.com
Maxim Integrated │ 13
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Board Layout and Bypassing
VIN V
OTH = 4.2V
VUTH = 2.9V
The devices’ ultra-low supply current typically requires
no power-supply bypass capacitors. However, when the
supply has high output impedance, long lead lengths or
excessive noise, or fast transients, bypass VCC to VEE
with a 0.1μF capacitor placed as close to the VCC pin as
possible. Minimize signal trace lengths to reduce stray
capacitance. Use a ground plane and surface-mount
components for best performance. If REF is decoupled,
use a low-leakage ceramic capacitor. High traces should
not be routed in the vicinity of or below MAX9018. There
is a chance of voltage reference being overloaded resulting
in drop of output voltage.
R3
VCC
INA+
OUTA
REF/INA-
POWERGOOD
REF
1.24V
R2
INB+
MAX9018
VEE
OUTB
Window Detector
The MAX9018 is ideal for window detectors (undervoltage/overvoltage detectors). Figure 4 shows a window
detector circuit for a single-cell Li+ battery with a 2.9V
end-of-life charge, a peak charge of 4.2V, and a nominal
value of 3.6V. Choose different thresholds by changing
the values of R1, R2, and R3. OUTA provides an activelow undervoltage indication, and OUTB provides an
active-low overvoltage indication. ANDing the two opendrain outputs provides an active-high, power-good signal.
The design procedure is as follows:
1) Select R1. The input bias current into INB- is normally less than 2nA, so the current through R1 should
exceed 100nA for the thresholds to be accurate. In this
example, choose R1 = 1.24MΩ (1.24V/1μA).
2) Calculate R2 + R3. The overvoltage threshold should
be 4.2V when VIN is rising. The design equation is as
follows:
VOTH
R 2 + R 3 R1x
=
− 1
VREF + VHB
4.2 V
1.24MΩ x
=
− 1
1.24 V + 0.004
= 2.95MΩ
3) Calculate R2. The undervoltage threshold should be
2.9V when VIN is falling. The design equation is as
follows:
VREF − VHB
R 2 = ( R1 + R 2 + R 3 ) x
− R1
VUTH
= (1.24MΩ + 2.95MΩ ) x
5V
(1.236 )
− 1.24MΩ
2.9
INBR1
VEE
Figure 4. Window Detector Circuit
For this example, choose a 499kΩ standard value 1%
resistor.
4) Calculate R3:
R3 = (R2 + R3) - R2
= 2.95MΩ - 546kΩ
= 240MΩ
5) Verify the resistor values. The equations are as follows, evaluated for the above example:
VOTH =
( VREF + VHB ) x
( R1 + R 2 + R 3 )
=
4.20 V
R1
Overvoltage threshold:
VUTH =
( VREF − VHB ) x
( R1 + R 2 + R 3 )
2.97 V
=
( R1 + R 2 )
where the internal hysteresis band, VHB, is 4mV.
Zero-Crossing Detector
Figure 5 shows a zero-crossing detector application.
The MAX9015/MAX9016/MAX9019/MAX9020s’ inverting
input is connected to ground, and its noninverting input
is connected to a 100mVP-P signal source. As the signal
at the noninverting input crosses zero, the comparator’s
output changes state.
= 546kΩ
www.maximintegrated.com
Maxim Integrated │ 14
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Logic-Level Translator
The open-drain comparators can be used to convert 5V
logic to 3V logic levels. The MAX9020 can be powered
by the 5V supply voltage, and the pullup resistor for the
MAX9020’s open-drain output is connected to the 3V
supply voltage. This configuration allows the full 5V logic
swing without creating overvoltage on the 3V logic inputs.
For 3V to 5V logic-level translations, connect the 3V
supply voltage to VCC and the 5V supply voltage to the
pullup resistor.
Typical Application Circuit
VIN V
OTH = 4.2V
VUTH = 2.9V
5V
R3
VCC
INA+
OUTA UNDERVOLTAGE
REF/INA-
VCC
REF
1.24V
R2
VCC
100mVP-P
MAX9017
VEE
IN+
INB+
OUT
IN-
VEE
MAX9015
MAX9016
MAX9019
MAX9020
OUTB OVERVOLTAGE
INBR1
VEE
Figure 5. Zero-Crossing Detector
www.maximintegrated.com
Maxim Integrated │ 15
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Selector Guide
COMPARATOR(S)
INTERNAL REFERENCE (V)
OUTPUT TYPE
SUPPLY CURRENT (µA)
MAX9015A
PART
1
1.236 ±1%
Push-pull
1
MAX9016A
1
1.236 ±1%
Open drain
1
MAX9017A
2
1.236 ±1%
Push-pull
1.2
MAX9017B
2
1.240 ±1.75%
Push-pull
1.2
MAX9018A
2
Open drain
1.2
MAX9018B
2
1.236 ±1%
1.240 ±1.75%
Open drain
1.2
MAX9019
2
—
Push-pull
0.85
MAX9020
2
—
Open drain
0.85
Ordering Information
PART
TEMP RANGE
Chip Information
PINPACKAGE
TOP
MARK
MAX9015AEKA-T
-40°C to +85°C 8 SOT23
AEIW
MAX9015AEKA+T
-40°C to +85°C 8 SOT23
AEIW
MAX9015AEKA/V+T
-40°C to +85°C 8 SOT23
+AETV
MAX9016AEKA-T
-40°C to +85°C 8 SOT23
AEIX
MAX9016AEKA+T
-40°C to +85°C 8 SOT23
AEIX
MAX9017AEKA-T
-40°C to +85°C 8 SOT23
AEIQ
MAX9017AEKA+T
-40°C to +85°C 8 SOT23
AEIQ
MAX9017BEKA-T
-40°C to +85°C 8 SOT23
AEIS
MAX9017BEKA+T
-40°C to +85°C 8 SOT23
AEIS
MAX9017AEKA/V+T
-40°C to +85°C 8 SOT23
AEIQ
MAX9018AEKA-T
-40°C to +85°C 8 SOT23
AEIR
MAX9018AEKA+T
-40°C to +85°C 8 SOT23
AEIR
MAX9018BEKA-T
-40°C to +85°C 8 SOT23
AEIT
MAX9018BEKA+T
-40°C to +85°C 8 SOT23
AEIT
MAX9018BEKA/V+T
-40°C to +85°C 8 SOT23
AEIT
MAX9019EKA-T
-40°C to +85°C 8 SOT23
AEIU
MAX9019EKA+T
-40°C to +85°C 8 SOT23
AEIU
MAX9020EKA-T
-40°C to +85°C 8 SOT23
AEIV
MAX9020EKA+T
-40°C to +85°C 8 SOT23
T = Tape and reel.
/V denotes an automotive qualified part.
AEIV
www.maximintegrated.com
PROCESS: TRANSISTOR COUNT: 349
PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maximintegrated.com/packages. Note
that a “+”, “#”, or “-” in the package code indicates RoHS status
only. Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
8 SOT23
K8-5
21-0078
90-0176
Maxim Integrated │ 16
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V,
nanoPower Comparators
With/Without Reference
Revision History
REVISION
NUMBER
REVISION
DATE
PAGES
CHANGED
2
12/09
Updated EC table parameters after final test changes
2, 4
3
10/13
Added Note 5 to Electrical Characteristics and revised Board Layout and
Bypassing section
5, 14
4
1/15
Added MAX9015AEKA/V+T to Ordering Information
2
5
1/16
Added MAX9017AEKA/V+T to Ordering Information
2
6
3/18
Added AEC statement to Benefits and Features section and updated Ordering
Information table
DESCRIPTION
1, 16
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
© 2016 Maxim Integrated Products, Inc. │ 17