0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX9279GTN+T

MAX9279GTN+T

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    IC INTEGRATED CIRCUIT

  • 数据手册
  • 价格&库存
MAX9279GTN+T 数据手册
EVALUATION KIT AVAILABLE MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input General Description Benefits and Features The audio channel supports L-PCM I2S stereo and up to eight channels of L-PCM in TDM mode. Sample rates of 32kHz to 192kHz are supported with sample depth up to 32 bits. ● Multiple Data Rates for System Flexibility • Up to 3.12Gbps Serial-Bit Rate • 6.25MHz to 104MHz Pixel Clock • 9.6kbps to 1Mbps Control Channel in UART, Mixed UART/I2C, or I2C Mode with Clock Stretch Capability The MAX9275/MAX9279 are 3.12Gbps Gigabit Multimedia Serial Link (GMSL) serializers with parallel LVCMOS inputs and a CML serial output programmable for 50Ω coax or 100Ω shielded twisted pair (STP) cable drive. The MAX9279 has HDCP content protection but otherwise is the same as the MAX9275. The serializers pair with any GMSL deserializer capable of coax input. When programmed for STP output they are backward compatible with any GMSL deserializer. The output amplitude is programmable 100mV to 500mV, single-ended (coax) or 100mV to 400mV differential (STP). The embedded control channel operates at 9.6kbps to 1Mbps in UART-UART and UART-I2C modes, and up to 1Mbps in I2C-I2C mode. Using the control channel, a µC can program serializer, deserializer, and peripheral device registers at any time, independent of video timing, and manage HDCP operation (MAX9279). A GPO output supports touch-screen controller interrupt requests from the remote end of the link. For use with longer cables, the serializers have programmable pre/deemphasis. Programmable spread spectrum is available on the serial output. The serial output meets ISO 10605 and IEC 61000-4-2 ESD standards. The core supply is 1.7V to 1.9V and the I/O supply is 1.7V to 3.6V. The MAX9275/MAX9279 are available in a lead-free, 56-pin, 8mm x 8mm, TQFN package with exposed pad and 0.5mm lead pitch. Applications ● High-Resolution Automotive Navigation ● Rear-Seat Infotainment ● Megapixel Camera Systems ● Ideal for High-Definition Video Applications • Drives Low-Cost 50Ω Coax Cable and FAKRA Connectors or 100Ω STP • 104MHz High-Bandwidth Mode Supports 1920x720p/60Hz Display With 24-Bit Color • Serializer Pre/Deemphasis Allows 15m Cable at Full Speed • Up to 192kHz Sample Rate And 32-Bit Sample Depth For 7.1 Channel HD Audio ● Reduces EMI and Shielding Requirements • Serial Output Programmable for 100mV to 500mv Single-Ended or 100mV to 400mV Differential • Programmable Spread Spectrum Reduces EMI • Bypassable Input PLL for Parallel Clock Jitter Attenuation • Tracks Spread Spectrum on Input • High-Immunity Mode for Maximum Control Channel Noise Rejection ● Peripheral Features for System Power-Up and Verification • Built-In PRBS Generator for BER Testing of the Serial Link • Dedicated “Up/Down” GPO for Touch-Screen Interrupt and Other Uses • Remote/Local Wake-Up from Sleep Mode ● Meets Rigorous Automotive and Industrial Requirements • -40°C to +105°C Operating Temperature • ±8kV Contact and ±15kV Air ISO 10605 and IEC 61000-4-2 ESD Protection Ordering Information appears at end of data sheet. 19-6751; Rev 3; 12/17 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Serial Link Signaling and Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Data-Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 High-Bandwidth Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Audio Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Audio Channel Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Reverse Control Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Control Channel and Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Interfacing Command-Byte-Only I2C Devices with UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 UART Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Bus Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Format for Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Format for Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I2C Communication with Remote Side Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I2C Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 GPO/GPI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Pre/Deemphasis Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Manual Programming of the Spread-Spectrum Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Serial Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 www.maximintegrated.com Maxim Integrated │  2 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input TABLE OF CONTENTS (continued) Coax Splitter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 High-Immunity Reverse Control Channel Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Configuration Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Link Startup Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Encryption Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Synchronization of Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Repeater Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 HDCP Authentication Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 HDCP Protocol Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Example Repeater Network—Two µCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Detection and Action Upon New Device Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Notification of Start of Authentication and Enable of Encryption to Downstream Links . . . . . . . . . . . . . . . . . . . . . 46 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Self PRBS Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Dual µC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 PCLKIN Spread Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Changing the Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Providing a Frame Sync (Camera Applications) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Software Programming of the Device Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Configuration Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Compatibility with Other GMSL Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Key Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 HS/VS/DE Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 WS/SCK Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Line-Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Internal Input Pulldowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Choosing I2C/UART Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 AC-Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Selection of AC-Coupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Power-Supply Circuits and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Power-Supply Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 www.maximintegrated.com Maxim Integrated │  3 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input TABLE OF CONTENTS (continued) Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 LIST OF FIGURES Figure 1. Serial-Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 2. Output Waveforms at OUT+, OUT- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 3. Single-Ended Output Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 4. Line Fault Detector Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 5. Worst-Case Pattern Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 6. Parallel Clock Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 7. I2C Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 8. Differential Output Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 9. Input Setup and Hold Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 10. GPI-to-GPO Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 11. Serializer Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 12. Link Startup Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 13. Power-Up Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 14. Input I2S Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 15. 24-Bit Mode Serial Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 16. 32-Bit Mode Serial Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 17. High-Bandwidth Mode Serial Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 18. Audio Channel Input Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 19. 8-Channel TDM (24-Bit Samples, Padded with Zeros) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 20. 6-Channel TDM (24-Bit Samples, No Padding) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 21. Stereo I2S (24-Bit Samples, Padded with Zeros) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 22. Stereo I2S (16-Bit Samples, No Padding) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 23. GMSL UART Protocol for Base Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 24. GMSL UART Data Format for Base Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 25. Sync Byte (0x79) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 26. ACK Byte (0xC3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 27. Format Conversion Between GMSL UART and I2C with Register Address (I2CMETHOD = 0) . . . . . . . . 32 Figure 28. Format Conversion Between GMSL UART and I2C without Register Address (I2CMETHOD = 1) . . . . . . 33 Figure 29. START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 www.maximintegrated.com Maxim Integrated │  4 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input LIST OF FIGURES (continued) Figure 30. Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 31. Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 32. Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 33. Format for I2C Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 34. Format for Write to Multiple Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 35. Format for I2C Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 36. 2:1 Coax Splitter Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 37. Coax Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 38. State Diagram, CDS = LOW (Video Display Application) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 39. State Diagram, CDS = HIGH (Image Sensing Application) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 40. Example Network with One Repeater and Two µCs (Tx = GMSL Serializer’s, Rx = Deserializer’s) . . . . . 50 Figure 41. Human Body Model ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 42. IEC 61000-4-2 Contact Discharge ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 43. ISO 10605 Contact Discharge ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 www.maximintegrated.com Maxim Integrated │  5 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input LIST OF TABLES Table 1. Input Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 2. Data-Rate Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 3. Maximum Audio WS Frequency (kHz) for Various PCLKIN Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 4. I2C Bit-Rate Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 5. TP/COAX Drive Current (400mV Output Drive Levels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 6. Serial Output Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 7. Spread Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 8. Modulation Coefficients and Maximum SDIV Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 9. CONF[1:0] Input Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 10. CONF[3:2] Input Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 11. Reverse Control-Channel Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 12. Fast High-Immunity Mode Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 13. Startup Procedure for Video-Display Applications (CDS = Low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 14. Startup Procedure for Image-Sensing Applications (CDS = HIGH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 15. Startup, HDCP Authentication, and Normal Operation (Deserializer is Not a Repeater)—First Part of the . . HDCP Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 16. Link Integrity Check (Normal)—Performed Every 128 Frames After Encryption is Enabled . . . . . . . . . . . . 48 Table 17. Optional Enhanced Link Integrity Check—Performed Every 16 Frames After Encryption is Enabled . . . . . 49 Table 18. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First and Second Parts of the . HDCP Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 19. MAX9275/MAX9279 Feature Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 20. Line Fault Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 21. Additional Supply Current from HDCP (MAX9279 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 22. Typical Power-Supply Currents (Using Worst-Case Input Pattern) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 23. Suggested Connectors and Cables for GMSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 24. Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 25. HDCP Register Table (MAX9279 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 www.maximintegrated.com Maxim Integrated │  6 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Absolute Maximum Ratings (Note 1) AVDD to EP...........................................................-0.5V to +1.9V DVDD to EP..........................................................-0.5V to +1.9V IOVDD to EP.........................................................-0.5V to +3.9V LMN_ to EP (15mA current limit)..........................-0.5V to +3.9V OUT+, OUT- to EP................................................-0.5V to +1.9V All Other Pins to EP.............................-0.5V to (VIOVDD + 0.5V) OUT+, OUT- Short Circuit to Ground or Supply........Continuous Continuous Power Dissipation (TA = +70°C) TQFN (derate 47.6mW/°C above +70°C)...............3809.5mW Junction Temperature.......................................................+150°C Storage Temperature......................................... -65°C to +150°C Lead Temperature (soldering, 10s)..................................+300°C Soldering Temperature (reflow)........................................+260°C Note 1: EP connected to PCB ground. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 2) TQFN Junction-to-Case Thermal Resistance (θJC)..................1°C/W Junction-to-Ambient Thermal Resistance (θJA)...........21°C/W Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. DC Electrical Characteristics (VAVDD = VDVDD = 1.7V to 1.9V, VIOVDD = 1.7V to 3.6V, RL = 100Ω ±1% (differential), EP connected to PCB ground (GND), TA = -40°C to +105°C, unless otherwise noted. Typical values are at VAVDD = VDVDD = VIOVDD = 1.8V, TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN (DIN_, PCLKIN, PWDN, MS/CNTL0, CDS/ CNTL3, HIM) 0.65 x VIOVDD SD, SCK, WS 0.7 x VIOVDD SINGLE-ENDED INPUTS (DIN_, PCLKIN, PWDN, MS/CNTL0, CDS/CNTL3, SD, SCK, WS, HIM) High-Level Input Voltage VIH1 Low-Level Input Voltage VIL1 Input Current IIN1 VIN = 0V to VIOVDD TYP MAX UNITS V -20 0.35 x VIOVDD V +20 µA THREE-LEVEL LOGIC INPUTS (CONF0, CONF1, CONF2, CONF3, BWS) High-Level Input Voltage VIH Low-Level Input Voltage VIL Mid-Level Input Current IINM Input Current 0.7 x VIOVDD (Note 4) IIN V 0.3 x VIOVDD V -10 +10 µA -150 +150 µA SINGLE-ENDED OUTPUT (GPO) High-Level Output Voltage VOH1 IOUT = -2mA Low-Level Output Voltage VOL1 IOUT = 2mA OUTPUT Short-Circuit Current www.maximintegrated.com IOS VO = 0V VIOVDD - 0.2 V 0.2 VIOVDD = 3.0V to 3.6V 16 35 64 VIOVDD = 1.7V to 1.9V 3 12 21 V mA Maxim Integrated │  7 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input DC Electrical Characteristics (continued) (VAVDD = VDVDD = 1.7V to 1.9V, VIOVDD = 1.7V to 3.6V, RL = 100Ω ±1% (differential), EP connected to PCB ground (GND), TA = -40°C to +105°C, unless otherwise noted. Typical values are at VAVDD = VDVDD = VIOVDD = 1.8V, TA = +25°C.) (Note 3) PARAMETER SYMBOL OPEN-DRAIN INPUT/OUTPUT (RX/SDA, TX/SCL, LFLT) High-Level Input Voltage VIH2 Low-Level Input Voltage VIL2 Input Current IIN2 Low-Level Output Voltage Input Capacitance VOL2 CIN CONDITIONS MIN TYP MAX 0.7 x VIOVDD (Note 5) IOUT = 3mA UNITS V 0.3 x VIOVDD V µA RX/SDA, TX/SCL -110 +5 LFLT -80 +5 VIOVDD = 1.7V to 1.9V 0.4 VIOVDD = 3.0V to 3.6V 0.3 Each pin (Note 6) 10 V pF DIFFERENTIAL SERIAL OUTPUT (OUT+, OUT-) Differential Output Voltage Change in VOD Between Complimentary Output States Output Offset Voltage (VOUT+ + VOUT-)/2 = VOS Change in VOS between Complimentary Output States Output Short-Circuit Current VOD DVOD VOS Preemphasis off (Figure 1) 300 400 3.3dB Preemphasis setting (Figure 2) 350 610 3.3dB Deemphasis setting (Figure 2) 240 425 Preemphasis off, deemphasis only Preemphasis off 1.1 1.4 DVOS IOS Magnitude of Differential Output Short Circuit Current IOSD Output Termination Resistance (Internal) RO VOUT+ or VOUT- = 0V 500 mV 25 mV 1.56 V 25 mV -62 mA VOUT+ or VOUT- = 1.9V 25 VOD = 0V 25 mA Ω From OUT+, OUT- to VAVDD 45 54 63 Preemphasis off, high drive, Figure 3 375 500 625 3.3dB preemphasis setting, high drive, (Figure 2) 435 765 3.3dB deemphasis setting, high drive, (Figure 2) 300 535 VOUT+ or VOUT- = 0V -69 SINGLE-ENDED SERIAL OUTPUT (OUT+, OUT-) Single-Ended Output Voltage VOUT Output Short-Circuit Current IOS Output Termination Resistance (Internal) RO VOUT+ or VOUT- = 1.9V From OUT+ or OUT- to VAVDD 32 45 54 63 mV mA Ω REVERSE CONTROL CHANNEL RECEIVER (OUT+, OUT-) High Switching Threshold www.maximintegrated.com VCHR Normal-immunity mode 27 High-immunity mode 40 mV Maxim Integrated │  8 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input DC Electrical Characteristics (continued) (VAVDD = VDVDD = 1.7V to 1.9V, VIOVDD = 1.7V to 3.6V, RL = 100Ω ±1% (differential), EP connected to PCB ground (GND), TA = -40°C to +105°C, unless otherwise noted. Typical values are at VAVDD = VDVDD = VIOVDD = 1.8V, TA = +25°C.) (Note 3) PARAMETER Low Switching Threshold SYMBOL VCLR CONDITIONS MIN Normal-immunity mode -27 High-immunity mode -40 TYP MAX UNITS mV LINE FAULT DETECTION INPUT (LMN_) Short-to-GND Threshold VTG Figure 4 0.3 V Normal Threshold VTN Figure 4 0.57 1.07 V Open Threshold VTO Figure 4 1.45 VIO + 0.06 V Open Input Voltage VIO Figure 4 1.47 1.75 V Short-to-Battery Threshold VTE Figure 4 2.47 V POWER SUPPLY fPCLKIN_ = 16.6MHz Worst-Case Supply Current (Figure 5, Note 7) BWS = low IWCS BWS = mid 96 120 fPCLKIN_ = 33.3MHz 99 125 fPCLKIN_ = 66.6MHz 111 140 fPCLKIN_ = 104MHz 134 160 fPCLKIN_ = 36.6MHz 102 130 fPCLKIN_ = 104MHz 133 165 mA Sleep Mode Supply Current ICCS Single wake-up receiver enabled 40 170 µA Power-Down Supply Current ICCZ PWDN = GND 5 120 µA Human body model, RD = 1.5kΩ, CS = 100pF ±8 ESD PROTECTION OUT+, OUT- (Note 8) VESD IEC 61000-4-2, RD = 330Ω, CS = 150pF Contact discharge ±10 Air discharge ±12 ISO 10605, RD = 2kΩ, Contact discharge CS = 330pF Air discharge All Other Pins (Note 9) www.maximintegrated.com VESD Human body model, RD = 1.5kΩ, CS = 100pF kV ±10 ±20 ±4 kV Maxim Integrated │  9 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input AC Electrical Characteristics (VAVDD = VDVDD = 1.7V to 1.9V, VIOVDD = 1.7V to 3.6V, RL = 100Ω ±1% (differential), EP connected to PCB ground (GND), TA = -40°C to +105°C, unless otherwise noted. Typical values are at VAVDD = VDVDD = VIOVDD = 1.8V, TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS PARALLEL CLOCK INPUT (PCLKIN) Clock Frequency Clock Duty Cycle Clock Transition Time Clock Jitter I2C/UART PORT TIMING fPCLKIN_ DC_ tR, tF_ tJ BWS = low, DRS = ‘1’ 8.33 16.66 BWS = low, DRS = ‘0’ 16.66 104 BWS = mid, DRS = ‘1’ 18.33 52 BWS = mid, DRS = ‘0’ 36.66 104 BWS = high, DRS = ‘1’ 6.25 12.5 BWS = high, DRS = ‘0’ 12.5 78 thigh/tT or tlow/tT (Figure 6), (Note 10) 35 65 % 4 ns 800 psP-P 9.6 1000 kbps (Figure 6), (Note 10) 3.12Gbps bit rate, 300kHz sinusoidal jitter I2C/UART Bit Rate 50 MHz Output Rise Time tR 30% to 70%, CL = 10pF to 100pF, 1kΩ pullup to IOVDD 20 150 ns Output Fall Time tF 70% to 30%, CL = 10pF to 100pF, 1kΩ pullup to IOVDD 20 150 ns Low fSCL range (I2CMSTBT = 010, I2CSLVSH = 10) 9.6 100 kHz Mid fSCL range (I2CMSTBT 101, I2CSLVSH = 01) > 100 400 kHz High fSCL range (I2CMSTBT = 111, I2CSLVSH = 00) > 400 1000 kHz Low 4.0 Mid 0.6 High 0.26 Low 4.7 Mid 1.3 I2C TIMING (Figure 7) SCL Clock Frequency START Condition Hold Time Low Period of SCL Clock fSCL tHD:STA tLOW fSCL range fSCL range High Low High Period of SCL Clock Repeated START Condition Setup Time www.maximintegrated.com tHIGH tSU:STA fSCL range fSCL range VIOVDD = 1.7V to < 3V (Note 11) 0.6 VIOVDD = 3.0V to 3.6V 0.5 µs µs 4.0 Mid 0.6 High 0.26 Low 4.7 Mid 0.6 High 0.26 µs µs Maxim Integrated │  10 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input AC Electrical Characteristics (continued) (VAVDD = VDVDD = 1.7V to 1.9V, VIOVDD = 1.7V to 3.6V, RL = 100Ω ±1% (differential), EP connected to PCB ground (GND), TA = -40°C to +105°C, unless otherwise noted. Typical values are at VAVDD = VDVDD = VIOVDD = 1.8V, TA = +25°C.) (Note 3) PARAMETER Data Hold Time Data Setup Time Setup Time for Stop Condition Bus Free Time Data Valid Time (Note 12) SYMBOL tHD:DAT tSU:DAT tSU:STO tBUF tVD:DAT CONDITIONS fSCL range (Note 10) fSCL range fSCL range fSCL range MIN Low 0 Mid 0 High 0 Low 250 Mid 100 High 50 Low 4.0 Mid 0.6 High 0.26 Low 4.7 Mid 1.3 High 0.5 TYP ns µs µs 3.45 Mid 0.9 fSCL range VIOVDD = 1.7V to < 3V (Note 13) 0.55 VIOVDD = 3.0V to 3.6V 0.45 Low fSCL range Pulse Width of Spikes Suppressed tSP fSCL range Capacitive Load Each Bus Line CB (Note 6) High µs 3.45 Mid tVD:ACK UNITS µs Low High Data Valid Acknowledge Time (Note 12) MAX 0.9 VIOVDD = 1.7V to < 3V (Note 14) 0.55 VIOVDD = 3.0V to 3.6V 0.45 Low 50 Mid 50 High µs ns 50 100 pF 150 ps SWITCHING CHARACTERISTICS (Note 10) Differential Output Rise/Fall Time Total Serial Output Jitter (Differential Output) www.maximintegrated.com tR, tF tTSOJ1 20% to 80%, VOD ≥ 400mV, RL = 100Ω, serial bit rate = 3.12Gbps 3.12Gbps PRBS signal, measured at VOD = 0V differential, preemphasis disabled, Figure 8 90 0.25 UI Maxim Integrated │  11 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input AC Electrical Characteristics (continued) (VAVDD = VDVDD = 1.7V to 1.9V, VIOVDD = 1.7V to 3.6V, RL = 100Ω ±1% (differential), EP connected to PCB ground (GND), TA = -40°C to +105°C, unless otherwise noted. Typical values are at VAVDD = VDVDD = VIOVDD = 1.8V, TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS Deterministic Serial Output Jitter (Differential Output) tDSOJ2 3.12Gbps PRBS signal, measured at VOD = 0V differential, preemphasis disabled (Figure 8) MIN TYP MAX UNITS 0.15 UI Total Serial Output Jitter (Singleended Output) tTSOJ1 3.12Gbps PRBS signal, measured at VO/2, preemphasis disabled (Figure 3) 0.25 UI Deterministic Serial Output Jitter (Single-Ended Output) tDSOJ2 3.12Gbps PRBS signal, measured at VO/2, preemphasis disabled (Figure 3) 0.15 UI Parallel Data Input Setup Time tSET (Figure 9) 2 ns Parallel Data Input Hold Time tHOLD (Figure 9) 1 ns GPI to GPO Delay tGPIO Deserializer GPI to serializer GPO, (Figure 10) Serializer Delay (Note 15) 350 Spread spectrum enabled 5440 Spread spectrum disabled 1920 µs tSD (Figure 11) Link Start Time tLOCK (Figure 12) 3.5 ms Power-Up Time tPU (Figure 13) 8 ms WS Frequency fWS (See Table 3) 192 kHz Sample Word Length nWS (See Table 3) 8 32 Bits (192 x 32) x 8 kHz I2S/TDM INPUT TIMING 8 Bits SCK Frequency fSCK fSCK = fWS x nWS x (2 or 8) (8 x 8) x2 SCK Clock High Time tHC VSCK RVIH, tSCK = 1/fSCK (Note 6) 0.35 x tSCK ns SCK Clock Low Time tLC VSCK RVIL, tSCK = 1/fSCK (Note 6) 0.35 x tSCK ns SD, WS Setup Time tSET (Note 6) (Figure 14) 2 ns SD, WS Hold Time tHOLD (Note 6) (Figure 14) 2 ns Note 3: Limits are 100% production tested at TA = +105°C. Limits over the operating temperature range and are guaranteed by design and characterization, unless otherwise noted. Note 4: To provide a midlevel, leave the input open, or, if driven, put driver in high impedance. High-impedance leakage current must be less than ±10µA. Note 5: IIN MIN due to voltage drop across the internal pullup resistor. Note 6: Not production tested. Guaranteed by design Note 7: HDCP not enabled (MAX9279 only). See Table 21 for additional supply current when HDCP is enabled. Note 8: Specified pin to ground. Note 9: Specified pin to all supply/ground. Note 10: Not production tested. Guaranteed by design and characterization. Note 11: The I2C bus standard tLOW min = 0.5µs. Note 12: I2C valid times apply only when the device is operating as a local-side device. Note 13: The I2C bus standard tVD:DAT max = 0.45µs. Note 14: The I2C bus standard tVD:ACK max = 0.45µs. Note 15: Measured in serial link bit times. Bit time = 1/ (30 x fPCLKIN) for BWS = ‘0’ or open. Bit time = 1/ (40 x fPCLKIN) for BWS = ‘1’. www.maximintegrated.com Maxim Integrated │  12 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Typical Operating Characteristics (VAVDD = VDVDD = VIOVDD = 1.8V, TA = +25°C, unless otherwise noted.) 130 120 110 PREEMPHASIS = 0X01 TO 0X04 100 PREEMPHASIS = 0x00 15 30 45 60 75 90 105 PRBS ON, COAX MODE, SS OFF, HDCP OFF 150 PREEMPHASIS = 0x0B TO 0x0F 110 PREEMPHASIS = 0x01 TO 0x04 PREEMPHASIS = 0x00 5 20 35 50 65 PRBS ON, COAX MODE, PE OFF, HDCP OFF 140 130 ALL SPREAD VALUES MAX9275 toc04 SUPPLY CURRENT vs. PCLKIN FREQUENCY (BWS = LOW) 120 110 100 90 80 5 15 25 35 45 55 65 75 85 95 105 PCLKIN FREQUENCY (MHz) SUPPLY CURRENT vs. PCLKIN FREQUENCY (BWS = HIGH) SUPPLY CURRENT vs. PCLKIN FREQUENCY (BWS = OPEN) PRBS ON, COAX MODE, PE OFF, HDCP OFF 140 130 ALL SPREAD VALUES 150 120 110 100 PRBS ON, COAX MODE, PE OFF, HDCP OFF 140 130 ALL SPREAD VALUES MAX9275 toc06 PCLKIN FREQUENCY (MHz) SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) PREEMPHASIS = 0x01 TO 0x04 SUPPLY CURRENT vs. PCLKIN FREQUENCY (BWS = HIGH) 120 90 110 PCLKIN FREQUENCY (MHz) 100 SUPPLY CURRENT (mA) 15 25 35 45 55 65 75 85 95 105 130 150 120 PCLKIN FREQUENCY (MHz) 140 90 130 90 SUPPLY CURRENT (mA) 150 PREEMPHASIS = 0x0B TO 0x0F 100 PREEMPHASIS = 0x00 5 PRBS ON, COAX MODE, SS OFF, HDCP OFF 140 MAX9275 toc03 90 SUPPLY CURRENT vs. PCLKIN FREQUENCY (BWS = OPEN) MAX9275 toc02 PREEMPHASIS = 0x0B TO 0x0F MAX9275 toc05 SUPPLY CURRENT (mA) 140 150 SUPPLY CURRENT (mA) PRBS ON, COAX MODE, SS OFF, HDCP OFF MAX9275 toc01 150 SUPPLY CURRENT vs. PCLKIN FREQUENCY (BWS = LOW) 120 110 100 5 20 35 50 65 PCLKIN FREQUENCY (MHz) www.maximintegrated.com 80 90 15 30 45 60 75 90 105 PCLKIN FREQUENCY (MHz) Maxim Integrated │  13 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Typical Operating Characteristics (continued) (VAVDD = VDVDD = VIOVDD = 1.8V, TA = +25°C, unless otherwise noted.) -10 OUTPUT POWER (dBm) fPCLKIN = 66.6MHz 0% SPREAD 0.5% SPREAD -20 10 0 -30 -40 -50 -60 -70 -80 1% SPREAD 62 63 64 65 67 68 -50 -60 -80 70 -90 71 PCLKIN FREQUENCY (MHz) 2% SPREAD 1% SPREAD 4% SPREAD 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 PCLKIN FREQUENCY (MHz) MAXIMUM PCLKIN FREQUENCY vs. COAX CABLE LENGTH (BER ≤ 10-10) MAX9275 toc09 120 PCLKIN FREQUENCY (MHz) 0.5% SPREAD -40 -70 69 fPCLKIN = 33.3MHz -30 4% SPREAD 66 0% SPREAD -20 2% SPREAD -90 -100 -10 OUTPUT POWER (dBm) 0 MAX9275 toc07 10 OUTPUT SPECTRUM vs. PCLKIN FREQUENCY (VARIOUS SPREAD) MAX9275 toc08 OUTPUT SPECTRUM vs. PCLKIN FREQUENCY (VARIOUS SPREAD) 100 OPTIMUM PE/EQ 80 NO PE/EQ 60 NO PE, 10.7dB EQ 40 20 0 BER CAN BE AS LOW AS 10-12 FOR CABLE LENGTHS LESS THAN 15m 0 5 10 15 20 25 CABLE LENGTH (m) www.maximintegrated.com Maxim Integrated │  14 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Pin Configuration BWS CONF2 CONF0 GPO/HIM LFLT LMN0 AVDD OUT+ OUT- LMN1 CONF1 TX /SCL RX/SDA PWDN TOP VIEW 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 CDS/CNTL3 IOVDD 44 27 MS/CNTL0 DIN1 45 26 IOVDD DIN2 46 25 CONF3 DIN3 47 24 WS DIN4 48 23 SCK 22 SD 21 DIN28/CNTL2 DIN7 51 20 DIN27/CNTL1 DIN8 52 19 DIN26 DIN9 53 18 DIN25 DVDD 54 17 DIN24 16 DVDD 15 DIN23 DIN0 43 MAX9275 MAX9279 DIN5 49 DIN6 50 EP* + DIN10 55 DIN22 10 11 12 13 14 DIN21 9 DIN19/VS 8 DIN20/DE DIN15 7 DIN18/HS DIN14 6 AVDD DIN13 5 DIN17 4 IOVDD 3 DIN16 2 PCLKIN 1 DIN12 DIN11 56 TQFN (8mm x 8mm x 0.75mm) *CONNECT EP TO GROUND PLANE Pin Description PIN NAME FUNCTION 1–5, 9, 43, 45–53, 55, 56 DIN[17:0] Parallel Data Inputs with Internal Pulldown to EP. Encrypted when HDCP is enabled (MAX9279 only). 6 PCLKIN Parallel Clock Input with Internal Pulldown to EP. Latches parallel data inputs and provides the PLL reference clock. 7, 26, 44 IOVDD I/O Supply Voltage. 1.8V to 3.3V logic I/O power supply. Bypass IOVDD to EP with 0.1µF and 0.001µF capacitors as close as possible to the device with the smallest value capacitor closest to IOVDD. 8, 36 AVDD 1.8V Analog Power Supply. Bypass AVDD to EP with 0.1µF and 0.001µF capacitors as close as possible to the device with the smaller capacitor closest to AVDD. DIN18/HS Parallel Data Input/Horizontal Sync with Internal Pulldown to EP. Defaults to parallel data input on power-up. Horizontal sync input when HDCP is enabled (MAX9279 only) or when in high-bandwidth mode (BWS = open). 10 www.maximintegrated.com Maxim Integrated │  15 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Pin Description (continued) PIN NAME FUNCTION DIN19/VS Parallel Data Input/Vertical Sync with Internal Pulldown to EP. Defaults to parallel data input on power-up. Vertical sync input when HDCP is enabled (MAX9279 only) or when in high-bandwidth mode (BWS = open). 12 DIN20/DE Parallel Data Input/Device Enable with Internal Pulldown to EP. Defaults to parallel data input on power-up. Device enable input when HDCP is enabled (MAX9279 only) or when in high-bandwidth mode (BWS = open). 13–15, 17–19 DIN[26:21] Parallel Data Inputs with Internal Pulldown to EP. Encrypted when HDCP is enabled (MAX9279 only). DIN[26:21] used only in 32-bit and high-bandwidth modes (BWS = high or open). 16, 54 DVDD 1.8V Digital Power Supply. Bypass DVDD to EP with 0.1µF and 0.001µF capacitors as close as possible to the device with the smaller value capacitor closest to DVDD. DIN27/CNTL1 Parallel Data/Auxiliary Control Signal Input with Internal Pulldown to EP. DIN27 used only in 32-bit mode (BWS = high). DIN27 not encrypted when HDCP is enabled (MAX9279 only). CNTL1 used only in high-bandwidth mode (BWS = open). CNTL1 not encrypted when HDCP is enabled (MAX9279 only). 21 DIN28/CNTL2 Parallel Data/Auxiliary Control Signal Input with Internal Pulldown to EP. DIN28 used only in 32-bit mode (BWS = high). DIN28 not encrypted when HDCP is enabled (MAX9279 only). CNTL2 used only in high-bandwidth mode (BWS = open). CNTL2 not encrypted when HDCP is enabled (MAX9279 only). 22 SD 23 SCK I2S/TDM Serial-Clock Input with Internal Pulldown to EP 24 WS I2S/TDM Word-Select Input with Internal Pulldown to EP 25 CONF3 11 20 27 28 I2S/TDM Serial-Data Input with Internal Pulldown to EP. Disable I2S/TDM encoding to use SD as an additional control/data input latched on the selected edge of PCLKIN. Encrypted when HDCP is enabled. Three-Level Configuration Input. See Table 11 for details. Use 6kΩ (max) for pullup to IOVDD/pulldown to GND. MS/CNTL0 Mode Select/Auxiliary Control Signal Input with Internal Pulldown to EP. Function is determined by the MSCNTL0 register bit and defaults to MS on power-up. MS (MSCNTL0 = 0): Set MS = low, to select base mode. Set MS = high to select the bypass mode. CNTL0 (MSCNTL0 = 1): Used only in high-bandwidth mode (BWS = open). CNTL0 not encrypted when HDCP is enabled (MAX9279 only). CDS/CNTL3 Control Direction Selection/Auxiliary Control Signal Input with Internal Pulldown to EP. Function is determined by the CDSCNTL3 register bit and defaults to CDS on power-up. CDS (CDSCNTL3 = 0): Control link direct selection input with internal pulldown to EP. Set CDS = low when the control channel master µC is connected at the serializer. Set CDS = high when the control channel master µC is connected at the deserializer. CNTL3 (CDSCNTL3 = 1): Used only in high-bandwidth mode (BWS = open). CNTL3 not encrypted when HDCP is enabled (MAX9279 only). www.maximintegrated.com Maxim Integrated │  16 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Pin Description (continued) PIN NAME 29 PWDN Active-Low, Power-Down Input with Internal Pulldown to EP. Set PWDN low to enter powerdown mode to reduce power consumption. RX/SDA UART Receive/I2C Serial Data Input/Output with Internal 30kΩ Pullup to IOVDD. Function is determined by the state of CONF[1:0] at power-up (Table 10). RX/SDA has an open-drain driver and requires a pullup resistor. RX: Input of the serializer’s UART. SDA: Data input/output of the serializer’s I2C master/slave. 31 TX/SCL UART Transmit/I2C Serial Clock Input/Output with Internal 30kΩ Pullup to IOVDD. Function is determined by the state of CONF[1:0] at power-up (Table 10). TX/SCL has an open-drain driver and requires a pullup resistor. TX: Output of the serializer’s UART. SCL: Clock input/output of the serializer’s I2C master/slave. 32 CONF1 Three-Level Configuration Input. See Table 10 for details. Use 6kΩ (max) for pullup to IOVDD/pulldown to GND. 33 LMN1 Line-Fault Monitor Input 1 (see Figure 4) 34 OUT- Inverting CML Coax/Twisted-Pair Serial Output 35 OUT+ Noninverting CML Coax/Twisted-Pair Serial Output 37 LMN0 Line-Fault Monitor Input 0 (see Figure 4) 38 LFLT Active-Low Open-Drain Line-Fault Output. LFLT has a 60kΩ internal pullup to IOVDD. LFLT = low indicates a line fault. LFLT is output high when PWDN = low. 39 GPO/HIM General-Purpose Output/High-Immunity Mode Input. Functions as HIM input with internal pulldown to EP at power-up or when resuming from power-down mode (PWDN = low), and switches to GPO output automatically after power-up. HIM: Default HIGHIMM bit value is latched at power-up or when resuming from power-down mode (PWDN = low) and is active high. Connect HIM to IOVDD with a 30kΩ or less pullup resistor to set high or leave open to set low. HIGHIMM can be programmed to a different value after power-up. HIGHIMM in the deserializer must be set to the same value. GPO: Output follows the state of the GPI (or INT) input on the deserializer. GPO is low after power-up or when PWDN is low. 40 CONF0 Three-Level Configuration Input. The state of CONF0 latches at power-up or when resuming from power-down mode (PWDN = low). See Table 10 for details. Use 6kΩ (max) for pullup to IOVDD/pulldown to GND. 41 CONF2 Three-Level Configuration Input. The state of CONF2 latches at power-up or when resuming from power-down mode (PWDN = low). See Table 11 for details. Use 6kΩ (max) for pullup to IOVDD/pulldown to GND. 42 BWS Three-Level Bus Width Select Input. Set BWS to the same level on both sides of the serial link. Set BWS = low with 6kΩ (max) pulldown for 24 bit mode. Set BWS = 6kΩ (max) pullup to IOVDD high for 32-bit mode. Set BWS = open for high-bandwidth mode. — EP 30 www.maximintegrated.com FUNCTION Exposed Pad. EP is internally connected to device ground. must connect EP to the PCB ground plane through an array of vias for proper thermal and electrical performance. Maxim Integrated │  17 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Functional Diagram LFLT PCLKIN MAX9275 MAX9279 SSPLL FILTER PLL CLKDIV RGB[17:0] DIN[26:21] RGB[23:18] (30-BIT OR 9b10b) DIN18/HS HS HS DIN19/VS VS VS DIN20/DE DE DIN27/CNTL1 DIN28/CNTL2 MS/CNTL0 CDS/CNTL3 VIDEO SYNC FIFO CNTL[2:1] (9b10b) CNTL0, CNTL3 (9b10b) CONTROL (9b10b) I2S/TDM MS, CDS RGB HDCP ENCRYPT OUT+ PARALLEL TO SERIAL DE DIN[28:27] (30-BIT) HDCP KEYS HDCP CONTROL CNTL[3:0] (9b10b) WS OUT- SCRAMBLE / PARITY/ 8b/10b/ 9b/10b/ ENCODE REVERSE CONTROL CHANNEL HDCP DECRYPT FCC SD SCK CML TX RX ACB GPO/HIM TX /SCL MS, CDS CONTROL UART/I2C www.maximintegrated.com LMN1 (MAX9279 ONLY) DIN[17:0] DOUT[28:27] (30-BIT) LMN0 LINE FAULT DETECT RX /SDA PWDN BWS CONF[3:0] Maxim Integrated │  18 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input RL/2 OUT+ VOD VOS OUT- RL/2 GND ((OUT+) + (OUT-))/2 OUT- VOS(+) VOS(-) VOS(-) OUT+ DVOS = |VOS(+) - VOS(-)| VOD(+) VOD = 0V VOD(-) VOD(-) DVOD = |VOD(+) - VOD(-)| (OUT+) - (OUT-) Figure 1. Serial-Output Parameters OUT+ VOD(P) VOS VOD(D) OUT- SERIAL-BIT TIME Figure 2. Output Waveforms at OUT+, OUT- OUT+ OR OUT- VO/2 VO VO/2 VO Figure 3. Single-Ended Output Template www.maximintegrated.com Maxim Integrated │  19 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input 1.8V 45.3kΩ* 45.3kΩ* LMN0 GMSL SERIALIZER LMN1 LMN0 GMSL SERIALIZER 4.99kΩ* 4.99kΩ* TWISTED PAIR OUT+ OUTPUT LOGIC (OUT+) OUT- CONNECTORS 49.9kΩ* 49.9kΩ* 1.8V LFLT REFERENCE VOLTAGE GENERATOR 45.3kΩ* LMN0 LMN1 49.9kΩ* GMSL SERIALIZER OUTPUT LOGIC (OUT-) 4.99kΩ* OUT+ COAX OUT- 49.9kΩ* CONNECTORS LEAVE UNUSED LINE FAULT INPUT UNCONNECTED *±1% TOLERANCE Figure 4. Line Fault Detector Circuit PCLKIN DIN_ NOTE: PCLKIN PROGRAMMED FOR RISING LATCH EDGE. Figure 5. Worst-Case Pattern Input www.maximintegrated.com Maxim Integrated │  20 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input tT VIH MIN tHIGH PCLKIN tR tF VIL MAX tLOW Figure 6. Parallel Clock Input Requirements START CONDITION (S) PROTOCOL BIT 7 MSB (A7) tLOW tSU;STA BIT 6 (A6) tHIGH BIT 0 (R/W) ACKNOWLEDGE (A) STOP CONDITION (P) 1/fSCL VIOVDD x 0.7 SCL VIOVDD x 0.3 tBUF tr tVD;DAT tf tSP VIOVDD x 0.7 SDA VIOVDD x 0.3 tHD;STA tSU;DAT tHD;DAT tVD;ACK tSU;STO Figure 7. I2C Timing Parameters 800mVP-P t TSOJ1 2 t TSOJ1 2 Figure 8. Differential Output Template www.maximintegrated.com Maxim Integrated │  21 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input VIH MIN PCLKIN VIL MAX tSET DIN_ tHOLD VIH MIN VIH MIN VIL MAX VIL MAX NOTE: PCLKIN PROGRAMMED FOR RISING LATCHING EDGE. Figure 9. Input Setup and Hold Times VIH_MIN DESERIALIZER GPI VIL_MAX tGPIO SERIALIZER GPO tGPIO VOH_MIN VOL_MAX Figure 10. GPI-to-GPO Delay www.maximintegrated.com Maxim Integrated │  22 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input EXPANDED TIME SCALE DIN_ N N+3 N+2 N+1 N+4 PCLKIN N-1 N OUT+/tSD FIRST BIT LAST BIT Figure 11. Serializer Delay PCLKIN tLOCK 500µs SERIAL LINK INACTIVE REVERSE CONTROL CHANNEL ENABLED SERIAL LINK ACTIVE CHANNEL DISABLED REVERSE CONTROL CHANNEL AVAILABLE PWDN MUST BE HIGH Figure 12. Link Startup Time www.maximintegrated.com Maxim Integrated │  23 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input PCLKIN VIH1 PWDN tPU POWERED DOWN POWERED UP, SERIAL LINK INACTIVE POWERED UP, SERIAL LINK ACTIVE 500µs REVERSE CONTROL CHANNEL DISABLED REVERSE CONTROL CHANNEL ENABLED REVERSE CONTROL CHANNEL DISABLED REVERSE CONTROL CHANNEL ENABLED Figure 13. Power-Up Delay WS tHOLD tSCK tSET tLC SCK tHOLD tSET tHC SD Figure 14. Input I2S Timing Parameters www.maximintegrated.com Maxim Integrated │  24 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Detailed Description The MAX9275/MAX9279 serializers, when paired with the MAX9276/MAX9280 deserializers, provides the full set of operating features, but is backward compatible with the MAX9249–MAX9270 family of Gigabit Multimedia Serial Link (GMSL) devices, and have basic functionality when paired with any GMSL device. The MAX9279 has HighBandwidth Digital Content Protection (HDCP) while the MAX9275 does not. The serializer has a maximum serial-bit rate of 3.12Gbps for up to 15m of cable and operates up to a maximum output clock of 104MHz in 24-bit mode and 27-bit highbandwidth mode, or 78MHz in 32-bit mode. This bit rate and output flexibility support a wide range of displays, from QVGA (320 x 240) to 1920 x 720 and higher with 24-bit color, as well as megapixel image sensors. An encoded audio channel supports L-PCM I2S stereo and up to eight channels of L-PCM in TDM mode. Sample rates of 32kHz to 192kHz are supported with sample depth from 8 to 32 bits. Output pre/deemphasis, combined with GMSL deserializer equalization, extends the cable length and enhances link reliability. The control channel enables a µC to program the serializer and deserializer registers and program registers on peripherals. The control channel is also used to perform HDCP functions (MAX9279 only). The µC can be located at either end of the link, or when using two µCs, at both ends. Two modes of control-channel operation are available. Base mode uses either I2C or GMSL UART protocol, while bypass mode uses a user-defined UART protocol. UART protocol allows full-duplex communication, while I2C allows half-duplex communication. Spread spectrum is available to reduce EMI on the serial output. The serial output complies with ISO 10605 and IEC 61000-4-2 ESD protection standards. Register Mapping Registers set the operating conditions of the serializers and are programmed using the control channel in base mode. The MAX9275/MAX9279 holds its own device address and the device address of the deserializer it is paired with. Similarly, the deserializer holds its own device address and the address of the MAX9275/MAX9279. Whenever a device address is changed, be sure to write the new address to both devices. The default device address of the serializer is 0x80. Registers 0x00 and 0x01 in both devices hold the device addresses. Table 1. Input Map MODE SIGNAL INPUT PIN 24-BIT MODE (BWS = LOW) HIGH-BANDWIDTH MODE (BWS = MID) 32-BIT MODE (BWS = HIGH) R[5:0] DIN[5:0] Used Used Used G[5:0] DIN[11:6] Used Used Used B[5:0] DIN[17:12] Used Used Used HS, VS, DE DIN18/HS, DIN19/VS, DIN20/DE Used** Used** Used** R[7:6] DIN[22:21] Not used Used Used G[7:6] DIN[24:23] Not used Used Used B[7:6] DIN[26:25] Not used Used Used CNTL[2:1] DIN[28:27]/CNTL[2:1] Not used Used*,** Used** CNTL3, CNTL0 CDS/CNTL3, MS/CNTL0 Not used Used*,** Not used Used Used Used Used Used Used I2S/TDM AUX SIGNAL WS, SCK, SD *See the High-Bandwidth Mode section for details on timing requirements. **Not encrypted when HDCP is enabled (MAX9279 only). www.maximintegrated.com Maxim Integrated │  25 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Input Bit Map 3 bits contain the embedded audio channel, the embedded forward control channel, the parity bit of the serial word (Figure 15, Figure 16). The input bit width depends on settings of the bus width (BWS) pin. Table 1 lists the bit map. Serial Link Signaling and Data Format Data-Rate Selection Input data is scrambled and then 8b/10b coded (9b10b in high-bandwidth mode). The deserializer recovers the embedded serial clock, then samples, decodes, and descrambles the data. In 24-bit mode, the first 21 bits contain video data. In 32-bit mode, the first 29 bits contain video data. In high-bandwidth mode, the first 24 bits contain video data, or special control signal packets. The last High-Bandwidth Mode The serializer use the DRS bit, and BWS input to set the PCLKIN frequency range (Table 2). Set DRS = 1 for low data rate PCLKIN frequency range of 6.25MHz to 16.66MHz. Set DRS = 0 for high data rate PCLKIN frequency range of 12.5MHz to 104MHz. The serializer uses differential CML signaling to drive twisted-pair cable and single-ended CML to drive coaxial cable with programmable pre/deemphasis and AC-coupling. The deserializer uses AC-coupling and programmable channel equalization. The serializer uses a 27-bit high-bandwidth mode to support 24-Bit RGB at 104MHz pixel clock. Set BWS = open in both the serializer and deserializer to use highbandwidth mode. In high-bandwidth mode, the serializer encodes HS, VS, DE, and CNTL[3:0] to special packets. Packets are sent by replacing a pixel before the rising edge and after the falling edge of HS, VS, DE signals. However, for CNTL[3:0], which is not always continuously sampled, packets always replace a pixel before the transition of the sampled CNTL[3:0]. Keep HS, VS, and DE low pulse widths at least 2 pixel clock cycles. By default, CNTL[3:0] are sampled continuously when DE is low. CNTL[3:0] are sampled only on HS/VS transitions when DE is high . If DE triggering of encoded packets is not desired, set the serializer’s DISDETRIG = 0 and the CNTLTRIG bits to their desired value (register 0x15) to change the CNTL triggering behavior. Set DETREN = 0 on the deserializer when DE is not periodic. Table 2. Data-Rate Selection Table DRS BIT SETTING BWS PIN SETTING PCLKIN RANGE (MHz) 0 (high data rate) Low (24-bit mode) 16.66 to 104 Mid (high-bandwidth mode) 36.66 to 104 High (32-bit mode) 12.5 to 78 1 (low data rate) Low 8.33 to 16.66 Mid 18.33 to 36.66 High 6.25 to 12.5 RGB DATA INPUT SIGNAL INPUT PIN CONTROL BITS R0 R1 B5 DIN0 DIN1 DIN17 HS VS I2S/TDM AUDIO DE DIN18/ DIN19/ DIN20/ HS VS DE WS SCK SD AUDIO ENCODE SERIAL DATA D0 D1 D17 D18 D19 UART/I2C D20 ACB FCC RX/ SDA TX/ SCL FORWARD CONTROL CHANNEL BIT PACKET PARITY CHECK BIT PCB 24 BITS MAX9279 NOTE: VS/HS MUST BE SET AT DIN[19:18] FOR HDCP FUNCTIONALITY. ONLY DIN[17:0] AND ACB HAVE HDCP ENCRYPTION. Figure 15. 24-Bit Mode Serial Data Format www.maximintegrated.com Maxim Integrated │  26 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input RGB DATA INPUT SIGNAL INPUT PIN CONTROL BITS R0 R1 B5 HS DIN0 DIN1 DIN17 VS AUX CONTROL BITS RGB DATA DE DIN18/ DIN19/ DIN20/ HS VS DE R6 R7 G6 G7 B6 B7 DIN21 DIN22 DIN23 DIN24 DIN25 DIN26 DIN27/ DIN28/ CNTL1 CNTL2 I2S / TDM AUDIO WS SCK UART/I2C SD D0 D1 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 ACB FCC TX/ SCL PACKET PARITY CHECK BIT FORWARD CONTROL CHANNEL BIT AUDIO ENCODE SERIAL DATA RX/ SDA PCB 32 BITS MAX9279 NOTE: VS/HS MUST BE SET AT DIN[19:18] FOR HDCP FUNCTIONALITY. ONLY DIN[17:0], DIN[26:21] AND ACB HAVE HDCP ENCRYPTION. Figure 16. 32-Bit Mode Serial Data Format RGB DATA INPUT SIGNAL INPUT PIN R0 R1 DIN0 DIN1 I2S/TDM AUDIO RGB DATA B5 R6 R7 G6 G7 B6 D0 D1 DIN17 DIN21 DIN22 DIN23 DIN24 DIN25 DIN26 D17 D18 D19 D20 D21 D22 27 BITS AUX CONTROL CONTROL BITS B7 HS WS SCK SD AUDIO ENCODE SERIAL DATA UART/I2C D23 ACB FCC PCB RX/ SDA TX/ SCL FORWARD PACKET CONTROL PARITY CHANNEL BIT CHECK BIT VS DE MS/ DIN27/ DIN28/ CDS/ DIN18/ DIN19/ DIN20/ CNTL0 CNTL1 CNTL2 CNTL3 HS VS DE CONTROL SIGNAL ENCODING SPECIAL SERIAL DATA PACKET 27 BITS MAX9279 NOTE: VS/HS MUST BE SET AT DIN[20:18]. ONLY DIN[17:0], DIN[26:21] AND ACB HAVE HDCP ENCRYPTION. Figure 17. High-Bandwidth Mode Serial Data Format www.maximintegrated.com Maxim Integrated │  27 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input audio data rate and output the audio in I2S format. The audio channel is enabled by default. When the audio channel is disabled, the SD is treated as an auxiliary control signal. Audio Channel The audio channel supports 8kHz to 192kHz audio sampling rates and audio word lengths from 8 bits to 32 bits (2-channel I2S) or 64 to 256 bits (TDM64 to TDM256). The audio bit clock (SCK) does not have to be synchronized with PCLKIN. The serializer automatically encodes audio data into a single bit stream synchronous with PCLKIN. The deserializer decodes the audio stream and stores audio words in a FIFO. Audio rate detection uses an internal oscillator to continuously determine the Since the audio data sent through the serial link is synchronized with PCLKIN, low PCLKIN frequencies limit the maximum audio sampling rate. Table 3 lists the maximum audio sampling rate for various PCLKIN frequencies. Spread-spectrum settings do not affect the I2S/TDM data rate or WS clock frequency. CHANNELS Table 3. Maximum Audio WS Frequency (kHz) for Various PCLKIN Frequencies 2 4 6 8 BITS PER CHAN 8 16 18 20 24 32 8 16 18 20 24 32 8 16 18 20 24 32 8 16 18 20 24 32 PCLKIN FREQUENCY (DRS = 0*) (MHz) 12.5 + + 185.5 174.6 152.2 123.7 + 123.7 112.0 104.2 88.6 69.9 152.2 88.6 80.2 73.3 62.5 48.3 123.7 69.9 62.5 57.1 48.3 37.1 15.0 + + + + 182.7 148.4 + 148.4 134.4 125.0 106.3 83.8 182.7 106.3 93.3 88.0 75.0 57.9 148.4 83.8 75.0 68.5 57.9 44.5 16.6 + + + + + 164.3 + 164.3 148.8 138.3 117.7 92.8 + 117.7 106.6 97.3 83.0 64.1 164.3 92.8 83.0 75.8 64.1 49.3 20.0 + + + + + + + + 179.2 166.7 141.8 111.8 + 141.8 128.4 117.3 100 77.2 + 111.8 100.0 91.3 77.2 59.4 25.0 + + + + + + + + + + 177.2 139.7 + 177.2 160.5 146.6 125 96.5 + 139.7 125.0 114.2 96.5 74.2 30.0 + + + + + + + + + + + 167.6 + + + 175.9 150 115.9 + 167.6 150.0 137.0 115.9 89.1 35.0 + + + + + + + + + + + + + + + + 175 135.2 + + 175.0 159.9 135.2 103.9 40.0 + + + + + + + + + + + + + + + + + 154.5 + + + 182.7 154.5 118.8 45.0 + + + + + + + + + + + + + + + + + 173.8 + + + + 173.8 133.6 50.0 + + + + + + + + + + + + + + + + + + + + + + + 148.4 100 + + + + + + + + + + + + + + + + + + + + + + + + COLOR CODING 192kHz +Max WS rate is greater than 192kHz. *DRS = 0 PCLKIN frequency is equal to 2x the DRS = 1 PCLKIN frequency. www.maximintegrated.com Maxim Integrated │  28 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Audio Channel Input The audio channel input works with 8-channel TDM and stereo I2S, as well as nonstandard formats. The input format is shown in Figure 18. FRAME WS The period of the WS can be 8 to 256 SCK periods. The WS frame starts with the falling edge and can be low for 1 to 255 SCK periods. SD is one SCK period, sampled on the rising edge. MSB/LSB order, zero padding or any other significance assigned to the serial data does not affect operation of the audio channel. The polarity for WS and SCK edges is programmable. SCK SD 0 1 2 N 16 TO 256 BITS Figure 19, Figure 20, Figure 21, and Figure 22 are examples of acceptable input formats. Figure 18. Audio Channel Input Format 256 SCK WS SCK SD CH1 32 SCK CH2 CH3 CH4 CH5 CH6 CH7 CH8 MSB 24-BIT DATA LSB 8 BITS ZERO Figure 19. 8-Channel TDM (24-Bit Samples, Padded with Zeros) SCK 144 WS SCK SD CH1 CH2 CH3 CH4 CH5 CH6 24 SCK 24-BIT DATA Figure 20. 6-Channel TDM (24-Bit Samples, No Padding) www.maximintegrated.com Maxim Integrated │  29 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Reverse Control Channel mode selection (MS) input of the device connected to the µC. Base mode is a half-duplex control channel and the bypass mode is a full-duplex control channel. The total maximum forward or reverse control channel delay is 2µs (UART) or 2 bit times (I2C) from the input of one device to the output of the other. I2C delay is measured from a start condition to start condition. The serializer uses the reverse control channel to receive I2C/UART, MS, and GPO signals from the deserializer in the opposite direction of the video stream. The reverse control channel and forward video data coexist on the same serial cable forming a bidirectional link. The reverse control channel operates independently from the forward control channel. The reverse control channel is available 2ms after power-up. The serializer temporarily disables the reverse control channel for 500µs after starting/ stopping the forward serial link. Control Channel and Register Programming The control channel is available for the µC to send and receive control data over the serial link simultaneously with the high-speed data. The µC controls the link from either the serializer or the deserializer side to support video-display or image-sensing applications. The control channel between the µC and serializer or deserializer runs in base mode or bypass mode according to the UART Interface In base mode, the µC is the host and can access the registers of both the serializer and deserializer from either side of the link using the GMSL UART protocol. The µC can also program the peripherals on the remote side by sending the UART packets to the serializer or deserializer, with the UART packets converted to I2C by the device on the remote side of the link. The µC communicates with a UART peripheral in base mode (through INTTYPE register settings), using the half-duplex default GMSL UART protocol of the serializer/deserializer. The device addresses of the serializer and deserializer in base mode are programmable. 64 SCK WS SCK SD LEFT CHANNEL RIGHT CHANNEL 32 SCK MSB 24-BIT DATA LSB 8 BITS ZERO Figure 21. Stereo I2S (24-Bit Samples, Padded with Zeros) 32 SCK WS SCK SD LEFT CHANNEL RIGHT CHANNEL 16 SCK 16-BIT DATA Figure 22. Stereo I2S (16-Bit Samples, No Padding) www.maximintegrated.com Maxim Integrated │  30 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input When the peripheral interface is I2C, the serializer/ deserializer converts UART packets to I2C that have device addresses different from those of the serializer or deserializer. The converted I2C bit rate is the same as the original UART bit rate. up to 3.5 times higher or lower than the previous bit rate. See the Changing the Clock Frequency section for more information on changing the control channel bit rate. Figure 23 shows the UART protocol for writing and reading in base mode between the µC and the serializer/ deserializer. The deserializer uses differential line coding to send signals over the reverse channel to the serializer. The bit rate of the control channel is 9.6kbps to 1Mbps in both directions. The serializer and deserializer automatically detect the control-channel bit rate in base mode. Packet bit rate changes can be made in steps of Figure 24 shows the UART data format. Even parity is used. Figure 25 and Figure 26 detail the formats of the SYNC byte (0x79) and the ACK byte (0xC3). The µC and the connected slave chip generate the SYNC byte and ACK byte, respectively. Events such as device wake-up and GPI WRITE DATA FORMAT SYNC DEV ADDR + R/W REG ADDR NUMBER OF BYTES BYTE 1 BYTE N ACK MASTER WRITES TO SLAVE MASTER READS FROM SLAVE READ DATA FORMAT SYNC DEV ADDR + R/W REG ADDR NUMBER OF BYTES MASTER WRITES TO SLAVE ACK BYTE 1 BYTE N MASTER READS FROM SLAVE Figure 23. GMSL UART Protocol for Base Mode 1 UART FRAME START D0 D1 D2 D3 FRAME 1 D4 D5 D6 D7 PARITY STOP FRAME 2 STOP FRAME 3 START STOP START Figure 24. GMSL UART Data Format for Base Mode START D0 D1 D2 D3 D4 D5 D6 D7 1 0 0 1 1 1 1 0 Figure 25. Sync Byte (0x79) www.maximintegrated.com PARITY STOP START D0 D1 D2 D3 D4 D5 D6 D7 1 1 0 0 0 0 1 1 PARITY STOP Figure 26. ACK Byte (0xC3) Maxim Integrated │  31 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Interfacing Command-Byte-Only I2C Devices with UART generate transitions on the control channel that can be ignored by the µC. Data written to the serializer registers do not take effect until after the acknowledge byte is sent. This allows the µC to verify that write commands are received without error, even if the result of the write command directly affects the serial link. The slave uses the SYNC byte to synchronize with the host UART’s data rate. If the GPI or MS inputs of the deserializer toggle while there is control-channel communication, or if a line fault occurs, the control-channel communication will be corrupted. In the event of a missed or delayed acknowledge (~1ms due to control channel timeout), the µC should assume there was an error in the packet transmission or response. In base mode, the µC must keep the UART Tx/Rx lines high for no more than four bit times between bytes in a packet. Keep the UART TX/RX lines high for at least 16 bit times before starting to send a new packet. The serializers’ UART-to-I2C conversion can interface with devices that do not require register addresses, such as the MAX7324 GPIO expander. In this mode, the I2C master ignores the register address byte and directly reads/writes the subsequent data bytes (Figure 28). Change the communication method of the I2C master using the I2CMETHOD bit. I2CMETHOD = 1 sets command-byte-only mode, while I2CMETHOD = 0 sets normal mode where the first byte in the data stream is the register address. UART Bypass Mode In bypass mode, the serializers ignore UART commands from the µC and the µC communicates with the peripherals directly using its own defined UART protocol. The µC cannot access the serializer/deserializer’s registers in this mode. Peripherals accessed through the forward control channel using the UART interface need to handle at least one PCLKIN period ±10ns of jitter due to the asynchronous sampling of the UART signal by PCLKIN. Set MS = high in the serializer to put the control channel into bypass mode. As shown in Figure 27, the remote-side device converts packets going to or coming from the peripherals from UART format to I2C format and vice versa. The remote device removes the byte number count and adds or receives the ACK between the data bytes of I2C. The I2C bit rate is the same as the UART bit rate. UART-TO-I2C CONVERSION OF WRITE PACKET (I2CMETHOD = 0) µC SERIALIZER/DESERIALIZER 11 SYNC FRAME 11 DEVICE ID + WR SERIALIZER/DESERIALIZER 11 11 REGISTER ADDRESS NUMBER OF BYTES PERIPHERAL 1 S 7 DEV ID 1 1 W A 8 REG ADDR 11 DATA 0 11 DATA N 8 DATA 0 1 A 11 ACK FRAME 1 A 8 DATA N 1 1 A P UART-TO-I2C CONVERSION OF READ PACKET (I2CMETHOD = 0) µC SERIALIZER/DESERIALIZER 11 SYNC FRAME 11 DEVICE ID + RD SERIALIZER/DESERIALIZER 11 11 REGISTER ADDRESS NUMBER OF BYTES PERIPHERAL 1 S 7 DEV ID 1 1 W A : MASTER TO SLAVE 8 REG ADDR 1 1 A S : SLAVE TO MASTER 11 ACK FRAME 7 DEV ID 1 1 R A S: START 8 DATA 0 P: STOP 1 A 11 DATA 0 8 DATA N 11 DATA N 1 1 A P A: ACKNOWLEDGE Figure 27. Format Conversion Between GMSL UART and I2C with Register Address (I2CMETHOD = 0) www.maximintegrated.com Maxim Integrated │  32 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input I2C Interface For applications with the µC connected to the deserializer, set the MS pin on the deserializer. There is a 1ms wait time between switching MS high and the bypass control channel being active; do not send a UART command during this time. There is no delay time when switching to bypass mode when the µC is connected to the serializer. Although MS on either the serializer or deserializer sets the control channel bypass mode, only the local side device (connected to the µC) should be used to set bypass mode. Do not switch MS while a UART command is being sent. Do not send a logic-low value longer than 100µs to ensure proper GPO functionality. Bypass mode accepts bit rates down to 10kbps in either direction. See the GPO/GPI Control section for GPI functionality limitations. The control-channel data pattern should not be held low longer than 100µs if GPI control is used. In I2C-to-I2C mode, the serializer’s control channel interface sends and receives data through an I2Ccompatible 2-wire interface. The interface uses a serialdata line (SDA) and a serial-clock line (SCL) to achieve bidirectional communication between master and slave(s). A µC master initiates all data transfers to and from the device and generates the SCL clock that synchronizes the data transfer. When an I2C transaction starts on the local side device’s control channel port, the remote side device’s control channel port becomes an I2C master that interfaces with remote side I2C peripherals. The I2C master must accept clock-stretching which is imposed by the serializer (holding SCL LOW) The SDA and SCL lines operate as both an input and an open-drain output. Pullup resistors are required on SDA and SCL. Each transmission consists of a START condition (Figure 7) sent by a master, followed by the device’s 7-bit slave address plus a R/W bit, a register address byte, one or more data bytes, and finally a STOP condition. UART-TO-I2C CONVERSION OF WRITE PACKET (I2CMETHOD = 1) µC 11 SYNC FRAME SERIALIZER/DESERIALIZER 11 11 11 DEVICE ID + WR REGISTER ADDRESS NUMBER OF BYTES SERIALIZER/DESERIALIZER µC PERIPHERAL 1 7 S DEV ID 11 DATA 0 1 1 W A 8 DATA 0 UART-TO-I2C CONVERSION OF READ PACKET (I2CMETHOD = 1) SERIALIZER/DESERIALIZER 11 11 11 11 SYNC FRAME DEVICE ID + RD REGISTER ADDRESS NUMBER OF BYTES SERIALIZER/DESERIALIZER PERIPHERAL MASTER TO SLAVE 11 DATA N 1 S SLAVE TO MASTER 11 ACK FRAME 7 DEV ID S: START 1 1 R A 8 DATA 0 P: STOP 11 ACK FRAME 1 A 8 DATA N 11 DATA 0 1 A 8 DATA N 1 1 A P 11 DATA N 1 1 A P A: ACKNOWLEDGE Figure 28. Format Conversion Between GMSL UART and I2C without Register Address (I2CMETHOD = 1) www.maximintegrated.com Maxim Integrated │  33 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input START and STOP Conditions Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high (see Figure 29). When the master has finished communicating with the slave, it issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission. Bit Transfer One data bit is transferred during each clock pulse (Figure 30). The data on SDA must remain stable while SCL is high. SDA SCL S P START CONDITION STOP CONDITION Figure 29. START and STOP Conditions SDA SCL DATA LINE STABLE; DATA VALID CHANGE OF DATA ALLOWED Figure 30. Bit Transfer www.maximintegrated.com Maxim Integrated │  34 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Acknowledge Bus Reset The device resets the bus with the I2C START condition for reads. When the R/W bit is set to 1, the serializers transmit data to the master, thus the master is reading from the device. The acknowledge bit is a clocked 9th bit that the recipient uses to handshake receipt of each byte of data (Figure 31). Thus, each byte transferred effectively requires nine bits. The master generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse. The SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the slave device, the slave device generates the acknowledge bit because the slave device is the recipient. When the slave device is transmitting to the master, the master generates the acknowledge bit because the master is the recipient. The device generates an acknowledge even when the forward control channel is not active. To prevent acknowledge generation when the forward control channel is not active, set the I2CLOCACK bit low. Format for Writing Writes to the serializers comprise the transmission of the slave address with the R/W bit set to zero, followed by at least one byte of information. The first byte of information is the register address or command byte. The register address determines which register of the device is to be written by the next byte, if received. If a STOP (P) condition is detected after the register address is received, the device takes no further action beyond storing the register address (Figure 33). Any bytes received after the register address are data bytes. The first data byte goes into the register selected by the register address, and subsequent data bytes go into subsequent registers (Figure 34). If multiple data bytes are transmitted before a STOP condition, these bytes are stored in subsequent registers because the register addresses autoincrements. Slave Address The serializers have 7-bit long slave addresses. The bit following a 7-bit slave address is the R/W bit, which is low for a write command and high for a read command. The slave address for the serializer is 10000001 for read commands and 10000000 for write commands. See Figure 32. START CONDITION CLOCK PULSE FOR ACKNOWLEDGE 1 SCL 2 8 9 SDA BY TRANSMITTER SDA BY RECEIVER S Figure 31. Acknowledge SDA 1 MSB 0 0 0 0 0 0 R/W ACK LSB SCL Figure 32. Slave Address www.maximintegrated.com Maxim Integrated │  35 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input remote side I2C setup and hold times should be adjusted by setting the I2CSLVSH register settings on both sides. Format for Reading The serializers are read using the internally stored register address as an address pointer, the same way the stored register address is used as an address pointer for a write. The pointer autoincrements after each data byte is read using the same rules as for a write. Thus, a read is initiated by first configuring the register address by performing a write (Figure 35). The master can now read consecutive bytes from the device, with the first data byte being read from the register address pointed by the previously written register address. Once the master sends a NACK, the device stops sending valid data. I2C Address Translation The serializers support I2C address translation for up to two device addresses. Use address translation to assign unique device addresses to peripherals with limited I2C addresses. Source addresses (address to translate from) are stored in registers 0x0F and 0x11. Destination addresses (address to translate to) are stored in registers 0x10 and 0x12. In a multilink situation where there are multiple deserializers and/or peripheral devices connected to these serializers, the deserializers support broadcast commands to control these multiple devices. Select an unused device address to use as a broadcast device address. I2C Communication with Remote Side Devices The serializers support I2C communication with a peripheral on the remote side of the communication link using SCL clock stretching. While multiple masters can reside on either side of the communication link, arbitration is not provided. The connected masters need to support SCL clock stretching. The remote side I2C bit rate range must be set according to the local side I2C bit rate. Supported remote side bit rates can be found in Table 4. Set the I2CMSTBT (register 0x13) to set the remote I2C bit rate. If using a bit rate different from 400kbps, local and 0 = WRITE ADDRESS = 0x80 S 1 0 0 0 0 0 0 0 Table 4. I2C Bit-Rate Ranges REMOTE BIT RATE RANGE LOCAL BIT RATE f > 50kbps Up to 1Mbps Any 20kbps > f > 50kbps Up to 400kbps Up to 110 f < 20kbps Up to 10kbps 000 REGISTER ADDRESS = 0x00 A 0 0 0 0 0 0 I2CMSTBT SETTING 0 REGISTER 0x00 WRITE DATA 0 A D7 D6 D5 D4 D3 D2 D1 D0 A P S = START BIT P = STOP BIT A = ACK D_ = DATA BIT Figure 33. Format for I2C Write 0 = WRITE ADDRESS = 0x80 S 1 0 0 0 0 REGISTER ADDRESS = 0x00 0 0 0 A 0 0 REGISTER 0x00 WRITE DATA D7 D6 D5 D4 D3 D2 0 0 0 0 0 0 A D1 D0 N S = START BIT P = STOP BIT A = ACK N = NACK D_ = DATA BIT REGISTER 0x01 WRITE DATA D1 D0 A D7 D6 D5 D4 D3 D2 P Figure 34. Format for Write to Multiple Registers www.maximintegrated.com Maxim Integrated │  36 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input 0 = WRITE ADDRESS = 0x80 S 1 0 0 0 0 REGISTER ADDRESS = 0x00 0 0 0 A 0 0 0 0 0 0 0 0 A S = START BIT P = STOP BIT A = ACK N = NACK D_ = DATA BIT 1 = READ ADDRESS = 0x81 REPEATED START S 1 0 0 0 0 REGISTER 0x00 READ DATA 0 0 1 A D7 D6 D5 D4 D3 D2 D1 D0 N P Figure 35. Format for I2C Read Program all the remote-side deserializer devices to translate the broadcast device address (source address stored in registers 0x0F, 0x11) to the peripherals’ address (destination address stored in registers 0x10, 0x12). Any commands sent to the broadcast address (selected unused address) will be sent to all deserializers and/or peripheral devices connected to the deserializers whose addresses match the translated broadcast address. register 0x05 D[3:0] of the serializer. This preemphasis function compensates the high-frequency loss of the cable and enables reliable transmission over longer link distances. Current drive for both TP and coax modes is programmable. CMLLVL bits (0x05, D[5:4]) program drive current in TP mode. CMLLVLCX (0x14,D[7:4]) program drive current in coax mode. GPO/GPI Control To reduce the EMI generated by the transitions on the serial link, the serializer output is programmable for spread spectrum. If the deserializer paired with the MAX9275/MAX9279 has programmable spread spectrum, do not enable spread for both at the same time or their interaction will cancel benefits. The deserializer will track the serializer spread and will pass the spread to the deserializer output. The programmable spreadspectrum amplitudes are ±0.5%, ±1%, ±1.5%, ±2%, ±3%, and ±4% (Table 6). Some spread-spectrum amplitudes can only be used at lower PCLKIN frequencies (Table 7). There is no PCLKIN frequency limit for the ±0.5% spread rate. GPO on the serializer follows GPI transitions on the deserializer. This GPO/GPI function can be used to transmit signals such as a frame sync in a surround-view camera system. The GPI-to-GPO delay is 0.35ms (max). Keep time between GPI transitions to a minimum 0.35ms. This includes transitions from the other deserializer in coax splitter mode. Bit D4 of register 0x06 in the deserializer stores the GPI input state. GPO is low after power-up. The µC can set GPO by writing to the SETGPO register bit. Do not send a logic-low value on the deserializer RX/ SDA input (UART mode) longer than 100µs in either base or bypass mode to ensure proper GPO/GPI functionality. GPO/GPI commands will override and corrupt an I2C/ UART command in progress. Pre/Deemphasis Driver The serial line driver employs current-mode logic (CML) signaling. The driver is differential when programmed for twisted-pair. When programmed for coax, one side of the CML driver is used. The line driver has programmable pre/deemphasis which modifies the output to compensate for cable length. There are 13 preemphasis settings as shown in Table 5. Negative preemphasis levels are deemphasis levels in which the preemphasized swing level is the same as normal swing, but the no-transition data is deemphasized. Program the preemphasis levels through www.maximintegrated.com Spread Spectrum When the spread spectrum is turned on or off the serial link stops for several microseconds and then restarts in order for the deserializer to lose and relock to the new serial data stream. The serializer includes a sawtooth divider to control the spread modulation rate. Auto detection of the PCLKIN operation range guarantees a spread-spectrum modulation frequency within 20kHz to 40kHz. Additionally, manual configuration of the sawtooth divider (SDIV: 0x03, D[6:0]) allows the user to set a modulation frequency according to the PCLKIN frequency. When ranges are manually selected, program the SDIV value for a fixed modulation frequency around 20kHz. Maxim Integrated │  37 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 5. TP/COAX Drive Current (400mV Output Drive Levels) SINGLE-ENDED VOLTAGE SWING PREEMPHASIS LEVEL (dB)* PREEMP SETTING (0x06, D[3:0]) ICML (mA) IPRE (mA) MAX (mV) MIN (mV) -6.0 0100 12 4 400 200 -4.1 0011 13 3 400 250 -2.5 0010 14 2 400 300 -1.2 0001 15 1 400 350 0 0000 16 0 400 400 1.1 1000 16 1 425 375 2.2 1001 16 2 450 350 3.3 1010 16 3 475 325 4.4 1011 16 4 500 300 6.0 1100 15 5 500 250 8.0 1101 14 6 500 200 10.5 1110 13 7 500 150 14.0 1111 12 8 500 100 *Negative preemphasis levels denote deemphasis. Table 6. Serial Output Spread SS SPREAD (%) 000 No spread spectrum. Power-up default depends on CONF[1:0] 001 ±0.5% spread spectrum. Power-up default depends on CONF[1:0] 010 ±1.5% spread spectrum 011 ±2% spread spectrum 100 No spread spectrum 101 ±1% spread spectrum 110 ±3% spread spectrum 111 ±4% spread spectrum Table 7. Spread Limitations 24-BIT OR HIGH-BANDWIDTH MODE PCLKIN FREQUENCY (MHz) 32-BIT MODE PCLKIN FREQUENCY (MHz) SERIAL LINK BIT-RATE (Mbps) AVAILABLE SPREAD RATES < 33.3 41.66 High > 30 Open > 83.33 Fast high-immunity mode requires DRS = 0. www.maximintegrated.com Maxim Integrated │  41 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Link Startup Procedure HDCP has two main phases of operation: authentication and the link integrity check. The µC starts authentication by writing to the START_AUTHENTICATION bit in the GMSL serializer. The GMSL serializer generates a 64-bit random number. The host µC first reads the 64-bit random number from the GMSL serializer and writes it to the deserializer. The µC then reads the GMSL serializer public key selection vector (AKSV) and writes it to the deserializer. The µC then reads the deserializer KSV (BKSV) and writes it to the GMSL serializer. The µC begins checking BKSV against the revocation list. Using the cipher, the GMSL serializer and deserializer calculate a 16-bit response value, R0 and R0’, respectively. The GMSL amendment for HDCP reduces the 100ms minimum wait time allowed for the receiver to generate R0’ (specified in HDCP rev 1.3) to 128 pixel clock cycles in the GMSL amendment. Table 13 lists the start-up procedure for display applications (CDS = Low). Table 14 lists the startup procedure for image-sensing applications (CDS = High). The control channel is available after the video link or the configuration link is established. If the deserializer powers up after the serializer, the control channel becomes unavailable for 2ms after power-up. High-Bandwidth Digital Content Protection (HDCP) Note: The explanation of HDCP operation in this data sheet is provided as a guide for general understanding. Implementation of HDCP in a product must meet the requirements given in the HDCP System v1.3 Amendment for GMSL, which is available from DCP. Table 13. Startup Procedure for Video-Display Applications (CDS = Low) NO. µC SERIALIZER DESERIALIZER (AUTOSTART ENABLED) (AUTOSTART DISABLED) µC connected to serializer Set all configuration inputs. Set CONF[3:2] for autostart. If any configuration inputs are available on one end of the link but not the other, always connect that configuration input low. Set all configuration inputs. Set CONF[3:2] to disable autostart. If any configuration inputs are available on one end of the link but not the other, always connect that configuration input low. Set all configuration inputs. If any configuration inputs are available on one end of the link but not the other, always connects that configuration input low. 1 Powers up Powers up and loads default settings. Establishes video link when valid PCLK available. Powers up and loads default settings Powers up and loads default settings. Locks to video link signal if available. 2 Enables serial link by setting SEREN = 1 or configuration link by setting SEREN = 0 and CLINKEN = 1 (if valid PCLK not available) and gets an acknowledge. Waits for link to be establish (~3ms). Establishes configuration or video link Locks to configuration or video link signal 3 Writes configuration bits in the serializer/ deserializer and gets an acknowledge. — www.maximintegrated.com Configuration changed from default settings Configuration changed from default settings Maxim Integrated │  42 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 13. Startup Procedure for Video-Display Applications (CDS = Low) (continued) NO. SERIALIZER µC (AUTOSTART ENABLED) DESERIALIZER (AUTOSTART DISABLED) 4 If not already enabled, sets SEREN = 1, gets an acknowledge and waits for video link to be established (~3ms) Establishes video link when valid PCLK available (if not already enabled) Locks to video link signal (if not already locked) 5 Begin sending video data to input Video data serialized and sent across serial link. Video data received and deserialized SEREN BIT AUTOS SETTING POWER-UP VALUE LOW 1 HIGH 0 POWER-DOWN OR POWER-OFF CLINKEN = 0 OR SEREN = 1 CLINKEN = 0 OR SEREN = 1 PWDN = HIGH, POWER-ON POWER-ON IDLE AUTOS = LOW CLINKEN = 1 CONFIG LINK STARTING CONFIG LINK UNLOCKED CONFIG LINK OPERATING CONFIG LINK PROGRAM REGISTERS LOCKED PWDN = LOW OR POWER-OFF ALL STATES PWDN = HIGH POWER-ON, AUTOS = LOW SEREN = 1, PCLKIN RUNNING VIDEO LINK LOCKING SEREN = 0, NO PCLKIN SEREN = 0, OR NO PCLKIN VIDEO LINK LOCKED PRBSEN = 0 VIDEO LINK OPERATING PRBSEN = 1 VIDEO LINK PRBS TEST VIDEO LINK UNLOCKED Figure 38. State Diagram, CDS = LOW (Video Display Application) www.maximintegrated.com Maxim Integrated │  43 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 14. Startup Procedure for Image-Sensing Applications (CDS = HIGH) NO. SERIALIZER µC DESERIALIZER (AUTOSTART ENABLED) (AUTOSTART DISABLED) µC connected to deserializer Set all configuration inputs. Set CONF[3:2] for autostart. Set all configuration inputs. Set CONF[3:2] to disable autostart. Set all configuration inputs 1 Powers up Powers up and loads default settings. Establishes video link when valid PCLK available Powers up and loads default settings. Goes to sleep after 8ms. Powers up and loads default settings. Locks to video link signal if available. 2 Writes deserializer configuration bits and gets an acknowledge. — 3 Wakes up the serializer by sending dummy packet, and then writing SLEEP = 0 within 8ms. May not get an acknowledge (or gets a dummy acknowledge) if not locked. — 4 Writes serializer configuration bits. May not get an acknowledge (or gets a dummy acknowledge) if not locked. Configuration changed from default settings 5 If not already enabled, sets SEREN = 1, gets an acknowledge and waits for serial link to be established (~3ms) Establishes video link when valid PCLK available (if not already enabled) Locks to video link signal (if not already locked) 6 Begin sending video data to input Video data serialized and sent across serial link Video data received and deserialized — AUTOS SETTING LOW HIGH Wakes up POWER-UP VALUE SEREN SLEEP 1 0 0 1 SLEEP SLEEP = 1 FOR > 8ms REVERSE LINK Configuration changed from default settings — — — CLINKEN = 0 OR SEREN = 1 CLINKEN = 0 OR SEREN = 1 WAKE-UP SLEEP = 0, POWER-ON IDLE SEREN = 0 CLINKEN = 1 CONFIG LINK STARTED WAKE-UP SIGNAL PWDN = HIGH, POWER-ON, AUTOS = HIGH SLEEP = 1 ALL STATES PWDN = LOW OR POWER-OFF POWER-DOWN OR POWER-OFF SLEEP = 0, SLEEP = 1 PWDN = HIGH, POWER-ON AUTOS = LOW SEREN = 1, PCLKIN RUNNING CONFIG LINK LOCKED CONFIG LINK OPERATING PROGRAM REGISTERS SEREN = 0 OR NO PCLKIN SEREN = 0 OR NO PCLKIN VIDEO LINK LOCKING CONFIG LINK UNLOCKED VIDEO LINK LOCKED VIDEO LINK OPERATING PRBSEN = 0 PRBSEN = 1 VIDEO LINK PRBS TEST VIDEO LINK UNLOCKED Figure 39. State Diagram, CDS = HIGH (Image Sensing Application) www.maximintegrated.com Maxim Integrated │  44 MAX9275/MAX9279 There are two response-value comparison modes: internal comparison and µC comparison. Set EN_INT_COMP = 1 to select internal comparison mode. Set EN_INT_COMP = 0 to select µC comparison mode. In internal comparison mode, the µC reads the deserializer response R0’ and writes it to the GMSL serializer. The GMSL serializer compares R0’ to its internally generated response value R0, and sets R0_RI_MATCHED. In µC comparison mode, the µC reads and compares the R0/R0’ values from the GMSL serializer/deserializer. During response-value generation and comparison, the host µC checks for a valid BKSV (having 20 1s and 20 0s is also reported in BKSV_INVALID) and checks BKSV against the revocation list. If BKSV is not on the list and the response values match, the host authenticates the link. If the response values do not match, the µC resamples the response values (as described in HDCP rev 1.3, Appendix C). If resampling fails, the µC restarts authentication by setting the RESET_HDCP bit in the GMSL serializer. If BKSV appears on the revocation list, the host cannot transmit data that requires protection. The host knows when the link is authenticated and decides when to output data requiring protection. The µC performs a link integrity check every 128 frames or every 2s ±0.5s. The GMSL serializer/deserializer generate response values every 128 frames. These values are compared internally (internal comparison mode) or can be compared in the host µC. In addition, the GMSL serializer/deserializer provide response values for the enhanced link verification. Enhanced link verification is an optional method of link verification for faster detection of loss-of-synchronization. For this option, the GMSL serializer and deserializer generate 8-bit enhanced link-verification response values (PJ and PJ’) every 16 frames. The host must detect three consecutive PJ/PJ’ mismatches before resampling. Encryption Enable The GMSL link transfers either encrypted or nonencrypted data. To encrypt data, the host µC sets the encryption enable (ENCRYPTION_ENABLE) bit in both the GMSL serializer and deserializer. The µC must set ENCRYPTION_ENABLE in the same VSYNC cycle in both the GMSL serializer and deserializer (no internal VSYNC falling edges between the two writes). The same timing applies when clearing ENCRYPTION_ENABLE to disable encryption. Note: ENCRYPTION_ENABLE enables/disables encryption on the GMSL irrespective of the content. www.maximintegrated.com 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input To comply with HDCP, the µC must not allow content requiring encryption to cross the GMSL unencrypted. The µC must complete the authentication process before enabling encryption. In addition, encryption must be disabled before starting a new authentication session. Synchronization of Encryption The video vertical sync (VSYNC) synchronizes the start of encryption. Once encryption has started, the GMSL generates a new encryption key for each frame and each line, with the internal falling edge of VSYNC and HSYNC. Rekeying is transparent to data and does not disrupt the encryption of video or audio data. Repeater Support The GMSL serializer/deserializer include features to build an HDCP repeater. An HDCP repeater receives and decrypts HDCP content and then encrypts and transmits on one or more downstream links. A repeater can also use decrypted HDCP content (e.g., to display on a screen). To support HDCP repeater-authentication protocol, the deserializer has a REPEATER register bit. This register bit must be set to 1 by a µC (most likely on the repeater module). Both the GMSL serializer and deserializer use SHA-1 hash-value calculation over the assembled KSV lists. HDCP GMSL links support a maximum of 15 receivers (total number including the ones in repeater modules). If the total number of downstream receivers exceeds 14, the µC must set the MAX_DEVS_EXCEEDED register bit when it assembles the KSV list. HDCP Authentication Procedures The GMSL serializer generates a 64-bit random number exceeding the HDCP requirement. The GMSL serializer/deserializer internal one-time programmable (OTP) memories contain a unique HDCP keyset programmed at the factory. The host µC initiates and controls the HDCP authentication procedure. The GMSL serializer and deserializer generate HDCP authentication response values for the verification of authentication. Use the following procedures to authenticate the HDCP GMSL encryption (refer to the HDCP 1.3 Amendment for GMSL for details). The µC must perform link integrity checks while encryption is enabled (see Table 16). Any event that indicates that the deserializer has lost link synchronization should retrigger authentication. The µC must first write 1 to the RESET_HDCP bit in the GMSL serializer before starting a new authentication attempt. Maxim Integrated │  45 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input HDCP Protocol Summary for an authentication request from the upstream transmitter/repeaters. Table 15, Table 16, and Table 17 list the summaries of the HDCP protocol. These tables serve as an implementation guide only. Meet the requirements in the GMSL amendment for HDCP to be in full compliance. Example Repeater Network—Two µCs The example shown in Figure 40 has one repeater and two µCs. Table 18 summarizes the authentication operation. Detection and Action Upon New Device Connection When a new device is connected to the system, the device must be authenticated and the device’s KSV checked against the revocation list. The downstream µCs can set the NEW_DEV_CONN bit of the upstream receiver and invoke an interrupt to notify upstream µCs. Notification of Start of Authentication and Enable of Encryption to Downstream Links HDCP repeaters do not immediately begin authentication upon startup or detection of a new device, but instead wait Use the following procedure to notify downstream links of the start of a new authentication request: 1) Host µC begins authentication with the HDCP repeater’s input receiver. 2) When AKSV is written to HDCP repeater’s input receiver, its AUTH_STARTED bit is automatically set and its GPIO1 goes high (if GPIO1_FUNCTION is set to high). 3) HDCP repeater’s µC waits for a low-to-high transition on HDCP repeater input receiver’s AUTH_STARTED bit and/or GPIO1 (if configured) and starts authentication downstream. 4) HDCP repeater’s µC resets the AUTH_STARTED bit. Set GPIO0_FUNCTION to high to have GPIO0 follow the ENCRYPTION_ENABLE bit of the receiver. The repeater µC can use this function for notification when encryption is enabled/disabled by an upstream µC. Table 15. Startup, HDCP Authentication, and Normal Operation (Deserializer is Not a Repeater)—First Part of the HDCP Authentication Protocol NO. µC HDCP GMSL SERIALIZER Powers up waiting for HDCP authentication. 1 Initial state after power-up. 2 Makes sure that A/V data not requiring protection (low-value content) is available at the GMSL serializer inputs (such as blue or informative screen). Alternatively, uses the FORCE_VIDEO and FORCE_AUDIO bits of the GMSL serializer to mask A/V data at the input of the GMSL serializer. Starts the link by writing SEREN = H or link starts automatically if AUTOS is low. — 3 — Starts serialization and transmits low-value content A/V data. HDCP GMSL DESERIALIZER Powers up waiting for HDCP authentication. — Locks to incoming data stream and outputs low-value content A/V data. 4 Reads the locked bit of the deserializer and makes sure the link is established. 5 Optionally writes a random-number seed to the GMSL serializer. Combines seed with internally generated random number. If no seed provided, only internal random number is used. — 6 If HDCP encryption is required, starts authentication by writing 1 to the START_AUTHENTICATION bit of the GMSL serializer. Generates (stores) AN, and resets the START_AUTHENTICATION bit to 0. — www.maximintegrated.com — — Maxim Integrated │  46 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 15. Startup, HDCP Authentication, and Normal Operation (Deserializer is Not a Repeater)—First Part of the HDCP Authentication Protocol (continued) NO. µC 7 Reads AN and AKSV from the GMSL serializer and writes to the deserializer. 8 Reads the BKSV and REPEATER bit from the deserializer and writes to the GMSL serializer. 9 Reads the INVALID_BKSV bit of the GMSL serializer and continues with authentication if it is 0. Authentication can be restarted if it fails (set RESET_HDCP = 1 before restarting authentication). — — 10 Reads R0’ from the deserializer and reads R0 from the GMSL serializer. If they match, continues with authentication; otherwise, retries up to two more times (optionally, GMSL serializer comparison can be used to detect if R0/R0’ match). Authentication can be restarted if it fails (set RESET_HDCP = 1 before restarting authentication). — — 11 Waits for the VSYNC falling edge (internal to the GMSL serializer) and then sets the ENCRYPTION_ENABLE bit to 1 in the deserializer and GMSL serializer (if the µC is not able to monitor VSYNC, it can utilize the VSYNC_DET bit in the GMSL serializer). 12 Checks that BKSV is not in the Key Revocation list and continues if it is not. Authentication can be restarted if it fails. Note: Revocation list check can start after BKSV is read in step 8. 13 Starts transmission of A/V content that needs protection. www.maximintegrated.com HDCP GMSL SERIALIZER — Generates R0, triggered by the µC’s write of BKSV. Encryption enabled after the next VSYNC falling edge. — Performs HDCP encryption on high-value content A/V data. HDCP GMSL DESERIALIZER Generates R0’ triggered by the µC’s write of AKSV. — Decryption enabled after the next VSYNC falling edge. — Performs HDCP decryption on highvalue content A/V data. Maxim Integrated │  47 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 16. Link Integrity Check (Normal)—Performed Every 128 Frames After Encryption is Enabled NO. µC HDCP GMSL SERIALIZER HDCP GMSL DESERIALIZER 1 — Generates Ri and updates the RI register every 128 VSYNC cycles. Generates Ri’ and updates the RI’ register every 128 VSYNC cycles. 2 — Continues to encrypt and transmit A/V data. Continues to receive, decrypt, and output A/V data. 3 Every 128 video frames (VSYNC cycles) or every 2s. — — 4 Reads RI from the GMSL serializer. — — 5 Reads RI’ from the deserializer. — — 6 Reads RI again from the GMSL serializer and makes sure it is stable (matches the previous RI that it has read from the GMSL serializer). If RI is not stable, go back to step 5. — — 7 If RI matches RI’, the link integrity check is successful; go back to step 3. — — 8 If RI does not match RI’, the link integrity check fails. After the detection of failure of link integrity check, the µC makes sure that A/V data not requiring protection (low-value content) is available at the GMSL serializer inputs (such as blue or informative screen). Alternatively, the FORCE_VIDEO and FORCE_AUDIO bits of the GMSL serializer can be used to mask A/V data input of the GMSL serializer. — — 9 Writes 0 to the ENCRYPTION_ENABLE bit of the GMSL serializer and deserializer. Disables encryption and transmits low-value content A/V data. Disables decryption and outputs lowvalue content A/V data. 10 Restarts authentication by writing 1 to the RESET_HDCP bit followed by writing 1 to the START_AUTHENTICATION bit in the GMSL serializer. — — www.maximintegrated.com Maxim Integrated │  48 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 17. Optional Enhanced Link Integrity Check—Performed Every 16 Frames After Encryption is Enabled NO. µC HDCP GMSL SERIALIZER HDCP GMSL DESERIALIZER 1 — Generates Pj and updates the PJ register every 16 VSYNC cycles. Generates Pj’ and updates the PJ’ register every 16 VSYNC cycles. 2 — Continues to encrypt and transmit A/V data. Continues to receive, decrypt, and output A/V data. 3 Every 16 video frames, reads PJ from the GMSL serializer and PJ’ from the deserializer. — — 4 If PJ matches PJ’, the enhanced link integrity check is successful; go back to step 3. — — 5 If there is a mismatch, retry up to two more times from step 3. Enhanced link integrity check fails after 3 mismatches. After the detection of failure of enhanced link integrity check, the µC makes sure that A/V data not requiring protection (low-value content) is available at the GMSL serializer inputs (such as blue or informative screen). Alternatively, the FORCE_VIDEO and FORCE_AUDIO bits of the GMSL serializer can be used to mask A/V data input of the GMSL serializer. — — 6 Writes 0 to the ENCRYPTION_ENABLE bit of the GMSL serializer and deserializer. Disables encryption and transmits low-value content A/V data. Disables decryption and outputs lowvalue content A/V data. 7 Restarts authentication by writing 1 to the RESET_HDCP bit followed by writing 1 to the START_AUTHENTICATION bit in the GMSL serializer. — — www.maximintegrated.com Maxim Integrated │  49 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input BD-DRIVE TX_B1 DISPLAY 1 REPEATER RX_R1 TX_R1 RX_D1 VIDEO ROUTING µC_B DISPLAY 2 MEMORY WITH SRM RX_R2 µC_R TX_R2 RX_D2 VIDEO CONNECTION CONTROL CONNECTION 1 (µC_B IN BD-DRIVE IS MASTER) CONTROL CONNECTION 2 (µC_R IN REPEATER IS MASTER) Figure 40. Example Network with One Repeater and Two µCs (Tx = GMSL Serializer’s, Rx = Deserializer’s) Table 18. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First and Second Parts of the HDCP Authentication Protocol NO. 1 µC_B Initial state after power-up. 2 www.maximintegrated.com — µC_R Initial state after power-up. Writes REPEATER = 1 in RX_R1. Retries until proper acknowledge frame received. Note: This step must be completed before the first part of authentication is started between TX_B1 and RX_R1 by the µC_B (step 7). For example, to satisfy this requirement, RX_R1 can be held at powerdown until µC_R is ready to write the REPEATER bit, or µC_B can poll µC_R before starting authentication. HDCP GMSL SERIALIZER (TX_B1, TX_R1, TX_R2) HDCP GMSL DESERIALIZER (RX_R1, RX_D1, RX_D2) TX_B1 CDS = 0 TX_R1 CDS = 0 TX_R2 CDS = 0 RX_R1 CDS = 1 RX_D1 CDS = 0 RX_D2 CDS = 0 All: Power-up waiting for HDCP authentication. All: Power-up waiting for HDCP authentication. — — Maxim Integrated │  50 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 18. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First and Second Parts of the HDCP Authentication Protocol (continued) NO. 3 µC_B Makes sure that A/V data not requiring protection (lowvalue content) is available at the TX_B1 inputs (such as blue or informative screen). Alternatively, the FORCE_ VIDEO and FORCE_AUDIO bits of TX_B1 can be used to mask A/V data input of TX_B1. Starts the link between TX_B1 and RX_R1 by writing SEREN = H to TX_B1, or link starts automatically if AUTOS is low. 4 — µC_R — Starts all downstream links by writing SEREN = H to TX_R1, TX_R2, or links start automatically if AUTOS of transmitters are low. HDCP GMSL SERIALIZER (TX_B1, TX_R1, TX_R2) HDCP GMSL DESERIALIZER (RX_R1, RX_D1, RX_D2) TX_B1 CDS = 0 TX_R1 CDS = 0 TX_R2 CDS = 0 RX_R1 CDS = 1 RX_D1 CDS = 0 RX_D2 CDS = 0 TX_B1: Starts serialization and transmits low-value content A/V data. RX_R1: Locks to incoming data stream and outputs low-value content A/V data. TX_R1, TX_R2: Starts serialization and transmits low-value content A/V data. RX_D1, RX_D2: Locks to incoming data stream and outputs low-value content A/V data. Reads the locked bit of RX_R1 and makes sure the link between TX_B1 and RX_R1 is established. Reads the locked bit of RX_D1 and makes sure the link between TX_R1 and RX_D1 is established. Reads the locked bit of RX_D2 and makes sure the link between TX_R2 and RX_D2 is established. — — 6 Optionally, writes a random number seed to TX_B1. Writes 1 to the GPIO_0_ FUNCTION and GPIO_1_ FUNCTION bits in RX_R1 to change GPIO functionality used for HDCP purpose. Optionally, writes a random-number seed to TX_R1 and TX_R2. — — 7 Starts and completes the first part of the authentication protocol between TX_B1, RX_R1 (see steps 6–10 in Table 15). 5 www.maximintegrated.com — TX_B1: According to commands from µC_B, generates AN, computes R0. RX_R1: According to commands from µC_B, computes R0’. Maxim Integrated │  51 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 18. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First and Second Parts of the HDCP Authentication Protocol (continued) NO. µC_B µC_R 8 — When GPIO_1 = 1 is detected, starts and completes the first part of the authentication protocol between the (TX_R1, RX_D1) and (TX_R2, RX_D2) links (see steps 6–10 in Table 15. 9 Waits for the VSYNC falling edge and then enables encryption on the (TX_B1, RX_R1) link. Full authentication is not complete yet so it makes sure A/V content that needs protection is not transmitted. Since REPEATER = 1 was read from RX_R1, the second part of authentication is required. — 10 — Blocks control channel from µC_B side by setting REVCCEN = FWDCCEN = 0 in RX_R1. Retries until proper acknowledge frame received. 11 12 When GPIO_0 = 1 is detected, enables encryption on the (TX_R1, RX_D1) and (TX_R2, RX_D2) links. Waits for some time to allow µC_R to make the KSV list ready in RX_R1. Then polls (reads) the KSV_LIST_READY bit of RX_R1 regularly until proper acknowledge frame is received and bit is read as 1. 13 www.maximintegrated.com Writes BKSVs of RX_D1 and RX_D2 to the KSV list in RX_ R1. Then, calculates and writes the BINFO register of RX_R1. Writes 1 to the KSV_LIST_ READY bit of RX_R1 and then unblocks the control channel from the µC_B side by setting REVCCEN = FWDCCEN = 1 in RX_R1. HDCP GMSL SERIALIZER (TX_B1, TX_R1, TX_R2) HDCP GMSL DESERIALIZER (RX_R1, RX_D1, RX_D2) TX_B1 CDS = 0 TX_R1 CDS = 0 TX_R2 CDS = 0 RX_R1 CDS = 1 RX_D1 CDS = 0 RX_D2 CDS = 0 TX_R1, TX_R2: According to commands from µC_R, generates AN, computes R0. RX_D1, RX_D2: According to commands from µC_R, computes R0’. TX_B1: Encryption enabled after next VSYNC falling edge. RX_R1: Decryption enabled after next VSYNC falling edge. TX_R1, TX_R2: Encryption enabled after next VSYNC falling edge. RX_D1, RX_D2: Decryption enabled after next VSYNC falling edge. — RX_R1: Control channel from serializer side (TX_B1) is blocked after FWDCCEN = REVCCEN = 0 is written. — RX_R1: Triggered by µC_R’s write of BINFO, calculates hash value (V’) on the KSV list, BINFO and the secretvalue M0’. — RX_R1: Control channel from the serializer side (TX_B1) is unblocked after FWDCCEN = REVCCEN = 1 is written. Maxim Integrated │  52 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 18. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First and Second Parts of the HDCP Authentication Protocol (continued) NO. µC_B µC_R HDCP GMSL SERIALIZER (TX_B1, TX_R1, TX_R2) HDCP GMSL DESERIALIZER (RX_R1, RX_D1, RX_D2) TX_B1 CDS = 0 TX_R1 CDS = 0 TX_R2 CDS = 0 RX_R1 CDS = 1 RX_D1 CDS = 0 RX_D2 CDS = 0 — 14 Reads the KSV list and BINFO from RX_R1 and writes them to TX_B1. If any of the MAX_ DEVS_EXCEEDED or MAX_ CASCADE_EXCEEDED bits is 1, then authentication fails. Note: BINFO must be written after the KSV list. — TX_B1: Triggered by µC_B’s write of BINFO, calculates hash value (V) on the KSV list, BINFO and the secretvalue M0. 15 Reads V from TX_B1 and V’ from RX_R1. If they match, continues with authentication; otherwise, retries up to two more times. — — — 16 Searches for each KSV in the KSV list and BKSV of RX_R1 in the Key Revocation list. — — — 17 If keys are not revoked, the second part of the authentication protocol is completed. — — — 18 Starts transmission of A/V content that needs protection. — www.maximintegrated.com All: Perform HDCP encryption on highvalue A/V data. All: Perform HDCP decryption on highvalue A/V data. Maxim Integrated │  53 MAX9275/MAX9279 Applications Information Self PRBS Test The serializers include a PRBS pattern generator which works with bit-error verification in the deserializer. To run the PRBS test, disable encryption (if used), set DISHSFILT, DISVSFILT, and DISDEFILT to ‘1’, to disable glitch filter in the deserializer. Then, set PRBSEN = 1 (0x04, D5) in the serializer and then in the deserializer. To exit the PRBS test, set PRBSEN = 0 (0x04, D5) in the deserializer and then in the serializer. Dual µC Control Usually systems have one microcontroller to run the control channel, located on the serializer side for display applications or on the deserializer side for image-sensing applications. However, a µC can reside on each side simultaneously, and trade off running the control channel. In this case, each µC can communicate with the serializer and deserializer and any peripheral devices. Contention will occur if both µCs attempt to use the control channel at the same time. It is up to the user to prevent this contention by implementing a higher level protocol. In addition, the control channel does not provide arbitration between I2C masters on both sides of the link. An acknowledge frame is not generated when communication fails due to contention. If communication across the serial link is not required, the µCs can disable the forward and reverse control channel using the FWDCCEN and REVCCEN bits (0x04, D[1:0]) in the serializer/deserializer. Communication across the serial link is stopped and contention between µCs cannot occur. As an example of dual µC use in an image-sensing application, the serializer can be in sleep mode and waiting for wake-up by µC on the deserializer side. After wake-up, the serializer-side µC assumes master control of the serializer’s registers. Jitter-Filtering PLL In some applications, the clock input (PCLKIN) includes noise, which reduces link reliability. The clock input has a programmable narrowband jitter-filter PLL that attenuates frequencies higher than 100kHz (typical). Enable the jitter-filter by setting DISJITFILT = 0 (0x05, D6). PCLKIN Spread Tracking The serializers can operate with a spread PCLKIN signal. When using a spread PCLKIN, disable the jitter-filter by setting DISJITFILT = 1 (0x05, D6). Do not exceed the spread limitation shown in Table 8. In addition, turn off www.maximintegrated.com 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input spread spectrum in the serializer and deserializer. The serializer and deserializer track the spread on PCLKIN. Changing the Clock Frequency It is recommended that the serial link be enabled after the video clock (fPCLKIN) and the control-channel clock (fUART/fI2C) are stable. When changing the clock frequency, stop the video clock for 5µs, apply the clock at the new frequency, then restart the serial link or toggle SEREN. On-the-fly changes in clock frequency are possible if the new frequency is immediately stable and without glitches. The reverse control channel remains unavailable for 500μs after serial link start or stop. When using the UART interface, limit on-the-fly changes in fUART to factors of less than 3.5 at a time to ensure that the device recognizes the UART sync pattern. For example, when lowering the UART frequency from 1Mbps to 100kbps, first send data at 333kbps then at 100kbps for reduction ratios of 3 and 3.333, respectively. Providing a Frame Sync (Camera Applications) The GPI/GPO provide a simple solution for camera applications that require a Frame Sync signal from the ECU (e.g., surround view systems). Connect the ECU Frame Sync signal to the GPI input, and connect GPO output to the camera Frame Sync input. GPI/GPO has a typical delay of 275µs. Skew between multiple GPI/ GPO channels is typically 115µs. If a lower skew signal is required, connect the camera’s frame sync input one of the deserializer’s GPIOs and use an I2C broadcast write command to change the GPIO output state. This has a maximum skew of 0.5µs, + 1 I2C bit time. Software Programming of the Device Addresses The serializers and deserializers have programmable device addresses. This allows multiple GMSL devices, along with I2C peripherals, to coexist on the same control channel. The serializer device address is in register 0x00 of each device, while the deserializer device address is in register 0x01 of each device. To change a device address, first write to the device whose address changes (register 0x00 of the serializer for serializer device address change, or register 0x01 of the deserializer for deserializer device address change). Then write the same address into the corresponding register on the other device (register 0x00 of the deserializer for serializer device address change, or register 0x01 of the serializer for deserializer device address change). Maxim Integrated │  54 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input 3-Level Configuration Inputs CONF[3:0] and BWS are 3-level inputs that control the serial interface configuration and power-up defaults. Connect 3-level inputs through a pullup resistor to IOVDD to set a high level, a pulldown resistor to GND to set a low level, or open to set a mid level. For digital control, use three-state logic to drive the 3-level logic input. Configuration Blocking The serializers can block changes to registers. Set CFGBLOCK to make registers 0x00 to registers 0x1F as read only. Once set, the registers remain blocked until the supplies are removed or until PWDN is low. Compatibility with Other GMSL Devices The serializers are designed to pair with the MAX9276– MAX9282 deserializers but interoperates with any GMSL serializers. See the Table 19 for operating limitations Key Memory Each device has a unique HDCP key set that is stored in secure nonvolatile memory (NVM). The HDCP key set consists of forty 56-bit private keys and one 40-bit public key. The NVM is qualified for automotive applications. HS/VS/DE Inversion The serializer uses an active-high HS, VS, and DE for encoding and HDCP encryption. Set INVHSYNC, INVVSYNC, and INVDE in the serializer (registers 0x0D, 0x0E) to invert active-low input signals for use with the GMSL devices. Set INVHSYNC, INVVSYNC, and INVDE in the deserializer (register 0x0E) to output active-low signals for use with downstream devices. WS/SCK Inversion The serializer uses standard polarities for I2S. Set INVWS, INVSCK in the serializer (register 0x1B) to invert opposite polarity signals for use with the GMSL devices. Set INVWS, INVSCK in the deserializer (register 0x1D) to output reverse-polarity signals for downstream use. Line-Fault Detection The line-fault detector in the serializer monitors for line failures such as short to ground, short to battery, and open link for system fault diagnosis. Figure 4 shows the required external resistor connections. LFLT = low when a line fault is detected and LFLT goes high when the line returns to normal. The line-fault type is stored in 0x08 D[3:0] of the serializer. Filter LFLT with the µC to reduce the detector’s susceptibility to short ground shifts. The fault detector threshold voltages are referenced to the serializer ground. Additional passive components set the DC level of the cable (Figure 4). If the serializer and GMSL deserializer grounds are different, the link DC voltage during normal operation can vary and cross one of the fault-detection thresholds. For the fault-detection circuit, select the resistor’s power rating to handle a short to the battery. In coax mode, leave the unused line fault inputs unconnected. To detect the short-together case, refer to Application Note 4709: MAX9259 GMSL Line-Fault Detection. Table 20 lists the mapping for line-fault types. Table 19. MAX9275/MAX9279 Feature Compatibility MAX9275/MAX9279 FEATURE GMSL DESERIALIZER HDCP (MAX9279 only) If feature not supported in deserializer, must not be turned on in the MAX9279 High-bandwidth mode If feature not supported in deserializer, must only use 24-bit and 32-bit modes I2C to I2C If feature not supported in deserializer, must use UART to I2C or UART to UART Coax If feature not supported in deserializer, must connect unused serial input through 200nF and 50Ω in series to VDD and set the reverse control channel amplitude to 100mV. High-immunity control channel If feature not supported in deserializer, must use the legacy reverse control channel mode TDM encoding If feature not supported in deserializer, must use I2S encoding (with 50% WS duty cycle), if supported I2S encoding If feature not supported in deserializer must disable I2S in the MAX9275/MAX9279 www.maximintegrated.com Maxim Integrated │  55 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Internal Input Pulldowns The control and configuration inputs (except 3-level inputs) include a pulldown resistor to GND. External pulldown resistors are not needed. Choosing I2C/UART Pullup Resistors I2C and UART open-drain lines require a pullup resistor to provide a logic-high level. There are tradeoffs between power dissipation and speed, and a compromise may be required when choosing pullup resistor values. Every device connected to the bus introduces some capacitance even when the device is not in operation. I2C specifies 300ns rise times (30% to 70%) for fast mode, which is defined for data rates up to 400kbps (see the I2C specifications in the AC Electrical Characteristics table for details). To meet the fast-mode rise-time requirement, choose the pullup resistors so that rise time tR = 0.85 x RPULLUP x CBUS < 300ns. The waveforms are not recognized if the transition time becomes too slow. The device supports I2C/UART rates up to 1Mbps. AC-Coupling AC-coupling isolates the receiver from DC voltages up to the voltage rating of the capacitor. Capacitors at the serializer output and at the deserializer input are needed for proper link operation and to provide protection if either end of the cable is shorted to a battery. AC-coupling blocks low-frequency ground shifts and low-frequency common-mode noise. Selection of AC-Coupling Capacitors Voltage droop and the digital sum variation (DSV) of transmitted symbols cause signal transitions to start from different voltage levels. Because the transition time is fixed, starting the signal transition from different voltage levels causes timing jitter. The time constant for an AC-coupled link needs to be chosen to reduce droop and jitter to an acceptable level. The RC network for an AC-coupled link consists of the CML/coax receiver termination resistor (RTR), the CML/coax driver termination resistor (RTD), and the series AC-coupling capacitors (C). The RC time constant for four equal-value series capacitors is (C x (RTD + RTR))/4. RTD and RTR are required to match the transmission line impedance (usually 100Ω differential, 50Ω single ended). This leaves the capacitor selection to change the system time constant. Use at 0.22µF (using legacy reverse control channel), 47nF (using high-immunity reverse control channel), or larger high-frequency surface-mount ceramic capacitors, with sufficient voltage rating to withstand a short to battery, to pass the lower speed reverse control-channel signal. Use capacitors with a case size less than 3.2mm x 1.6mm to have lower parasitic effects to the high-speed signal. Power-Supply Circuits and Bypassing The serializers use an AVDD and DVDD of 1.7V to 1.9V. All single-ended inputs and outputs except for the serial output derive power from an IOVDD of 1.7V to 3.6V, which scale with IOVDD. Proper voltage-supply bypassing is essential for high-frequency circuit stability. Table 20. Line Fault Mapping REGISTER ADDRESS BITS D[3:2] NAME LFNEG 0X08 D[1:0] www.maximintegrated.com LFPOS VALUE LINE FAULT TYPE 00 Negative cable wire shorted to supply voltage 01 Negative cable wire shorted to ground 10 Normal operation 11 Negative cable wire disconnected 00 Positive cable wire shorted to supply voltage 01 Positive cable wire shorted to ground 10 Normal operation 11 Positive cable wire disconnected Maxim Integrated │  56 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Power-Supply Table Power-supply currents shown in the DC Electrical Characteristics table is the sum of the currents from AVDD, DVDD, and IOVDD. Typical currents from the individual power supplies are shown in Table 22. HDCP operation (MAX9279 only) draws additional current. This is shown in Table 21. Cables and Connectors Interconnect for CML typically has a differential impedance of 100Ω. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities. Coax cables typically have a characteristic impedance of 50Ω (contact the factory for 75Ω operation). Table 23 lists the suggested cables and connectors used in the GMSL link. Board Layout Separate LVCMOS logic signals and CML/coax highspeed signals to prevent crosstalk. Use a four-layer PCB with separate layers for power, ground, CML/coax, and LVCMOS logic signals. Layout PCB traces close to each other for a 100Ω differential characteristic impedance for STP. The trace dimensions depend on the type of trace used (microstrip or stripline). Note that two 50Ω PCB traces do not have 100Ω differential impedance when brought close together—the impedance goes down when the traces are brought closer. Use a 50Ω trace for the single-ended output when driving coax. Route the PCB traces for differential CML channel in parallel to maintain the differential characteristic impedance. Avoid vias. Keep PCB traces that make up a differential pair equal length to avoid skew within the differential pair. Table 21. Additional Supply Current from HDCP (MAX9279 Only) PCLK (MHz) MAXHDCP CURRENT (mA) 16.6 12 33.3 15 36.6 15 66.6 20 104 26 Table 22. Typical Power-Supply Currents (Using Worst-Case Input Pattern) PCLK (MHz) AVDD (mA) DVDD (mA) IOVDD (mA) 33 91 20 0.1 104 99.5 26.5 0.4 Table 23. Suggested Connectors and Cables for GMSL VENDOR CONNECTOR CABLE TYPE Rosenberger 59S2AX-400A5-Y Dacar 302 Coax Rosenberger D4S10A-40ML5-Z Dacar 535-2 STP Nissei GT11L-2S F-2WME AWG28 STP JAE MX38-FF A-BW-Lxxxxx STP www.maximintegrated.com Maxim Integrated │  57 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input ESD Protection ESD tolerance is rated for Human Body Model, IEC 61000-4-2, and ISO 10605. The ISO 10605 and IEC 61000-4-2 standards specify ESD tolerance for electronic systems. The serial link inputs are rated for ISO 10605 ESD protection and IEC 61000-4-2 ESD protection. All pins are tested for the Human Body Model. The Human Body Model discharge components are CS = 100pF and RD = 1.5kΩ (Figure 41). The IEC 61000-4-2 discharge components are CS = 150pF and RD = 330Ω (Figure 42). The ISO 10605 discharge components are CS = 330pF and RD = 2kΩ (Figure 43). 1MΩ HIGHVOLTAGE DC SOURCE CHARGE-CURRENTLIMIT RESISTOR CS 100pF HIGHVOLTAGE DC SOURCE CHARGE-CURRENTLIMIT RESISTOR CS 150pF STORAGE CAPACITOR DEVICE UNDER TEST RD 2kΩ DISCHARGE RESISTANCE STORAGE CAPACITOR DISCHARGE RESISTANCE Figure 42. IEC 61000-4-2 Contact Discharge ESD Test Circuit RD 1.5kΩ Figure 41. Human Body Model ESD Test Circuit www.maximintegrated.com RD 330Ω DEVICE UNDER TEST HIGHVOLTAGE DC SOURCE CHARGE-CURRENTLIMIT RESISTOR CS 330pF DISCHARGE RESISTANCE STORAGE CAPACITOR DEVICE UNDER TEST Figure 43. ISO 10605 Contact Discharge ESD Test Circuit Maxim Integrated │  58 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 24. Register Table REGISTER ADDRESS 0x00 0x01 BITS NAME VALUE D[7:1] SERID XXXXXXX D0 CFGBLOCK D[7:1] D0 D[7:5] Normal operation 1 Registers 0x00 to 0x1F are read only DESID XXXXXXX Deserializer device address address — 0 0x02 D4 D[3:2] D[1:0] D[7:6] AUDIOEN PRNG SRNG www.maximintegrated.com 0 1001000 Reserved 0 No spread spectrum. (Power-up default values depend on values of CONF[1:0] at power-up). 001 ±0.5% spread spectrum (Power-up default values depend on values of CONF[1:0] at power-up). 010 ±1.5% spread spectrum 011 ±2% spread spectrum 100 No spread spectrum 101 ±1% spread spectrum 110 ±3% spread spectrum 111 ±4% spread spectrum 0 Disable I2S/TDM channel 1 Enable I2S/TDM channel 00 12.5MHz to 25MHz pixel clock 01 25MHz to 50MHz pixel clock 10 50MHz to 104MHz pixel clock 000, 001 1 11 11 Automatically detect the pixel clock range 00 0.5 to 1Gbps serial bit rate 01 1 to 2Gbps serial bit rate 10 2 to 3.12Gbps serial bit rate 11 Automatically detect serial bit rate 00 Calibrate spread modulation rate only once after locking 01 Calibrate spread modulation rate every 2ms after locking 10 Calibrate spread modulation rate every 16ms after locking 11 Calibrate spread modulation rate every 256ms after locking 000000 SDIV 1000000 000 AUTOFM 0x03 D[5:0] Serializer device address 0 SS DEFAULT VALUE FUNCTION XXXXXX 11 00 Auto calibrate sawtooth divider Manual SDIV setting. See the Manual Programming of Spread-Spectrum Divider section. 000000 Maxim Integrated │  59 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 24. Register Table (continued) REGISTER ADDRESS BITS D7 0x04 NAME CLINKEN D5 PRBSEN D4 D[3:2] FUNCTION 0 Disable serial link. (Power-up default values depend on values of CONF[3:2] at power-up). Reverse control channel communication remains unavailable for 500µs after the serializer starts/stops the serial link 1 Enable serial link. Power-up default values depend on values of CONF[3:2] at power-up). Reverse control channel communication remains unavailable for 500µs after the serializer starts/stops the serial link 0 Disable configuration link 1 Enable configuration link 0 Disable PRBS test 1 Enable PRBS test 0 Normal mode. (Power-up default value depends on CDS/CNTL3 and CONF[3:2] pin values at power-up). 1 Activate sleep mode. (Power-up default value depends on CDS/CNTL3 and CONF[3:2] pin values at power-up) 00 Base mode uses I2C interface when I2CSEL = 0, CDS = 1 01 Base mode uses UART interface when I2CSEL = 0, CDS = 1 SEREN D6 SLEEP INTTYPE 10, 11 D1 D0 www.maximintegrated.com DEFAULT VALUE VALUE Disable reverse control channel from deserializer (receiving) 1 Enable reverse control channel from deserializer (receiving) 0 Disable forward control channel to deserializer (sending) 1 Enable forward control channel to deserializer (sending) FWDCCEN 0 0 0, 1 00 Local control channel disabled 0 REVCCEN 0, 1 1 1 Maxim Integrated │  60 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 24. Register Table (continued) REGISTER ADDRESS BITS D7 D6 D[5:4] NAME DISJITFILT CMLLVL PREEMP DEFAULT VALUE FUNCTION 0 I2C conversion sends the register address when converting UART to I2C 1 Disable sending of I2C register address when converting UART to I2C (command-byte-only mode) 0 Enable jitter filter 1 Disable jitter filter 00 100mV CML twisted pair output level (see Table 6). 01 200mV CML twisted pair output level 10 300mV CML twisted pair output level 11 400mV CML twisted pair output level I2CMETHOD 0x05 D[3:0] VALUE 0000 Preemphasis off 0001 -1.2dB preemphasis 0010 -2.5dB preemphasis 0011 -4.1dB preemphasis 0100 -6.0dB preemphasis 0101 Do not use 0110 Do not use 0111 Do not use 1000 1.1dB preemphasis 1001 2.2dB preemphasis 1010 3.3dB preemphasis 1011 4.4dB preemphasis 1100 6.0dB preemphasis 1101 8.0dB preemphasis 1110 10.5dB preemphasis 1111 14.0dB preemphasis 0 1 11 0000 0x06 D[7:0] — 01000000 Reserved 01000000 0x07 D[7:0] — 00100010 Reserved 00100010 D[7:4] — 0000 Reserved 0000 (Read only) D[3:2] LFNEG 0x08 D[1:0] LFPOS 00 Negative cable wire shorted to supply voltage 01 Negative cable wire shorted to ground 10 Normal operation 11 Negative cable wire disconnected 00 Positive cable wire shorted to supply voltage 01 Positive cable wire shorted to ground 10 Normal operation 11 Positive cable wire disconnected 10 (Read only) 10 (Read only) 0x09 D[7:0] — XXXXXXXX Reserved (Read only) 0x0A D[7:0] — XXXXXXXX Reserved (Read only) 0x0B D[7:0] — XXXXXXXX Reserved (Read only) www.maximintegrated.com Maxim Integrated │  61 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 24. Register Table (continued) REGISTER ADDRESS BITS NAME VALUE 0x0C D[7:0] — 00100000 0x0D 0x0E 0x0F 0x10 0x11 0x12 D7 SETGPO D6 INVVSYNC D5 INVHSYNC D[4:0] — D7 INVDE Reserved 0 Set GPO to output low 1 Set GPO to output high 0 Do not invert VSYNC input 1 Invert VSYNC input 0 Do not invert HSYNC input 1 Invert HSYNC input 01111 Do not invert DE input 1 Invert DE input — 0000010 D[7:1] I2CSRCA XXXXXXX D0 — 0 D[7:1] I2CDSTA XXXXXXX D0 — 0 00100000 0 0 0 Reserved 0 D[6:0] DEFAULT VALUE FUNCTION 01111 0 Reserved 0000010 I2C address translator source A 0000000 Reserved 0 I2C address translator destination A 0000000 Reserved 0 I2C address translator source B D[7:1] I2CSRCB XXXXXXX D0 — 0 D[7:1] I2CDSTB XXXXXXX D0 — 0 Reserved 0 Acknowledge not generated when forward channel is not available 1 I2C to I2C-slave generates local acknowledge when forward channel is not available 00 352ns/117ns I2C setup/hold time 01 469ns/234ns I2C setup/hold time 10 938ns/352ns I2C setup/hold time 11 1046ns/469ns I2C setup/hold time D7 D[6:5] I2CLOCACK I2CSLVSH 0x13 D[4:2] D[1:0] www.maximintegrated.com I2CMSTBT I2CSLVTO 0000000 Reserved 0 I2C address translator destination B 000 8.47kbps (typ) I2C to I2C-Master bit rate setting 001 28.3kbps (typ) I2C to I2C-Master bit rate setting 010 84.7kbps (typ) I2C to I2C-Master bit rate setting 011 105kbps (typ) I2C to I2C-Master bit rate setting 100 173kbps (typ) I2C to I2C-Master bit rate setting 101 339kbps (typ) I2C to I2C-Master bit rate setting 110 533kbps (typ) I2C to I2C-Master bit rate setting 111 837kbps (typ) I2C to I2C-Master bit rate setting 00 64µs (typ) I2C to I2C-Slave remote timeout 01 256µs (typ) I2C to I2C-Slave remote timeout 10 1024µs (typ) I2C to I2C-Slave remote timeout 11 No I2C to I2C-Slave remote timeout 0000000 0 1 01 101 10 Maxim Integrated │  62 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 24. Register Table (continued) REGISTER ADDRESS BITS D[7:4] NAME CMLLVLCX 0x14 D[3:1] D0 D7 D[6:5] — DISRWAKE D3 0x16 DEFAULT VALUE FUNCTION 0000 Do not use 0001 50mV CML coax output level 0010 100mV CML coax output level 0011 150mV CML coax output level 0100 200mV CML coax output level 0101 250mV CML coax output level 0110 300mV CML coax output level 0111 350mV CML coax output level 1000 400mV CML coax output level 1001 450mV CML coax output level 1010 500mV CML coax output level 1011 Do not use 11XX Do not use 000 Reserved 1010 000 0 Enable wake-up receiver (enable remote wakeup 1 Disable wake-up receiver (disable remote wakeup) 0 Enable DE trigger of Encoded packets in highbandwidth mode 1 Disable DE trigger of Encoded packets in highbandwidth mode 00 No trigger of encoded CNTL packets in highbandwidth mode 01 Always trigger encoded CNTL packets in highbandwidth mode 10 Trigger encoded CNTL packets in high-bandwidth mode when DE is low 11 Trigger encoded CNTL packets in high-bandwidth mode when HS is low 0 Disable reverse channel from positive input with coax cable 1 Enable reverse channel from positive input with coax cable 0 Disable reverse channel from negative input with coax cable 1 Enable reverse channel from negative input with coax cable DISDETRIG CNTLTRIG 0x15 D4 VALUE ENREVP ENREVN 0 0 10 1 0 D[2:0] — 010 Reserved 010 D[7:0] — XXXXXXXX Reserved XXXXXXXX www.maximintegrated.com Maxim Integrated │  63 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 24. Register Table (continued) REGISTER ADDRESS 0x17 BITS D7 NAME VALUE DEFAULT VALUE FUNCTION 0 Set reverse channel to legacy mode. (power-up default value depends on GPO/HIM pin value at power-up) 1 Set reverse channel to high immunity mode (powerup default value depends on GPO/HIM pin value at power-up) HIGHIMM 0, 1 D[6:0] — 0011111 Reserved 0011111 0x18 D[7:0] — XXXXXXXX Reserved (Read only) 0x19 D[7:0] — 01001010 Reserved 01001010 D7 D6 0x1B 0x1E 0x1F 1 High-immunity reverse channel mode uses 1Mbps bit rate 0 Reserved 0 MS/CNTL0 functions as MS input 1 MS/CNTL0 functions as CNTL0 input 0 CDS/CNTL3 functions as CDS input 1 CDS/CNTL3 functions as CNTL3 input REVFAST — D5 MSCNTL0 D4 CDSCNTL3 D[3:1] — 0x1A D0 0 High-immunity reverse channel mode uses 500kbps bit rate 000 D7 INVSCK D6 INVWS D[5:0] — D[7:0] ID D[7:5] — D4 CAPS D[3:0] REVISION 0 0 0 Reserved 000 0 256µs reverse-channel arbitration time out duration (coax splitter mode only) 1 4ms reverse-channel arbitration time out duration (coax splitter mode only) 0 Do not invert SCK input 1 Invert SCK input 0 Do not invert WS input 1 Invert WS input REVARBTO 010000 Reserved 00100001 Device is a MAX9275 (0x21) 00100101 Device is a MAX9279 (0x25) 000 Reserved 0 Not HDCP capable (MAX9275) 1 HDCP capable (MAX9279) XXXX Device revision 0 0 0 0 010000 00100X01 (Read only) 000 (Read only) (Read only) (Read only) *X = Don’t care www.maximintegrated.com Maxim Integrated │  64 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 25. HDCP Register Table (MAX9279 only) REGISTER ADDRESS SIZE (Bytes) NAME READ/ WRITE 0x80 to 0x84 5 BKSV Read/write HDCP receiver KSV Read/write RI (read only) of the transmitter when EN_INT_ COMP = 0 RI’ (read/write) of the receiver when EN_INT_ COMP = 1 0xFFFF 0xFF 0x85 to 0x86 2 RI/RI’ FUNCTION DEFAULT VALUE (hex) 0x0000000000 0x87 1 PJ/PJ’ Read/write PJ (read only) of the transmitter when EN_INT_ COMP = 0 PJ’ (read/write) of the receiver when EN_INT_ COMP = 1 0x88 to 0x8F 8 AN Read only Session random number (Read only) 0x90 to 0x94 5 AKSV Read only HDCP transmitter KSV (Read only) D7 = PD_HDCP 1 = Power-down HDCP circuits 0 = HDCP circuits normal D6 = EN_INT_COMP 1 = Internal comparison mode 0 = µC comparison mode D5 = FORCE_AUDIO 1 = Force audio data to 0 0 = Normal operation D4 = FORCE_VIDEO 1 = Force video data DFORCE value 0 = Normal operation 0x95 1 ACTRL Read/write D3 = RESET_HDCP 1 = Reset HDCP circuits. Automatically set to 0 upon completion 0 = Normal operation 0x00 D2 = START_AUTHENTICATION 1 = Start authentication. Automatically set to 0 once authentication starts 0 = Normal operation D1 = VSYNC_DET 1 = Internal falling edge on VSYNC detected 0 = No falling edge detected D0 = ENCRYPTION_ENABLE 1 = Enable encryption 0 = Disable encryption www.maximintegrated.com Maxim Integrated │  65 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 25. HDCP Register Table (MAX9279 only) (continued) REGISTER ADDRESS SIZE (BYTES) NAME READ/ WRITE FUNCTION DEFAULT VALUE (hex) D[7:4] = Reserved D3 = V_MATCHED 1 = V matches V’ (when EN_INT_COMP = 1) 0 = V does not match V’ or EN_INT_COMP = 0 0x96 1 ASTATUS Read only D2 = PJ_MATCHED 1 = PJ matches PJ’ (when EN_INT_COMP = 1) 0 = PJ does not match PJ’ or EN_INT_COMP = 0 D1 = R0_RI_MATCHED 1 = RI matches RI’ (when EN_INT_COMP = 1) 0 = RI does not match RI’ or EN_INT_COMP = 0 0x00 (Read only) D0 = BKSV_INVALID 1 = BKSV is not valid 0 = BKSV is valid D[7:1] = RESERVED D0 = REPEATER 1 = Set to one if device is a repeater 0 = Set to zero if device is not a repeater 0x97 1 BCAPS Read/write 0x98 to 0x9C 5 ASEED Read/write Internal random number generator optional seed value Read/write Forced video data transmitted when FORCE_VIDEO = 1. R[7:0] = DFORCE[7:0] G[7:0] = DFORCE[15:8] B[7:0] = DFORCE[23:16] 0x000000 Read/write H0 part of SHA-1 hash value. V (read only) of the transmitter when EN_INT_COMP = 0 V’ (read/write) of the receiver when EN_INT_COMP = 1 0x00000000 Read/write H1 part of SHA-1 hash value. V (read only) of the transmitter when EN_INT_COMP = 0 V’ (read/write) of the receiver when EN_INT_COMP = 1 0x00000000 Read/write H2 part of SHA-1 hash value. V (read only) of the transmitter when EN_INT_COMP = 0 V’ (read/write) of the receiver when EN_INT_COMP = 1 0x00000000 0x9D to 0x9F 0xA0 to 0xA3 0xA4 to 0xA7 0xA8 to 0xAB 3 4 4 4 www.maximintegrated.com DFORCE V.H0, V’.H0 V.H1, V’.H1 V.H2, V’.H2 0x00 0x0000000000 Maxim Integrated │  66 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Table 25. HDCP Register Table (MAX9279 only) (continued) REGISTER ADDRESS 0xAC to 0xAF 0xB0 to 0xB3 SIZE (BYTES) 4 4 NAME V.H3, V’.H3 V.H4, V’.H4 READ/ WRITE FUNCTION DEFAULT VALUE (hex) Read/write H3 part of SHA-1 hash value. V (read only) of the transmitter when EN_INT_COMP = 0 V’ (read/write) of the receiver when EN_INT_COMP = 1 0x00000000 Read/write H4 part of SHA-1 hash value. V (read only) of the transmitter when EN_INT_COMP = 0 V’ (read/write) of the receiver when EN_INT_COMP = 1 0x00000000 D[15:12] = Reserved 0xB4 to 0xB5 D11 = MAX_CASCADE_EXCEEDED 1 = Set to one if more than 7 cascaded devices attached 0 = Set to zero if 7 or fewer cascaded devices attached 2 BINFO Read/write D[10:8] = DEPTH Depth of cascaded devices 0x0000 D7 = MAX_DEVS_EXCEEDED 1 = Set to one if more than 14 devices attached 0 = Set to zero if 14 or fewer devices attached D[6:0] = DEVICE_COUNT Number of devices attached 0xB6 1 GPMEM Read/write General-purpose memory byte 0xB7 to 0xB9 3 - Read only Reserved 0xBA to 0xFF 70 KSV_LIST Read/write List of KSVs downstream repeaters and receivers (maximum of 14 devices) www.maximintegrated.com 0x00 0x000000 All Zero Maxim Integrated │  67 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Typical Application Circuit PCLK 45.3kΩ CDS /CNTL3 GPU 45.3kΩ INTOUT/ADD2 LMN0 MAX9275 MAX9279 DISPLAY CNTL3/ADD1 LMN1 ECU PCLK RGBHV PCLKOUT DOUT(26:0) I2CSEL CNTL0/ADD0 PCLKIN DIN(26:0) RGB 4.99kΩ MAX9276 MAX9280 4.99kΩ TO PERIPHERALS GPI UART TX RX RX/SDA TX/SCL LFLT LFLT RX/SDA OUT+ IN+ OUT- IN- 49.9kΩ CONF3 WS WS AUDIO SCK SD TX/SCL MAX9850 49.9kΩ CONF2 SCK CONF0 SD CONF1 SCL SDA LOCK CX / TP WS SCK SD WS SCK SD MCLK NOTE: NOT ALL PULLUP/PULLDOWN RESISTORS ARE SHOWN. SEE PIN DESCRIPTION FOR DETAILS. VIDEO-DISPLAY APPLICATION Ordering Information PART MAX9275GTN+ TEMP RANGE Chip Information PINPACKAGE HDCP -40°C to +105°C 56 TQFN-EP* NO MAX9275GTN/V+ -40°C to +105°C 56 TQFN-EP* NO MAX9279GTN+ -40°C to +105°C 56 TQFN-EP* YES** MAX9279GTN/V+ -40°C to +105°C 56 TQFN-EP* YES** +Denotes a lead(Pb)-free/RoHS-compliant package. /V denotes an automotive qualified product. *EP = Exposed pad. **HDCP parts require registration with Digital Content Protection, LLC.. www.maximintegrated.com PROCESS: CMOS Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 56 TQFN-EP T5688+2 21-0135 90-0046 Maxim Integrated │  68 MAX9275/MAX9279 3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input Revision History REVISION NUMBER REVISION DATE PAGES CHANGED DESCRIPTION 0 8/13 Initial release — 1 7/15 Removed future product designations from Ordering Information 71 2 10/17 Fixed typos, clarified feature descriptions, removed old/unnecessary content (including Table 1) 3 12/17 Added a new Note 12 in the AC Electrical Characteristics table and renumbered the remaining three notes; replaced Figure 7 2, 16–18, 20, 23, 25–29, 31, 33–36, 39, 40, 41–60, 62–71 11, 12, 21 Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2017 Maxim Integrated Products, Inc. │  69
MAX9279GTN+T 价格&库存

很抱歉,暂时无法提供与“MAX9279GTN+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货