19-2327; Rev 2; 12/08
KIT
ATION
EVALU
E
L
B
AVAILA
LVTTL/TTL/CMOS-to-Differential LVECL/
ECL Translators
The MAX9360/MAX9361 are low-skew, single LVTTL/
TTL/CMOS-to-differential LVECL/ECL translators
designed for high-speed signal and clock driver applications. For interfacing to LVTTL/TTL/CMOS input signals, these devices operate over a 3.0V to 5.5V supply
range, allowing high-performance clock or data distribution. For interfacing to differential LVECL/ECL output
signals, these devices operate from a -2.375V to -5.5V
supply.
The MAX9360 is a 3.3V LVTTL/CMOS-to-LVECL/ECL
translator that operates at a typical speed of 3GHz. The
MAX9361 is a 5V TTL/CMOS-to-LVECL/ECL translator
that operates at a typical speed of 1.3GHz. Both
devices can be used to drive either LVECL devices or
standard ECL devices with a negative supply range of
-2.375V to -5.5V.
The devices default to high if the input is disconnected,
and feature ultra-low propagation delay: 440ps for the
MAX9360, 810ps for the MAX9361.
Features
o Output High with Input Open
o -2.375V to -5.5V LVECL/ECL Operation
o ESD Protection > 2kV (Human Body Model)
o 3.0V to 3.6V LVTTL/CMOS Operation (MAX9360)
Improved Second Source of the MC100EPT24
Low 13.8mA (typ) IEE Supply Current
440ps (typ) Propagation Delay
> 300mV Output at 1GHz
o 4.5V to 5.5V TTL Operation (MAX9361)
Improved Second Source of the MC100ELT24
Low 6.6mA (typ) IEE Supply Current
600ps (typ) Propagation Delay
> 300mV Output at 250MHz
Ordering Information
PART
Applications
Clock/Data-Level Translation
MAX9360EKA-T
TEMP RANGE
PINPACKAGE
-40°C to +85°C
8 SOT23
MAX9360ESA
-40°C to +85°C
8 SO
MAX9361EKA-T
-40°C to +85°C
8 SOT23
MAX9361ESA
-40°C to +85°C
8 SO
TOP
MARK
AAJI
—
AAJJ
—
Pin Configurations
TOP VIEW
D 1
8
GND
VEE 2
7
Q
N.C.
6
Q
N.C.
5
VCC
N.C. 4
3
N.C. 4
MAX9360/
MAX9361
SOT23
VEE 1
8
VCC
D 2
7
Q
3
6
Q
5
GND
MAX9360/
MAX9361
SO
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX9360/MAX9361
General Description
MAX9360/MAX9361
LVTTL/TTL/CMOS-to-Differential LVECL/
ECL Translators
ABSOLUTE MAXIMUM RATINGS
Junction-to-Case Thermal Resistance
8-Pin SOT23...............................................................+80°C/W
8-Pin SO..................................................................+40°C/mW
Continuous Power Dissipation (TA = +70°C)
8-Pin SOT23 (derate 8.9mW/°C above +70°C)............714mW
8-Pin SO (derate 5.9mW/°C above +70°C)..................470mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-60°C to +150°C
ESD Protection
Human Body Model (D, Q, Q)........................................> 2kV
Soldering Temperature (10s) ...........................................+300°C
VCC to GND ..............................................................-0.3V to +6V
VEE to GND...............................................................-6V to +0.3V
D to GND ....................................................-0.3V to (VCC + 0.3V)
Continuous Output Current ................................................50mA
Surge Output Current........................................................100mA
Junction-to-Ambient Thermal Resistance in Still Air
8-Pin SOT23.............................................................+112°C/W
8-Pin SO...................................................................+170°C/W
Junction-to-Ambient Thermal Resistance
with 500LFPM Airflow
8-Pin SOT23...............................................................+78°C/W
8-Pin SO.....................................................................+99°C/W
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS—MAX9360
(VCC = 3.0V to 3.6V, VEE = -2.375V to -5.5V, VGND = 0, outputs terminated with 50Ω ±1% to -2.0V. Typical values are at VCC = 3.3V,
VIH = 2.0V, VIL = 0.8V, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
SYMBOL
CONDITIONS
0°C (SOT23)
-40°C (SO)
MIN
TYP
+25°C
MAX
MIN
TYP
+85°C
MAX
MIN
TYP
UNITS
MAX
LVTTL INPUT (D)
VIN = 2.7V
-20
+20
-20
+20
-20
+20
VIN = VCC
-10
+10
-10
+10
-10
+10
IIL
VIN = 0.5V
-200
Input Clamp
Voltage
VIK
IIN = -18mA
-1.2
Input High Voltage
VIH
Input Low Voltage
VIL
Input High Current
IIH
Input Low Current
-51
-200
-60
-200
-1.2
2.0
-67
µA
-1.2
2.0
V
2.0
0.8
µA
V
0.8
0.8
V
LVECL/ECL OUTPUTS (Q, Q)
Output High
Voltage
Output Low Voltage
Differential Output
Swing (VOH - VOL)
VOH
-1.145
-0.885 -1.145
-0.885 -1.145
-0.885
V
VOL
-1.935
-1.625 -1.935
-1.625 -1.935
-1.625
V
VOH VOL
550
550
550
mV
Power-Supply
Current
ICC
(Note 4)
4.3
7.0
5.0
7.0
5.6
7.0
mA
Internal Chip
Current
IEE
(Note 4)
12.3
20
13.8
20
15.2
20
mA
2
_______________________________________________________________________________________
LVTTL/TTL/CMOS-to-Differential LVECL/
ECL Translators
(VCC = 4.5V to 5.5V, VEE = -2.375V to -5.5V, VGND = 0, outputs terminated with 50Ω ±1% to -2.0V. Typical values are at VCC = 5V,
VIH = 2.0V, VIL = 0.8V, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
SYMBOL
-40°C (SO)
CONDITIONS
MIN
TYP
+25°C
MAX
MIN
TYP
+85°C
MAX
MIN
TYP
UNITS
MAX
TTL INPUT (D)
VIN = 2.7V
-30
+30
-30
+30
-30
+30
VIN = VCC
-10
+10
-10
+10
-10
+10
IIL
VIN = 0.5V
-200
Input Clamp
Voltage
VIK
IIN = -18mA
-1.2
Input High Voltage
VIH
Input Low Voltage
VIL
Input High Current
IIH
Input Low Current
-55
-200
-61
-200
-1.2
2.0
-71
µA
-1.2
2.0
V
2.0
0.8
µA
V
0.8
0.8
V
LVECL/ECL OUTPUTS (Q, Q)
Output High
Voltage
VOH
-1.055
-0.880 -1.055
-0.880 -1.025
-0.880
V
Output Low Voltage
VOL
-1.875
-1.555 -1.810
-1.605 -1.810
-1.605
V
VOH VOL
550
Differential Output
Swing (VOH - VOL)
699
550
691
550
677
mV
POWER SUPPLY
Power-Supply
Current
ICC
(Note 4)
3.0
7.0
3.5
7.0
4.3
7.0
mA
Internal Chip
Current
IEE
(Note 4)
9
20
10
20
11
20
mA
_______________________________________________________________________________________
3
MAX9360/MAX9361
DC ELECTRICAL CHARACTERISTICS—MAX9361
MAX9360/MAX9361
LVTTL/TTL/CMOS-to-Differential LVECL/
ECL Translators
AC ELECTRICAL CHARACTERISTICS—MAX9360
(VCC = 3.0V to 3.6V, VEE = -2.375V to -5.5V, VGND = 0, outputs terminated with 50Ω ±1% to -2.0V, input frequency = 1.0GHz, input
transition time = 125ps (20% to 80%). Typical values are at VCC = 3.3V, VIH = 2.0V, VIL = 0.8V, unless otherwise noted.) (Note 5)
PARAMETER
SYMBOL
CONDITIONS
0°C (SOT23)
-40°C (SO)
MIN
MAX
MIN
TYP
+85°C
MAX
MIN
TYP
VOH - VOL ≥ 300mV
1.0
3.0
1.0
3.0
1.0
3.0
VOH - VOL ≥ 500mV
0.85
1.5
0.85
1.5
0.85
1.5
tPLHD,
tPHLD
Figure 1
300
tR, tF
Figure 1
70
Maximum Toggle
Frequency
fMAX
Input-to-Output
Propagation Delay
Output Rise/Fall
Time
TYP
+25°C
800
300
97
150
80
800
300
105
150
100
UNITS
MAX
GHz
800
ps
122
150
ps
Added
Deterministic Jitter
tDJ
2Gbps
223 - 1 PRBS pattern
(Note 6)
43
70
43
70
43
70
ps(P-P)
Added Random
Jitter
tRJ
1.0GHz clock
pattern (Note 6)
1.4
3.0
1.5
3.0
1.5
3.0
ps(RMS)
AC ELECTRICAL CHARACTERISTICS—MAX9361
(VCC = 4.5V to 5.5V, VEE = -2.375V to -5.5V, VGND = 0, outputs terminated with 50Ω ±1% to -2.0V, input frequency = 100MHz, input
transition time = 125ps (20% to 80%). Typical values are at VCC = 5.0V, VIH = 2.0V, VIL = 0.8V, unless otherwise noted.) (Note 5)
PARAMETER
SYMBOL
CONDITIONS
-40°C
MIN
TYP
VOH - VOL ≥ 300mV
250
VOH - VOL ≥ 500mV
150
+25°C
MAX
MIN
TYP
1300
250
500
150
+85°C
MAX
MIN
TYP
1300
250
1300
500
150
500
MAX
UNITS
Maximum Toggle
Frequency
fMAX
Input-to-Output
Propagation Delay
tPLHD,
tPHLD
Figure 1
300
561
900
300
583
900
300
607
900
ps
tR, tF
Figure 1
250
340
1000
250
342
1000
250
353
1000
ps
Output Rise/Fall
Time
MHz
Added
Deterministic Jitter
tDJ
200Mbps
223 - 1 PRBS pattern
(Note 6)
81
150
83
150
85
150
ps(P-P)
Added Random
Jitter
tRJ
100MHz clock
pattern (Note 6)
4
10
4
10
4
10
ps(RMS)
Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full
operating temperature range.
Note 4: All pins are open except VCC, VEE, and GND.
Note 5: Guaranteed by design and characterization. Limits are set to ±6 sigma.
Note 6: Device jitter added to the input signal.
4
_______________________________________________________________________________________
LVTTL/TTL/CMOS-to-Differential LVECL/
ECL Translators
OUTPUT AMPLITUDE vs. FREQUENCY
SUPPLY CURRENT vs. TEMPERATURE
SUPPLY CURRENT (mA)
IEE
12
8
ICC
MAX9360 toc02
16
800
750
OUTPUT AMPLITUDE (mV)
MAX9360 toc01
20
700
650
600
550
500
450
400
4
350
300
0
-40
-15
10
35
60
0
85
500
2000
2500
3000
tF
90
MAX9360 toc4
MAX9360 toc03
tR
500
475
PROPAGATION DELAY (ps)
TRANSITION TIME (ps)
120
100
1500
PROPAGATION DELAY vs. TEMPERATURE
TRANSITION TIME vs. TEMPERATURE
130
110
1000
FREQUENCY (MHz)
TEMPERATURE (°C)
450
tPLHD
425
tPHLD
400
375
350
80
-40
-15
10
35
TEMPERATURE (°C)
60
85
-40
-15
10
35
60
85
TEMPERATURE (°C)
_______________________________________________________________________________________
5
MAX9360/MAX9361
Typical Operating Characteristics
(MAX9360: VCC = 3.3V and VEE = -5V, VIH = 2.0V, VIL = 0.8V, TA = +25°C, outputs terminated with 50Ω to -2V, input frequency
= 1GHz, input transition time = 125ps (20% to 80%), unless otherwise noted.)
LVTTL/TTL/CMOS-to-Differential LVECL/
ECL Translators
MAX9360/MAX9361
Pin Description
PIN
NAME
FUNCTION
2
VEE
Negative Supply Voltage. Bypass VEE to GND with 0.1µF and 0.01µF ceramic capacitors.
Place the capacitors as close as possible to the device with the smaller value capacitor
closest to the device.
2
1
D
3, 4
3, 4
N.C.
No Connect. Connect to GND.
5
8
GND
Ground
6
7
Q
Inverting Differential LVECL/ECL Output. Typically terminate with 50Ω resistor to -2V.
7
6
Q
Noninverting Differential LVECL/ECL Output. Typically terminate with 50Ω resistor to -2V.
8
5
VCC
Positive Supply Voltage. Bypass VCC to GND with 0.1µF and 0.01µF ceramic capacitors.
Place the capacitors as close as possible to the device with the smaller value capacitor
closest to the device.
SO
SOT23
1
LVTTL/CMOS Input for MAX9360. TTL/CMOS input for MAX9361.
VIH
50%
50%
VIL
D
tPLH
tPHL
VOH
Q
VOH - VOL
SINGLE-ENDED WAVEFORMS
VOL
Q
80%
VOH - VOL
80%
0 (DIFFERENTIAL)
VOH - VOL
20%
Q-Q
20%
DIFFERENTIAL WAVEFORM
tR
tF
Figure 1. Input-to-Output Propagation Delay and Transition Timing Diagram
6
_______________________________________________________________________________________
LVTTL/TTL/CMOS-to-Differential LVECL/
ECL Translators
The MAX9360/MAX9361 are low-skew, single LVTTL/
CMOS/TTL-to-differential LVECL/ECL translators
designed for high-speed signal and clock driver applications. For interfacing to LVTTL/TTL/CMOS input signals, these devices operate over a 3.0V to 5.5V supply
range, allowing high-performance clock or data distribution in systems with a nominal 3.3V or 5.0V supply. For
interfacing to differential LVECL/ECL output signals,
these devices operate from a -2.375V to -5.5V supply.
The MAX9360 is a 3.3V LVTTL/CMOS-to-LVECL/ECL
translator that operates at typical speeds of 3GHz. The
MAX9361 is a 5V TTL/CMOS-to-LVECL/ECL translator that
operates at typical speeds of 1.3GHz. Both devices can
be used to drive either LVECL devices or standard ECL
devices with a negative supply range of -2.375V to -5.5V.
Input
The MAX9360/MAX9361 inputs accept standard LVTTL/
TTL/CMOS levels. The input has pullup circuitry that drives the outputs to a differential high if the inputs are open.
Differential Output
Output levels are referenced to GND and are considered
ECL or LVECL, depending on the level of the VEE supply.
With GND connected to zero and VEE at -4.2V to -5.5V,
the outputs are ECL. The outputs are LVECL when GND is
connected to zero and VEE is at -2.375V to -3.8V.
Traces
Input and output trace characteristics affect the performance of the MAX9360/MAX9361. Connect each signal
of a differential output to a 50Ω characteristic impedance trace. Minimize the number of vias to prevent
impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Reduce skew within a
differential pair by matching the electrical length of the
traces.
On the MAX9360, if the input edge rate approaches the
electrical length of the interconnect, then controlledimpedance transmission lines should be used for the
input traces.
Output Termination
Terminate outputs through 50Ω to -2V or use an equivalent Thevenin termination. Terminate both outputs and
use the same termination on each for the lowest outputto-output skew. When a single-ended signal is taken
from a differential output, terminate both outputs. For
example, if Q is used as a single-ended output, terminate both Q and Q.
Ensure that the output currents do not exceed the continuous safe output current limit or surge output current
limit as specified in the Absolute Maximum Ratings
table. Under all operating conditions, the device’s total
thermal limits should be observed.
Applications Information
Chip Information
Supply Bypassing
Bypass VCC and VEE to ground with high-frequency
surface-mount ceramic 0.1µF and 0.01µF capacitors in
parallel as close as possible to the device, with the
0.01µF value capacitor closest to the device. Use multiple parallel vias for low inductance.
PROCESS: Bipolar
Package Information
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
8 SOT23
K8-1
21-0078
8 SO
S8-2
21-0041
_______________________________________________________________________________________
7
MAX9360/MAX9361
Detailed Description
MAX9360/MAX9361
LVTTL/TTL/CMOS-to-Differential LVECL/
ECL Translators
Revision History
PAGES
CHANGED
REVISION
NUMBER
REVISION
DATE
0
1/02
Initial release
—
1
7/02
—
—
2
12/08
Removed incorrect temperature range specified in the data sheet.
1
DESCRIPTION
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2008 Maxim Integrated Products
is a registered trademark of Maxim Integrated Products, Inc.