0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP16AZMDA

OP16AZMDA

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    OP16AZMDA - Precision JFET-Input Operational Amplifiers - Analog Devices

  • 数据手册
  • 价格&库存
OP16AZMDA 数据手册
a FEATURES Significant Performance Advantages over LF155 and LF157 Devices Low Input Offset Voltages: 500 V Max Low Input Offset Voltage Drift: 2.0 V/ C Minimum Slew Rate Guaranteed on All Models Temperature-Compensated Input Bias Currents Bias Current Specified Warmed-Up Over Temperature Internal Compensation Low Input Noise Current: 0.01 pA/÷ Hz High Common-Mode Rejection Ratio: 100 dB Models with MIL-STD 883 Processing Available OP15 156 Speed with 155 Dissipation: 80 mW Typ Wide Bandwidth: 6 MHz High Slew Rate: 13 V/ s Fast Settling to ± 0.1%: 1,200 ns OP17 Highest Slew Rate: 60 V/ s Fastest Settling to ± 0.1%: 600 ns Highest Gain Bandwidth Product (AVCL = 5 Min): 30 MHz Guaranteed Input Bias Current @ 125 C Precision JFET-Input Operational Amplifiers OP15/OP17 GENERAL DESCRIPTION The ADI-JFET input series of devices offer clear advantages over industry-generic devices and are superior in both cost and performance to many dielectrically-isolated and hybrid op amps. All devices offer offset voltages as low as 0.5 mV with TCVOS guaranteed to 5 mV/∞C. A unique input bias cancellation circuit reduces the IB by a factor 10 over conventional designs. In addition ADI specifies IB and IOS with the devices warmed up and operating at 25∞C ambient. These devices were designed to provide real precision performance along with high speed. Although they can be nulled, the design objective was to provide low offset-voltage without nulling. Systems generally become more cost effective as the number of trim circuits is decreased. ADI achieves this performance by use of an improved bipolar compatible JFET process coupled with on chip, zener-zap offset trimming. The OP15 provides an excellent combinations of high speed and low input offset voltage. In addition, the OP15 offers the speed of the 156A op amp with the power dissipation of a 155A. The combination of a low input offset voltage of 500 mV, slew rate of 13 V/ms, and settling time of 1,200 ns to 0.1% makes the OP15 an op amp of both precision and speed. The additional features of low supply current coupled with an input bias current makes the OP15 ideal for a wide range of applications. The OP17 has a slew rate of 60 V/ms and is the best choice for applications requiring high closed-loop gain with high speed. See OP42 datasheet for unity gain applications and the OP215 datasheet for a dual configuration of the OP15. V+ Q5 J5 R8* NULL J8 R7* NULL Q16 *R7, R8 ARE ELECTRONICALLY ADJUSTED ON CHIP FOR MINIMUM OFFSET VOLTAGE. Q6 R3 Q8 J11 NONINVERTING INPUT J1 J2 –INV INPUT Q1 Q3 Q12 Q7 Q9 J6 Q19 Q24 R1 Q17 R2 C2 Q2 Q4 R13 Q22 OUTPUT Q10 J10 Q23 J9 Q11 J3 C1 7.4pF J4 R3 R4 R5 3.6k Q16 Q13 R6 3.6k Q15 Q14 Q20 Q25 Q21 R11 V– Figure 1. Simplified Schematic R EV. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 OP15/OP17–SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ V = S 15 V, TA = 25 C, unless otherwise noted) OP15A, OP15E OP17A, OP17E Min Typ Max 0.2 3 5 3 5 ± 15 ± 18 ± 15 ± 20 1012 0.5 10 22 10 25 ± 50 ± 110 ± 50 ± 130 OP15F OP17F Typ 0.4 6 10 6 10 ± 30 ± 40 ± 30 ± 40 1012 75 ± 12 ± 11 4.0 7.0 7.5 35 3.5 15 220 ± 13 ± 12.7 2.7 4.6 11 50 5.7 28 13 10 4.5 1.5 1.2 1.5 0.7 0.6 ± 10.5 100 10 20 15 0.01 0.01 3 51 86 100 82 10 20 15 0.01 0.01 3 51 10 20 15 0.01 0.01 3 80 96 ± 10.3 4.0 7.0 5 25 3.0 11 50 ± 12 ± 11 OP15G OP17G Typ 0.5 12 20 12 20 ± 60 ± 80 ± 60 ± 80 1012 200 ± 13 ± 12.7 2.8 4.8 9 40 5.4 26 12 9 4.7 1.6 1.3 1.6 0.8 0.7 5.0 8.0 Parameter Input Offset Voltage Input Offset Current OP15 OP17 Input Bias Current OP15 OP17 Input Resistance Large-Signal Voltage Gain Output Voltage Swing Supply Current Slew Rate2 Gain Bandwidth3 Product Closed-Loop Bandwidth Settling Time OP15 Symbol VOS IOS Conditions RS = 5 0 W T J = 2 5 ∞C 1 Device Operating T J = 2 5 ∞C 1 Device Operating T J = 2 5 ∞C 1 Device Operating T J = 2 5 ∞C 1 Device Operating Min Max 1.0 20 40 20 50 ± 100 ± 200 ± 100 ± 250 Min Max 3.0 50 100 50 125 ± 200 ± 400 ± 200 ± 500 Unit mV pA pA pA pA pA pA pA pA W V/mV V V mA mA V/ms V/ms MHz MHz MHz MHz ms ms ms ms ms ms V dB dB mV/V mV/V nV/÷Hz nV/÷Hz pA/÷Hz pA/÷Hz pF IB RIN AVO VO ISY SR GBW CLBW tS To 0.01% To 0.05% To 0.10% To 0.01% To 0.05% To 0.10% IVR CMRR PSRR en in CIN VCM = ± 10.5 V VCM = ± 10.3 V VS = ± 10 V to ± 18 V VS = ± 10 V to ± 18 V fO = 100 Hz fO = 1 kHz fO = 100 Hz fO = 1 kHz ± 10.5 86 RL ≥ 2 k W VO = ± 10 V RL = 1 0 k W RL = 2 k W OP15 OP17 AVCL = 1, OP15 AVCL = 5, OP17 OP15 OP17 AVCL = 1, OP15 AVCL = 5, OP17 10 45 4.0 20 100 ± 12 ± 11 240 ± 13 ± 12.7 2.7 4.6 13 60 6.0 30 14 11 4.5 1.5 1.2 1.5 0.7 0.6 OP17 Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Input Noise Voltage Density Input Noise Current Density Input Capacitance NOTES 1 Input bias current is specified for two different conditions. The T J = 25∞C specification is with the junction at ambient temperature; the device operating specification is with the device operating in a warmed-up condition at 25 ∞C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I B versus TJ and IB versus TA. ADI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I B and IOS are measured at VCM = 0. 2 Settling time is defined here for a unity gain inverter connection using 2 k W resistors. It is the time required for the error voltage (the voltages at the inverting input pit on the amplifier) to settle to within a specified percent of its final value from the time a 10 V step input is applied to the inverter. See settling time test circuit. 3 Sample tested. 4 Settling time is defined here for A V = –5 connection with RF = 2 kW. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 2 V step input is applied to the inverter. See settling time test circuit. –2– REV. A OP15/OP17 Electrical Characteristics (@ V = ±15 V, –55 C £ T £ 125 C, unless otherwise noted.) S A Parameter Input Offset Voltage Average Input Offset Voltage Drift Without External Trim With External Trim Input Offset Current2 OP17 Input Bias Current2 OP17 Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Swing 1 Symbol VOS TCVOS TCVOS IOS IB IVR CMRR PSRR AVO VO Conditions RS = 50 W Min Typ 0.4 2 2 0.6 1.0 ± 1.2 ± 2.0 Max 0.9 5 4.0 8.5 ± 5.0 ± 11 Units mV mV/∞C mV/∞C nA nA nA nA V RP = 100 W TJ = 125∞C TA = 125∞C, device operating TJ = 125∞C TA = 125∞C, device operating ± 10.4 VCM = ± 10.4 V VS = ± 10 V to ± 18 V RL ≥ 2 kW, VO = ± 10 V RL ≥ 10 kW 35 ± 12 85 97 15 120 ± 13 57 dB mV/V V/mV V NOTES 1 Sample tested. 2 Input bias current is specified for two different conditions. The T J = 25∞C specification is with the junction at ambient temperature; the device operating specification is with the device operating in a warmed-up condition at 25 ∞C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I B versus TJ and IB versus TA. ADI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I B and IOS are measured at VCM = 0. ELECTRICAL CHARACTERISTICS unless otherwise noted) Parameter Input Offset Voltage Symbol VOS Conditions RS = 5 0 W 0.3 (@ VS = 15 V, 0 C £ TA £ 70 C for E and F grades, –40 C £ TA £ 85 C for G grades OP15F/OP17F Min Typ Max 0.55 1.5 OP15G/OP17G Min Typ Max 0.7 3.8 OP15E/OP17E Min Typ Max 0.75 Unit mV Average Input Offset Voltage Drift1 Without External Trim TCVOS With External Trim TCVOSn Input Offset Current2 IOS OP15 OP17 Input Bias Current2 OP15 OP17 Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Swing IVR CMRR PSRR AVO VO IB RP = 100 W T J = 7 0 ∞C TA = 70∞C, Device Operating T J = 7 0 ∞C TA = 70∞C, Device Operating T J = 7 0 ∞C TA = 70∞C, Device Operating T J = 7 0 ∞C TA = 70∞C, Device Operating ± 10.4 VCM = ± 10.4 V VCM = ± 10.25 V VS = ± 10 V to ± 18 V VS = ± 10 V to ± 15 V RL ≥ 2 k W VO = ± 10 V RL ≥ 1 0 k W 65 ± 12 85 2 2 0.04 0.06 0.04 0.07 ± 0.10 ± 0.13 ± 0.10 ± 0.15 5 0.30 0.55 0.30 0.70 ± 0.40 ± 0.75 ± 0.40 ± 0.90 ± 10.4 3 3 0.06 0.08 0.06 0.10 ± 0.12 ± 0.16 ± 0.12 ± 0.20 10 0.45 0.80 0.45 1.1 ± 0.60 ± 1.1 ± 0.60 ± 1.4 ± 10.25 4 4 0.08 0.10 0.08 0.15 ± 0.14 ± 0.19 ± 0.14 ± 0.25 30 0.85 1.2 0.85 1.7 ± 0.80 ± 1.5 ± 0.80 ± 2.0 mV/∞C mV/∞C nA nA nA nA nA nA nA nA V 98 13 200 ± 13 57 85 96 80 13 57 20 100 35 ± 12 160 ± 13 94 dB dB mV/V mV/V V/mV V 50 ± 12 180 ± 13 NOTES 1 Sample tested. 2 Input bias current is specified for two different conditions. The T J = 25∞C specification is with the junction at ambient temperature; the device operating specification is with the device operating in a warmed-up condition at 25 ∞C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I B versus TJ and IB versus TA. ADI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I B and IOS are measured at VCM = 0. REV. A –3– OP15/OP17–SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS 1 Supply Voltage All Devices Except C, G (Packaged) and GR Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 22 V C, G (Packaged) and GR Grades . . . . . . . . . . . . . . . . ± 18 V Operating Temperature A Grade . . . . . . . . . . . . . . . . . . . . . . . . . . –55∞C to +125∞C E, F Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . 0∞C to 70∞C G Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . –40∞C to +85∞C Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150∞C Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . All Devices Except C, G Grades . . . . . . . . . . . . . . . . ± 40 V C, G Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V Input Voltage2 All Devices Except C, G Grades . . . . . . . . . . . . . . . . ± 20 V C, G Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 16 V Input Voltage OP15E, OP15F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V OP15G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 16 V OP17A, OP17E, OP17F . . . . . . . . . . . . . . . . . . . . . . ± 20 V OP17G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 16 V Output Short-Circuit Duration Indefinite Storage Temperature Range . . . . . . . . . . . . –65∞C to +150∞C Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300∞C NOTES *Absolute Maximum Ratings apply to packaged parts, unless otherwise noted. Package Type 8-Lead Hermetic DIP (Z) 8-Lead SO (S) TO-99 (J) * JA* JC Unit ∞C/W ∞C/W ∞C/W 148 158 150 16 43 18 JA is specified for worst-case mounting conditions, i.e., JA is specified for device in socket for CERDIP and PDIP packages; JA is specified for device soldered to printed circuit board for SO packages. +20V 10k 2 +3V 300 3 7 8 4 –20V 10k Figure 2. Burn-In Circuit 8-Lead CERDIP (Z-Suffix) BAL –IN +IN V– 1 2 3 4 8 NC 7 V+ 6 OUT 5 BAL BAL –IN +IN V– 8-Lead SOIC (S-Suffix) 1 2 3 4 8 NC 7 V+ 6 OUT 5 BAL 8-Lead TO-99 (J-Suffix) ORDERING GUIDE T A = 2 5∞ C VOS MAX (mV) 0.5 1.0 3.0 Package Options TO-99 OP17EJ OP15FJ* OP17FJ OP15GJ* CERDIP OP15EZ OP17EZ OP15FZ* OP17FZ OP15GZ* OP17GZ OP15GS* SOIC Operating Temperature Range COM COM XIND For military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dl.mil/programs/milspec/default.asp. SMD Part Number 5962-8954201GA* 5962-8954201PA* 5962-8954301GA* 5962-8954301PA* ADI Equivalent OP15AJMDA OP15AZMDA OP16AJMDA OP16AZMDA *Not recommended for new designs. Obsolete April 2002. –4– REV. A Typical Performance Characteristics –OP15/OP17 30 VS = 15V 27 PEAK-TO-PEAK OUTPUT SWING – V 100 WARMED-UP IN FREE AIR VS = 15V TA = 25 C –55 C 21 +25 C 18 15 +125 C 12 9 6 3 0 100 1k 10k OUTPUT LOAD RESISTANCE – 100k INPUT BIAS CURRENT – pA 24 80 60 a. UNDERCANCELLED IB = +16pA @ V CM = 0 b. PERFECTLY CANCELLED IB = 0pA @ V CM = 0 c. UNDERCANCELLED IB = –16pA @ V CM = 0 40 20 a b c 0 –20 –12 –10 –8 –6 –4 –2 0 2 4 6 INPUT COMMON-MODE VOLTAGE – V 8 10 12 TPC 1. Maximum Output Swing vs. Load Performance TPC 4. Input Bias Current vs. Common-Mode Voltage 20 1M TA = 25 C COMMON-MODE INPUT VOLTAGE RANGE – V RL = 2k OPEN-LOOP VOLTAGE GAIN – V/V 500k 400k 300k 200k 15 –55 C 25 C 125 C 10 100k 5 POSITIVE FROM –55 C TO –125 C CHANGE IN CMVR IS < 0.2V NEGATIVE 0 10k 0 5 10 SUPPLY VOLTAGE – V 15 20 5 10 15 SUPPLY VOLTAGE – V 20 TPC 2. Common-Mode Input Voltage Range vs. Supply Voltage TPC 5. Open-Loop Voltage Gain vs. Supply Voltage 1k TA = 25 C VS = 15V 100Hz < f < 10kHz 10Hz < f < 10kHz FOR RS > 4M a AMPLIFIER NOISE b JOHNSON RESISTOR NOISE c AMPLIFIER NOISE MEASURED WITH SOURCE RESISTOR c b 40 RL = 2k TA = 25 C 30 INPUT NOISE VOLTAGE – V 100 10 PEAK-TO-PEAK OUTPUT SWING – V 20 1 10 0.1 a 0.01 100k 0 1M 10M 100M SOURCE RESISTANCE – 1G 10G 0 5 10 SUPPLY VOLTAGE – V 15 20 TPC 3. Voltage Noise vs. Source Resistance TPC 6. Output Voltage Swing vs. Supply Voltage REV. A –5– OP15/OP17 9 1n VS = 15V TA = 25 C ISY = 4.0mA FOR MAX CURVES 2.5mA FOR TYP CURVES INPUT BIAS CURRENT – A NULLED OFFSET VOLTAGE DRIFT – V/ C 7 5 VOS 155A MAX OP15A MAX 100p 155A TYP 3 1 TYPICAL DRIFT BAND –1 –3 OP15 TYP –5 10k 100k RP-TRIMMING POTENTIOMETER VALUE – 1M 10p 0 20 40 60 80 100 TIME AFTER POWER APPLIED – s 120 140 TPC 7. Nulled Offset Voltage Drift vs. Potentiometer Size TPC 10. OP15 Bias Current vs. Time in Free Air 6 VS = 15V 4 1n 156A/157A MAX 2 INPUT BIAS CURRENT – A OFFSET VOLTAGE – mV 156A/157A TYP 100p OP17A MAX VS = 15V TA = 25 C ISY = 6.7mA FOR MAX CURVES 5.0mA FOR TYP CURVES 0 –2 –4 OP17A TYP –6 –50 –25 0 25 50 75 100 125 10p 0 20 40 60 80 100 TIME AFTER POWER APPLIED – s 120 140 TEMPERATURE – C TPC 8. Offset Voltage Drift vs. Temperature of Representative Units TPC 11. OP17 Bias Current vs. Time in Free Air 100n 100n VS = 15V UNITS ARE WARMED UP INPUT BIAS CURRENT – A 155A MAX 155A MAX INPUT BIAS CURRENT – A 10n 155A TYP OP15A MAX 1n OP15A TYP 10n 155A TYP OP15A MAXP 1n OP15 TYP 100p 100p 10p 10 30 50 70 90 110 130 150 10p 10 30 50 70 90 110 130 150 AMBIENT TEMPERATURE – C AMBIENT TEMPERATURE – C TPC 9. Input Bias Current vs. Ambient Temperature (Units Warmed Up in Free Air) TPC 12. OP15 Input Bias Current vs. Ambient Temperature (Units Warmed Up in Free Air) –6– REV. A OP15/OP17 100n 156A/157A MAX 0 0 0 OP17A MAX VOLTAGE – 5V/DIV INPUT BIAS CURRENT – A 10n 156A/157A TYP 0 0 0 0 0 1n OP17A TYP 100p 10p 10 30 50 70 90 110 130 150 0 0 0 0 0 0 0 0 TIME – 500ns/DIV 0 0 0 0 AMBIENT TEMPERATURE – C TPC 13. OP17 Input Bias Current vs. Ambient Temperature (Units Warmed Up in Free Air) TPC 16. OP15 Large Signal Transient Response 3.5 0 0 SUPPLY CURRENT – mA 3.0 VOLTAGE – 20mV/DIV 0 0 0 0 0 0 2.5 –55 C 25 C 125 C 2.0 1.5 0 5 10 SUPPLY VOLTAGE – V 15 20 0 0 0 0 0 0 0 0 TIME – 100ns/DIV 0 0 0 0 TPC 14. OP15 Supply Current vs. Supply Voltage TPC 17. OP15 Small Signal Transient Response 5.5 10 SUPPLY CURRENT – mA 5.0 OUTPUT VOLTAGE SWING FROM 0V – V VS = 15V TA = 25 C 10mV AV = –1 5 5mV 1mV 4.5 –55 C 25 C 4.0 125 C 0 –5 10mV 3.5 0 5 10 SUPPLY VOLTAGE – V 15 20 –10 0 0.5 5mV 1.0 1.5 SUPPLY VOLTAGE – V 1mV 2.0 2.5 TPC 15. OP17 Supply Current vs. Supply Voltage TPC 18 OP15 Settling Time REV. A –7– OP15/OP17 18 16 PHASE MARGIN = 86 12 VOLTAGE GAIN – dB 120 PHASE SHIFT – Degrees PEAK-TO-PEAK OUTPUT SWING – V 14 90 VS = 15V 100 TA = 25 C 110 28 VS = 15V TA = 25 C AV = 1 24 20 16 12 8 10 8 130 140 6 4 AV > 10 150 160 170 180 190 200 2 0 –2 –4 –6 –8 AV = 1 4 0 100k –10 1M 10M FREQUENCY – MHz 100M 1M FREQUENCY – MHz 10M TPC 19. OP15 Closed-Loop Bandwidth and Phase vs. Frequency TPC 22. OP15 Maximum Output Swing vs. Frequency 28 VS = 15V 24 BANDWIDTH VARIATION FROM 5V < VS < 20V IS < 5 % SLEW RATE – V/ sec 70 VS = 15V 60 AV = 1 BANDWIDTH – MHz 20 50 NEGATIVE 40 16 CLOSED-LOOP BANDWIDTH AV = 1 12 GAIN BANDWIDTH PRODUCT 8 30 20 POSITIVE 4 0 –50 10 0 –50 –25 0 25 50 75 100 125 –25 0 25 50 75 100 125 TEMPERATURE – C AMBIENT TEMPERATURE – C TPC 20. OP15 Bandwidth vs. Temperature TPC 23. OP15 Slew Rate vs. Temperature 120 100 COMMON-MODE REJECTION RATIO – dB VS = 15V TA = 25 C 100 VS = 15V TA = 25 C 80 OPEN-LOOP VOLTAGE GAIN – dB 80 60 60 40 40 20 20 0 –20 1 10 100 1k 10k 100k FREQUENCY – Hz 1M 10M 100M 0 1 10 100 1k 10k 100k FREQUENCY – Hz 1M 10M 100M TPC 21. OP15 Open-Loop Gain vs. Frequency TPC 24. OP15 Common-Mode Rejection Ratio vs. Frequency –8– REV. A OP15/OP17 120 POWER SUPPLY REJECTION RATIO – dB 0 TA = 25 C 0 100 0 80 POSITIVE SUPPLY 60 NEGATIVE SUPPLY 40 VOLTAGE – 5V/DIV 0 0 0 0 20 0 0 10 100 1k 10k 100k FREQUENCY – Hz 1M 10M 0 0 0 0 0 0 0 0 TIME – 200ns/DIV 0 0 0 0 TPC 25. OP15 Power Supply Rejection Ratio vs. Frequency TPC 28. OP17 Large Signal Transient Response 100 VS = 15V TA = 25 C 0 0 0 AV = 100 OUTPUT IMPEDANCE – 10 VOLTAGE – 20mV/DIV 0 0 0 0 0 AV = 10 AV = 1 1 0 1k 10k 100k FREQUENCY – Hz 1M 10M 0 0 0 0 0 0 0 0 TIME – 100ns/DIV 0 0 0 0 TPC 26. OP15 Output Impedance vs. Frequency TPC 29. OP17 Small Signal Transient Response 140 OUTPUT VOLTAGE SWING FROM 0V – V 10 VOLTAGE NOISE DENSITY – nV/ Hz 120 VS = 15V TA = 25 C 10mV 5 5mV 1mV VS = 15V TA = 25 C AV = –5 100 80 0 60 l/f CORNER FREQUENCY 40 –5 10mV 5mV 1mV 20 0 1k 10k 100k FREQUENCY – Hz 1M 10M –10 0 0.5 1.0 1.5 SUPPLY VOLTAGE – V 2.0 2.5 TPC 27. OP15 Voltage Noise Density vs. Frequency TPC 30. OP17 Settling Time REV. A –9– OP15/OP17 28 POWER SUPPLY REJECTION RATIO – dB VS = 15V TA = 25 C AV = 5 120 TA = 25 C 100 POSITIVE SUPPLY 80 PEAK-TO-PEAK OUTPUT SWING – V 24 20 16 12 8 60 NEGATIVE SUPPLY 40 4 0 100k 20 1M FREQUENCY – MHz 10M 0 10 100 1k 10k 100k FREQUENCY – Hz 1M 10M TPC 31. OP17 Maximum Output Swing vs. Frequency TPC 34. OP17 Power Supply Rejection Ratio vs. Frequency 110 NEGATIVE 100 VS = 15V AV = 5 100 VS = 15V TA = 25 C SLEW RATE – V/ sec OUTPUT IMPEDANCE – 90 10 AV = 100 AV = 10 80 POSITIVE 70 1.0 60 50 40 –50 –25 0 25 50 75 100 125 0 1k 10k AMBIENT TEMPERATURE – C 100k FREQUENCY – Hz 1M 10M TPC 32. OP17 Slew Rate vs. Temperature TPC 35. OP17 Output Impedance vs. Frequency 100 COMMON-MODE REJECTION RATIO – dB VS = 15V TA = 25 C 80 140 VS = 15V TA = 25 C VOLTAGE NOISE DENSITY – nV/ Hz 120 100 60 80 40 60 l/f CORNER FREQUENCY 40 20 20 0 1k 0 1 10 100 1k 10k 100k FREQUENCY – Hz 1M 10M 100M 10k 100k FREQUENCY – Hz 1M 10M TPC 33. OP17 Common-Mode Rejection Ration vs. Frequency TPC 36. OP17 Voltage Noise vs. Frequency –10– REV. A OP15/OP17 TEST CIRCUITS V+ 2k 0.1% +15V 10V 100k 7 0V 1k 0.1% –15V 400 0.1% 2 7 2 3 1 5 6 OP17 3 4 6 2N4416 100pF 3k 4 VOUT SUMMING NODE NOTE: V OS CAN BE TRIMMED WITH POTENTIOMETERS RANGING FROM 10k TO 1M . FOR MOST UNITS TCVOS WILL BE MINIMIZED WHEN VOS IS ADJUSTED WITH A 100k POTENTIOMETER 5k 0.1% AV = –1 SCOPE 2N4416 2k +15V Figure 3. Input Offset Voltage Nulling 2k 0.1% +15V 10V 0V 5k 0.1% –15V SUMMING NODE 5k 0.1% 2k 0.1% Figure 6. OP17 Settling Time Test Circuit APPLICATION INFORMATION Dynamic Operating Considerations 6 2N4416 100pF 3k AV = –1 2 7 OP15 3 4 VOUT As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize “pick-up” and maximize the frequency of the feedback pole by minimizing the capacitance for the input to ground. A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of this pole. In many instances the frequency of this pole is much greater than the expected, 3 dB frequency of the close-loop gain, and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency, a lead capacitor should be placed from the output to the negative input of the op amp. The value of the added capacitor should be such that the RC time-constant of this capacitor and the resistance it parallels is greater than, or equal to, the original feedback pole time is constant. R1 10k R2 5k C2 30pF LSB SCOPE 2N4416 2k +15V Figure 4. OP15 Settling Time Test Circuit DIGITAL INPUTS +10V MSB +15V RREF 5k 5 6 7 8 9 10 11 12 B1 B2 B3 B4 B5 B6 B7 B8 7 IO IO 14 VREF+ 4 2 15 VREF– DAC08E V– 13 OP15F 2 3 6 VO = 0V TO 10V 4 V+ 3 CC C1 0.1 F 16 VLC 1 +15V –15V –15V Figure 5. Current-to-Voltage Amplifier Output REV. A –11– OP15/OP17 OUTLINE DIMENSIONS Dimensions shown in millimeters and (inches). 8-Lead Ceramic Dip – Glass Hermetic Seal [CERDIP] (Q-8) 0.13 (0.0051) 1.40 (0.0551) MAX MIN 8 5 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8) 5.00 (0.1968) 4.80 (0.1890) 8 5 4 PIN 1 1 4 7.87 (0.3089) 5.59 (0.2201) 4.00 (0.1574) 3.80 (0.1497) PIN 1 1 6.20 (0.2440) 5.80 (0.2284) 2.54 (0.1000) BSC 10.29 (0.4051) MAX 5.08 (0.2000) MAX 5.08 (0.2000) 3.18 (0.1252) 0.58 (0.0228) 0.36 (0.0142) 1.52 (0.0600) 0.38 (0.0150) 3.81 (0.1500) MIN SEATING 1.78 (0.0701) PLANE 0.76 (0.0299) 15 0 0.38 (0.0150) 0.20 (0.0079) 8.13 (0.3201) 7.37 (0.2902) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY SEATING 0.10 PLANE 1.75 (0.0688) 1.35 (0.0532) 8 0.25 (0.0098) 0 0.19 (0.0075) 0.50 (0.0196) 0.25 (0.0099) 45 0.51 (0.0201) 0.33 (0.0130) 1.27 (0.0500) 0.41 (0.0160) CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN COMPLIANT TO JEDEC STANDARDS MS-012AA 8-Lead Metal Can [TO-99] (H-08) REFERENCE PLANE 4.70 (0.1850) 4.19 (0.1650) 12.70 (0.5000) MIN 6.35 (0.2500) MIN 1.27 (0.0500) MAX 5 9.40 (0.3700) 8.51 (0.3350) 8.51 (0.3350) 7.75 (0.3050) 4 5.08 (0.2000) BSC 3 2 0.48 (0.0190) 0.41 (0.0160) 0.53 (0.0210) 0.41 (0.0160) BASE & SEATING PLANE 2.54 (0.1000) BSC 1 0.86 (0.0340) 0.71 (0.0280) 45 BSC 8 6 7 1.14 (0.0450) 0.69 (0.0270) 2.54 (0.1000) BSC 4.06 (0.1600) 3.56 (0.1400) 1.02 (0.0400) MAX 1.02 (0.0400) 0.25 (0.0100) CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Revision History Location COMPLIANT TO JEDEC STANDARDS MO-002AK 9/02—Data Sheet changed from REV. 0 to REV. A. Deleted OP16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Edits to DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Deleted 12 TPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 –12– REV. A PRINTED IN U.S.A. Page C02789–0–9/02(A)
OP16AZMDA 价格&库存

很抱歉,暂时无法提供与“OP16AZMDA”相匹配的价格&库存,您可以联系我们找货

免费人工找货