0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP183GS-REEL7

OP183GS-REEL7

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOICN8_150MIL

  • 描述:

    IC GP OPAMP 1 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
OP183GS-REEL7 数据手册
5 MHz Single-Supply Operational Amplifier OP183 FEATURES Single supply: 3 V to 36 V Wide bandwidth: 5 MHz Low offset voltage: 1 mV High slew rate: 10 V/μs Low noise: 10 nV/√Hz Unity gain stable Input and output range includes GND No phase reversal PIN CONNECTION NULL 1 –IN 2 +IN 3 8 NC V+ 00292-001 OP183 7 6 OUT TOP VIEW V– 4 (Not to Scale) 5 NULL Figure 1. 8-Lead Narrow Body SOIC (S Suffix) APPLICATIONS Multimedia Telecom ADC buffers Wide band filters Microphone preamplifiers GENERAL DESCRIPTION The OP183 is a single-supply, 5 MHz bandwidth amplifier with slew rates of 10 V/μs. It can operate from voltages as low as 3 V and up to 36 V. This combination of slew rate and bandwidth yields excellent single-supply ac performance, making this amplifier ideally suited for telecom and multimedia audio applications. The OP183 also provides good dc performance with guaranteed 1 mV offset. Noise is a respectable 10 nV/√Hz. Supply current is only 1.2 mA per amplifier. This amplifier is well suited for single-supply applications that require moderate bandwidth even when used in high gain configurations. This makes it useful in filters and instrumentation. The output drive capability and very wide full-power bandwidth of the OP183 make it a good choice for multimedia headphone drivers or microphone input amplifiers. The OP183 is available in a SO-8 surface-mount package. It is specified over the extended industrial (−40°C to +85°C) temperature range. Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005 Analog Devices, Inc. All rights reserved. OP183 TABLE OF CONTENTS Specifications..................................................................................... 3 Electrical Characteristics @ VS = 5 V......................................... 3 Electrical Characteristics @ VS = 3 V......................................... 4 Electrical Characteristics @ VS = ±15 V.................................... 5 Absolute Maximum Ratings............................................................ 6 ESD Caution.................................................................................. 6 Typical Performance Characteristics ............................................. 7 Applications..................................................................................... 13 Offset Adjust ............................................................................... 13 Phase Reversal............................................................................. 13 Direct Access Arrangement ...................................................... 13 5 V Only Stereo DAC for Multimedia ..................................... 13 Low Voltage Headphone Amplifiers........................................ 14 Low Noise Microphone Amplifier for Multimedia ............... 14 3 V 50 Hz/60 Hz Active Notch Filter with False Ground ..... 14 Low Voltage Frequency Synthesizer for Wireless Transceiver .................................................................................. 15 Outline Dimensions ....................................................................... 16 Ordering Guide .......................................................................... 16 REVISION HISTORY 5/05—Rev. C to Rev. D Updated Format.................................................................. Universal Removed OP283 ................................................................. Universal Updated Outline Dimensions ........................................................16 Changes to Ordering Guide ...........................................................16 2/02—Rev. B to Rev. C Edits to FEATURES...........................................................................1 Edits to GENERAL DESCRIPTION...............................................1 Edits to SPECIFICATIONS......................................................... 2–3 Edits to Package Type........................................................................4 Edits to ORDERING GUIDE...........................................................4 Edits to ABSOLUTE MAXIMUM RATINGS ...............................4 Edits to OUTLINE DIMENSIONS ...............................................12 Revision 0: Initial Version Rev. D | Page 2 of 16 OP183 SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ VS = 5 V TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift Bias Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density en p-p en in 0.1 Hz to 10 Hz f = 1 kHz, VCM = 2.5 V 2 10 0.4 μV p-p nV/√Hz pA/√Hz SR BWp tS GBP фm RL = 2 kΩ 1% Distortion To 0.01% 5 10 >50 1.5 5 46 V/μs kHz μs MHz Degrees PSRR ISY VS VS = 4 V to 6 V, −40°C ≤ TA ≤ +85°C VO = 2.5 V, −40°C ≤ TA ≤ +85°C 3 1.2 1.5 ±18 mA V 70 104 dB Symbol VOS IB IOS Conditions VCM = 2.5 V, VOUT = 2.5 V, −40°C ≤ TA ≤ +85°C VCM = 2.5 V, VOUT = 2.5 V, −40°C ≤ TA ≤ +85°C VCM = 2.5 V, VOUT = 2.5 V, −40°C ≤ TA ≤ +85°C 0 CMRR AVO ΔVOS/ΔT ΔIB/ΔT VOH VOL ISC VCM = 0 to 3.5 V −40°C ≤ TA ≤ +85°C RL = 2 kΩ, 0.2 ≤ VO ≤ 3.8 V 70 100 104 4 −1.6 RL = 2 kΩ to GND RL = 2 kΩ to GND Source Sink 4.0 4.22 50 25 30 Min Typ 0.025 350 430 11 Max 1.0 1.25 600 750 ±50 3.5 Unit mV mV nA nA nA nA V dB V/mV μV/°C nA/°C V mV mA mA 75 Rev. D | Page 3 of 16 OP183 ELECTRICAL CHARACTERISTICS @ VS = 3 V TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Gain Bandwidth Product NOISE PERFORMANCE Voltage Noise Density en f = 1 kHz, VCM = 1.5 V 10 nV/√Hz GBP 5 MHz PSRR ISY VS = 2.5 V to 3.5 V, −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +85°C, VO = 1.5 V 60 113 1.2 1.5 dB mA Symbol VOS IB IOS Conditions VCM = 1.5 V, VOUT = 1.5 V, −40°C ≤ TA ≤ +85°C VCM = 1.5 V, VOUT = 1.5 V, −40°C ≤ TA ≤ +85°C VCM = 1.5 V, VOUT = 1.5 V, −40°C ≤ TA ≤ +85°C 0 CMRR AVO VOH VOL ISC VCM = 0 V to 1.5 V, −40°C ≤ TA ≤ +85°C RL = 2 kΩ, 0.2 ≤ VO ≤ 1.8 V RL = 2 kΩ to GND RL = 2 kΩ to GND Source Sink 70 100 2.0 103 260 2.25 90 25 30 125 Min Typ 0.3 350 Max 1.0 1.25 600 750 ±50 1.5 Unit mV mV nA nA nA nA V dB V/mV V mV mA mA 11 Rev. D | Page 4 of 16 OP183 ELECTRICAL CHARACTERISTICS @ VS = ±15 V TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift Bias Current Drift Long-Term Offset Voltage OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Open-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 1 Symbol VOS Conditions Min Typ 0.01 Max 1.0 1.25 600 750 ±50 +13.5 Unit mV mV nA nA nA V dB V/mV μV/°C nA/°C mV V −40°C ≤ TA ≤ +85°C IB IOS CMRR AVO ΔVOS/ΔT ΔIB/ΔT VOS VOH VOL ISC ZOUT PSRR ISY VS SR BWp tS GBP фm en p-p en in 0.1 Hz to 10 Hz f = 1 kHz RL = 2 kΩ 1% Distortion To 0.01% −40°C ≤ TA ≤ +85°C −40 ≤ TA ≤ +85°C −15 VCM = −15 V to +13.5 V, –40°C ≤ TA ≤ +85°C RL = 2 kΩ 70 100 86 1000 3 −1.6 300 400 11 Note 1 RL = 2 kΩ to GND, −40°C ≤ TA ≤ +85°C RL = 2 kΩ to GND, −40°C ≤ TA ≤ +85°C Source Sink f = 1 MHz, AV = +1 VS = ± 2.5 V to ± 18 V, −40°C ≤ TA ≤ +85°C VS = ±18 V, VO = 0 V, −40°C ≤ TA ≤ +85°C 3 10 15 50 1.5 5 56 2 10 0.4 1.2 70 112 13.9 14.1 −14.05 30 50 15 1.5 −13.9 V mA mA Ω dB 1.75 ±18 mA V V/μs kHz μs MHz Degrees μV p-p nV/√Hz pA/√Hz Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3. Rev. D | Page 5 of 16 OP183 ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Supply Voltage Input Voltage Differential Input Voltage 1 Output Short-Circuit Duration to GND Storage Temperature Range S Package Operating Temperature Range OP183 Junction Temperature Range S Package Lead Temperature Range (Soldering 60 sec) 1 Rating ±18 V ±18 V ±7 V Indefinite −65°C to +150°C −40°C to +85°C −65°C to +150°C 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply to packaged parts, unless otherwise noted. Table 5. Package Type 8-Lead SOIC (S) 1 θJA1 158 θJC 43 Units °C/W For supply voltages less than ±7 V, the absolute maximum input voltage is equal to the supply voltage. Maximum input current should not exceed 2 mA. θJA is specified for worst-case conditions; in other words, θJA is specified for device soldered in circuit board for SOIC packages. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. D | Page 6 of 16 OP183 TYPICAL PERFORMANCE CHARACTERISTICS 80 70 60 50 40 30 20 00292-002 160 VS = 5V 300X OP AMPS 140 120 100 80 60 40 –40°C = TA +85°C 300X OP AMPS PLASTIC PACKAGE QUANTITY (Amplifiers) QUANTITY 0 –600 –400 –200 0 200 400 600 0 0 2 4 6 TCVOS (μV/°C) 8 10 12 INPUT OFFSET VOLTAGE (μV) Figure 2. OP183 Input Offset Voltage Distribution @ 5 V 80 70 60 50 40 30 20 00292-003 Figure 5. OP183 Input Offset Voltage Drift (TCVOS) Distribution @ ±15 V 3 MAXIMUM OUTPUT SWING (V p-p) VS = 5V 300X OP AMPS TA = 25°C RL = 2kΩ VS = 3V 2 QUANTITY 1 0 –600 –400 –200 0 200 400 600 0 1k 10k 100k FREQUENCY (Hz) 1M 10M INPUT OFFSET VOLTAGE (μV) Figure 3. OP183 Input Offset Voltage Distribution @ ±15 V 160 140 120 100 80 60 40 00292-004 Figure 6. OP183 Maximum Output Swing vs. Frequency @ 3 V 5 MAXIMUM OUTPUT SWING (V p-p) –40°C = TA +85°C 300X OP AMPS PLASTIC PACKAGE 4 TA = 25°C RL = 2kΩ VS = 5V QUANTITY (Amplifiers) 3 2 1 00292-007 20 0 0 2 4 6 TCVOS (μV/°C) 8 10 12 0 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 4. OP183 Input Offset Voltage Drift (TCVOS) Distribution @ 5 V Figure 7. OP183 Maximum Output Swing vs. Frequency @ 5 V Rev. D | Page 7 of 16 00292-006 10 00292-005 10 20 OP183 30 TA = 25°C RL = 2kΩ VS = 15V 500 VS = ±15V, VS = +5V MAXIMUM OUTPUT SWING (V p-p) 25 20 INPUT BIAS CURRENT (nA) 400 300 VS = +3V 15 200 10 5 00292-008 100 00292-011 0 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 8. OP183 Maximum Output Swing vs. Frequency @ ±15 V 1 Figure 11. Input Bias Current vs. Temperature 1.50 VS = ±18V RL = ∞ SUPPLY CURRENT AMPLIFIER (mA) OUTPUT VOLTAGE Δ TO RAIL (V) 1.25 100m SINK 1.00 VS = +3V RL = ∞ VS = +5V RL = ∞ 0.75 SOURCE 10m 0.50 0.25 00292-012 00292-009 1m 1μ 10μ 100μ LOAD CURRENT (A) 1m 10m 0 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 9. Output Voltage vs. Sink & Source Current 600 TA = 25°C VS = ±15V 1.50 Figure 12. Supply Current per Amplifier vs. Temperature TA = 25°C SUPPLY CURRENT AMPLIFIER (mA) 00292-010 500 1.25 INPUT BIAS CURRENT (nA) 400 1.00 300 0.75 200 0.50 100 0.25 00292-013 0 –15 –10 –5 0 5 10 13.5 0 0 ±2.5 ±5.0 ±7.5 ±10.0 ±12.5 ±15.0 ±17.5 ±20.0 COMMON MODE VOLTAGE (V) SUPPLY VOLTAGE (V) Figure 10. Input Bias Current vs. Common-Mode Voltage Figure 13. Supply Current per Amplifier vs. Supply Voltage Rev. D | Page 8 of 16 OP183 60 140 TA = 25°C VS = ±15V 120 100 +PSRR 80 40 –1SC 30 +1SC 20 COMMON-MODE REJECTION (dB) SHORT-CIRCUIT CURRENT (mA) 50 60 –PSRR 40 10 00292-014 0 –75 –50 –25 0 25 50 75 100 125 0 100 1k 10k FREQUENCY (Hz) 100k 1M TEMPERATURE (°C) Figure 14. Short-Circuit Current vs. Temperature @ 5 V 60 –1SC Figure 17. Power Supply Rejection vs. Frequency 90 80 70 TA = 25°C VS = 3V RL = 10kΩ GAIN SHORT-CIRCUIT CURRENT (mA) 50 40 +1SC 30 60 GAIN (dB) 50 40 PHASE (Degrees) PHASE (Degrees) 30 PHASE 20 10 PHASE MARGIN = 43° 195 90 45 0 1k 10k 100k FREQUENCY (Hz) 1M –45 10M 20 10 00292-015 00292-017 20 0 –10 0 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 15. Short-Circuit Current vs. Temperature @ ±15 V 140 TA = 25°C VS = ±15V 90 80 70 100 80 60 Figure 18. Open-Loop Gain and Phase vs. Frequency @ 3 V COMMON-MODE REJECTION (dB) 120 TA = 25°C VS = 5V RL = 10kΩ GAIN GAIN (dB) 50 40 30 PHASE 20 10 PHASE MARGIN = 46° 195 90 45 0 1k 10k 100k FREQUENCY (Hz) 1M –45 10M 60 40 00292-016 0 –10 0 100 1k 10k FREQUENCY (Hz) 100k 1M Figure 16. Common-Mode Rejection vs. Frequency Figure 19. Open-Loop Gain and Phase vs. Frequency @ 5 V Rev. D | Page 9 of 16 00292-019 20 00292-018 OP183 90 80 70 GAIN SLEW RATE (V/μs) 25 TA = 25°C VS = ±15V RL = 10kΩ 20 60 VS = ±15V RL = 2kΩ ±SLEW RATE GAIN (dB) 50 40 15 PHASE 20 10 0 –10 1k 10k 100k FREQUENCY (Hz) 1M 90 45 0 –45 10M PHASE (Degrees) 30 PHASE MARGIN = 56° 195 10 VS = ±15V RL = 2kΩ ±SLEW RATE 00292-023 5 00292-020 0 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 20. Open-Loop Gain and Phase vs. Frequency @ ±15 V 1000 900 800 OPEN-LOOP GAIN (V/mV) VOLTAGE NOISE DENSITY (nA√Hz) Figure 23. Slew Rate vs. Temperature 30 TA = +25°C VS = ±15V OR VS = +3V, +15V 25 700 600 500 400 300 200 100 0 –75 –50 –25 0 25 50 75 100 VS = ±15V OR VS = +3V RL = 2kΩ VS = +5V RL = 2kΩ 20 15 10 5 00292-024 00292-021 125 0 10 100 FREQUENCY (Hz) 1k 10k TEMPERATURE (°C) Figure 21. Open-Loop Gain vs. Temperature 50 AV = 100 40 CLOSED-LOOP GAIN (dB) Figure 24. Voltage Noise Density vs. Frequency 6 CURRENT NOISE DENSITY (pA√Hz) TA = 25°C VS = ±15V 5 TA = 25°C VS = ±15V OR VS = +3V, +15V 30 AV = 10 20 4 3 10 AV = 1 0 2 00292-022 –20 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 10 100 FREQUENCY (Hz) 1k 10k Figure 22. Closed-Loop Gain vs. Frequency Figure 25. Current Noise Density vs. Frequency Rev. D | Page 10 of 16 00292-025 –10 1 OP183 100 90 80 70 IMPEDANCE (Ω) TA = 25°C VS = ±15V 60 50 40 30 AV = 10 20 10 0 100 1k 10k FREQUENCY (Hz) 100k 00292-026 1M Figure 26. Closed-Loop Output Impedance vs. Frequency 80 70 SMALL SIGNAL OVERSHOOT (%) Figure 29. Small Signal Performance @ ±15 V TA = 25°C VS = 5V RL = 10kΩ 60 50 40 30 20 00292-027 NEGATIVE EDGE 10 0 0 100 200 300 CAPACITANCE (pF) Figure 27. Small Signal Overshoot vs. Load Capacitance Figure 30. 0.1 Hz to 10 Hz Noise @ ±2.5 V 00292-028 Figure 28. Large Signal Performance @ ±15 V Figure 31. 0.1 Hz to 10 Hz Noise @ ±15 V Rev. D | Page 11 of 16 00292-031 00292-030 POSITIVE EDGE 00292-029 AV = 1 OP183 0.1 OP183 VS = ±2.5V AV = +1 RF = 0 VIN = 1VRMS 80kHz LOW-PASS FILTER 2kΩ 0.010 5kΩ 600Ω 1kΩ Preliminary Technical Data DISTORTION (%) 10Ω 00292-032 0.001 0.0005 20 100 1k FREQUENCY (Hz) NO LOAD 10k 20k Figure 32. THD + Noise vs. Frequency for Various Loads Rev. D | Page 12 of 16 OP183 APPLICATIONS OFFSET ADJUST Figure 33 shows how the offset voltage of the OP183 can be adjusted by connecting a potentiometer between Pins 1 and 5, and connecting the wiper to VEE. The recommended value for the potentiometer is 10 kΩ. This will give an adjustment range of approximately ±1 mV. If a larger adjustment span is desired, a 50 kΩ potentiometer will yield a range of ±2.5 mV. VCC This arrangement drives the transformer differentially so that the drive to the transformer is effectively doubled over a single amplifier arrangement. This application takes advantage of the ability of the OP183 to drive capacitive loads and to save power in single-supply applications. 300pF 37.4kΩ 0.1μF 20kΩ A1 3 7 RxA 6 4 OP183 20kΩ 3.3kΩ OP183 2 5 1 VOS 0.0047μF VEE OP183 00292-033 A2 475Ω 0.1μF TxA 22.1kΩ 20kΩ 750pF 20kΩ 20kΩ 00292-034 00292-035 Figure 33. OP183 Offset Adjust 0.33μF PHASE REVERSAL The OP183 is protected against phase reversal as long as both of the inputs are within the range of the positive supply and the negative supply −0.6 V. If there is a possibility of either input going beyond these limits, however, the inputs should be protected with a series resistor to limit input current to 2 mA. 2.5V REF OP183 A3 Figure 34. Direct Access Arrangement 5 V ONLY STEREO DAC FOR MULTIMEDIA The low noise and single-supply capability of the OP183 are ideally suited for stereo DAC audio reproduction or sound synthesis applications, such as multimedia systems. Figure 35 shows an 18-bit stereo DAC output setup that is powered from a single 5 V supply. The low noise preserves the 18-bit dynamic range of the AD1868. DIRECT ACCESS ARRANGEMENT The OP183 can be used in a single supply direct access arrangement (DAA) as shown in Figure 34. This figure shows a portion of a typical DAA capable of operating from a single 5 V supply; with minor modifications it should also work on 3 V supplies. Amplifiers A2 and A3 are configured so that the transmit signal TxA is inverted by A2 and not inverted by A3. AD1868 1 2 3 4 5 6 7 8 VL LL DL CK DR LR 18-BIT SERIAL REG. 16-BIT DAC VREF 16-BIT DAC 18-BIT SERIAL REG. VREF VBL 16 3 15 14 13 8 7.68kΩ 330pF 9.76kΩ 2 OP183 4 1 220μF +– LEFT CHANNEL 47kΩ OUTPUT VOL 100pF AGND 12 11 7.68kΩ 7.68kΩ DGND VBR VOR 10 100pF VS 9 7.68kΩ 330pF 5 9.76kΩ 6 OP183 7 220μF +– RIGHT CHANNEL 47kΩ OUTPUT Figure 35. 5 V Only 18-Bit Stereo DAC Rev. D | Page 13 of 16 OP183 LOW VOLTAGE HEADPHONE AMPLIFIERS Figure 36 shows a stereo headphone output amplifier for the AD1849 16-bit SoundPort® Stereo Codec device. The pseudoreference voltage is derived from the common-mode voltage generated internally by the AD1849, thus providing a convenient bias for the headphone output amplifiers. OPTIONAL GAIN 1kΩ 5kΩ 5V 10μF LOUT1L 21 10kΩ L VOLUME CONTROL 3 V 50 HZ/60 HZ ACTIVE NOTCH FILTER WITH FALSE GROUND To process ac signals, it may be easier to use a false-ground bias rather than the negative supply as a reference ground. This would reject the power line frequency interference which can often obscure low frequency physiological signals, such as heart rates, blood pressures, EEGs, and ECGs. Figure 38 shows a 50 Hz/60 Hz active notch filter for eliminating line noise in patient monitoring equipment. It has several kilohertz bandwidth and is not sensitive to false-ground perturbations. The simple false-ground circuit shown achieves good rejection of low frequency interference using standard offthe-shelf components. R2 2.67kΩ 3V 2 VREF 16Ω 220μF OP183 47kΩ HEADPHONE LEFT AD1849 5V VREF CMOUT 19 10kΩ LOUT1R 20 OP183 R1 2.67kΩ 4 C1 1μF R3 2.67kΩ C2 1μF 6 OP183 A2 8 7 A1 R VOLUME CONTROL 1 5 OP183 5kΩ 16Ω 220μF 47kΩ 10μF HEADPHONE RIGHT VIN R6 10kΩ 3 R4 2.67kΩ R5 1.33kΩ (2.67kΩ ÷ 2) VO OP183 C3 1μF (1μF × 2) R11 10kΩ R7 1kΩ 00292-036 1kΩ OPTIONAL GAIN R8 1kΩ Q = 0.75 NOTE: FOR 50Hz APPLICATIONS CHANGE R1–R4 TO 3.1Ω AND R5 TO 1.58Ω (3.16Ω ÷ 2). 0.75V C6 1μF 00292-038 VREF Figure 36. Headphone Output Amplifier for Multimedia Sound Codec 3V 3 C5 0.015μF LOW NOISE MICROPHONE AMPLIFIER FOR MULTIMEDIA The OP183 is ideally suited as a low noise microphone preamp for low voltage audio applications. Figure 37 shows a gain of 100 stereo preamp for the AD1849 16-bit SoundPort Stereo Codec chip. The common-mode output buffer serves as a phantom power driver for the microphones. 10kΩ 5V R9 75kΩ 4 R12 70Ω A3 R10 25kΩ 1 C4 1μF OP183 Figure 38. 3 V Supply 50 Hz/60 Hz Notch Filter with Pseudo Ground 10μF LEFT ELECTRET CONDENSER MIC INPUT 20Ω 50Ω 10kΩ 5V OP183 17 MINL Amplifier A3 biases A1 and A2 to the middle of their input common-mode range. When operating on a 3 V supply, the center of the common-mode range of the OP183 is 0.75 V. This notch filter effectively squelches 60 Hz pickup at a filter Q of 0.75. To reject 50 Hz interference, change the resistors in the twin-T section (R1 through R5) from 2.67 kΩ to 3.16 kΩ. The filter section uses OP183 op amps in a twin-T configuration whose frequency selectivity is very sensitive to the relative matching of the capacitors and resistors in the twinT section. Mylar is the material of choice for the capacitors, and the relative matching of the capacitors and resistors determines the filter’s pass-band symmetry. Using 1% resistors and 5% capacitors produces satisfactory results. 100Ω AD1849 19 CMOUT 1/2 OP219 20Ω 10μF RIGHT ELECTRET CONDENSER MIC INPUT 10kΩ 50Ω 100Ω OP183 18 MINR 00292-037 10kΩ Figure 37. Low Noise Stereo Microphone Amplifier for Multimedia Sound Codec Rev. D | Page 14 of 16 OP183 LOW VOLTAGE FREQUENCY SYNTHESIZER FOR WIRELESS TRANSCEIVER The low noise and low voltage operation capability of the OP183 serves well for the loop filter of a frequency synthesizer. Figure 39 shows a typical application in a radio transceiver. The phase noise performance of the synthesizer depends on low noise contribution from each component in the loop as the noise is amplified by the frequency division factor of the prescaler. The resistors used in the low-pass filter should be of low to moderate values to reduce noise contribution due to the input bias current as well as the resistors themselves. The filter cutoff frequency should be chosen to optimize the loop constant. 7 CRYSTAL 3V OP183 REFERENCE OSCILLATOR PHASE DETECTOR ÷ PRESCALER V RF CONTROL OUT VCO 900MHz 00292-039 Figure 39. Low Voltage Frequency Synthesizer for a Wireless Transceiver QB9 QB10 RB3 RB4 RB5 RB6 QB11 Q7 Q8 QB8 R9 Q12 QD2 Q5 Q6 CC2 QB6 QB7 R1 JB1 2 R2 Q2 Z1 CF1 Q3 Q4 3 Q1 QD1 CC3 R8 6 QB5A R5 QD3 CB1 QB4 B A R10 QB2 RB2 RB1 QB1 R3LT R3AT R3B QB3 1 5 CO R7 R3A R4A CC1 R4B R11 QB13 R4AT R4LT QB12 00292-040 Q10 QB14 Q11 4 Figure 40. OP183 Simplified Schematic Rev. D | Page 15 of 16 OP183 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 5 4.00 (0.1574) 3.80 (0.1497) 1 6.20 (0.2440) 4 5.80 (0.2284) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 1.75 (0.0688) 1.35 (0.0532) 0.50 (0.0196) × 45° 0.25 (0.0099) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 41. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) S-Suffix Dimensions shown in millimeters and (inches) ORDERING GUIDE Model OP183GS OP183GS-REEL OP183GS-REEL7 OP183GSZ 1 OP183GSZ-REEL1 OP183GSZ-REEL71 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N Package Option S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) Z = Pb free part. ©2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00292-0-5/05(D) Rev. D | Page 16 of 16
OP183GS-REEL7 价格&库存

很抱歉,暂时无法提供与“OP183GS-REEL7”相匹配的价格&库存,您可以联系我们找货

免费人工找货