0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP2177CRZ

OP2177CRZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOICN8_150MIL

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
OP2177CRZ 数据手册
Precision Low Noise, Low Input Bias Current Operational Amplifiers OP1177/OP2177/OP4177 Data Sheet PIN CONFIGURATIONS NC 1 5 NC = NO CONNECT 7 V+ OP1177 6 OUT V– 4 5 NC NC = NO CONNECT Figure 1. 8-Lead MSOP (RM Suffix) Figure 2. 8-Lead SOIC_N (R Suffix) OUT A 1 1 8 V+ OUT B –IN B +IN B OP2177 4 5 –IN A 2 Figure 3. 8-Lead MSOP (RM Suffix) OUT A 1 14 OUT D –IN A 2 13 –IN D V+ 4 +IN B 5 OP4177 +IN A 3 8 V+ OP2177 7 OUT B 6 –IN B 5 +IN B V– 4 Figure 4. 8-Lead SOIC_N (R Suffix) 12 +IN D 11 V– 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C 02627-005 +IN A 3 02627-002 4 +IN 3 8 NC 02627-004 Wireless base station control circuits Optical network control circuits Instrumentation Sensors and controls Thermocouples Resistor thermal detectors (RTDs) Strain bridges Shunt current measurements Precision filters NC V+ OUT NC OP1177 OUT A –IN A +IN A V– APPLICATIONS 8 02627-001 1 NC –IN +IN V– –IN 2 02627-003 Low offset voltage: 60 μV maximum Very low offset voltage drift: 0.7 μV/°C maximum Low input bias current: 2 nA maximum Low noise: 8 nV/√Hz typical CMRR, PSRR, and AVO > 120 dB minimum Low supply current: 400 μA per amplifier Dual supply operation: ±2.5 V to ±15 V Unity-gain stable No phase reversal Inputs internally protected beyond supply voltage Figure 5. 14-Lead SOIC_N (R Suffix) OUT A –IN A +IN A V+ +IN B –IN B OUT B 1 14 OP4177 7 8 OUT D –IN D +IN D V– +IN C –IN C OUT C 02627-006 FEATURES Figure 6. 14-Lead TSSOP (RU Suffix) GENERAL DESCRIPTION The OPx177 family consists of very high precision, single, dual, and quad amplifiers featuring extremely low offset voltage and drift, low input bias current, low noise, and low power consumption. Outputs are stable with capacitive loads of over 1000 pF with no external compensation. Supply current is less than 500 μA per amplifier at 30 V. Internal 500 Ω series resistors protect the inputs, allowing input signal levels several volts beyond either supply without phase reversal. Unlike previous high voltage amplifiers with very low offset voltages, the OP1177 (single) and OP2177 (dual) amplifiers are available in tiny 8-lead surface-mount MSOP and 8-lead narrow SOIC packages. The OP4177 (quad) is available in TSSOP and 14-lead narrow SOIC packages. Moreover, specified performance in the MSOP and the TSSOP is identical to Rev. I performance in the SOIC package. MSOP and TSSOP are available in tape and reel only. The OPx177 family offers the widest specified temperature range of any high precision amplifier in surface-mount packaging. All versions are fully specified for operation from −40°C to +125°C for the most demanding operating environments. Applications for these amplifiers include precision diode power measurement, voltage and current level setting, and level detection in optical and wireless transmission systems. Additional applications include line-powered and portable instrumentation and controls—thermocouple, RTD, strain-bridge, and other sensor signal conditioning—and precision filters. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2001–2020 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com OP1177/OP2177/OP4177 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Overload Recovery Time .......................................................... 15  Applications ...................................................................................... 1  THD + Noise .............................................................................. 16  Pin Configurations ........................................................................... 1  Capacitive Load Drive ............................................................... 16  General Description ......................................................................... 1  Stray Input Capacitance Compensation ................................. 17  Revision History ............................................................................... 2  Reducing Electromagnetic Interference ................................. 17  Specifications .................................................................................... 3  Proper Board Layout ................................................................. 18  Electrical Characteristics ............................................................. 3  Difference Amplifiers ................................................................ 18  Electrical Characteristics ............................................................. 4  A High Accuracy Thermocouple Amplifier ........................... 19  Absolute Maximum Ratings ........................................................... 5  Low Power Linearized RTD ..................................................... 19  Thermal Resistance ...................................................................... 5  Single Operational Amplifier Bridge ....................................... 20  ESD Caution.................................................................................. 5  Realization of Active Filters .......................................................... 21  Typical Performance Characteristics ............................................. 6  Band-Pass KRC or Sallen-Key Filter ....................................... 21  Functional Description .................................................................. 14  Channel Separation.................................................................... 21  Total Noise-Including Source Resistors.................................. 14  References on Noise Dynamics and Flicker Noise ............... 21  Gain Linearity ............................................................................. 14  Outline Dimensions ....................................................................... 22  Input Overvoltage Protection ................................................... 15  Ordering Guide .......................................................................... 24  Output Phase Reversal ............................................................... 15  Settling Time ............................................................................... 15  REVISION HISTORY 8/2020—Rev. H to Rev. I Changes to Ordering Guide .......................................................... 24 9/2018—Rev. G to Rev. H Changes to Ordering Guide .......................................................... 24 11/2009—Rev. F to Rev. G Changes to Figure 64 ..................................................................... 19 Changes to Ordering Guide .......................................................... 24 Updated Outline Dimensions ....................................................... 22 5/2009—Rev. E to Rev. F Changes to Figure 64 ..................................................................... 19 Changes to Ordering Guide .......................................................... 24 10/2007—Rev. D to Rev. E Changes to General Description .................................................... 1 Changes to Table 4 ........................................................................... 5 Updated Outline Dimensions ....................................................... 22 7/2006—Rev. C to Rev. D Changes to Table 4 ........................................................................... 5 Changes to Figure 51 ..................................................................... 14 Changes to Figure 52 ..................................................................... 15 Changes to Figure 54 ..................................................................... 16 Changes to Figure 58 to Figure 61 ............................................... 17 Changes to Figure 62 and Figure 63 ............................................ 18 Changes to Figure 64 ..................................................................... 19 Changes to Figure 65 and Figure 66 ............................................ 20 Changes to Figure 67 and Figure 68 ............................................ 21 Removed SPICE Model Section ................................................... 21 Updated Outline Dimensions ...................................................... 22 Changes to Ordering Guide .......................................................... 24 4/2004—Rev. B to Rev. C Changes to Ordering Guide .............................................................4 Changes to TPC 6 ..............................................................................5 Changes to TPC 26............................................................................7 Updated Outline Dimensions ...................................................... 17 4/2002—Rev. A to Rev. B Added OP4177......................................................................... Global Edits to Specifications .......................................................................2 Edits to Electrical Characteristics Headings ..................................4 Edits to Ordering Guide ...................................................................4 11/2001—Rev. 0 to Rev. A Edit to Features ..................................................................................1 Edits to TPC 6 ...................................................................................5 7/2001—Revision 0: Initial Version Rev. I | Page 2 of 24 Data Sheet OP1177/OP2177/OP4177 SPECIFICATIONS ELECTRICAL CHARACTERISTICS VS = ±5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage OP1177 OP2177/OP4177 OP1177/OP2177 OP4177 Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift OP1177/OP2177 OP4177 OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current POWER SUPPLY Power Supply Rejection Ratio OP1177 OP2177/OP4177 Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density MULTIPLE AMPLIFIERS CHANNEL SEPARATION 1 Symbol VOS VOS VOS VOS IB IOS CMRR Test Conditions/Comments −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C Min −2 −1 −3.5 120 118 1000 AVO VCM = −3.5 V to +3.5 V −40°C < TA < +125°C RL = 2 kΩ, VO = −3.5 V to +3.5 V ΔVOS/ΔT ΔVOS/ΔT −40°C < TA < +125°C −40°C < TA < +125°C VOH VOL IOUT IL = 1 mA, −40°C < TA < +125°C IL = 1 mA, −40°C < TA < +125°C VDROPOUT < 1.2 V +4 PSRR VS = ±2.5 V to ±15 V −40°C < TA < +125°C VS = ±2.5 V to ±15 V −40°C < TA < +125°C VO = 0 V −40°C < TA < +125°C 120 115 118 114 PSRR ISY Typ1 Max Unit 15 15 25 25 +0.5 +0.2 60 75 100 120 +2 +1 +3.5 μV μV μV μV nA nA V dB dB V/mV 0.2 0.3 0.7 0.9 μV/°C μV/°C +4.1 −4.1 ±10 −4 V V mA 126 125 2000 130 125 121 120 400 500 SR GBP RL = 2 kΩ 0.7 1.3 en p-p en in CS 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz DC f = 100 kHz 0.4 7.9 0.2 0.01 −120 500 600 dB dB dB dB μA μA V/μs MHz 8.5 μV p-p nV/√Hz pA/√Hz μV/V dB Typical values cover all parts within one standard deviation of the average value. Average values given in many competitor data sheets as typical give unrealistically low estimates for parameters that can have both positive and negative values. Rev. I | Page 3 of 24 OP1177/OP2177/OP4177 Data Sheet ELECTRICAL CHARACTERISTICS VS = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage OP1177 OP2177/OP4177 OP1177/OP2177 OP4177 Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift OP1177/OP2177 OP4177 OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Short-Circuit Current POWER SUPPLY Power Supply Rejection Ratio OP1177 OP2177/OP4177 Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density MULTIPLE AMPLIFIERS CHANNEL SEPARATION 1 Symbol VOS VOS VOS VOS IB IOS CMRR Conditions −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C Min −2 −1 −13.5 AVO VCM = −13.5 V to +13.5 V, −40°C < TA < +125°C RL = 2 kΩ, VO = –13.5 V to +13.5 V ΔVOS/ΔT ΔVOS/ΔT −40°C < TA < +125°C −40°C < TA < +125°C VOH VOL IOUT ISC IL = 1 mA, −40°C < TA < +125°C IL = 1 mA, −40°C < TA < +125°C VDROPOUT < 1.2 V +14 PSRR VS = ±2.5 V to ±15 V −40°C < TA < +125°C VS = ±2.5 V to ±15 V −40°C < TA < +125°C VO = 0 V −40°C < TA < +125°C 120 115 118 114 PSRR ISY 120 1000 Typ1 Max Unit 15 15 25 25 +0.5 +0.2 60 75 100 120 +2 +1 +13.5 μV μV μV μV nA nA V 125 3000 0.2 0.3 +14.1 −14.1 ±10 ±25 130 125 121 120 400 500 SR GBP RL = 2 kΩ 0.7 1.3 en p-p en in CS 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz DC f = 100 kHz 0.4 7.9 0.2 0.01 −120 dB V/mV 0.7 0.9 −14 500 600 μV/°C μV/°C V V mA mA dB dB dB dB μA μA V/μs MHz 8.5 μV p-p nV/√Hz pA/√Hz μV/V dB Typical values cover all parts within one standard deviation of the average value. Average values given in many competitor data sheets as typical give unrealistically low estimates for parameters that can have both positive and negative values. Rev. I | Page 4 of 24 Data Sheet OP1177/OP2177/OP4177 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage Input Voltage Differential Input Voltage Storage Temperature Range R, RM, and RU Packages Operating Temperature Range OP1177/OP2177/OP4177 Junction Temperature Range R, RM, and RU Packages Lead Temperature, Soldering (10 sec) Rating 36 V VS− to VS+ ±Supply Voltage −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance Package Type1 8-Lead MSOP (RM-8) 8-Lead SOIC_N (R-8) 14-Lead SOIC_N (R-14) 14-Lead TSSOP (RU-14) 1 θJA 190 158 120 240 MSOP is available in tape and reel only. ESD CAUTION Rev. I | Page 5 of 24 θJC 44 43 36 43 Unit °C/W °C/W °C/W °C/W OP1177/OP2177/OP4177 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 45 1.8 VSY = ±15V 1.6 ΔOUTPUT VOLTAGE (V) 1.4 35 30 25 20 15 1.2 1.0 0.8 0.4 5 0.2 0 –30 –40 –20 –10 0 10 20 INPUT OFFSETVOLTAGE (µV) 30 40 SOURCE 0.6 10 SINK 0 0.001 02627-007 NUMBER OF AMPLIFIERS 40 VSY = ±15V TA = 25°C Figure 7. Input Offset Voltage Distribution 0.01 0.1 LOAD CURRENT (mA) 1 10 02627-010 50 Figure 10. Output Voltage to Supply Rail vs. Load Current 3 90 VSY = ±15V VSY = ±15V 80 70 INPUT BIAS CURRENT (nA) NUMBER OF AMPLIFIERS 2 60 50 40 30 20 1 0 –1 –2 0.65 –3 –50 Figure 8. Input Offset Voltage Drift Distribution 100 50 120 OPEN-LOOP GAIN (dB) 100 80 60 40 VSY = ±15V CL = 0 RL = ∞ 225 180 40 135 30 GAIN 90 20 PHASE 10 –45 –10 0.2 0.3 0.4 0.5 INPUT BIAS CURRENT (nA) 0.6 0.7 –20 100k 02627-009 0.1 Figure 9. Input Bias Current Distribution 45 0 0 20 0 150 270 60 VSY = ±15V NUMBER OF AMPLIFIERS 50 TEMPERATURE (°C) Figure 11. Input Bias Current vs. Temperature 140 0 0 1M FREQUENCY (Hz) –90 10M Figure 12. Open-Loop Gain and Phase Shift vs. Frequency Rev. I | Page 6 of 24 PHASE SHIFT (Degrees) 0.15 0.25 0.35 0.45 0.55 INPUT OFFSET VOLTAGE DRIFT (µV/°C) 02627-012 0.05 02627-008 0 02627-011 10 Data Sheet OP1177/OP2177/OP4177 120 VOLTAGE (100mV/DIV) 80 CLOSED-LOOP GAIN (dB) VSY = ±15V CL = 1,000pF RL = 2kΩ VIN = 100mV AV = 1 VSY = ±15V VIN = 4mV p-p CL = 0 RL = ∞ 100 60 AV = 100 40 AV = 10 20 0 AV = 1 –20 GND –40 10k 100k 1M FREQUENCY (Hz) 10M 100M TIME (100µs/DIV) Figure 16. Small Signal Transient Response Figure 13. Closed-Loop Gain vs. Frequency 50 500 VSY = ±15V VIN = 50mV p-p OUTPUT IMPEDANCE (Ω) 400 350 300 AV = 10 AV = 1 250 AV = 100 200 VSY = ±15V RL = 2kΩ VIN = 100mV p-p 45 SMALL SIGNAL OVERSHOOT (%) 450 02627-016 1k 150 100 40 35 30 25 +OS 20 15 10 –OS 5 50 1k 10k 100k FREQUENCY (Hz) 1M 0 02627-014 0 100 1 10 100 CAPACITANCE (pF) 1k 10k 02627-017 –80 02627-013 –60 Figure 17. Small Signal Overshoot vs. Load Capacitance Figure 14. Output Impedance vs. Frequency VSY = ±15V CL = 300pF RL = 2kΩ VIN = 4V AV = 1 VOLTAGE (1V/DIV) 0V VSY = ±15V RL = 10kΩ AV = –100 VIN = 200mV OUTPUT –15V +200mV GND INPUT TIME (10µs/DIV) Figure 18. Positive Overvoltage Recovery Figure 15. Large Signal Transient Response Rev. I | Page 7 of 24 02627-018 TIME (100µs/DIV) 02627-015 0V OP1177/OP2177/OP4177 15V Data Sheet VSY = ±15V OUTPUT 0V VNOISE (0.2µV/DIV) VSY = ±15V RL = 10kΩ AV = –100 VIN = 200mV 0V TIME (4µs/DIV) TIME (1s/DIV) Figure 19. Negative Overvoltage Recovery Figure 22. 0.1 Hz to 10 Hz Input Voltage Noise 18 140 VSY = ±15V VSY = ±15V VOLTAGE NOISE DENSITY (nV/√Hz) 120 80 60 40 20 16 14 12 10 8 6 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 2 02627-020 10 0 Figure 20. CMRR vs. Frequency 50 100 150 FREQUENCY (Hz) 200 Figure 23. Voltage Noise Density vs. Frequency 35 140 VSY = ±15V VSY = ±15V 30 SHORT-CIRCUIT CURRENT (mA) 120 –PSRR 80 +PSRR 60 40 +ISC 25 –ISC 20 15 10 5 20 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 –50 02627-021 PSRR (dB) 100 0 250 02627-023 4 Figure 21. PSRR vs. Frequency 0 50 TEMPERATURE (°C) 100 Figure 24. Short-Circuit Current vs. Temperature Rev. I | Page 8 of 24 150 02627-024 CMRR (dB) 100 0 02627-022 INPUT 02627-019 –200mV Data Sheet OP1177/OP2177/OP4177 14.40 133 VSY = ±15V 131 14.30 130 +VOH 14.25 CMRR (dB) –VOL 14.20 14.15 129 128 127 126 14.10 125 14.05 50 TEMPERATURE (°C) 100 150 123 –50 02627-025 0 0 Figure 25. Output Voltage Swing vs. Temperature 131 0.2 130 0.1 129 0 –0.1 128 127 –0.2 126 –0.3 125 –0.4 124 20 40 60 80 100 120 TIME FROM POWER SUPPLY TURN-ON (Sec) 140 123 –50 0 Figure 26. Warm-Up Drift 100 150 Figure 29. PSRR vs. Temperature 18 50 VSY = ±15V 45 16 VSY = ±5V 40 NUMBER OF AMPLIFIERS 14 12 10 8 6 4 35 30 25 20 15 10 2 5 0 50 100 TEMPERATURE (°C) 150 0 02627-027 0 –50 50 TEMPERATURE (°C) 02627-029 PSRR (dB) 0.3 0 VSY = ±15V 132 02627-026 ΔOFFSET VOLTAGE (µV) 150 133 VSY = ±15V 0.4 INPUT OFFSET VOLTAGE (µV) 100 Figure 28. CMRR vs. Temperature 0.5 –0.5 50 TEMPERATURE (°C) 02627-028 124 14.00 –50 –40 Figure 27. Input Offset Voltage vs. Temperature –30 –20 –10 0 10 20 INPUT OFFSET VOLTAGE (µV) 30 Figure 30. Input Offset Voltage Distribution Rev. I | Page 9 of 24 40 02627-030 OUTPUT VOLTAGE SWING (V) VSY = ±15V 132 14.35 OP1177/OP2177/OP4177 Data Sheet 500 1.4 1.2 VSY = ±5V TA = 25°C 450 VSY = ±5V VIN = 50mV p-p OUTPUT IMPEDANCE (Ω) 0.8 SINK 0.6 SOURCE 0.4 350 300 250 200 150 AV = 10 100 0.2 0.1 1 LOAD CURRENT (mA) 10 0 100 02627-031 0.01 Figure 31. Output Voltage to Supply Rail vs. Load Current 270 VSY = ±5V CL = 0 RL = ∞ 40 180 30 135 GAIN 20 90 PHASE 10 VSY = ±5V CL = 300pF RL = 2kΩ VIN = 1V AV = 1 225 45 0 0 –10 VOLTAGE (1V/DIV) 50 1M 10k 100k FREQUENCY (Hz) Figure 34. Output Impedance vs. Frequency PHASE SHIFT (Degrees) 60 1k 02627-034 50 0 0.001 GND –45 –20 100k –90 10M 1M FREQUENCY (Hz) 02627-032 OPEN-LOOP GAIN (dB) AV = 1 AV = 100 02627-035 ΔOUTPUT VOLTAGE (V) 400 1.0 TIME (100µs/DIV) Figure 32. Open-Loop Gain and Phase Shift vs. Frequency Figure 35. Large Signal Transient Response 120 VSY = ±5V VIN = 4mV p-p CL = 0 RL = ∞ 100 VOLTAGE (50mV/DIV) 60 AV = 100 40 AV = 10 20 0 AV = 1 –20 GND –40 –80 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M Figure 33. Closed-Loop Gain vs. Frequency TIME (10µs/DIV) Figure 36. Small Signal Transient Response Rev. I | Page 10 of 24 02627-036 –60 02627-033 CLOSED-LOOP GAIN (dB) 80 VSY = ±5V CL = 1,000pF RL = 2kΩ VIN = 100mV AV = 1 Data Sheet OP1177/OP2177/OP4177 50 VSY = ±5V RL = 2kΩ VIN = 100mV 40 35 30 25 VS = ±5V AV = 1 RL = 10kΩ INPUT VOLTAGE (2V/DIV) SMALL SIGNAL OVERSHOOT (%) 45 +OS 20 15 10 GND –OS OUTPUT 1 10 100 CAPACITANCE (pF) 1k 10k 02627-040 0 02627-037 5 TIME (200µs/DIV) Figure 40. No Phase Reversal Figure 37. Small Signal Overshoot vs. Load Capacitance 140 0V VSY = ±5V RL = 10kΩ AV = –100 VIN = 200mV VSY = ±5V 120 OUTPUT 100 CMRR (dB) –15V +200mV 80 60 40 INPUT 0 02627-038 TIME (4µs/DIV) 10 100 1k 10k 100k FREQUENCY (Hz) 200 VSY = ±5V RL = 10kΩ AV = –100 VIN = 200mV OUTPUT 10M Figure 41. CMRR vs. Frequency Figure 38. Positive Overvoltage Recovery 5V 1M 02627-041 20 0V VSY = ±5V 180 160 140 PSRR (dB) 0V INPUT 0V 120 100 –PSRR 80 60 +PSRR 40 –200mV 0 02627-039 TIME (4µs/DIV) 10 100 1k 10k 100k FREQUENCY (Hz) Figure 42. PSRR vs. Frequency Figure 39. Negative Overvoltage Recovery Rev. I | Page 11 of 24 1M 10M 02627-042 20 OP1177/OP2177/OP4177 Data Sheet 4.40 VSY = ±5V VSY = ±5V VNOISE (0.2µV/DIV) OUTPUT VOLTAGE SWING (V) 4.35 4.30 +VOH 4.25 –VOL 4.20 4.15 4.10 4.00 –50 02627-043 TIME (1s/DIV) 0 50 TEMPERATURE (°C) 100 Figure 46. Output Voltage Swing vs. Temperature Figure 43. 0.1 Hz to 10 Hz Input Voltage Noise 25 18 VSY = ±5V VSY = ±5V INPUT OFFSET VOLTAGE (µV) 16 14 12 10 8 6 20 15 10 5 2 0 50 100 150 FREQUENCY (Hz) 200 250 0 –50 0 50 100 150 TEMPERATURE (°C) Figure 44. Voltage Noise Density vs. Frequency 02627-047 4 02627-044 VOLTAGE NOISE DENSITY (nV/√Hz) 150 02627-046 4.05 Figure 47. Input Offset Voltage vs. Temperature 35 600 VSY = ±5V 500 VSY = ±15V +ISC SUPPLY CURRENT (µA) 25 –ISC 20 15 10 VSY = ±5V 300 200 0 50 TEMPERATURE (°C) 100 150 0 –50 0 50 100 TEMPERATURE (°C) Figure 45. Short-Circuit Current vs. Temperature Figure 48. Supply Current vs. Temperature Rev. I | Page 12 of 24 150 02627-048 0 –50 400 100 5 02627-045 SHORT-CIRCUIT CURRENT (mA) 30 Data Sheet OP1177/OP2177/OP4177 450 0 TA = 25°C –20 CHANNEL SEPARATION (dB) 350 300 250 200 150 100 –40 –60 –80 –100 –120 0 0 5 10 15 20 25 30 SUPPLY VOLTAGE (V) 35 –160 10 100 1k 10k FREQUENCY (Hz) 100k Figure 50. Channel Separation vs. Frequency Figure 49. Supply Current vs. Supply Voltage Rev. I | Page 13 of 24 1M 02627-050 –140 50 02627-049 SUPPLY CURRENT (µA) 400 OP1177/OP2177/OP4177 Data Sheet FUNCTIONAL DESCRIPTION Analog Devices proprietary process technology and linear design expertise has produced a high voltage amplifier with superior performance to the OP07, OP77, and OP177 in a tiny MSOP 8­lead package. Despite its small size, the OPx177 offers numerous improvements, including low wideband noise, very wide input and output voltage range, lower input bias current, and complete freedom from phase inversion. OPx177 has a specified operating temperature range as wide as any similar device in a plastic surface-mount package. This is increasingly important as PCB and overall system sizes continue to shrink, causing internal system temperatures to rise. Power consumption is reduced by a factor of four from the OP177, and bandwidth and slew rate increase by a factor of two. The low power dissipation and very stable performance vs. temperature also act to reduce warmup drift errors to insignificant levels. Open-loop gain linearity under heavy loads is superior to competitive parts, such as the OPA277, improving dc accuracy and reducing distortion in circuits with high closed-loop gains. Inputs are internally protected from overvoltage conditions referenced to either supply rail. Like any high performance amplifier, maximum performance is achieved by following appropriate circuit and PCB guidelines. The following sections provide practical advice on getting the most out of the OPx177 under a variety of application conditions. For RS < 3.9 kΩ, en dominates and en,TOTAL ≈ en For 3.9 kΩ < RS < 412 kΩ, voltage noise of the amplifier, the current noise of the amplifier translated through the source resistor, and the thermal noise from the source resistor all contribute to the total noise. For RS > 412 kΩ, the current noise dominates and en,TOTAL ≈ inRS The total equivalent rms noise over a specific bandwidth is expressed as en  e n , TOTAL  BW where BW is the bandwidth in hertz. The preceding analysis is valid for frequencies larger than 50 Hz. When considering lower frequencies, flicker noise (also known as 1/f noise) must be taken into account. For a reference on noise calculations, refer to the Band-Pass KRC or Sallen-Key Filter section. GAIN LINEARITY Gain linearity reduces errors in closed-loop configurations. The straighter the gain curve, the lower the maximum error over the input signal range. This is especially true for circuits with high closed-loop gains. The OP1177 has excellent gain linearity even with heavy loads, as shown in Figure 51. Compare its performance to the OPA277, shown in Figure 52. Both devices are measured under identical conditions, with RL = 2 kΩ. The OP2177 (dual) has virtually no distortion at lower voltages. Compared to the OPA277 at several supply voltages and various loads, OP1177 performance far exceeds that of its counterpart. TOTAL NOISE-INCLUDING SOURCE RESISTORS The total noise density of the OPx177 is en, TOTAL  en2  in RS  2  4kTRS where: en is the input voltage noise density. in is the input current noise density. RS is the source resistance at the noninverting terminal. k is Boltzmann’s constant (1.38 × 10−23 J/K). T is the ambient temperature in Kelvin (T = 273 + temperature in degrees Celsius). Rev. I | Page 14 of 24 (10µV/DIV) The low input current noise and input bias current of the OPx177 make it useful for circuits with substantial input source resistance. Input offset voltage increases by less than 1 μV maximum per 500 Ω of source resistance. VSY = ±15V RL = 2kΩ OP1177 (5V/DIV) Figure 51. Gain Linearity 02627-051 The OPx177 series is the fourth generation of Analog Devices, Inc., industry-standard OP07 amplifier family. OPx177 is a high precision, low noise operational amplifier with a combination of extremely low offset voltage and very low input bias currents. Unlike JFET amplifiers, the low bias and offset currents are relatively insensitive to ambient temperatures, even up to 125°C. Data Sheet OP1177/OP2177/OP4177 OPA277 (5V/DIV) VIN VOUT TIME (400µs/DIV) 02627-053 VOLTAGE (5V/DIV) VSY = 10V AV = 1 02627-052 (10µV/DIV) VSY = ±15V RL = 2kΩ Figure 53. No Phase Reversal Figure 52. Gain Linearity INPUT OVERVOLTAGE PROTECTION SETTLING TIME When input voltages exceed the positive or negative supply voltage, most amplifiers require external resistors to protect them from damage. Settling time is defined as the time it takes an amplifier output to reach and remain within a percentage of its final value after application of an input pulse. It is especially important in measurement and control circuits in which amplifiers buffer ADC inputs or DAC outputs. The OPx177 has internal protective circuitry that allows voltages as high as 2.5 V beyond the supplies to be applied at the input of either terminal without any harmful effects. Use an additional resistor in series with the inputs if the voltage exceeds the supplies by more than 2.5 V. The value of the resistor can be determined from the formula VIN  VS  RS  500   5 mA To minimize settling time in amplifier circuits, use proper bypassing of power supplies and an appropriate choice of circuit components. Resistors should be metal film types, because they have less stray capacitance and inductance than their wire-wound counterparts. Capacitors should be polystyrene or polycarbonate types to minimize dielectric absorption. With the OPx177 low input offset current of
OP2177CRZ 价格&库存

很抱歉,暂时无法提供与“OP2177CRZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货