0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP220EZ

OP220EZ

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    OP220EZ - Dual Micropower Operational Amplifier - Analog Devices

  • 数据手册
  • 价格&库存
OP220EZ 数据手册
a FEATURES Excellent TCV OS Match: 2 V/ C Max Low Input Offset Voltage: 150 V Max Low Supply Current: 100 A Single-Supply Operation: 5 V to 30 V Low Input Offset Voltage Drift: 0.75 V/ C Max High Open-Loop Gain: 2,000 V/mV High PSRR: 3 V/V Low Input Bias Current: 12 nA Wide Common-Mode Voltage Range: V– to Within 1.5 V of V+ Pin Compatible with 1458, LM158, and LM2904 Available in Die Form GENERAL DESCRIPTION OUT A –IN A +IN A V– 1 2 3 4 Dual Micropower Operational Amplifier OP220 PIN CONFIGURATIONS 8-Lead Hermatic Dip (Z-Suffix) OP220 8 V+ 7 OUT B 6 5 –IN B +IN B 8-Lead Plastic Dip (P-Suffix) OUT A –IN A +IN A V– 1 2 3 4 OP220 8 V+ 7 OUT B 6 5 –IN B +IN B 8-Lead SOIC (S-Suffix) +IN A V– +IN B –IN B 1 2 3 4 8 –IN A 7 OUT A 6 V+ 5 OUT B 8-Lead TO-99 (J-Suffix) The OP220 is a monolithic dual operational amplifier that can be used either in single or dual supply operation. The low offset voltage and input offset voltage tracking as low as 1.0 mV/∞C, make this the first micropower precision dual operational amplifier. The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between channels provides high performance in instrumentation amplifier designs. The individual amplifiers feature extremely low input offset voltage, low offset voltage drift, low noise voltage, and low bias current. They are fully compensated and protected. Matching between channels is provided on all critical parameters including input offset voltage, tracking of offset voltage versus temperature, noninverting bias currents, and common-mode rejection ratios. V+ Q11 Q3 –IN +IN Q7 Q29 Q5 Q6 Q13 NULL* Q33 Q1 Q9 Q10 Q8 OUTPUT Q27 Q4 Q2 Q26 Q12 Q28 V– *ACESSIBLE IN CHIP FORM ONLY R EV. A Figure 1. Simplified Schematic Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 OP220–SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ V = S 2.5 V to Min 15 V, TA = 25 C, unless otherwise noted.) Min OP220F Typ 250 0.2 13 0/3.5 –15/+13.5 85 90 10 18 500 90 95 10 18 800 32 57 300 Max 300 2 25 Min OP220C/G Typ Max 500 0.2 14 0/3.5 –15/+13.5 75 80 85 90 32 57 500 100 180 750 3.5 30 Unit mV nA nA V V dB dB mV/V mV/V V/mV Parameter Input Offset Voltage Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Symbol VOS IOS IB IVR CMRR Conditions VS = ± 2.5 V to ± 15 V VCM = 0 VCM = 0 V+ = 5 V, V– = 0 V VS = ± 15 V V+ = 5 V, V– = 0 V 0 V £ VCM £ 3.5 V VS = ± 15 V –15 V £ VCM £ +13.5 V VS = ± 2.5 V to ± 15 V, V– = 0 V, V+ = 5 V to 30 V V+ = 5 V, V– = 0 V, RL = 100 kW, 1 V £ VO £ 3.5 V VS = ± 15 V, RL = 25 kW VO = ± 10 V V+ = 5 V, V– = 0 V RL = 1 0 k W VS = ± 15 V, RL = 25 kW RL =25 kW AVCL = 1, RL =25 kW VS = ± 2.5 V, No Load VS = ± 15 V, No Load OP220A/E Typ Max 120 0.15 12 150 1.5 20 0/3.5 –15/+13.5 90 95 100 100 3 6 500 1,000 Power Supply Rejection Ratio Large-Signal Voltage Gain PSRR AVO 1,000 0.7/4 ± 14 2,000 1,000 0.7/4 ± 14 2,000 800 0.8/4 ± 14 1,600 V/mV V V Output Voltage Swing Slew Rate* Bandwidth Supply Current (Both Amplifiers) *Sample tested. VO SR BW ISY 0.05 200 100 140 115 170 0.05 200 115 150 125 190 0.05 200 125 205 135 220 V/ms kHz mA mA ELECTRICAL CHARACTERISTICS –40 C £ T £ +85 C for OP220G unless otherwise noted.) A (Vs = 2.5 V to 15 V, –55 C £ TA £ +125 C for OP220A/C, –25 C £ TA £ +85 C for OP220E/F, OP220F Typ 1.2 400 0.6 13 0/3.2 –15/+13.2 80 85 18 32 500 0.9/3.8 ± 13.6 135 190 170 250 155 200 185 280 85 90 18 32 800 57 100 400 1.0/3.8 ± 13.6 170 275 210 330 OP220C/G Typ Max 2 1,000 0.6 14 0/3.2 –15/+13.2 70 75 80 85 57 100 500 180 320 3 Parameter Input Offset Voltage Drift* Input Offset Voltage Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Symbol TCVOS VOS IOS IB IVR CMRR Conditions VS = ± 15 V Min OP220A/E Typ Max 0.75 200 1.5 300 2 25 Min Max 2 500 2.5 30 Min Unit mV/∞C 1,300 mV 5 40 nA nA V V dB dB mV/V mV/V V/mV V V mA mA VCM = 0 VCM = 0 V+ = 5 V, V– = 0 V VS = ± 15 V V+ = 5 V, V– = 0 V 0 V £ VCM £ 3.2 V VS = ± 15 V –15 V £ VCM £ +13.2 V VS = ± 2.5 V to ± 15 V, V– = 0 V, V+ = 5 V to 30 V VS = ± 15 V, RL = 50 kW VO = ± 10 V V+ = 5 V, V– = 0 V RL = 2 0 k W VS = ± 15 V, RL = 50 kW VS = ± 2.5 V, No Load VS = ± 15 V, No Load 500 0.9/3.8 ± 13.6 0.5 12 0/3.2 –15/+13.2 86 90 90 95 6 10 1,000 Power Supply Rejection Ratio Large-Signal Voltage Gain Output Voltage Swing Supply Current (Both Amplifiers) *Sample tested. PSRR AVO VO ISY –2– REV. A OP220 MATCHING CHARACTERISTICS (@ V = S 15 V, TA = 25 C, unless otherwise noted.) Min OP220A/E Typ Max 150 300 20 1.5 87 14 Min OP220F Typ 250 15 1 95 18 44 Max 500 25 2 72 Min OP220C/G Typ Max 300 20 1.4 85 57 140 800 30 2.5 Unit mV nA nA dB mV/V Parameter Input Offset Voltage Match Average Noninverting Bias Current Noninverting Offset Current Common-Mode Rejection Ratio Match1 Power Supply Rejection Ratio Match2 Symbol DVOS I B+ IOS+ DCMRR DPSRR Conditions VCM = 0 VCM = 0 VCM = –15 V to +13.5 V VS = ± 2.5 V to ± 15 V, 92 10 0.7 100 6 NOTES 1 DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error. 2 3 DPSRR is Input Referred Differential Error . DVS Sample tested. MATCHING CHARACTERISTICS Parameter Input Offset Voltage Match Input Offset Voltage Tracking1 Average Noninverting Bias Current Average Drift of Noninverting Bias Current1 Noninverting Offset Current Average Drift of Noninverting Offset Current1 Common-Mode Rejection Ratio Match2 Power Supply Rejection Ratio Match3 Symbol DVOS TCDVOS I B+ TCIB+ VCM = 0 VCM = 0 Conditions (Vs = 15 V, –55 C £ TA £ +125 C for OP220A/C, –25 C £ TA £ +85 C for OP220E/F, –40 C £ TA £ +85 C for OP220G unless otherwise noted. Grades E, F are sample tested.) Min OP220A/E Typ Max 250 1 10 15 500 2 25 25 Min OP220F Typ 400 1.5 15 15 Max 800 3 30 30 Min OP220C/G Typ Max 800 1.5 22 30 Unit 1,800 mV 5 40 50 mV/∞C nA pA/∞C IOS+ TCIOS+ VCM = 0 VCM = 0 0.7 7 2 15 1 12 2.5 22.5 2.5 15 5 30 nA pA/∞C DCMRR DPSRR VCM = –15 V to +13 V VS = ± 2.5 V to ± 15 V, 87 96 10 26 82 96 30 78 72 80 57 250 dB mV/V NOTES 1 Sample tested. 2 DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error. 3 DPSRR is Input Referred Differential Error . DVS TYPICAL ELECTRICAL CHARACTERISTICS (@ V = s 15 V, TA = 25 C, unless otherwise noted.) OP220N Typical 1.5 Unit mV/∞C V/mV Parameter Average Input Offset Voltage Drift Large-Signal Voltage Gain Symbol TCVOS AVO Conditions RL = 25 kW 2000 REV. A –3– OP220–SPECIFICATIONS Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V Differential Input Voltage . . . . . . . . . . 30 V or Supply Voltage Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage Output Short-Circuit Duration Indefinite Storage Temperature Range . . . . . . . . . . . . –65∞C to +150∞C Junction Temperature (Ti) . . . . . . . . . . . . . –65∞C to +150∞C Operating Temperature Range OP220A/OP220C . . . . . . . . . . . . . . . . . . –55∞C to +125∞C OP220E/OP220F . . . . . . . . . . . . . . . . . . . . –25∞C to +85∞C OP220G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40∞C to +85∞C Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300∞C NOTES *Absolute Maximum Ratings apply to packaged parts, unless otherwise noted. ABSOLUTE MAXIMUM RATINGS * Package Type 8-Lead Hermetic DIP (Q) 8-Lead Plastic DIP (N) 8-Lead SOL (RN) TO-99 (H) * JA* JC Unit ∞C/W ∞C/W ∞C/W ∞C/W 148 103 158 150 16 43 43 18 JA is specified for worst-case mounting conditions, i.e., JA is specified for device in socket for CERDIP and PDIP packages; JA is specified for device soldered to printed circuit board for SO packages. ORDERING GUIDE DIE CHARACTERISTICS T A = 2 5∞ C VOS MAX (mV) CERDIP 150 150 300 750 750 750 OP220AZ* OP220EZ* OP220FZ* Package Options Plastic TO-99 Operating Temperature Range MIL IND IND XIND XIND 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. DIE SIZE 0.097 INCH 0.063 INCH, 6111 SQ. MILS (2.464 mm 1.600 mm, 3.94 SQ. mm) NOTE : ALL V+ PADS ARE INTERNALL CONNECTED INVERTING INPUT (A) NONINVERTING INPUT (A) BALANCE (A) V– BALANCE (B) NONINVERTING INPUT (B) INVERTING INPUT (B) BALANCE (B) V+ OUT (B) V+ OUT (A) V+ BALANCE (A) OP220CJ* MIL OP220GZ* OP220GP* OP220GS For military processed devices, please refer to the Mil Standard Data Sheet OP220AJ/883*. *Not for new design. Obsolete April 2002. WAFER TEST LIMITS (@ VS = Parameter Input Offset Voltage Input Offset Voltage Match Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Voltage Swing Supply Current (Both Amplifiers) 2.5 V, to 15 V, TA = 25 C, unless otherwise noted.) Conditions OP220N Limit 200 300 VCM = 0 VCM = 0 VS = ± 15 V V– = 0 V, V+ = 5 V, 0 V £ VCM £ 3.5 V –15 V £ VCM £ 13.5 V, VS = ± 15 V VS = ± 2.5 V to ± 15 V V– = 0 V, V+ = 5 V to 30 V RL = 25 kW, VS = ± 15 V VO = ± 10 V V+ = 5 V, V– = 0 V, RL = 10 kW VS = ± 15 V, RL = 25 kW VS = ± 2.5 V, No Load VS = ± 15 V, No Load 2 25 –15/13.5 88 93 12.5 22.5 1000 0.7/4 ± 14 125 190 Unit mV Max mV Max nA Max nA Max V Min dB Min mV/V Max V/mV Min V Min mA Max Symbol VOS VOS IOS IB IVR CMRR PSRR AVO VO ISY NOTE Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packing is not guaranteed for standard product dice. Consult factory to negotiate specifications based on die lot qualification through sample lot assembly and testing. –4– REV. A Typical Performance Characteristics– OP220 150 VS = 15V 100 INPUT OFFSET VOLTAGE – V INPUT BIAS CURRENT – nA 14 VS = 15V 12 10 50 8 0 6 –50 4 –100 2 0 –100 –150 –50 –25 0 25 50 75 100 125 –50 TEMPERATURE – C 0 50 TEMPERATURE – C 100 150 TPC 1. Normalized Offset Voltage vs. Temperature TPC 4. Input Bias Current vs. Temperature 80 TA = 25 C 60 700 VS = 15V 600 INPUT OFFSET VOLTAGE – V 40 INPUT OFFSET CURRENT – pA 0 4 8 12 POWER SUPPLY VOLTAGE – V 16 20 500 20 400 0 300 –20 200 –40 –60 100 0 –100 –50 0 50 TEMPERATURE – C 100 150 TPC 2. Input Offset Voltage vs. Power Supply Voltage TPC 5. Input Offset Current vs. Temperature 110 VS = 15V 100 90 OPEN-LOOP GAIN – dB 200 180 TA = 125 C A SUPPLY CURRENT – 80 70 60 50 40 30 20 10Hz 160 100Hz 140 TA = 25 C 120 1kHz 100 TA = –55 C 80 10 0 –75 –50 –25 0 25 50 TEMPERATURE – C 75 100 125 60 0 2.5 5.0 7.5 10.0 12.5 SUPPLY VOLTAGE – V 15.0 17.5 TPC 3. Open-Loop Gain vs. Temperature TPC 6. Supply Current vs. Supply Voltage REV. A –5– OP220 120 TA = 25 C VS = 15V 100 160 140 120 GAIN 100 PHASE 80 60 40 TA = 25 C VS = 15V 0 80 CMRR – dB 60 90 40 m = 53 135 20 20 0 0.01 0.1 1 10 FREQUENCY – Hz 100 1k 0 0.01 0.1 1 10 100 1k FREQUENCY – Hz 10k 100k 1M 180 TPC 7. CMRR vs. Frequency TPC 10. Open-Loop Voltage Gain and Phase vs. Frequency 130 120 110 100 PSRR – dB 36 TA = 25 C VS = 15V PEAK-TO-PEAK AMPLITUDE – V 32 28 24 20 16 12 8 4 TA = 25 C VS = 15V +PSRR 90 80 70 –PSRR 60 50 40 1 10 100 1k FREQUENCY – Hz 10k 100k 0 100 1k 10k FREQUENCY – Hz 100k 1M TPC 8. PSRR vs. Frequency TPC 11. Maximum Output Swing vs. Frequency 17 TA = 25 C 15 0.09 0.08 VS = 15V PEAK OUTPUT VOLTAGE – V 0.07 SLEW RATE – V/ sec VS = 15V 0.06 0.05 0.04 0.03 0.02 0.01 VS = 5V 10 5 VS = 5V 0 1 10 LOAD RESISTANCE – k 100 0 –75 –50 –25 0 25 50 75 TEMERATURE – C 100 125 150 TPC 9. Maximum Output Voltage vs. Load Resistance TPC 12. Slew Rate vs. Temperature –6– REV. A PHASE SHIFT – Degrees OPEN-LOOP GAIN – dB 45 OP220 1,000 10 CURRENT NOISE DENSITY – pA/ Hz VOLTAGE NOISE DENSITY – nV/ Hz 1 100 0.1 10 0.1 1 10 FREQUENCY – Hz 100 1k 0.01 0.1 1 10 FREQUENCY – Hz 100 1k TPC 13. Voltage Noise Density vs. Frequency TPC 14. Noise Density vs. Frequency REV. A –7– OP220 R0 50mV 100 90 2s GAIN ADJ R1 R2 V1 A1 VCM – 1/2 VD 10 0% R4 R3 – VD 1/2 OP220 20mV VCM + 1/2 VD + A2 VO 1/2 OP220 INPUT OUTPUT OP220 25k 100pF VO = R1 ˆ Ê If R1 = R2 = R 3 = R4 , thenVO = 2Á 1 + ˜ VD Ë R0 ¯ R4 Ê R 3 R2 ˆ R4 È 1 Ê R2 R 3 ˆ R2 + R 3 ˘ 1+ Á VD + + ˜ VCM Á ˜+ R 3 Ë R4 R1 ¯ R 3 Í 2 Ë R1 R4 ¯ R0 ˙ Î ˚ Figure 2. Small-Signal Transient Response 2V 100 90 Figure 4. Two Op Amp Instrumentation Amplifier Configuration 200 s The input voltages are represented as a common-mode input VCM plus a differential input VD. The ratio R3/R4 is made equal to the ratio R2/R, to reject the common-mode input VCM. The differential signal VD is then amplified according to: VO = R 3 R2 R4 Ê R 3 R2 + R 3 ˆ + = Á1 + ˜ VD , where R4 R1 R3 Ë R4 RO ¯ 10 0% 5V INPUT OUTPUT OP220 RL 25k CL 100pF Note that gain can be independently varied by adjusting RO. From considerations of dynamic range, resistor tempco matching, and matching of amplifier response, it is generally best to make RX, R2, R3, and R4 approximately equal. Designating R1, R2, R3, and R4 as RN allows the output equation to be further simplified: 40k 10k Ê Rˆ VO = 2 Á 1 + N ˜ VD , where RN = R1 = R2 = R 3 = R4 RO ¯ Ë Dynamic range is limited by A1 as well as A2; the output of A1 is: Figure 3. Large-Signal Transient Response INSTRUMENTATION AMPLIFIER APPLICATIONS OF THE OP220 Two Op Amp Configuration Ê Rˆ V 1 = -Á 1 + N ˜ VD + 2 VCM RO ¯ Ë If the instrumentation amplifier were designed for a gain of 10 and maximum VD of ± 1 V, then RN/RO would need to be four and VO would be a maximum of ± 10 V. Amplifier A1 would have a maximum output of ± 5 V plus 2 VCM, thus a limit of ± 10 V on the output of A1 would imply a limit of ± 2.5 V on VCM. A nominal value of 100 kW for RN is suitable for most applications. A range of 200 W to 25 kW for RO will then provide a gain range of 10 to 1,000. The current through RO is VD/RO, so the amplifiers must supply ± 10 mV/200 W when the gain is at the maximum value of 1,000 and VD is at ± 10 mV. Rejecting common-mode inputs is most important in accurately amplifying low-level differential signals. Two factors determine the CMR of this instrumentation amplifier configuration (assuming infinite gain): 1. CMRR of the op amps 2. Matching of the resistor network (R3/R4 = R2/R1) –8– REV. A The excellent input characteristics of the OP220 make it ideal for use in instrumentation amplifier configurations where low-level differential signals are to be amplified. The low-noise, low input offsets, low drift, and high gain combined with excellent CMRR provide the characteristics needed for high-performance instrumentation amplifiers. In addition, the power supply current drain is very low. The circuit of Figure 4 is recommended for applications where the common-mode input range is relatively low and differential gain will be in the range of 10 to 1,000. This two op amp instrumentation amplifier features independent adjustment of common-mode rejection and differential gain. Input impedance is very high since both inputs are applied to noninverting op amp inputs. OP220 In this instrumentation amplifier configuration, error due to CMRR effect is directly proportional to the differential CMRR of the op amps. For the OP220A/E, this combined CMRR is a minimum of 98 dB. A combined CMRR value of 100 dB and common-mode input range of ± 2.5 V indicates a peak inputreferred error of only ± 25 mV. Resistor matching is the other factor affecting CMRR. Defining Ad as the differential gain of the instrumentation amplifier and assuming that R1, R2, R3 and R4 are approximately equal (RN will be the nominal value), then CMRR will be approximately AD divided by 4DR/RN. CMRR at differential gain of 100 would be 88 dB with resistor matching of 0.1%. Trimming R1 to make the ratio R3/R4 equal to R2/R1 will directly raise the CMRR until it is limited by linearity and resistor stability considerations. The high open-loop gain of the OP220 is very important in achieving high accuracy in the two-op-amp instrumentation amplifier configuration. Gain error can be approximated by: AD 1 Gain Error = ,
OP220EZ 价格&库存

很抱歉,暂时无法提供与“OP220EZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货