a
Dual Micropower
Operational Amplifier
OP220
FEATURES
Excellent TCV OS Match: 2 V/ⴗC Max
Low Input Offset Voltage: 150 V Max
Low Supply Current: 100 A
Single-Supply Operation: 5 V to 30 V
Low Input Offset Voltage Drift: 0.75 V/ⴗC Max
High Open-Loop Gain: 2,000 V/mV
High PSRR: 3 V/V
Low Input Bias Current: 12 nA
Wide Common-Mode Voltage Range: V– to Within
1.5 V of V+
Pin Compatible with 1458, LM158, and LM2904
Available in Die Form
PIN CONFIGURATIONS
8-Lead Hermatic Dip
(Z-Suffix)
OUT A
1
OP220
8-Lead Plastic Dip
(P-Suffix)
OUT A
1
–IN A
2
7 OUT B
–IN B
+IN A
3
6
–IN B
+IN B
V–
4
5
+IN B
8 V+
2
7 OUT B
+IN A
3
6
V–
4
5
OP220
TE
–IN A
8-Lead SOIC
(S-Suffix)
GENERAL DESCRIPTION
8-Lead TO-99
(J-Suffix)
+IN A
1
8 –IN A
V–
2
7 OUT A
+IN B
3
6 V+
–IN B
4
5 OUT B
LE
The OP220 is a monolithic dual operational amplifier that can
be used either in single or dual supply operation. The low offset
voltage and input offset voltage tracking as low as 1.0 mV/∞C,
make this the first micropower precision dual operational amplifier.
8 V+
B
SO
The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between
channels provides high performance in instrumentation amplifier designs. The individual amplifiers feature extremely low
input offset voltage, low offset voltage drift, low noise voltage,
and low bias current. They are fully compensated and protected.
Matching between channels is provided on all critical parameters
including input offset voltage, tracking of offset voltage versus
temperature, noninverting bias currents, and common-mode
rejection ratios.
V+
Q11
Q3
Q4
Q28
Q12
Q2
Q26
Q1
O
–IN
Q9
+IN
OUTPUT
Q10
Q27
Q8
Q7
Q29
Q6
Q5
Q13
NULL*
Q33
V–
*ACESSIBLE IN CHIP FORM ONLY
REV. A
Figure 1. Simplified Schematic
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002
OP220–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (@ V = ⴞ2.5 V to ⴞ15 V, T = 25ⴗC, unless otherwise noted.)
S
Min
OP220A/E
Typ
Max
Input Offset Voltage
VOS
VS = ± 2.5 V to ± 15 V
120
150
250
300
500
750
mV
Input Offset Current
IOS
VCM = 0
0.15
1.5
0.2
2
0.2
3.5
nA
Input Bias Current
IB
VCM = 0
12
20
13
25
14
30
nA
Input Voltage Range
IVR
V+ = 5 V, V– = 0 V
VS = ± 15 V
0/3.5
–15/+13.5
0/3.5
–15/+13.5
0/3.5
–15/+13.5
V
V
Common-Mode
Rejection Ratio
CMRR
V+ = 5 V, V– = 0 V
0 V £ VCM £ 3.5 V
VS = ± 15 V
–15 V £ VCM £ +13.5 V
90
100
85
90
75
85
dB
95
100
90
95
80
90
dB
PSRR
VS = ± 2.5 V to ± 15 V,
V– = 0 V, V+ = 5 V to 30 V
Large-Signal
Voltage Gain
AVO
V+ = 5 V, V– = 0 V,
RL = 100 kW,
1 V £ VO £ 3.5 V
VS = ± 15 V, RL = 25 kW
VO = ± 10 V
VO
V+ = 5 V, V– = 0 V
RL = 10 kW
VS = ± 15 V, RL = 25 kW
SR
RL =25 kW
Bandwidth
BW
AVCL = 1, RL =25 kW
Supply Current
(Both Amplifiers)
ISY
VS = ± 2.5 V, No Load
VS = ± 15 V, No Load
*Sample tested.
1,000
1,000
2,000
0.7/4
± 14
10
18
Min
32
57
32
57
100
180
Unit
mV/V
mV/V
500
800
300
500
V/mV
1,000
2,000
800
1,600
V/mV
0.7/4
0.8/4
V
± 14
± 14
V
0.05
0.05
0.05
V/ms
200
200
200
kHz
100
140
B
SO
Slew Rate*
500
10
18
LE
Output Voltage
Swing
3
6
Max
OP220C/G
Typ
Max
Conditions
Power Supply
Rejection Ratio
Min
OP220F
Typ
Symbol
TE
Parameter
A
115
170
115
150
125
190
125
205
135
220
mA
mA
(Vs = ⴞ2.5 V to ⴞ15 V, –55ⴗC £ TA £ +125ⴗC for OP220A/C, –25ⴗC £ TA £ +85ⴗC for OP220E/F,
ELECTRICAL CHARACTERISTICS –40ⴗC £ T £ +85ⴗC for OP220G unless otherwise noted.)
A
Symbol
Conditions
Input Offset Voltage
Drift*
TCVOS
VS = ± 15 V
Input Offset Voltage
VOS
Input Offset Current
IOS
Input Bias Current
IB
Min
OP220A/E
Typ
Max
Min
OP220F
Typ
Max
Min
OP220C/G
Typ
Max
Unit
mV/∞C
0.75
1.5
1.2
2
2
3
200
300
400
500
1,000
1,300 mV
VCM = 0
0.5
2
0.6
2.5
0.6
5
nA
VCM = 0
12
25
13
30
14
40
nA
O
Parameter
Input Voltage Range
IVR
V+ = 5 V, V– = 0 V
VS = ± 15 V
0/3.2
–15/+13.2
0/3.2
–15/+13.2
0/3.2
–15/+13.2
V
V
Common-Mode
Rejection Ratio
CMRR
V+ = 5 V, V– = 0 V
0 V £ VCM £ 3.2 V
VS = ± 15 V
–15 V £ VCM £ +13.2 V
86
90
80
85
70
80
dB
90
95
85
90
75
85
dB
Power Supply
Rejection Ratio
PSRR
VS = ± 2.5 V to ± 15 V,
V– = 0 V, V+ = 5 V to 30 V
Large-Signal
Voltage Gain
AVO
VS = ± 15 V, RL = 50 kW
VO = ± 10 V
500
Output Voltage
Swing
VO
V+ = 5 V, V– = 0 V
RL = 20 kW
VS = ± 15 V, RL = 50 kW
0.9/3.8
0.9/3.8
1.0/3.8
V
± 13.6
± 13.6
± 13.6
V
Supply Current
(Both Amplifiers)
ISY
VS = ± 2.5 V, No Load
VS = ± 15 V, No Load
6
10
18
32
1,000
135
190
18
32
500
170
250
57
100
800
155
200
57
100
400
185
280
180
320
500
170
275
mV/V
mV/V
V/mV
210
330
mA
mA
*Sample tested.
–2–
REV. A
OP220
MATCHING CHARACTERISTICS (@ V = ⴞ15 V, T = 25ⴗC, unless otherwise noted.)
S
Parameter
Symbol
Input Offset Voltage
Match
DVOS
Average Noninverting
Bias Current
I B+
Noninverting Offset
Current
Conditions
A
Min
OP220A/E
Typ
Max
Min
OP220F
Typ
Max
Min
OP220C/G
Typ
Max
Unit
150
300
250
500
300
800
mV
VCM = 0
10
20
15
25
20
30
nA
IOS+
VCM = 0
0.7
1.5
1
2
1.4
2.5
nA
Common-Mode
Rejection Ratio Match1
DCMRR
VCM = –15 V to +13.5 V
Power Supply
Rejection Ratio Match2
DPSRR
VS = ± 2.5 V to ± 15 V,
92
100
95
14
18
72
85
44
57
dB
140
mV/V
TE
6
87
NOTES
1
DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error.
Input Referred Differential Error
.
DVS
DPSRR is
3
Sample tested.
MATCHING CHARACTERISTICS
Parameter
Symbol
Conditions
DVOS
Input Offset Voltage
Tracking1
TCDVOS
Average Noninverting
Bias Current
I B+
VCM = 0
Average Drift of
Noninverting
Bias Current1
TCIB+
Noninverting Offset
Current
Min
OP220A/E
Typ
Max
Min
OP220F
Typ
Max
Min
OP220C/G
Typ
Max
Unit
250
500
400
800
800
1,800 mV
1
2
1.5
3
1.5
5
mV/∞C
10
25
15
30
22
40
nA
VCM = 0
15
25
15
30
30
50
pA/∞C
IOS+
VCM = 0
0.7
2
1
2.5
2.5
5
nA
Average Drift of
Noninverting Offset
Current1
TCIOS+
VCM = 0
7
15
12
22.5
15
30
pA/∞C
Common-Mode
Rejection Ratio Match2
DCMRR
VCM = –15 V to +13 V
Power Supply
Rejection Ratio Match3
DPSRR
O
B
SO
Input Offset Voltage
Match
(Vs = ⴞ15 V, –55ⴗC £ TA £ +125ⴗC for OP220A/C, –25ⴗC £ TA £ +85ⴗC for OP220E/F,
–40ⴗC £ TA £ +85ⴗC for OP220G unless otherwise noted. Grades E, F are sample tested.)
LE
2
87
96
VS = ± 2.5 V to ± 15 V,
10
82
96
26
30
72
78
80
57
dB
250
mV/V
NOTES
1
Sample tested.
2
DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error.
3
DPSRR is
Input Referred Differential Error
.
DVS
TYPICAL ELECTRICAL CHARACTERISTICS (@ V = ⴞ15 V, T
s
Parameter
Symbol
Average Input Offset Voltage Drift
TCVOS
Large-Signal Voltage Gain
AVO
REV. A
Conditions
RL = 25 kW
–3–
A
= 25ⴗC, unless otherwise noted.)
OP220N
Typical
Unit
1.5
mV/∞C
2000
V/mV
OP220–SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS*
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Differential Input Voltage . . . . . . . . . . 30 V or Supply Voltage
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage
Output Short-Circuit Duration
Indefinite
Storage Temperature Range . . . . . . . . . . . . –65∞C to +150∞C
Junction Temperature (Ti) . . . . . . . . . . . . . –65∞C to +150∞C
Operating Temperature Range
OP220A/OP220C . . . . . . . . . . . . . . . . . . –55∞C to +125∞C
OP220E/OP220F . . . . . . . . . . . . . . . . . . . . –25∞C to +85∞C
OP220G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40∞C to +85∞C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300∞C
Unit
8-Lead Hermetic DIP (Q)
148
16
∞C/W
8-Lead Plastic DIP (N)
103
43
∞C/W
8-Lead SOL (RN)
158
43
∞C/W
TO-99 (H)
150
18
∞C/W
150
150
300
750
750
750
Plastic
TO-99
Operating
Temperature
Range
OP220AZ*
OP220EZ*
OP220FZ*
MIL
IND
IND
OP220CJ* MIL
OP220GZ* OP220GP*
OP220GS
XIND
XIND
LE
INVERTING INPUT (A)
NONINVERTING INPUT (A)
BALANCE (A)
V–
BALANCE (B)
NONINVERTING INPUT (B)
INVERTING INPUT (B)
BALANCE (B)
V+
OUT (B)
V+
OUT (A)
V+
BALANCE (A)
Package Options
TE
TA = 25∞C
VOS MAX
(mV)
CERDIP
For military processed devices, please refer to the Mil Standard
Data Sheet
OP220AJ/883*.
*Not for new design. Obsolete April 2002.
B
SO
NOTE : ALL V+ PADS ARE INTERNALL CONNECTED
JC
ORDERING GUIDE
DIE CHARACTERISTICS
DIE SIZE 0.097 INCH ⴛ 0.063 INCH, 6111 SQ. MILS
(2.464 mm ⴛ 1.600 mm, 3.94 SQ. mm)
JA*
*JA is specified for worst-case mounting conditions, i.e., JA is specified for device
in socket for CERDIP and PDIP packages; JA is specified for device soldered to
printed circuit board for SO packages.
NOTES
*Absolute Maximum Ratings apply to packaged parts, unless otherwise noted.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Package Type
WAFER TEST LIMITS (@ VS = ⴞ2.5 V, to ⴞ15 V, TA = 25ⴗC, unless otherwise noted.)
Parameter
Symbol
Conditions
OP220N
Limit
Unit
VOS
200
mV Max
Input Offset Voltage Match
⌬VOS
300
mV Max
Input Offset Current
IOS
VCM = 0
2
nA Max
Input Bias Current
IB
VCM = 0
25
nA Max
Input Voltage Range
IVR
VS = ± 15 V
–15/13.5
V Min
Common-Mode
Rejection Ratio
CMRR
V– = 0 V, V+ = 5 V, 0 V £ VCM £ 3.5 V
–15 V £ VCM £ 13.5 V, VS = ± 15 V
88
93
dB Min
Power Supply
Rejection Ratio
PSRR
VS = ± 2.5 V to ± 15 V
V– = 0 V, V+ = 5 V to 30 V
12.5
22.5
mV/V Max
Large-Signal
Voltage Gain
AVO
RL = 25 kW, VS = ± 15 V
VO = ± 10 V
1000
V/mV Min
Output Voltage Swing
VO
V+ = 5 V, V– = 0 V, RL = 10 kW
VS = ± 15 V, RL = 25 kW
0.7/4
± 14
V Min
Supply Current
(Both Amplifiers)
ISY
VS = ± 2.5 V, No Load
VS = ± 15 V, No Load
125
190
mA Max
O
Input Offset Voltage
NOTE
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packing is not guaranteed
for standard product dice. Consult factory to negotiate specifications based on die lot qualification through sample lot assembly and testing.
–4–
REV. A
Typical Performance Characteristics– OP220
14
150
VS = 15V
VS = 15V
12
INPUT BIAS CURRENT – nA
INPUT OFFSET VOLTAGE – V
100
50
0
–50
–100
10
8
6
4
2
–150
–50
0
–25
25
50
75
100
0
–100
125
–50
0
50
TEMPERATURE – ⴗC
TPC 1. Normalized Offset Voltage vs. Temperature
TPC 4. Input Bias Current vs. Temperature
80
700
VS = 15V
TA = 25ⴗC
INPUT OFFSET CURRENT – pA
600
20
0
–20
–40
0
4
8
12
POWER SUPPLY VOLTAGE – V
16
110
80
O
70
10Hz
100Hz
60
50
40
1kHz
30
200
–50
0
50
TEMPERATURE – ⴗC
150
100
TPC 5. Input Offset Current vs. Temperature
200
180
TA = 125ⴗC
SUPPLY CURRENT – A
90
300
0
–100
20
VS = 15V
100
400
100
TPC 2. Input Offset Voltage vs. Power Supply Voltage
OPEN-LOOP GAIN – dB
500
LE
40
B
SO
⌬ INPUT OFFSET VOLTAGE – V
60
–60
150
100
TE
TEMPERATURE – ⴗC
160
140
TA = 25ⴗC
120
100
TA = –55ⴗC
20
80
10
0
–75
–50
–25
0
25
50
TEMPERATURE – ⴗC
75
100
60
125
0
5.0
7.5
10.0
12.5
SUPPLY VOLTAGE – V
15.0
TPC 6. Supply Current vs. Supply Voltage
TPC 3. Open-Loop Gain vs. Temperature
REV. A
2.5
–5–
17.5
OP220
TA = 25ⴗC
VS = 15V
140
OPEN-LOOP GAIN – dB
100
80
CMRR – dB
0
160
TA = 25ⴗC
VS = 15V
60
40
45
120
GAIN
100
PHASE
90
80
60
40
135
⌽m = 53ⴗ
20
PHASE SHIFT – Degrees
120
20
0.1
1
10
FREQUENCY – Hz
0
0.01
1k
100
TPC 7. CMRR vs. Frequency
10
100
1k
FREQUENCY – Hz
10k
100k
1M
180
36
TA = 25ⴗC
VS = 15V
100
+PSRR
90
80
70
–PSRR
B
SO
60
1
10
100
1k
FREQUENCY – Hz
10k
24
20
16
12
8
4
0
100
100k
TPC 8. PSRR vs. Frequency
17
28
LE
110
50
TA = 25ⴗC
VS = 15V
32
PEAK-TO-PEAK AMPLITUDE – V
120
PSRR – dB
1
TPC 10. Open-Loop Voltage Gain and Phase vs. Frequency
130
40
0.1
TE
0
0.01
1k
10k
FREQUENCY – Hz
1M
100k
TPC 11. Maximum Output Swing vs. Frequency
0.09
TA = 25ⴗC
0.08
VS = 15V
5
0.07
SLEW RATE – V/sec
10
O
PEAK OUTPUT VOLTAGE – V
15
VS = 15V
0.06
VS = 5V
0.05
0.04
0.03
0.02
VS = 5V
0.01
0
1
10
LOAD RESISTANCE – k⍀
0
–75
100
TPC 9. Maximum Output Voltage vs. Load Resistance
–50
–25
0
25
50
75
TEMERATURE – ⴗC
100
125
150
TPC 12. Slew Rate vs. Temperature
–6–
REV. A
OP220
10
CURRENT NOISE DENSITY – pA/ Hz
100
10
0.1
1
10
FREQUENCY – Hz
100
1
0.1
0.01
0.1
1k
1
100
TPC 14. Noise Density vs. Frequency
O
B
SO
LE
TPC 13. Voltage Noise Density vs. Frequency
REV. A
10
FREQUENCY – Hz
TE
VOLTAGE NOISE DENSITY – nV/ Hz
1,000
–7–
1k
OP220
R0
2s
50mV
GAIN
ADJ
100
90
R1
R2
V1
A1
VCM – 1/2 VD
10
0%
–
VD
1/2
OP220
R4
R3
20mV
VCM + 1/2 VD
A2
+
VO
1/2
OP220
INPUT
VO =
25k⍀
100pF
R1 ˆ
Ê
If R1 = R2 = R 3 = R4 , thenVO = 2Á 1 +
˜ VD
Ë
R0 ¯
Figure 2. Small-Signal Transient Response
Figure 4. Two Op Amp Instrumentation Amplifier
Configuration
200s
The input voltages are represented as a common-mode input
VCM plus a differential input VD. The ratio R3/R4 is made equal
to the ratio R2/R, to reject the common-mode input VCM. The
differential signal VD is then amplified according to:
LE
2V
R4 È 1 Ê R2 R 3 ˆ R2 + R 3 ˘
R4 Ê R 3 R2 ˆ
+
VD +
1+ Á
˜+
˜ VCM
Á
R 3 ÍÎ 2 Ë R1 R4 ¯
R0 ˙˚
R 3 Ë R4 R1 ¯
TE
OUTPUT
OP220
100
90
VO =
10
0%
INPUT
Note that gain can be independently varied by adjusting RO.
From considerations of dynamic range, resistor tempco matching, and matching of amplifier response, it is generally best to
make RX, R2, R3, and R4 approximately equal. Designating
R1, R2, R3, and R4 as RN allows the output equation to be
further simplified:
B
SO
5V
OUTPUT
OP220
40k⍀
10k⍀
RL
25k⍀
R4 Ê
R 3 R2 + R 3 ˆ
R 3 R2
+
=
Á1 +
˜ VD , where
R3 Ë
R4
RO ¯
R4 R1
Ê
R ˆ
VO = 2 Á 1 + N ˜ VD , where RN = R1 = R2 = R 3 = R4
RO ¯
Ë
CL
100pF
Dynamic range is limited by A1 as well as A2; the output of A1 is:
O
Figure 3. Large-Signal Transient Response
INSTRUMENTATION AMPLIFIER APPLICATIONS OF
THE OP220
Two Op Amp Configuration
Ê
R ˆ
V 1 = -Á 1 + N ˜ VD + 2 VCM
RO ¯
Ë
If the instrumentation amplifier were designed for a gain of 10
and maximum VD of ± 1 V, then RN/RO would need to be four
and VO would be a maximum of ± 10 V. Amplifier A1 would
have a maximum output of ± 5 V plus 2 VCM, thus a limit of
±10 V on the output of A1 would imply a limit of ±2.5 V on VCM.
The excellent input characteristics of the OP220 make it ideal for
use in instrumentation amplifier configurations where low-level
differential signals are to be amplified. The low-noise, low input
offsets, low drift, and high gain combined with excellent CMRR
provide the characteristics needed for high-performance instrumentation amplifiers. In addition, the power supply current
drain is very low.
A nominal value of 100 kW for RN is suitable for most applications. A range of 200 W to 25 kW for RO will then provide a gain
range of 10 to 1,000. The current through RO is VD/RO, so the
amplifiers must supply ± 10 mV/200 W when the gain is at the
maximum value of 1,000 and VD is at ± 10 mV.
The circuit of Figure 4 is recommended for applications where
the common-mode input range is relatively low and differential
gain will be in the range of 10 to 1,000. This two op amp instrumentation amplifier features independent adjustment of common-mode
rejection and differential gain. Input impedance is very high since
both inputs are applied to noninverting op amp inputs.
Rejecting common-mode inputs is most important in accurately
amplifying low-level differential signals. Two factors determine
the CMR of this instrumentation amplifier configuration (assuming
infinite gain):
1. CMRR of the op amps
2. Matching of the resistor network (R3/R4 = R2/R1)
–8–
REV. A
OP220
In this instrumentation amplifier configuration, error due to
CMRR effect is directly proportional to the differential CMRR
of the op amps. For the OP220A/E, this combined CMRR is a
minimum of 98 dB. A combined CMRR value of 100 dB and
common-mode input range of ± 2.5 V indicates a peak inputreferred error of only ± 25 mV.
Resistor matching is the other factor affecting CMRR. Defining
Ad as the differential gain of the instrumentation amplifier and
assuming that R1, R2, R3 and R4 are approximately equal (RN
will be the nominal value), then CMRR will be approximately
AD divided by 4DR/RN. CMRR at differential gain of 100 would
be 88 dB with resistor matching of 0.1%. Trimming R1 to make
the ratio R3/R4 equal to R2/R1 will directly raise the CMRR
until it is limited by linearity and resistor stability considerations.
THREE OP AMP CONFIGURATION
A three op amp instrumentation amplifier configuration using
the OP220 and OP777 is recommended for applications requiring
high accuracy over a wide gain range. This circuit provides
excellent CMR over a wide input range. As with the two op amp
instrumentation amplifier circuits, tight matching of the two op
amps provides a real boost in performance.
R1
VO = VD 1 +
R2
2R1
R0
R2
A1
VCM – 1/2 VD
V1
–
R0
The high open-loop gain of the OP220 is very important in
achieving high accuracy in the two-op-amp instrumentation
amplifier configuration. Gain error can be approximated by:
V+
1/2
OP220
OP777
A3
VO
R1
TE
VD
V+
R2
VCM + 1/2 VD
AD
1
Gain Error =
,