0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP249GSZ

OP249GSZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOIC-8

  • 描述:

    IC OPAMP JFET 2 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
OP249GSZ 数据手册
Precision JFET, High Speed, Dual Operational Amplifier OP249 Data Sheet PIN CONFIGURATIONS Slew rate: 22 V/µs typical Settling time (0.01%): 1.2 µs maximum Offset voltage: 200 µV typical Open-loop gain: 1000 V/mV minimum Total harmonic distortion: 0.002% typical OUT A 1 –IN A 2 +IN A 3 V– 4 OP249 A B 8 V+ 7 OUT B 6 –IN B 5 +IN B 00296-001 FEATURES Figure 1. 8-Lead CERDIP (Q-8) and 8-Lead PDIP (N-8) Output amplifier for fast DACs Signal processing Instrumentation amplifiers Fast sample-and-holds Active filters Low distortion audio amplifiers Input buffer for ADCs Servo controllers +IN A 1 8 –IN A V– 2 A 7 OUT A +IN B 3 OP249 6 V+ –IN B 4 B 5 OUT B 00296-002 APPLICATIONS Figure 2. 8-Lead SOIC (R-8) GENERAL DESCRIPTION The OP249 is a high speed, precision dual JFET op amp, similar to the popular single op amp. The OP249 outperforms available dual amplifiers by providing superior speed with excellent dc performance. Ultrahigh open-loop gain (1 kV/mV minimum), low offset voltage, and superb gain linearity makes the OP249 the industry’s first true precision, dual high speed amplifier. Symmetrical slew rate, even when driving large load, such as, 600 Ω or 200 pF of capacitance and ultralow distortion, make the OP249 ideal for professional audio applications, active filters, high speed integrators, servo systems, and buffer amplifiers. With a slew rate of 22 V/µs typical and a fast settling time of less than 1.2 µs maximum to 0.01%, the OP249 is an ideal choice for high speed bipolar DAC and ADC applications. The excellent dc performance of the OP249 allows the full accuracy of high resolution CMOS DACs to be realized. 0.01 TA = 25°C VS = ±15V VO = 10V p-p RL = 10kΩ AV = 1 10mV 500ns Figure 3. Fast Settling (0.01%) Rev. I 0.001 20 100 90 100 1k 10 0% 5V 1µs 00296-005 10 0% 00296-003 100 90 00296-004 870ns 10k 20k Figure 4. Low Distortion, AV = 1, RL = 10 kΩ Figure 5. Excellent Output Drive, RL = 600 Ω Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1989–2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com OP249 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................7 Applications ....................................................................................... 1 Applications Information .............................................................. 13 Pin Configurations ........................................................................... 1 Open-Loop Gain Linearity ....................................................... 14 General Description ......................................................................... 1 Offset Voltage Adjustment ........................................................ 14 Revision History ............................................................................... 2 Settling Time ............................................................................... 14 Specifications..................................................................................... 3 DAC Output Amplifier .............................................................. 15 Electrical Characteristics ............................................................. 3 Discussion on Driving ADCs ................................................... 16 Absolute Maximum Ratings ............................................................ 6 Outline Dimensions ....................................................................... 17 ESD Caution .................................................................................. 6 Ordering Guide .......................................................................... 18 REVISION HISTORY 10/15—Rev. H to Rev. I Changes to Features Section............................................................ 1 Changes to Ordering Guide ............................................................ 8 Deleted Table 7 .................................................................................. 8 11/13—Rev. G to Rev. H Changes to Figure 39 and Figure 41............................................. 13 4/10—Rev. F to Rev. G Changes to Features Section and General Description Section . 1 Changes to Offset Voltage Parameter, Table 1 .............................. 3 Deleted Long Term Offset Voltage Parameter and Note 1, Table 1 ................................................................................... 3 Changes to Offset Voltage Parameter, Offset Voltage Temperature Coefficient Parameter, and Note 1, Table 3 ........... 5 Delete OP249F Columns, Table 3................................................... 5 Changes to Offset Voltage Parameter and Offset Voltage Temperature Coefficient Parameter, Table 4................................. 5 Inserted OP249F Columns, Table 4 ............................................... 5 Changes to Discussion on Driving ADCs Section ..................... 16 Deleted Figure 52 and Figure 53................................................... 17 9/01—Rev. D to Rev. E Edits to Features and Pin Connections ..........................................1 Edits to Electrical Characteristics .............................................. 2, 3 Edits to Absolute Maximum Ratings, Package Type, and Ordering Guide..................................................................................4 Deleted Wafer Test Limits and Dice Characteristics Section ......5 Edits to Typical Performance Characteristics ................................8 Edits to Macro-Model Figure........................................................ 15 Edits to Outline Dimensions......................................................... 17 5/07—Rev. E to Rev. F Updated Format .................................................................. Universal Changes to Table 1 ............................................................................ 3 Changes to Table 2 ............................................................................ 4 Changes to Table 3 and Table 4 ....................................................... 5 Changes to Table 5 ............................................................................ 6 Changes to Figure 31 ...................................................................... 11 Changes to Figure 37 and Figure 38............................................. 12 Deleted OP249 SPICE Macro-Model Section ............................ 14 Deleted Figure 18; Renumbered Sequentially............................. 14 Deleted Table I ................................................................................ 15 Changes to Discussion on Driving ADCs Section ..................... 17 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide .......................................................... 19 Rev. I | Page 2 of 18 Data Sheet OP249 SPECIFICATIONS ELECTRICAL CHARACTERISTICS VS = ±15 V, TA = 25°C, unless otherwise noted. Table 1. Parameter Offset Voltage Offset Stability Input Bias Current Input Offset Current Input Voltage Range1 Symbol VOS Conditions VCM = 0 V Min IB IOS IVR VCM = 0 V, TA = 25°C VCM = 0 V, TA = 25°C OP249A Typ 0.2 1.5 30 6 12.5 Max 0.75 75 25 ±11 Common-Mode Rejection Power-Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Swing CMR PSRR AVO VO VCM = ±11 V VS = ± 4.5 V to ±18 V VO = ±10 V, RL = 2 kΩ RL = 2 kΩ 80 1000 ISC 80 31.6 500 ±20 Supply Current Slew Rate Gain Bandwidth Product2 Settling Time Phase Margin Differential Input Impedance Open-Loop Output Resistance Voltage Noise Voltage Noise Density ISY SR GBW tS ΘM ZIN RO en p-p en Current Noise Density Voltage Supply Range in VS 1 2 3 No load, VO = 0 V RL = 2 kΩ, CL = 50 pF 18 3.5 10 V step 0.01%3 0 dB gain 0.1 Hz to 10 Hz fO = 10 Hz fO = 100 Hz fO = 1 kHz fO = 10 kHz fO = 1 kHz ±4.5 Guaranteed by CMR test. Guaranteed by design. Settling time is sample tested. Rev. I | Page 3 of 18 Max 0.9 75 25 –12.5 90 12 1200 12.5 50 ±12.0 −12.5 36 Output shorted to ground OP249F Typ 0.2 1.5 30 6 12.5 ±11 −12.5 90 12 1400 12.5 ±12.0 Short-Circuit Current Limit Min –12.5 36 ±50 −33 5.6 22 4.7 0.9 55 1012||6 35 2 75 26 17 16 0.003 ±15 ±20 7.0 18 3.5 1.2 ±18 ±4.5 ±50 –33 5.6 22 4.7 0.9 55 1012||6 35 2 75 26 17 16 0.003 ±15 7.0 1.2 ±18 Unit mV µV/month pA pA V V V dB µV/V V/mV V V V mA mA mA mA V/µs MHz µs Degrees Ω||pF Ω µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz pA/√Hz V OP249 Data Sheet VS = ±15 V, TA = 25°C, unless otherwise noted. Table 2. Parameter Offset Voltage Input Bias Current Input Offset Current Input Voltage Range1 Symbol VOS IB IOS IVR Conditions VCM = 0 V VCM = 0 V, TA = 25°C VCM = 0 V TA = 25°C Min OP249G Typ 0.4 40 10 12.5 Max 2.0 75 25 −12.0 90 12 1100 12.5 50 ±11 Common-Mode Rejection Power Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Swing CMR PSRR AVO VO VCM = ±11 V VS = ±4.5 V to ±18 V VO = ±10 V; RL = 2 kΩ RL = 2 kΩ 76 500 ±12.0 Short-Circuit Current Limit ISC −12.5 36 Output shorted to ground ±20 Supply Current Slew Rate Gain Bandwidth Product2 Settling Time Phase Margin Differential Input Impedance Open-Loop Output Resistance Voltage Noise Voltage Noise Density ISY SR GBW tS ΘM ZIN RO en p-p en Current Noise Density Voltage Supply Range in VS 1 2 No load; VO = 0 V RL = 2 kΩ, CL = 50 pF 18 10 V step 0.01% 0 dB gain 0.1 Hz to 10 Hz fO = 10 Hz fO = 100 Hz fO = 1 kHz fO = 10 kHz fO = 1 kHz ±4.5 Guaranteed by CMR test. Guaranteed by design. Rev. I | Page 4 of 18 ±50 −33 5.6 22 4.7 0.9 55 1012||6 35 2 75 26 17 16 0.003 ±15 7.0 1.2 ±18 Unit mV pA pA V V V dB µV/V V/mV V V V mA mA mA mA V/µs MHz µs Degree Ω||pF Ω μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz pA/√Hz V Data Sheet OP249 VS = ±15 V, −55°C ≤ TA ≤ +125°C for A grade, unless otherwise noted. Table 3. Parameter Offset Voltage Symbol VOS Conditions VCM = 0 V Offset Voltage Temperature Coefficient Input Bias Current1 Input Offset Current1 Input Voltage Range2 TCVOS IB IOS IVR VCM = 0 V Min OP249A Typ Max 0.12 1.0 1 4 0.04 12.5 10 20 4 ±11 Common-Mode Rejection Power Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Swing CMR PSRR AVO VO VCM = ±11 V VS = ±4.5 V to ±18 V RL = 2 kΩ; VO = ±10 V RL = 2 kΩ 76 500 −12.5 110 5 1400 12.5 50 ±12 Supply Current 1 2 ISY −12.5 5.6 No load, VO = 0 V 7.0 Unit mV μV/°C nA nA V V V dB μV/V V/mV V V V mA TA = 125°C. Guaranteed by CMR test. VS = ±15 V, −40°C ≤ TA ≤ +85°C, unless otherwise noted. Table 4. Parameter Offset Voltage Offset Voltage Temperature Coefficient Input Bias Current1 Input Offset Current1 Input Voltage Range2 Symbol VOS TCVOS IB IOS IVR Conditions VCM = 0 V VCM = 0 V Min OP249F Typ 0.5 2.2 0.3 0.02 12.5 Max 1.1 12 4.0 1.2 ±11 Common-Mode Rejection Power Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Swing CMR PSRR AVO VO VCM = ±11 V VS = ±4.5 V to ±18 V RL = 2 kΩ; VO = ±10 V RL = 2 kΩ 80 250 1 2 ISY No load, VO = 0 V TA = 85°C. Guaranteed by CMR test. Rev. I | Page 5 of 18 OP249G Typ 1.0 6 0.5 0.04 12.5 Max 3.6 25 4.5 1.5 −12.5 95 10 1200 12.5 100 ±11 −12.5 90 7 1200 12.5 76 100 250 ±12 Supply Current Min ±12.0 −12.5 5.6 7.0 −12.5 5.6 7.0 Unit mV μV/°C nA nA V V V dB μV/V V/mV V V V mA OP249 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 5. Parameter Supply Voltage Input Voltage2 Differential Input Voltage2 Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range OP249A (Q) OP249F (Q) OP249G (N, R) Junction Temperature Range OP249A (Q), OP249F (Q) OP249G (N, R) Lead Temperature (Soldering, 60 sec) 1 1 2 Rating ±18 V ±18 V 36 V Indefinite −65°C to +175°C −55°C to +125°C −40°C to +85°C −40°C to +85°C −65°C to +175°C −65°C to +150°C 300°C Absolute maximum ratings apply to packaged parts, unless otherwise noted. For supply voltages less than ±18 V, the absolute maximum input voltage is equal to the supply voltage. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Table 6. Thermal Resistance Package Type 8-Lead CERDIP (Q) 8-Lead PDIP (N) 8-Lead SOIC (R) 1 θJA1 134 96 150 θJC 12 37 41 Unit °C/W °C/W °C/W θJA is specified for worst-case mounting conditions, that is, θJA is specified for device in socket for CERDIP and PDIP packages; θJA is specified for device soldered to printed circuit board for SOIC package. ESD CAUTION Rev. I | Page 6 of 18 Data Sheet OP249 TYPICAL PERFORMANCE CHARACTERISTICS 120 120 45 40 90 PHASE Θm = 55 20 135 0 180 10k 100k 1M 225 100M 10M FREQUENCY (Hz) +PSRR 60 –PSRR 40 20 0 10 00296-006 –20 1k 80 Θm 6 GBW 4 –50 –25 0 25 50 75 100 2 125 TEMPERATURE (°C) 24 –SR 22 +SR 20 18 16 –75 00296-007 45 –75 –25 0 25 50 75 100 125 Figure 10. Slew Rate vs. Temperature 28 140 TA = 25°C VS = ±15V TA = 25°C VS = ±15V RL = 2kΩ 26 SLEW RATE (V/µs) 100 80 60 24 22 20 40 0 100 1k 10k 100k 1M 00296-011 18 20 00296-008 COMMON-MODE REJECTION (dB) –50 TEMPERATURE (°C) Figure 7. Phase Margin, Gain Bandwidth Product vs. Temperature 120 1M 100k VS = ±15V RL = 2kΩ CL = 50pF 26 SLEW RATE (V/µs) PHASE MARGIN (°C) GAIN BANDWIDTH PRODUCT (MHz) 8 50 10k 28 10 55 1k Figure 9. Power Supply Rejection vs. Frequency VS = ±15V 60 100 FREQUENCY (Hz) Figure 6. Open-Loop Gain, Phase vs. Frequency 65 00296-009 GAIN 60 PHASE (°C) 0 100 00296-010 80 POWER SUPPLY REJECTION (dB) 100 OPEN-LOOP GAIN (dB) TA = 25°C VS = ±15V TA = 25°C VS = ±15V RL = 2kΩ 16 0 10M 0.2 0.4 0.6 0.8 DIFFERENTIAL INPUT VOLTAGE (V) FREQUENCY (Hz) Figure 11. Slew Rate vs. Differential Input Voltage Figure 8. Common-Mode Rejection vs. Frequency Rev. I | Page 7 of 18 1.0 OP249 Data Sheet 35 0.01 TA = 25°C VS = ±15V VO = 10V p-p RL = 10kΩ AV = 1 TA = 25°C VS = ±15V SLEW RATE (V/µs) 30 25 NEGATIVE 20 POSITIVE 15 5 0 200 100 400 300 0.001 20 500 00296-015 00296-012 10 100 1k 10k 20k CAPACITIVE LOAD (pF) Figure 12. Slew Rate vs. Capacitive Load Figure 15. Distortion vs. Frequency 10 0.01 TA = 25°C VS = ±15V AVCL = 1 8 TA = 25°C VS = ±15V VO = 10V p-p RL = 2kΩ AV = 1 OUTPUT STEP SIZE (V) 6 0.1% 4 0.01% 2 0 –2 0.01% –4 0.1% –8 –10 0 200 400 600 800 0.001 20 1000 00296-016 00296-013 –6 100 1k 10k 20k 10k 20k SETTLING TIME (ns) Figure 13. Step Size vs. Settling Time Figure 16. Distortion vs. Frequency 100 0.01 TA = 25°C VS = ±15V VO = 10V p-p RL = 600Ω AV = 1 80 60 40 20 0 0 100 1k 10k 0.001 20 FREQUENCY (Hz) 00296-017 00296-014 VOLTAGE NOISE DENSITY (nV/ Hz) TA = 25°C VS = ±15V 100 1k Figure 17. Distortion vs. Frequency Figure 14. Voltage Noise Density vs. Frequency Rev. I | Page 8 of 18 Data Sheet OP249 500mV 0.1 1s TA = 25°C VS = ±15V VO = 10V p-p RL = 10kΩ AV = 1 +1µV 00296-018 0.01 20 00296-021 –1µV 100 1k 10k BANDWIDTH (0.1Hz TO 10Hz) TA = 25°C, VS = ±15V 20k Figure 21. Low Frequency Noise Figure 18. Distortion vs. Frequency 60 TA = 25°C VS = ±15V 0.1 TA = 25°C VS = ±15V VO = 10V p-p RL = 2kΩ AV = 10 CLOSED-LOOP GAIN (dB) 50 40 AVCL = 100 30 20 10 0 AVCL = 10 AVCL = 5 AVCL = 1 0.01 20 100 1k 10k –20 1k 00296-022 00296-019 –10 10k 20k 100k 1M 10M 100M FREQUENCY (Hz) Figure 19. Distortion vs. Frequency Figure 22. Closed-Loop Gain vs. Frequency 50 TA = 25°C VS = ±15V 0.1 TA = 25°C VS = ±15V VO = 10V p-p RL = 600kΩ AV = 10 IMPEDANCE (Ω) 40 30 AVCL = 1 20 AVCL = 10 10 0.01 20 100 1k 10k 0 100 20k 1k 10k 00296-023 00296-020 AVCL = 100 100k 1M FREQUENCY (Hz) Figure 20. Distortion vs. Frequency Figure 23. Closed-Loop Output Impedance vs. Frequency Rev. I | Page 9 of 18 10M OP249 Data Sheet 30 20 OUTPUT VOLTAGE SWING (V) 25 OUTPUT VOLTAGE (V p-p) TA = 25°C RL = 2kΩ 15 20 15 AD8512 10 OP249 10 5 0 –5 –10 5 1M 00296-027 0 1k –15 00296-024 AD712 –20 10M 0 ±5 FREQUENCY (Hz) Figure 24. Output Voltage vs. Frequency ±20 6.0 VS = ±15V RL = 2kΩ VIN = 100mV p-p VS = ±15V NO LOAD 60 SUPPLY CURRENT (mA) 70 AVCL = 1 NEGATIVE EDGE 50 AVCL = 1 POSITIVE EDGE 40 30 10 00296-025 20 AVCL = 5 0 0 100 200 300 400 5.8 5.6 5.4 5.2 –75 500 00296-028 80 –50 –25 0 LOAD CAPACITANCE (pF) 50 75 100 125 Figure 28. Supply Current vs. Temperature 16 14 25 TEMPERATURE (°C) Figure 25. Small Overshoot vs. Load Capacitance 6.0 TA = 25°C VS = ±15V 5.8 12 SUPPLY CURRENT (mA) +VOHM = |–VOHM| 10 8 6 4 TA = +25°C 5.6 TA = +125°C 5.4 TA = –55°C 5.2 0 100 00296-026 2 1k 00296-029 MAXIMUM OUTPUT SWING (V) ±15 Figure 27. Output Voltage Swing vs. Supply Voltage 90 OVERSHOOT (%) ±10 SUPPLY VOLTAGE (V) 5.0 10k 0 LOAD RESISTANCE (Ω) 5 10 15 SUPPLY VOLTAGE (V) Figure 29. Supply Current vs. Supply Voltage Figure 26. Maximum Output Voltage Swing vs. Load Resistance Rev. I | Page 10 of 18 20 Data Sheet OP249 180 10k TA = 25°C VS = ±15V 415 × OP249 (830 OP AMPS) INPUT BIAS CURRENT (pA) 140 VS = ±15V VCM = 0V UNITS 120 100 80 60 00296-030 40 20 0 –1000 –800 –600 –400 –200 0 200 400 600 800 1k 100 10 1 –75 1000 00296-033 160 –50 –25 VOS (µV) Figure 30. VOS Distribution (N-8) 50 75 100 125 104 TA = 25°C VS = ±15V VS = ±15V –40°C TO +85°C (830 OP AMPS) 270 240 103 BIAS CURRENT (pA) 210 180 150 120 90 102 101 00296-031 60 30 0 0 2 4 6 8 10 12 14 16 18 20 22 100 –15 24 00296-034 UNITS 25 Figure 33. Input Bias Current vs. Temperature 300 –10 TCVOS (µV/°C) –5 5 0 10 15 COMMON-MODE VOLTAGE (V) Figure 31. TCVOS Distribution (N-8) Figure 34. Bias Current vs. Common-Mode Voltage 50 50 TA = 25°C VS = ±15V VS = ±15V 40 INPUT BIAS CURRENT (pA) 40 30 20 10 30 20 0 0 1 2 3 4 00296-035 10 00296-032 OFFSET VOLTAGE (µV) 0 TEMPERATURE (°C) 0 5 0 TIME AFTER POWER APPLIED (Minutes) 2 4 6 8 TIME AFTER POWER APPLIED (Minutes) Figure 32. Offset Voltage Warm-Up Drift Figure 35. Bias Current Warm-Up Drift Rev. I | Page 11 of 18 10 OP249 Data Sheet 80 80 40 20 0 –75 –50 –25 0 25 50 75 100 VS = ±15V 8000 RL = 10kΩ 6000 RL = 2kΩ 4000 2000 00296-037 OPEN-LOOP GAIN (V/mV) 10000 0 25 50 40 20 –50 –25 0 25 50 75 100 125 Figure 38. Short-Circuit Output Current vs. Junction Temperature 12000 –25 SINK TEMPERATURE (°C) Figure 36. Input Offset Current vs. Temperature –50 60 0 –75 125 TEMPERATURE (°C) 0 –75 VS = ±15V SOURCE 00296-038 SHORT-CIRCUIT OUTPUT CURRENT (mA) 60 00296-036 INPUT OFFSET CURRENT (pA) TA = 25°C VCM = 0V 75 100 125 TEMPERATURE (°C) Figure 37. Open-Loop Gain vs. Temperature Rev. I | Page 12 of 18 Data Sheet OP249 APPLICATIONS INFORMATION V+ +IN 100 90 VOUT –IN 10 0% 5V 1µs A) OP249 00296-039 100 90 V– Figure 39. Simplified Schematic (1/2 OP249) 2 1/2 OP249 +3V 5V 1 3 5kΩ Figure 41. Large-Signal Transient Response, AV = 1, VIN = 20 V p-p, ZL = 2 kΩ//200 pF, VS = ±15 V The OP249 was carefully designed to provide symmetrically matched slew characteristics in both the negative and positive directions, even when driving a large output load. +18V 8 1/2 OP249 +3V 5 7 4 –18V 5kΩ 00296-040 6 1µs B) LT1057 00296-041 10 0% Figure 40. Burn-In Circuit The OP249 represents a reliable JFET amplifier design, featuring an excellent combination of dc precision and high speed. A rugged output stage provides the ability to drive a 600 Ω load and still maintain a clean ac response. The OP249 features a large signal response that is more linear and symmetric than previously available JFET input amplifiers. Figure 41 compares the large signal response of the OP249 to other industry-standard dual JFET amplifiers. Typically, the slewing performance of the JFET amplifier is specified as a number of V/µs. There is no discussion on the quality, that is, linearity and symmetry of the slewing response. The slewing limitation of the amplifier determines the maximum frequency at which a sinusoidal output can be obtained without significant distortion. However, it is important to note that the nonsymmetric slewing typical of previously available JFET amplifiers adds a higher series of harmonic energy content to the resulting response—and an additional dc output component. Examples of potential problems of nonsymmetric slewing behavior can be in audio amplifier applications, where a natural low distortion sound quality is desired and in servo or signal processing systems where a net dc offset cannot be tolerated. The linear and symmetric slewing feature of the OP249 makes it an ideal choice for applications that exceed the full power bandwidth range of the amplifier. Rev. I | Page 13 of 18 OP249 Data Sheet R4 R3 VIN 1/2 R5 50kΩ VOUT OP249 R1 200kΩ R2 31Ω VOS ADJUST RANGE = ±V R2 R1 00296-044 +V 100 90 –V Figure 44. Offset Adjustment for Inverting Amplifier Configuration +V 10 R5 1µs 50mV R3 50kΩ R1 200kΩ 1/2 R2 33Ω Figure 42. Small-Signal Transient Response, AV = 1, ZL = 2 kΩ||100 pF, No Compensation, VS = ±15 V R4 VOUT OP249 –V As with most JFET input amplifiers, the output of the OP249 can undergo phase inversion if either input exceeds the specified input voltage range. Phase inversion does not damage the amplifier, nor does it cause an internal latch-up condition. Supply decoupling should be used to overcome inductance and resistance associated with supply lines to the amplifier. A 0.1 µF and a 10 µF capacitor should be placed between each supply pin and ground. OPEN-LOOP GAIN LINEARITY The OP249 has both an extremely high open-loop gain of 1 kV/mV minimum and constant gain linearity, which enhances its dc precision and provides superb accuracy in high closed-loop gain applications. Figure 43 illustrates the typical open-loop gain linearity—high gain accuracy is assured, even when driving a 600 Ω load. OFFSET VOLTAGE ADJUSTMENT The inherent low offset voltage of the OP249 makes offset adjustments unnecessary in most applications. However, where a lower offset error is required, balancing can be performed with simple external circuitry, as shown in Figure 44 and Figure 45. VOS ADJUST RANGE = ±V VIN GAIN = VOUT VIN =1+ R2 R1 R5 R4 + R2 00296-045 00296-042 0% R5 IF R2
OP249GSZ 价格&库存

很抱歉,暂时无法提供与“OP249GSZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货