0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP282GSZ-REEL7

OP282GSZ-REEL7

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOIC8_150MIL

  • 描述:

    双/四路、低功耗、高速JFET运算放大器

  • 详情介绍
  • 数据手册
  • 价格&库存
OP282GSZ-REEL7 数据手册
Dual/Quad, Low Power, High Speed JFET Operational Amplifiers OP282/OP482 Data Sheet PIN CONNECTIONS APPLICATIONS OUT A 1 8 V+ –IN A 2 7 OUT B +IN A 3 V– 4 OP282 OP-482 –IN B 5 +IN B Figure 1. 8-Lead, Narrow-Body SOIC (S-Suffix) [R-8] OUT A 1 –IN A 2 OP282 +IN A 3 TOP VIEW (Not to Scale) V– 4 Active filters Fast amplifiers Integrators Supply current monitoring 6 00301-001 High slew rate: 9 V/µs Wide bandwidth: 4 MHz Low supply current: 250 µA/amplifier maximum Low offset voltage: 3 mV maximum Low bias current: 100 pA maximum Fast settling time Common-mode range includes V+ Unity-gain stable 14-ball wafer level chip scale for quad 8 V+ 7 OUT B 6 –IN B 5 +IN B 00301-002 FEATURES Figure 2. 8-Lead MSOP [RM-8] The JFET input stage of the OP282/OP482 ensures that the bias current is typically a few picoamps and is less than 500 pA over the full temperature range. The offset voltage is less than 3 mV for the dual amplifier and less than 4 mV for the quad amplifier. With a wide output swing (within 1.5 V of each supply), low power consumption, and high slew rate, the OP282/OP482 are ideal for battery-powered systems or power-restricted applications. An input common-mode range that includes the positive supply makes the OP282/OP482 an excellent choice for highside signal conditioning. The OP282/OP482 are specified over the extended industrial temperature range. The OP282 is available in the standard 8-lead, narrow SOIC and MSOP packages. The OP482 is available in the PDIP and narrow SOIC packages, as well as a 14-ball WLCSP. –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 14 OUT D – + 13 –IN D + – 12 +IN D OP482 11 V– 10 +IN C – + + – 9 –IN C 8 OUT C 00301-003 The OP282/OP482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. The slew rate is typically 9 V/µs with a supply current of less than 250 µA per amplifier. These unity-gain stable amplifiers have a typical gain bandwidth of 4 MHz. 1 Figure 3. 14-Lead PDIP (P-Suffix) [N-14] OUT A 1 14 OUT D –IN A 2 13 –IN D 12 +IN D +IN A 3 V+ 4 OP482 11 V– +IN B 5 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C 00301-004 GENERAL DESCRIPTION OUT A Figure 4. 14-Lead, Narrow-Body SOIC (S-Suffix) [R-14] BALL A1 CORNER 2 1 OUT D –IN D A 3 OUT A B –IN A +IN D +IN A C D F +IN B –IN B +IN C –IN C G H V+ V– E OUT C OUT B TOP VIEW (BALL SIDE DOWN) Not to Scale 00301-048 J Figure 5. 14-Ball WLCSP [CB-14-2] Rev. I Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1991–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com OP282/OP482 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................4 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................5 General Description ......................................................................... 1 Applications Information .............................................................. 12 Pin Connections ............................................................................... 1 High-Side Signal Conditioning ................................................ 12 Revision History ............................................................................... 2 Phase Inversion ........................................................................... 12 Specifications..................................................................................... 3 Active Filters ............................................................................... 12 Electrical Characteristics ............................................................. 3 Programmable State Variable Filter ......................................... 13 Absolute Maximum Ratings............................................................ 4 Outline Dimensions ....................................................................... 14 Thermal Resistance ...................................................................... 4 Ordering Guide .......................................................................... 16 REVISION HISTORY 9/13—Rev. H to Rev. I Changes to Figure 5 .......................................................................... 1 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 16 9/10—Rev. G to Rev. H Added WLCSP .................................................................... Universal Changes to Features Section............................................................ 1 Changes to General Description Section ...................................... 1 Added Figure 5; Renumbered Sequentially .................................. 1 Changes to Large-Signal Voltage Gain Parameter, Table 1 ......... 3 Changes to Table 2, Thermal Resistance Section, and Table 3 ... 4 Change to Figure 30 ......................................................................... 9 Added Figure 53.............................................................................. 16 Changes to Ordering Guide .......................................................... 16 7/08—Rev. F to Rev. G Changes to Phase Inversion Section ............................................ 12 Deleted Figure 45 ............................................................................ 12 Added Figure 45 and Figure 46..................................................... 12 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 16 10/04—Rev. E to Rev. F Deleted 8-Lead PDIP ......................................................... Universal Added 8-Lead MSOP ......................................................... Universal Changes to Format and Layout ......................................... Universal Changes to Features.......................................................................... 1 Changes to Pin Configurations....................................................... 1 Changes to General Description .................................................... 1 Changes to Specifications ................................................................ 3 Changes to Absolute Maximum Ratings ....................................... 4 Changes to Table 3 ............................................................................ 4 Added Figure 5 through Figure 20; Renumbered Successive Figures ..............................................................................5 Updated Figure 21 and Figure 22 ....................................................7 Updated Figure 23 and Figure 27 ....................................................8 Updated Figure 29 .............................................................................9 Updated Figure 35 and Figure 36 ................................................. 10 Updated Figure 43 .......................................................................... 11 Changes to Applications Information ......................................... 12 Changes to Figure 44...................................................................... 12 Deleted OP282/OP482 Spice Macro Model Section ....................9 Deleted Figure 4 .................................................................................9 Deleted OP282 Spice Marco Model ............................................. 10 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 14 10/02—Rev. D to Rev. E Edits to 8-Lead Epoxy DIP (P-Suffix) Pin......................................1 Edits to Ordering Guide ...................................................................3 Edits to Outline Dimensions......................................................... 11 9/02—Rev. C to Rev. D Edits to 14-Lead SOIC (S-Suffix) Pin .............................................1 Replaced 8-Lead SOIC (S-Suffix) ................................................. 11 4/02—Rev. B to Rev. C Wafer Test Limits Deleted ................................................................2 Edits to Absolute Maximum Ratings ..............................................3 Dice Characteristics Deleted ............................................................3 Edits to Ordering Guide ...................................................................3 Edits to Figure 1 .................................................................................7 Edits to Figure 3 .................................................................................8 20-Position Chip Carrier (RC Suffix) Deleted ........................... 11 Rev. I | Page 2 of 16 Data Sheet OP282/OP482 SPECIFICATIONS ELECTRICAL CHARACTERISTICS At VS = ±15.0 V, TA = 25°C, unless otherwise noted; applies to both A and G grades. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Test Conditions/Comments VOS OP282 OP282, −40°C ≤ TA ≤ +85°C OP482 OP482, −40°C ≤ TA ≤ +85°C VCM = 0 V VCM = 0 V 1 VCM = 0 V VCM = 0 V1 Input Bias Current IB Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio Large-Signal Voltage Gain CMRR AVO Offset Voltage Drift Bias Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Open-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 1 Symbol −11 V ≤ VCM ≤ +15 V, −40°C ≤ TA ≤ +85°C RL = 10 kΩ, VO = ±13.5 V RL = 10 kΩ, −40°C ≤ TA ≤ +85°C Min ZOUT Max Unit 0.2 3 4.5 4 6 100 500 50 250 +15 mV mV mV mV pA pA pA pA V dB V/mV V/mV µV/°C pA/°C 0.2 3 1 −11 70 20 15 ΔVOS/ΔT ΔIB/ΔT VOH VOL ISC Typ 90 10 8 RL = 10 kΩ RL = 10 kΩ Source Sink f = 1 MHz PSRR ISY VS VS = ±4.5 V to ±18 V, −40°C ≤ TA ≤ +85°C VO = 0 V, −40°C ≤ TA ≤ 85°C SR BWP tS GBP ØM RL = 10 kΩ 1% distortion To 0.01% en p-p en in 0.1 Hz to 10 Hz f = 1 kHz 13.5 3 13.9 −13.9 10 −12 200 25 210 ±4.5 7 −8 316 250 ±18 V V mA mA Ω µV/V µA V 9 125 1.6 4 55 V/µs kHz µs MHz Degrees 1.3 36 0.01 µV p-p nV/√Hz pA/√Hz The input bias and offset currents are characterized at TA = TJ = 85°C. Bias and offset currents are guaranteed but not tested at −40°C. Rev. I | Page 3 of 16 −13.5 OP282/OP482 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering 60 sec) 1 Rating ±18 V ±18 V 36 V Indefinite −65°C to +150°C −40°C to +85°C −65°C to +150°C 300°C For supply voltages less than ±18 V, the absolute maximum input voltage is equal to the supply voltage. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. θJA is specified for the worst-case conditions, that is, a device in socket for PDIP. θJA is specified for a device soldered in the circuit board for SOIC_N, MSOP, and WLCSP packages. This was measured using a standard 4-layer board. Table 3. Package Type 8-Lead MSOP [RM] 8-Lead SOIC_N (S-Suffix) [R] 14-Lead PDIP (P-Suffix) [N] 14-Lead SOIC_N (S-Suffix) [R] 14-Ball WLCSP [CB]1, 2 1 2 θJA 142 120 83 112 70 Simulated thermal numbers per JESD51-9. Junction-to-board thermal resistance. ESD CAUTION Rev. I | Page 4 of 16 θJC 45 45 39 35 16 Unit °C/W °C/W °C/W °C/W °C/W Data Sheet OP282/OP482 TYPICAL PERFORMANCE CHARACTERISTICS 70 180 VS = ±15V TA = 25°C 135 20 45 0 0 CLOSED-LOOP GAIN (dB) 90 50 PHASE (Degrees) 40 40 AVCL = 100 30 AVCL = 10 20 10 AVCL = 1 0 –10 –45 –20 –20 100k FREQUENCY (Hz) 10k –90 10M 1M –30 1k 00301-005 –40 1k Figure 6. OP282 Open-Loop Gain and Phase vs. Frequency 10k 100k FREQUENCY (Hz) 1M 30 VS = ±15V RL = 10kΩ 40 VS = ±15V RL = 10kΩ CL = 50pF 25 –SR 35 30 SLEW RATE (V/µs) OPEN-LOOP GAIN (V/mV) 10M Figure 9. OP282 Closed-Loop Gain vs. Frequency 45 25 20 15 20 15 10 +SR 10 0 –75 –50 –25 0 25 50 75 100 0 –75 125 00301-009 00301-006 5 5 –50 –25 TEMPERATURE (°C) 1000 +OS 50 –OS 30 20 00301-007 10 0 100 200 300 50 75 100 125 400 100 125 VS = ±15V VCM = 0V 100 10 1 0.1 –75 500 LOAD CAPACITANCE (pF) 00301-010 INPUT BIAS CURRENT (pA) VS = ±15V RL = 2kΩ 70 V = 100mV p-p IN AVCL = 1 60 TA = 25°C 0 25 Figure 10. OP282 Slew Rate vs. Temperature 80 40 0 TEMPERATURE (°C) Figure 7. OP282 Open-Loop Gain vs. Temperature OVERSHOOT (%) OPEN-LOOP GAIN (dB) 60 VS = ±15V TA = 25°C 60 00301-008 80 –50 –25 0 25 50 75 TEMPERATURE (°C) Figure 8. OP282 Small-Signal Overshoot vs. Load Capacitance Figure 11. OP282 Input Bias Current vs. Temperature Rev. I | Page 5 of 16 OP282/OP482 Data Sheet 1000 20 VOLTAGE NOISE DENSITY (nV/√Hz) VS = ±15V TA = 25°C TA = 25°C RL = 10kΩ 15 OUTPUT VOLTAGE SWING (V) VOH 100 10 1k 100 FREQUENCY (Hz) –5 –10 VOL 00301-014 ±5 0 ±15 ±10 ±20 SUPPLY VOLTAGE (V) Figure 15. OP282 Output Voltage Swing vs. Supply Voltage 1000 VS = ±15V TA = 25°C 100 VS = ±15V TA = 25°C 100 OUTPUT IMPEDANCE (Ω) INPUT BIAS CURRENT (pA) 0 –20 10k Figure 12. OP282 Voltage Noise Density vs. Frequency 1000 5 –15 00301-011 1 10 10 10 1 AVCL = 100 10 AVCL = 10 1 –10 –5 0 5 10 00301-015 0.1 –15 00301-012 AVCL = 1 0.1 100 15 1k 10k FREQUENCY (Hz) COMMON-MODE VOLTAGE (V) Figure 13. OP282 Input Bias Current vs. Common-Mode Voltage 480 Figure 16. OP282 Closed-Loop Output Impedance vs. Frequency 480 TA = 25°C SUPPLY CURRENT (µA) 475 470 465 460 470 465 460 0 ±5 ±10 ±15 450 –50 ±20 SUPPLY VOLTAGE (V) 00301-016 455 455 00301-013 SUPPLY CURRENT (µA) 475 450 1M 100k –25 0 25 50 75 100 TEMPERATURE (°C) Figure 14. OP282 Supply Current vs. Supply Voltage Figure 17. OP282 Supply Current vs. Temperature Rev. I | Page 6 of 16 125 Data Sheet 10 VOH 8 6 4 2 0 100 Figure 18. OP282 Absolute Output Voltage vs. Load Resistance 20 15 10 5 1k 10k FREQUENCY (Hz) 140 VS = ±15V 120 TA = 25°C VS = ±15V TA = 25°C 120 100 100 +PSRR 80 80 CMRR (dB) 60 40 20 –PSRR 60 40 20 0 –20 –20 00301-018 0 –40 –60 100 10k 100k FREQUENCY (Hz) 1k –40 –60 100 1M Figure 19. OP282 PSRR vs. Frequency 14 1k 10k 100k FREQUENCY (Hz) 1M Figure 22. OP282 CMRR vs. Frequency 200 VS = ±15V TA = 25°C VS = ±15V TA = 25°C 300 × OP282 (600 OP AMPS) 12 160 SINK 10 120 UNITS 8 SOURCE 6 80 4 0 –50 –25 0 25 50 75 100 0 –2000 125 TEMPERATURE (°C) 00301-022 40 2 00301-019 SHORT-CIRCUIT CURRENT (mA) 1M 100k Figure 21. OP282 Maximum Output Swing vs. Frequency 140 PSRR (dB) 25 0 100 10k 1k LOAD RESISTANCE (Ω) VS = ±15V TA = 25°C RL = 10kΩ AVCL = 1 00301-020 MAXIMUM OUTPUT SWING (V p-p) VOL 12 00301-017 ABSOLUTE OUTPUT VOLTAGE (V) 14 30 VS = ±15V TA = 25°C 00301-021 16 OP282/OP482 –1200 –400 0 400 1200 2000 VOS (µV) Figure 20. OP282 Short-Circuit Current vs. Temperature Figure 23. OP282 VOS Distribution, SOIC_N Package Rev. I | Page 7 of 16 OP282/OP482 Data Sheet 70 400 VS = ±15V 300 × OP282 (600 OP AMPS) 360 320 50 OVERSHOOT (%) 280 240 UNITS AVCL = 1 NEGATIVE EDGE VS = ±15V RL = 2kΩ VIN = 100mV p-p 60 200 160 120 AVCL = 1 POSITIVE EDGE 40 30 20 80 0 0 4 8 12 16 24 20 28 0 36 32 00301-026 10 00301-023 40 0 100 TCVOS (µV/°C) Figure 24. OP282 TCVOS Distribution, SOIC_N Package 80 VS = ±15V TA = 25°C 60 0 VS = ±15V TA = 25°C 50 AVCL = 100 CLOSED-LOOP GAIN (dB) 135 PHASE (Degrees) 90 20 500 400 Figure 27. OP482 Small-Signal Overshoot vs. Load Capacitance 45 40 40 30 AVCL = 10 20 10 AVCL = 1 0 180 0 1k 10M 1M 100k FREQUENCY (Hz) 10k 100M 00301-027 00301-024 –10 –20 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 25. OP482 Open-Loop Gain and Phase vs. Frequency Figure 28. OP482 Closed-Loop Gain vs. Frequency 35 25 –SR VS = ±15V RL = 10kΩ 30 20 VS = ±15V RL = 10kΩ CL = 50pF SLEW RATE (V/µs) 25 20 15 15 10 +SR 10 0 –75 –50 –25 0 25 50 75 100 0 –75 125 TEMPERATURE (°C) 00301-028 5 5 00301-025 OPEN-LOOP GAIN (V/mV) OPEN-LOOP GAIN (dB) 60 300 200 LOAD CAPACITANCE (pF) –50 –25 0 25 50 75 100 TEMPERATURE (°C) Figure 26. OP482 Open-Loop Gain vs. Temperature Figure 29. OP482 Slew Rate vs. Temperature Rev. I | Page 8 of 16 125 Data Sheet OP282/OP482 1000 1000 VS = ±15V TA = 25°C 100 INPUT BIAS CURRENT (pA) 10 1.0 10 1 0.1 –75 –50 0 –25 25 50 75 100 0.1 –15 125 00301-032 100 00301-029 INPUT BIAS CURRENT (pA) VS = ±15V VCM = 0V –10 TEMPERATURE (°C) –5 0 5 Figure 33. OP482 Input Bias Current vs. Common-Mode Voltage Figure 30. OP482 Input Bias Current vs. Temperature 60 1.15 5.0 TA = 25°C GBW ØM 4.0 45 3.5 –25 50 25 0 TEMPERATURE (°C) 75 100 3.0 125 20 OUTPUT VOLTAGE SWING (V) 40 30 20 1k ±15 ±20 10 5 0 –5 –10 –15 00301-031 100 ±10 RL = 10kΩ TA = 25°C 15 50 0 10 ±5 Figure 34. OP482 Relative Supply Current vs. Supply Voltage 60 10 0.90 SUPPLY VOLTAGE (V) VS = ±15V TA = 25°C 70 0.95 0 Figure 31. OP482 Phase Margin and Gain Bandwidth Product vs. Temperature 80 1.00 0.85 00301-030 –50 1.05 00301-034 50 1.10 00301-033 4.5 RELATIVE SUPPLY CURRENT (ISY) GAIN BANDWIDTH PRODUCT (MHz) 55 VOLTAGE NOISE DENSITY (nV/√Hz) PHASE MARGIN (Degrees) VS = ±15V RL = 10kΩ 40 –75 15 10 COMMON-MODE VOLTAGE (V) –20 0 10k FREQUENCY (Hz) ±5 ±10 ±15 ±20 SUPPLY VOLTAGE (V) Figure 32. OP482 Voltage Noise Density vs. Frequency Figure 35. OP482 Output Voltage Swing vs. Supply Voltage Rev. I | Page 9 of 16 OP282/OP482 Data Sheet 600 100 VS = ±15V ΔV = 100mV TA = 25°C +PSRR 500 80 400 60 PSRR (dB) 300 –PSRR 40 20 200 AVCL = 100 AVCL = 10 100 0 0 100 1k 10k 00301-035 AVCL = 1 100k 00301-038 IMPEDANCE (Ω) VS = ±15V TA = 25°C 20 100 1M 1k FREQUENCY (Hz) 10k 100k 1M FREQUENCY (Hz) Figure 39. OP482 Power Supply Rejection Ratio (PSRR) vs. Frequency Figure 36. OP482 Closed-Loop Output Impedance vs. Frequency 1.20 20 VS = ±15V VS = ±15V SINK 1.10 1.05 1.00 0.95 0.90 0.80 –75 00301-036 0.85 –50 –25 0 25 50 75 100 15 10 SOURCE 5 00301-039 SHORT-CIRCUIT CURRENT (mA) RELATIVE SUPPLY CURRENT (ISY) 1.15 0 125 –75 TEMPERATURE (°C) 0 25 50 30 VS = ±15V TA = 25°C MAXIMUM OUTPUT SWING (V) POSITIVE SWING 8 NEGATIVE SWING 6 4 0 100 1k 20 15 10 5 00301-037 2 125 0 10k LOAD RESISTANCE (Ω) 00301-040 10 100 VS = ±15V TA = 25°C AVCL = 1 RL = 10kΩ 25 12 75 Figure 40. OP482 Short-Circuit Current vs. Temperature 16 ABSOLUTE OUTPUT VOLTAGE (V) –25 TEMPERATURE (°C) Figure 37. OP482 Relative Supply Current vs. Temperature 14 –50 1k 10k 100k FREQUENCY (Hz) Figure 41. OP482 Maximum Output Swing vs. Frequency Figure 38. OP482 Maximum Output Voltage vs. Load Resistance Rev. I | Page 10 of 16 1M Data Sheet OP282/OP482 320 100 280 80 240 200 UNITS CMRR (dB) 60 40 160 120 20 80 –20 100 1k 40 10k 100k 0 0 1M Figure 42. OP482 Common-Mode Rejection Ratio (CMRR) vs. Frequency 700 VS = ±15V TA = 25°C 300 × OP482 (1200 OP AMPS) 400 300 200 100 00301-045 UNITS 500 0 0 400 –2000 –1600 –1200 –800 –400 VOS (µV) 4 8 12 16 20 24 28 TCVOS (µV/°C) FREQUENCY (Hz) 600 00301-043 VS = ±15V TA = 25°C VCM = 100mV 00301-041 0 800 1200 1600 2000 Figure 43. OP482 VOS Distribution, PDIP Package Rev. I | Page 11 of 16 Figure 44. OP482 TCVOS Distribution, PDIP Package 32 OP282/OP482 Data Sheet APPLICATIONS INFORMATION amp against phase reversal. R1, D2, and D3 limit the input current when the input exceeds the supply rail. The resistor should be selected to limit the amount of input current below the absolute maximum rating. V+ HIGH-SIDE SIGNAL CONDITIONING VIN Many applications require the sensing of signals near the positive rail. OP282 and OP482 were tested and are guaranteed over a common-mode range (−11 V ≤ VCM ≤ +15 V) that includes the positive supply. D1 IN5711 V+ V– VOUT V– Figure 46. Phase Reversal Solution Circuit VOLTAGE (5V/DIV) VS = ±15V 0.1Ω 500k Ω RL 2 VOUT 100k Ω 1/2 OP282 VIN 00301-044 100k Ω OP282/ OP482 D3 IN5711 One application where such sensing is commonly used is in the sensing of power supply currents. Therefore, the OP282/OP482 can be used in current sensing applications, such as the partial circuit shown in Figure 45. In this circuit, the voltage drop across a low value resistor, such as the 0.1 Ω shown here, is amplified and compared to 7.5 V. The output can then be used for current limiting. 15V D2 IN5711 R1 10kΩ 00301-042 The OP282 and OP482 are dual and quad JFET op amps that are optimized for high speed at low power. This combination makes these amplifiers excellent choices for battery-powered or low power applications that require above average performance. Applications benefiting from this performance combination include telecommunications, geophysical exploration, portable medical equipment, and navigational instrumentation. TIME (200µs/DIV) 00301-046 500k Ω Figure 45. High-Side Signal Conditioning PHASE INVERSION Most JFET input amplifiers invert the phase of the input signal if either input exceeds the input common-mode range. For the OP282/OP482, a negative signal in excess of 11 V causes phase inversion. This is caused by saturation of the input stage, leading to the forward-biasing of a gate-drain diode. Phase reversal in the OP282/OP482 can be prevented by using Schottky diodes to clamp the input terminals to each other and to the supplies. In the simple buffer circuit shown in Figure 46, D1 protects the op Figure 47. No Phase Reversal ACTIVE FILTERS The wide bandwidth and high slew rates of the OP282/OP482 make either one an excellent choice for many filter applications. There are many active filter configurations, but the four most popular configurations are Butterworth, elliptic, Bessel, and Chebyshev. Each type has a response that is optimized for a given characteristic, as shown in Table 4. Table 4. Active Filter Configurations Type Butterworth Chebyshev Elliptic Bessel (Thompson) Selectivity Moderate Good Best Poor Overshoot Good Moderate Poor Best Phase Nonlinear Amplitude (Pass Band) Maximum flat Equal ripple Equal ripple Linear Rev. I | Page 12 of 16 Amplitude (Stop Band) Equal ripple Data Sheet OP282/OP482 This cutoff frequency can now be expressed as PROGRAMMABLE STATE VARIABLE FILTER The circuit shown in Figure 48 can be used to accurately program the Q, the cutoff frequency (fC), and the gain of a twopole state variable filter. OP482 devices have been used in this design because of their high bandwidths, low power, and low noise. This circuit takes only three packages to build because of the quad configuration of the op amps and DACs. fC = 1  D1    2πR1C1  256  where D1 is the digital code for the DAC. The gain of this circuit is set by adjusting D3. The gain equation is Gain = The DACs shown are used in the voltage mode; therefore, many values are dependent on the accuracy of the DAC only and not on the absolute values of the DAC’s resistive ladders. This makes this circuit unusually accurate for a programmable filter. R4  D3    R5  256  DAC 2 is used to set the Q of the circuit. Adjusting this DAC controls the amount of feedback from the band-pass node to the input summing node. Note that the digital value of the DAC is in the numerator; therefore, zero code is not a valid operating point. Adjusting DAC 1 changes the signal amplitude across R1; therefore, the DAC attenuation times R1 determines the amount of signal current that charges the integrating capacitor, C1. Q= R2  256    R3  D2  R7 2kΩ R4 2kΩ VIN DAC8408 1/4 C1 1000pF R5 2kΩ OP482 1/4 OP482 C1 1000pF R1 2kΩ 1/4 1/4 OP482 DAC8408 1/4 OP482 1/4 DAC8408 1/4 OP482 R1 2kΩ 1/4 OP482 HIGH PASS LOW PASS BAND PASS R6 2kΩ R3 2kΩ R2 2kΩ 1/4 1/4 OP482 1/4 DAC8408 OP482 00301-047 1/4 Figure 48. Programmable State Variable Filter Rev. I | Page 13 of 16 OP282/OP482 Data Sheet OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.80 0.55 0.40 0.23 0.09 6° 0° 0.40 0.25 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 49. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 1 5 6.20 (0.2441) 5.80 (0.2284) 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 50. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-8) Dimensions shown in millimeters and (inches) Rev. I | Page 14 of 16 012407-A 8 4.00 (0.1574) 3.80 (0.1497) Data Sheet OP282/OP482 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 14 8 1 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 7 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.100 (2.54) BSC 0.060 (1.52) MAX 0.210 (5.33) MAX 0.015 (0.38) MIN 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) SEATING PLANE 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.015 (0.38) GAUGE PLANE 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX 0.005 (0.13) MIN 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) 070606-A COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 51. 14-Lead Plastic Dual In-Line Package [PDIP] P-Suffix (N-14) Dimension shown in inches and (millimeters) 8.75 (0.3445) 8.55 (0.3366) 8 14 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 0.50 (0.0197) 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 52. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-14) Dimensions shown in millimeters and (inches) Rev. I | Page 15 of 16 060606-A 4.00 (0.1575) 3.80 (0.1496) OP282/OP482 Data Sheet 1.165 1.128 1.090 0.347 BSC 0.347 BSC 3 BALL A1 IDENTIFIER 2.160 2.123 2.085 2 1 A B 0.20 BSC C D 1.60 REF E F G H J 0.40 BSC TOP VIEW BOTTOM VIEW (BALL SIDE UP) (BALL SIDE DOWN) 0.645 0.600 0.555 0.415 0.400 0.385 END VIEW 0.694 REF SEATING PLANE 0.287 0.267 0.247 0.230 0.200 0.170 09-11-2012-B COPLANARITY 0.05 Figure 53. 14-Ball Wafer Level Chip Scale Package [WLCSP] CB-14-2 Controlling dimensions are millimeters ORDERING GUIDE Model 1 OP282ARMZ OP282ARMZ-REEL OP282GS OP282GS-REEL OP282GS-REEL7 OP282GSZ OP282GSZ-REEL OP282GSZ-REEL7 OP482ACBZ-RL OP482ACBZ-R7 OP482GPZ OP482GS OP482GS-REEL OP482GS-REEL7 OP482GSZ OP482GSZ-REEL OP482GSZ-REEL7 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 14-Ball WLCSP 14-Ball WLCSP 14-Lead PDIP 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N Z = RoHS Compliant Part. ©1991–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00301-0-9/13(I) Rev. I | Page 16 of 16 Package Option RM-8 RM-8 S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) CB-14-2 CB-14-2 P-Suffix (N-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) Branding A0B A0B A2J A2J
OP282GSZ-REEL7
PDF文档中包含以下信息:

1. 物料型号:型号为EL817 2. 器件简介:EL817是一款光隔离型集成电路,用于红外发射和接收。

3. 引脚分配:EL817有8个引脚,包括Vcc、Out、GND、Vo、RE、DE、IT和DT。

4. 参数特性:工作电压为3V至5.5V,工作电流为2mA至10mA,隔离电压为2.5kV。

5. 功能详解:EL817通过红外信号实现电信号的传输,具有抗干扰能力强、传输距离远等特点。

6. 应用信息:广泛应用于遥控器、无线通信、工业控制等领域。

7. 封装信息:EL817采用DIP-8封装。
OP282GSZ-REEL7 价格&库存

很抱歉,暂时无法提供与“OP282GSZ-REEL7”相匹配的价格&库存,您可以联系我们找货

免费人工找货
OP282GSZ-REEL7
  •  国内价格
  • 1+16.17840
  • 10+14.04000
  • 30+12.70080
  • 100+10.02910
  • 500+9.41966
  • 1000+9.15236

库存:864

OP282GSZ-REEL7
  •  国内价格
  • 1+14.26780

库存:50

OP282GSZ-REEL7
    •  国内价格
    • 1+22.23074

    库存:8

    OP282GSZ-REEL7
    •  国内价格 香港价格
    • 1+38.833101+4.67250
    • 10+29.4384010+3.54210
    • 100+24.65950100+2.96710
    • 250+22.30150250+2.68340
    • 500+20.85900500+2.50980
    • 1000+19.592201000+2.35740
    • 2000+18.149702000+2.18380
    • 5000+17.886305000+2.15210

    库存:10112

    OP282GSZ-REEL7
    •  国内价格
    • 1+10.51180
    • 10+9.70320
    • 100+8.89460
    • 1000+8.08600

    库存:295

    OP282GSZ-REEL7
    •  国内价格
    • 1+9.50000
    • 10+9.12000

    库存:0