0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP290_03

OP290_03

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    OP290_03 - Precision, Low Power, Micropower Dual Operational Amplifier - Analog Devices

  • 数据手册
  • 价格&库存
OP290_03 数据手册
a Precision, Low Power, Micropower Dual Operational Amplifier OP290 PIN CONNECTIONS PDIP (P-Suffix) OUT A –IN A +IN A V– 1 2 3 4 8 FEATURES Single-/Dual-Supply Operation, 1.6 V to 36 V, 0.8 V to 18 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), 20 A Max High Output Drive, 5 mA Min Low Input Offset Voltage, 200 V Max High Open-Loop Gain, 700 V/mV Min Outstanding PSRR, 5.6 V/V Max Industry Standard 8-Lead Dual Pinout Available in Die Form GENERAL DESCRIPTION V+ OUT B –IN B +IN B A B 7 6 OP290 5 The OP290 is a high performance micropower dual op amp that operates from a single supply of 1.6 V to 36 V or from dual supplies of ± 0.8 V to ± 18 V. Input voltage range includes the negative rail allowing the OP290 to accommodate input signals down to ground in single-supply operation. The OP290’s output swing also includes ground when operating from a single supply, enabling “zero-in, zero-out” operation. The OP290 draws less than 20 µA of quiescent supply current per amplifier, while able to deliver over 5 mA of output current to a load. Input offset voltage is below 200 µV eliminating the need for external nulling. Gain exceeds 700,000 and common-mode rejection is better than 100 dB. The power supply rejection ratio of under 5.6 µV/V minimizes offset voltage changes experienced in battery-powered systems. The low offset voltage and high gain offered by the OP290 bring precision performance to micropower applications. The minimal voltage and current requirements of the OP290 suit it for battery- and solar-powered applications, such as portable instruments, remote sensors, and satellites. For a single op amp, see the OP90; for a quad, see the OP490. V+ +IN –IN OUTPUT NULL NULL V ELECTRONICALLY ADJUSTED ON CHIP FOR MINIMUM OFFSET VOLTAGE Figure 1. Simplified Schematic (one of two amplifiers is shown) R EV. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved. OP290–SPECIFICATIONS ELECTRICAL CHARACTERISTICS Parameter INPUT OFFSET VOLTAGE INPUT OFFSET CURRENT INPUT BIAS CURRENT LARGE-SIGNAL VOLTAGE GAIN Symbol VOS IOS IB AVO VCM = 0 V VCM = 0 V VS = ± 15 V, VO = ± 10 V RL = 100 kΩ R L = 1 0 kΩ R L = 2 kΩ V+ = 5 V, V– = 0 V, 1 V < VO < 4 V RL = 100 kΩ R L = 1 0 kΩ V+ = 5 V, V– = 0 V V S = ± 5 V1 VS = ± 5 V R L = 1 0 kΩ R L = 2 kΩ V+ = 5 V, V– = 0 V RL = 10kΩ V+ = 5 V, V– = 0 V 0 V < VCM < 4 V VS = ± 15 V, –15 V < VCM < +13.5 V 400 200 100 100 70 0/4 –15/13.5 ± 13.5 ± 10.5 4.0 10 80 90 ± 14.2 ± 11.5 4.2 50 100 120 3.2 VS = ± 1.5 V VS = ± 15 V A V = +1 No Oscillations enp-p RIN RINCM SR GBWP CS fO = 0.1 Hz to 10 Hz VS = ± 15 V VS = ± 15 V VS = ± 15 V AV = +1 VS = ± 15 V Vs = +15 V VS = ± 15 V fO = 10 Hz VO = 20 V p-p VS = ± 15 V2 120 5 19 25 650 3 30 20 12 20 150 10 30 40 (@ VS = 1.5 V to 15 V, TA = 25 C, unless otherwise noted.) Min OP290G Typ Max 125 0.1 4.0 600 400 200 250 140 500 5 25 Unit µV nA nA V/mV V/mV V/mV V/mV V/mV V V V V V µV dB dB µV/V µA µA pF µV p-p MΩ GΩ V/ms kHz dB Conditions INPUT VOLTAGE RANGE1 OUTPUT VOLTAGE SWING IVR VO VOH, VOL COMMON-MODE REJECTION CMR POWER SUPPLY REJECTION RATIO SUPPLY CURRENT (All Amplifiers) CAPACITIVE LOAD STABILITY INPUT NOISE VOLTAGE1 INPUT RESISTANCE DIFFERENTIAL-MODE INPUT RESISTANCE COMMON-MODE SLEW RATE GAIN BANDWIDTH PRODUCT CHANNEL SEPARATION2 PSRR ISY NOTES 1 Guaranteed by CMR test. 2 Guaranteed but not 100% tested. Specifications subject to change without notice. –2– REV. B OP290 ELECTRICAL CHARACTERISTICS Parameter INPUT OFFSET VOLTAGE AVERAGE INPUT OFFSET VOLTAGE DRIFT INPUT OFFSET CURRENT INPUT BIAS CURRENT LARGE-SIGNAL VOLTAGE GAIN Symbol VOS TCVOS IOS IB AVO VS = ± 15 V VCM = 0 V VCM = 0 V VS = ± 5 V, VO = ± 0 V RL = 100 kΩ RL = 10 kΩ R L = 2 kΩ V+ = 5 V, V– = 0 V, 1 V < VO < 4 V RL = 100 kΩ RL = 10 kΩ V+ = 5 V, V– = 0 V VS = +15 V* VS = ± 15 V RL = 10 kΩ R L = 2 kΩ V+ = 5 V, V– = 0 V R L = 2 kΩ V+ = 5 V, V– = 0 V RL = 10 kΩ V+ = 5 V, V– = 0 V, 0 V < VCM < 3.5 V VS = ± 15 V –15 V < VCM < 13.5 V 300 150 75 (@ VS = 1.5 V to 15 V, –40 C ≤ TA ≤ +85 C for OP290G, unless otherwise noted.) OP290G Typ 200 1.2 0.1 4.2 600 250 125 7 25 Conditions Min Max 750 Unit µV µV/°C nA nA V/mV V/mV V/mV 80 40 0/3.5 –15/+13.5 ± 13 ± 10 3.9 160 90 V/mV V/mV V V INPUT VOLTAGE RANGE* OUTPUT VOLTAGE SWING IVR VO VOH VOL ± 14 ± 11 4.1 10 100 V V V µV dB COMMON-MODE REJECTION CMR 80 100 90 110 5.6 15 50 60 dB µV/V µA µA POWER SUPPLY REJECTION RATIO SUPPLY CURRENT (All Amplifiers) *Guaranteed by CMR test. Specifications subject to change without notice. PSRR ISY VS = ± 1.5 V VS = ± 15 V 24 31 REV. B –3– OP290 ABSOLUTE MAXIMUM RATINGS 1 ORDERING GUIDE Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V Differential Input Voltage . . . . [(V–) – 20 V] to [(V+) + 20 V] Common-Mode Input Voltage . [(V–) – 20 V] to [(V+) + 20 V] Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite Storage Temperature Range P Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Operating Temperature Range OP290G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C Junction Temperature (TJ) . . . . . . . . . . . . . –65°C to +150°C Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C Package Type 8-Lead Plastic DIP (P) JA 2 JC Model OP290GP Temperature Range XIND TA = 25 C VOS Max (mV) 500 Package Description PDIP Unit °C/W 96 37 NOTES 1 Absolute Maximum Ratings applies to packaged part. 2 JA is specified for worst-case mounting conditions, i.e., device in socket for PDIP package. JA is specified for CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP290 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. WARNING! ESD SENSITIVE DEVICE –4– REV. B Typical Performance Characteristics–OP290 100 INPUT OFFSET VOLTAGE – V VS = 15V INPUT OFFSET CURRENT – nA 0.14 VS = 15V INPUT BIAS CURRENT – nA 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 VS = 15V 80 0.12 60 0.10 40 0.08 20 0.06 0 0 25 50 75 –75 –50 –25 TEMPERATURE – C 100 125 0 25 50 75 –75 –50 –25 TEMPERATURE – C 100 125 3.5 –75 –50 –25 0 25 50 75 TEMPERATURE – C 100 125 TPC 1. Input Offset Voltage vs. Temperature TPC 2. Input Offset Current vs. Temperature TPC 3. Input Bias Current vs. Temperature 44 NO LOAD 40 OPEN-LOOP GAIN – V/mV 600 RL = 10k 500 TA = 25 C OPEN-LOOP GAIN – dB 140 120 100 GAIN 80 PHASE 60 40 20 0 TA = 25 C VS = 15V RL = 100k 140 120 100 80 60 40 20 0 30 PHASE SHIFT – Degrees SUPPLY CURRENT – A 36 32 28 24 20 16 12 8 4 0 25 50 75 –75 –50 –25 TEMPERATURE – C VS = 1.5V VS = 15V 400 TA = 85 C 300 TA = 125 C 200 100 0 100 125 0 5 10 15 20 TEMPERATURE – C 25 30 0 5 10 15 20 FREQUENCY – Hz 25 TPC 4. Supply Current vs. Temperature TPC 5. Open-Loop Gain vs. Single-Supply Voltage TPC 6. Open-Loop Gain and Phase Shift vs. Frequency 60 OUTPUT VOLTAGE SWING – V 6 TA = 25 C VS = 15V CLOSED-LOOP GAIN – dB TA = 25 C V+ = 5V, V– = 0V OUTPUT VOLTAGE SWING – V 16 14 12 10 8 6 4 2 TA = 25 C VS = 15V 1k 10k LOAD RESISTANCE – 100k 5 40 4 20 3 2 0 1 –20 10 100 1k 10k FREQUENCY – Hz 100k 0 100 1k 10k LOAD RESISTANCE – 100k 0 100 TPC 7. Closed-Loop Gain vs. Frequency TPC 8. Ouput Voltage Swing vs. Load Resistance TPC 9. Output Voltage Swing vs. Load Resistance REV. B –5– OP290 140 POWER SUPPLY REJECTION – dB TA = 25 C NEGATIVE SUPPLY COMMON-MODE REJECTION – dB 140 120 120 100 POSITIVE SUPPLY 80 100 80 60 60 40 1 10 100 FREQUENCY – Hz 1k 40 1 10 100 FREQUENCY – Hz 1k NOISE VOLTAGE DESTINY– nV/ Hz TA = 25 C VS = 15V 1,000 TA = 25 C VS = 15V 100 10 0.1 1 10 100 FREQUENCY – Hz 1k TPC 10. Power Supply Rejection vs. Frequency TPC 11. Common-Mode Rejection vs. Frequency TPC 12. Noise Voltage Density vs. Frequency 10 CURRENT NOISE DESTINY– nV/ Hz TA = 25 C VS = 15V 100 90 100 90 TA = 25 C VS = 15V AV = +1 RL = 10k CL = 500pF 1 TA = 25 C VS = 15V AV = +1 RL = 10k CL = 500pF 10 0% 10 0% 20mV 100 s 5V 1ms 0.1 0.1 1 10 100 FREQUENCY – Hz 1k TPC 13. Current Noise Density vs. Frequency TPC 14. Small-Signal Transient Response TPC 15. Large-Signal Transient Response –6– REV. B OP290 +18V +15V +15V 100k 1/2 8 1/2 2 200 3 OP290 1 1k A 9k OP290 OP37A V2 6 100k 5 1/2 OP290 7 –15V 100 10k –15V 4 VIN 1/2 OP290 B V1 20Vp-p @ 10Hz –18V V1 CHANNEL SEPARATION = 20 LOG V2/1000 Figure 2. Burn-In Circuit APPLICATIONS INFORMATION BATTERY-POWERED APPLICATIONS Figure 3. Channel Separation Test Circuit APPLICATIONS TEMPERATURE TO 4–20 mA TRANSMITTER The OP290 can be operated on a minimum supply voltage of 1.6 V, or with dual supplies of 0.8 V, and draws only 19 pA of supply current. In many battery-powered circuits, the OP290 can be continuously operated for thousands of hours before requiring battery replacement, reducing equipment downtime and operating cost. High-performance portable equipment and instruments frequently use lithium cells because of their long shelf-life, light weight, and high energy density relative to older primary cells. Most lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. The low supply voltage requirement of the OP290, combined with the flat discharge characteristic of the lithium cell, indicates that the OP290 can be operated over the entire useful life of the cell. Figure 1 shows the typical discharge characteristic of a 1 Ah lithium cell powering an OP290 with each amplifier, in turn, driving full output swing into a 100 kΩ load. INPUT VOLTAGE PROTECTION A simple temperature to 4–20 mA transmitter is shown in Figure 5. After calibration, the transmitter is accurate to +0.5°C over the –50°C to +150°C temperature range. The transmitter operates from 8 V to 40 V with supply rejection better than 3 ppm/V. One half of the OP290 is used to buffer the VTEMP pins while the other half regulates the output current to satisfy the current summation at its noninverting input. IOUT = VTEMP ( R6 + R7)  R2 R6 R7  – VSET   R2 R10  R2 R10  100 LITHIUM SULPHUR DIOXIDE CELL VOLTAGE – V 80 60 The OP290 uses a PNP input stage with protection resistors in series with the inverting and noninverting inputs. The high breakdown of the PNP transistors coupled with the protection resistors provide a large amount of input protection, allowing the inputs to be taken 20 V beyond either supply without damaging the amplifier. SINGLE-SUPPLY OUTPUT VOLTAGE RANGE 40 20 0 0 500 1000 In single-supply operation the OP290’s input and output ranges include ground. This allows true “zero-in, zero-out” operation. The output stage provides an active pull-down to around 0.8 V above ground. Below this level, a load resistance of up to 1 MΩ to ground is required to pull the output down to zero. In the region from ground to 0.8 V, the OP290 has voltage gain equal to the data sheet specification. Output current source capability is maintained over the entire voltage range including ground. 1500 2000 HOURS 2500 3000 3500 Figure 4. Lithium Sulphur Dioxide Cell Discharge Characteristic with OP290 and 100 k Loads The change in output current with temperature is the derivative of the transfer function: ∆IOUT = ∆T ∆VTEMP (R6 + R7) ∆T R2 R10 REV. B –7– OP290 From the formulas, it can be seen that if the span trim is adjusted before the zero trim, the two trims are not interactive, which greatly simplifies the calibration procedure. Calibration of the transmitter is simple. First, the slope of the output current versus temperature is calibrated by adjusting the span trim, R7. A couple of iterations may be required to be sure the slope is correct. Once the span trim has been completed, the zero trim can be made. Remember that adjusting the offset trim will not affect the gain. The offset trim can be set at any known temperature by adjusting R5 until the output current equals: VARIABLE SLEW RATE FILTER   ∆I FS IOUT =  – TMIN ) + 4 mA  (T  ∆TOPERATING  AMBIENT Table I shows the values of R6 required for various temperature ranges. Table I. The circuit shown in Figure 6 can be used to remove pulse noise from an input signal without limiting the response rate to a genuine signal. The nonlinear filter has use in applications where the input signal of interest is known to have physical limitations. An example of this is a transducer output where a change of temperature or pressure cannot exceed a certain rate due to physical limitations of the environment. The filter consists of a comparator which drives an integrator. The comparator compares the input voltage to the output voltage and forces the integrator output to equal the input voltage. A1 acts as a comparator with its output high or low. Diodes D1 and D2 clamp the voltage across R3 forcing a constant current to flow in or out of C2. R3, C2, and A2 form an integrator with A2’s output slewing at a maximum rate of: 0.6 V VD ≈ R3 C 2 R3 C 2 For an input voltage slewing at a rate under this maximum slew rate, the output simply follows the input with A1 operating in its linear region. Maximum slew rate = Temperature Range 0°C to +70°C –40°C to +85°C –55°C to +150°C R6 (k ) 10 6.2 3 1N4002 V+ 8V TO 40V SPAN TRIM 2 R4 20k 1/2 8 1 VTEMP R2 1k R3 100k R5 5k VSET 5 ZERO TRIM 6 1/2 R6 3k R7 5k R8 1k R9 100k 2N1711 VIN 2 REF-43BZ VOUT 6 3 R1 4 10k OP290GP 4 VTEMP GND OP290GP 7 R10 100 1%, 1/2W IOUT RLOAD Figure 5. Temperature to 4-20 mA Transmitter –8– REV. B OP290 +15V R1 250k C1 0.1 F 3 2 1/2 8 OP290GP 1 R2 100k The 200 Ω variable resistor is used to trim the output voltage. For the lowest temperature drift, parallel resistors can be used in place of the variable resistor and taken out of the circuit as required to adjust the output voltage. V+ 2 R3 1M R4 D1 D2 25k 6 1/2 5 4700pF 7 C1 VIN REF-43FZ VOUT GND 4 3 4 R2 VOUT 6 2 1/2 8 1 OP290GP 2N2907A OP290GP 4 VOUT –15V DIODES ARE 1N4148 R1B 200 20-TURN BOURNS 3006P-1-201 R1A 2.37 1% 2k 1% C1 10 F C2 0.1 F Figure 6. Variable Slew Rate Filter LOW OVERHEAD VOLTAGE REFERENCE Figure 7 shows a voltage reference that requires only 0.1 V of overhead voltage. As shown, the reference provides a stable 4.5 V output with a 4.6 V to 36 V supply. Output voltage drift is only 12 ppm/°C. Line regulation of the reference is under 5 µV/V with load regulation better than 10 µV/mA with up to 50 mA of output current. The REF-43 provides a stable 2.5 V which is multiplied by the OP290. The PNP output transistor enables the output voltage to approach the supply voltage. Resistors R1 and R2 determine the output voltage. Figure 7. Low Overhead Voltage Reference  R2  VOUT = 2.5 V 1 +   R1  REV. B –9– OP290 OUTLINE DIMENSIONS 8-Lead Plastic Dual In-Line Package [PDIP] [P-Suffix] (N-8) Dimensions shown in inches and (millimeters) 0.375 (9.53) 0.365 (9.27) 0.355 (9.02) 8 5 1 4 0.295 (7.49) 0.285 (7.24) 0.275 (6.98) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.015 (0.38) MIN SEATING PLANE 0.060 (1.52) 0.050 (1.27) 0.045 (1.14) 0.100 (2.54) BSC 0.180 (4.57) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.150 (3.81) 0.135 (3.43) 0.120 (3.05) 0.015 (0.38) 0.010 (0.25) 0.008 (0.20) COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN –10– REV. B OP290 Revision History Location 12/03—Data Sheet changed from REV. A to REV. B. Page Deleted OP290E and OP290F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal Replaced PIN CONNECTIONS with PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Deleted ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Changes to TPC 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Change to SINGLE SUPPLY OUTPUT VOLTAGE RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Changes to Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Changes to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Change to LOW OVERHEAD VOLTAGE REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1/02—Data Sheet changed from REV. 0 to REV. A. Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Edits to DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 REV. B –11– – 12– C00327–0–12/03(B)
OP290_03 价格&库存

很抱歉,暂时无法提供与“OP290_03”相匹配的价格&库存,您可以联系我们找货

免费人工找货