0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP296GS

OP296GS

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC GP OPAMP 2 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
OP296GS 数据手册
a FEATURES Rail-to-Rail Input and Output Swing Low Power: 60 A/Amplifier Gain Bandwidth Product: 450 kHz Single-Supply Operation: 3 V to 12 V Low Offset Voltage: 300 V max High Open-Loop Gain: 500 V/mV Unity-Gain Stable No Phase Reversal APPLICATIONS Battery Monitoring Sensor Conditioners Portable Power Supply Control Portable Instrumentation Micropower, Rail-to-Rail Input and Output Operational Amplifiers OP196/OP296/OP496 PIN CONFIGURATIONS 8-Lead Narrow-Body SO NULL 1 –IN A 2 +IN A 3 V– 4 8 NC 8-Lead Narrow-Body SO OUT A 1 –IN A 2 +IN A 3 V– 4 8 V+ OP196 7 V+ 6 OUT A 5 NULL OP296 7 OUT B 6 –IN B 5 +IN B NC = NO CONNECT 8-Lead TSSOP 1 OUT A –IN A +IN A V– 4 8 V+ OUT B –IN B +IN B 5 8-Lead Plastic DIP OP296 OUT A 1 –IN A 2 +IN A 3 V– 4 OP296 8 V+ 7 OUT B 6 –IN B 5 +IN B GENERAL DESCRIPTION The OP196 family of CBCMOS operational amplifiers features micropower operation and rail-to-rail input and output ranges. The extremely low power requirements and guaranteed operation from 3 V to 12 V make these amplifiers perfectly suited to monitor battery usage and to control battery charging. Their dynamic performance, including 26 nV/√Hz voltage noise density, recommends them for battery-powered audio applications. Capacitive loads to 200 pF are handled without oscillation. The OP196/OP296/OP496 are specified over the HOT extended industrial (–40°C to +125°C) temperature range. 3 V operation is specified over the 0°C to 125°C temperature range. The single OP196 and the dual OP296 are available in 8-lead SO-8 surface mount packages. The dual OP296 is available in 8-lead PDIP. The quad OP496 is available in 14-lead plastic DIP and narrow SO-14 surface-mount packages. 14-Lead Narrow-Body SO OUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 14 OUT D 13 –IN D 12 +IN D 11 V– 10 +IN C 9 –IN C 8 OUT C 14-Lead Plastic DIP OUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 14 OUT D 13 –IN D 12 +IN D OP496 OP496 11 V– 10 +IN C 9 –IN C 8 OUT C 14-Lead TSSOP (RU Suffix) 1 OUT A –IN A +IN A V+ +IN B –IN B OUT B 7 14 OUT D –IN D +IN D V– +IN C –IN C OUT C 8 OP496 R EV. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 OP196/OP296/OP496–SPECIFICATIONS ELECTRICAL SPECIFICATIONS (@ V = 5.0 V, V S CM = 2.5 V, TA = 25 C, unless otherwise noted.) Min Typ 35 Max 300 650 800 1.2 ± 50 ±8 ± 20 5.0 Parameter INPUT CHARACTERISTICS Offset Voltage Symbol VOS Conditions OP196G, OP296G, OP496G –40°C ≤ TA ≤ +125°C OP296H, OP496H –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C Unit µV µV µV mV nA nA nA V Input Bias Current Input Offset Current Input Voltage Range IB IOS VCM ± 10 ± 1.5 0 Common-Mode Rejection Ratio Large Signal Voltage Gain CMRR AVO VOS ∆VOS/∆T Long-Term Offset Voltage Offset Voltage Drift OUTPUT CHARACTERISTICS Output Voltage Swing High 0 V ≤ VCM ≤ 5.0 V, –40°C ≤ TA ≤ +125°C RL = 100 kΩ, 0.30 V ≤ VOUT ≤ 4.7 V, –40°C ≤ TA ≤ +125°C G Grade, Note 1 H Grade, Note 1 G Grade, Note 2 H Grade, Note 2 IL = –100 µA IL = 1 m A IL = 2 m A IL = –1 mA IL = –1 mA IL = –2 mA 65 dB 150 200 550 1 1.5 2 V/mV µV mV µV/°C µV/°C V V V mV mV mV mA VOH VOL IOUT PSRR ISY 4.85 4.30 Output Voltage Swing Low Output Current POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 4.92 4.56 4.1 36 350 750 ±4 70 550 ± 2.5 V ≤ VS ≤ ± 6 V, –40°C ≤ TA ≤ +125°C VOUT = 2.5 V, RL = ∞ –40°C ≤ TA ≤ +125°C RL = 100 kΩ 85 45 0.3 350 47 0.8 26 0.19 60 80 dB µA µA V/µs kHz Degrees µV p-p nV/√Hz pA/√Hz SR GBP øm en p-p en in 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz NOTES 1 Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 12 5°C, with an LTPD of 1.3. 2 Offset voltage drift is the average of the –40 °C to +25°C delta and the +25 °C to +125°C delta. Specifications subject to change without notice. –2– REV. C OP196/OP296/OP496 ELECTRICAL SPECIFICATIONS Parameter INPUT CHARACTERISTICS Offset Voltage VOS (@ VS = 3.0 V, VCM = 1.5 V, TA = 25 C, unless otherwise noted.) Conditions OP196G, OP296G, OP496G 0°C ≤ TA ≤ 125°C OP296H, OP496H 0°C ≤ TA ≤ 125°C 0 Symbol Min Typ 35 Max 300 650 800 1.2 ± 50 ±8 3.0 Unit µV µV µV mV nA nA V Input Bias Current Input Offset Current Input Voltage Range IB IOS VCM ± 10 ±1 60 80 Common-Mode Rejection Ratio Large Signal Voltage Gain Long-Term Offset Voltage Offset Voltage Drift OUTPUT CHARACTERISTICS Output Voltage Swing High Output Voltage Swing Low POWER SUPPLY Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density CMRR AVO VOS ∆VOS/∆T 0 V ≤ VCM ≤ 3.0 V, 0°C ≤ TA ≤ 125°C RL = 100 kΩ G Grade, Note 1 H Grade, Note 1 G Grade, Note 2 H Grade, Note 2 IL = 100 µA IL = –100 µA VOUT = 1.5 V, RL = ∞ 0°C ≤ TA ≤ 125°C RL = 100 kΩ 200 550 1 1.5 2 dB V/mV µV mV µV/°C µV/°C V mV µA µA V/µs kHz Degrees µV p-p nV/√Hz pA/√Hz VOH VOL ISY 2.85 70 40 60 80 SR GBP øm en p-p en in 0.25 350 45 0.8 26 0.19 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz NOTES 1 Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 12 5°C, with an LTPD of 1.3. 2 Offset voltage drift is the average of the 0 °C to 25°C delta and the 25 °C to 125°C delta. Specifications subject to change without notice. REV. C –3– OP196/OP296/OP496 ELECTRICAL SPECIFICATIONS (@ V = 12.0 V, V S CM = 6 V, TA = 25 C, unless otherwise noted.) Min Typ 35 Max 300 650 800 1.2 ± 50 ±8 ± 15 12 Parameter INPUT CHARACTERISTICS Offset Voltage Symbol VOS Conditions OP196G, OP296G, OP496G 0°C ≤ TA ≤ 125°C OP296H, OP496H 0°C ≤ TA ≤ 125°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C Unit µV µV µV mV nA nA nA V Input Bias Current Input Offset Current Input Voltage Range IB IOS VCM ± 10 ±1 0 Common-Mode Rejection Ratio Large Signal Voltage Gain Long-Term Offset Voltage Offset Voltage Drift OUTPUT CHARACTERISTICS Output Voltage Swing High Output Voltage Swing Low Output Current POWER SUPPLY Supply Current per Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density CMRR AVO VOS ∆VOS/∆T 0 V ≤ VCM ≤ 12 V, –40°C ≤ TA ≤ +125°C RL = 100 kΩ G Grade, Note 1 H Grade, Note 1 G Grade, Note 2 H Grade, Note 2 IL = 100 µA IL = 1 m A IL = –1 mA IL = –1 mA 65 300 1000 550 1 1.5 2 dB V/mV µV mV µV/°C µV/°C V V mV mV mA µA µA V V/µs kHz Degrees µV p-p nV/√Hz pA/√Hz VOH VOL IOUT ISY VS SR GBP øm en p-p en in 11.85 11.30 70 550 ±4 60 80 12 0.3 450 50 0.8 26 0.19 VOUT = 6 V, RL = ∞ –40°C ≤ TA ≤ +125°C 3 RL = 100 kΩ 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz NOTES 1 Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 12 5°C, with an LTPD of 1.3. 2 Offset voltage drift is the average of the –40 °C to +25°C delta and the +25°C to +125 °C delta. Specifications subject to change without notice. –4– REV. C OP196/OP296/OP496 ABSOLUTE MAXIMUM RATINGS 1 ORDERING GUIDE Model OP196GS Temperature Range –40°C to +125°C Package Description 8-Lead SOIC 8-Lead Plastic DIP 8-Lead SOIC 8-Lead TSSOP Package Option SO-8 N-8 SO-8 RU-8 Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . 15 V Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite Storage Temperature Range P, S, RU Package . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Operating Temperature Range OP196G, OP296G, OP496G, H . . . . . . . –40°C to +125°C Junction Temperature Range P, S, RU Package . . . . . . . . . . . . . . . . . . . –65°C to +150°C Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C Package Type 8-Lead Plastic DIP 8-Lead SOIC 8-Lead TSSOP 14-Lead Plastic DIP 14-Lead SOIC 14-Lead TSSOP 3 JA JC OP296GP* –40°C to +125°C OP296GS –40°C to +125°C OP296HRU –40°C to +125°C OP496GP* –40°C to +125°C OP496GS –40°C to +125°C OP496HRU –40°C to +125°C *Not for new design, obsolete April 2002. 14-Lead Plastic DIP N-14 14-Lead SOIC SO-14 14-Lead TSSOP RU-14 Unit °C/W °C/W °C/W °C/W °C/W °C/W 103 158 240 83 120 180 43 43 43 39 36 35 NOTES 1 Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted. 2 For supply voltages less than 15 V, the absolute maximum input voltage is equal to the supply voltage. 3 θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket for P-DIP package; θJA is specified for device soldered in circuit board for SOIC and TSSOP packages. CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP196/OP296/OP496 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. WARNING! ESD SENSITIVE DEVICE REV. C –5– OP196/OP296/OP496–Typical Performance Characteristics 250 VS = 3V TA = 25 C COUNT = 400 25 VS = 5V VCM = 2.5V TA = –40 C TO 125 C 200 QUANTITY – Amplifiers 20 QUANTITY – Amplifiers 150 15 100 10 50 5 0 –250 –200 –150 –100 –50 0 50 100 150 INPUT OFFSET VOLTAGE – V 200 250 0 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 INPUT OFFSET DRIFT, TCVOS – V/ C 1.0 TPC 1. Input Offset Voltage Distribution TPC 4. Input Offset Voltage Distribution (TCVOS) 250 VS = 5V TA = 25 C COUNT = 400 25 VS = 12V VCM = 6V TA = –40 C TO 200 QUANTITY – Amplifiers 20 QUANTITY – Amplifiers 125 C 150 15 100 10 50 5 0 –250 –200 –150 –100 –50 0 50 100 150 INPUT OFFSET VOLTAGE – V 200 250 0 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 INPUT OFFSET DRIFT, TCVOS – V/ C 1.0 1.5 TPC 2. Input Offset Voltage Distribution TPC 5. Input Offset Voltage Distribution (TCVOS) 250 VS = 12V TA = 25 C COUNT = 400 600 3V INPUT OFFSET VOLTAGE – V 200 QUANTITY – Amplifiers 400 VCM = 200 VS 12V VS 2 150 100 0 50 –200 0 –250 –200 –150 –100 –50 0 50 100 150 INPUT OFFSET VOLTAGE – V 200 250 –400 –75 –50 –25 0 25 50 75 TEMPERATURE – C 100 125 150 TPC 3. Input Offset Voltage Distribution TPC 6. Input Offset Voltage vs. Temperature –6– REV. C OP196/OP296/OP496 25 VS = 5V VCM = 2.5V 20 VS = OUTPUT VOLTAGE – mV 1000 1.5V INPUT BAIS CURRENT – nA 100 15 SOURCE SINK 10 10 5 0 –75 –50 –25 0 25 50 75 TEMPERATURE – C 100 125 150 1 0.001 0.01 0.1 1 LOAD CURRENT – mA 10 TPC 7. Input Bias Current vs. Temperature TPC 10. Output Voltage to Supply Rail vs. Load Current 16 1000 INPUT BIAS CURRENT – nA VS = 12 OUTPUT VOLTAGE – mV 2.5V 100 SOURCE SINK 8 10 4 2 3 5 SUPPLY VOLTAGE – V 12 14 1 0.001 0.01 0.1 1 LOAD CURRENT – mA 10 TPC 8. Input Bias Current vs. Supply Voltage TPC 11. Output Voltage to Supply Rail vs. Load Current 40 30 VS = 2.5V TA = 25 C 1000 INPUT BIAS CURRENT – nA VS = OUTPUT VOLTAGE – mV 20 10 0 –10 –20 –30 –40 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 COMMON-MODE VOLTAGE – V 6V 100 SOURCE SINK 10 2.0 2.5 1 0.001 0.01 0.1 1 LOAD CURRENT – mA 10 TPC 9. Input Bias Current vs. Common-Mode Voltage TPC 12. Output Voltage to Supply Rail vs. Load Current REV. C –7– OP196/OP296/OP496 4.95 I L = 100 A 80 90 VS = 2.5V TA = –40 C 4.70 VOH OUTPUT VOLTAGE – V OPEN-LOOP GAIN – dB 70 I L = 1mA 4.45 60 GAIN 50 40 30 20 PHASE 10 0 135 180 100 1k 10k FREQUENCY – Hz 100k 225 1M 0 45 90 PHASE SHIFT – C PHASE SHIFT – C 4.2 VS = 5V 3.85 I L = 2mA 3.7 –75 –50 –25 0 25 50 75 TEMPERATURE – C 100 125 150 –10 10 TPC 13. Output Voltage Swing vs. Temperature TPC 16. Open-Loop Gain and Phase vs. Frequency (No Load) 0.80 VS = 5V 0.60 VOL OUTPUT VOLTAGE – V OPEN-LOOP GAIN – dB 90 80 70 VS = 2.5V TA = 125 C I L = –1mA 0.50 60 GAIN 50 40 30 20 10 PHASE 135 180 100 1k 10k FREQUENCY – Hz 100k 225 1M 0 45 90 0.30 0.10 I L = –100 A –75 –50 –25 0 25 50 75 TEMPERATURE – C 100 125 150 0 –10 10 TPC 14. Output Voltage Swing vs. Temperature TPC 17. Open-Loop Gain and Phase vs. Frequency (No Load) 90 80 70 VS = 2.5V TA = 25 C 950 VS = 5V 800 OPEN-LOOP GAIN – V /mV 0.3V < VO < 4.7V RL = 100k OPEN-LOOP GAIN – dB 60 GAIN 50 40 30 20 PHASE 10 0 135 180 100 1k 10k FREQUENCY – Hz 100k 225 1M 0 45 90 650 PHASE SHIFT – C 500 350 –10 10 200 –75 –50 –25 0 25 50 75 TEMPERATURE – C 100 125 150 TPC 15. Open-Loop Gain and Phase vs. Frequency (No Load) TPC 18. Open-Loop Gain vs. Temperature –8– REV. C OP196/OP296/OP496 600 VS = 5V TA = 25 C 120 100 160 140 500 VS = 2.5V TA = 25 C ALL CHANNELS OPEN-LOOP GAIN – V /mV 400 CMRR – dB 100 50 10 LOAD – k 2 1 80 60 40 20 0 –20 300 200 100 0 150 –40 100 1k 10k 100k FREQUENCY – Hz 1M 10M TPC 19. Open-Loop Gain vs. Resistive Load TPC 22. CMRR vs. Frequency 70 60 50 VS = 2.5V RL = 10k TA = 25 C 160 140 120 100 VS = 5V TA = 25 C CLOSED-LOOP GAIN – dB 40 30 20 10 0 PSRR – dB 80 60 40 –PSRR 20 0 +PSRR –10 –20 –30 10 100 1k 10k FREQUENCY – Hz 100k 1M –20 –40 10 100 1k 10k 100k FREQUENCY – Hz 1M 10M TPC 20. Closed-Loop Gain vs. Frequency TPC 23. PSRR vs. Frequency 1000 900 MAXIMUM OUTPUT SWING – V 800 OUTPUT IMPEDANCE – 6 VS = 2.5V VIN = 5V p-p AV = 1 RL = 100k VS = 2.5V TA = 25 C 5 700 600 ACL = 10 500 400 300 200 100 0 100 1k 10k FREQUENCY – Hz 100k 1M ACL = 1 4 3 2 1 0 1k 10k 100k FREQUENCY – Hz 1M TPC 21. Output Impedance vs. Frequency TPC 24. Maximum Output Swing vs. Frequency REV. C –9– OP196/OP296/OP496 90 80 70 VS = 12V 60 50 40 30 20 –75 –50 VS = 3V VS = 5V CURRENT NOISE DENSITY – pA/ Hz 0.6 VS = 2.5V TA = 25 C VCM = 0V 0.5 ISY/AMPLIFIER – A 0.4 0.3 0.2 0.1 –40 –25 0 25 50 75 85 TEMPERATURE – C 100 125 150 0 1 10 100 FREQUENCY – Hz 1k TPC 25. Supply Current/Amplifier vs. Temperature TPC 28. Input Bias Current Noise Density vs. Frequency 55 TA = 25 C 10 8 6 VS = 6V OUTPUT SWING 50 4 TA = 25 C TO 0.1% ISY/AMPLIFIER – A INPUT STEP – V 2 0 –2 –4 –6 –8 – OUTPUT SWING 45 40 35 1 3 5 7 9 11 SUPPLY VOLTAGE – V 12 13 –10 0 5 10 15 20 SETTLING TIME – s 25 30 TPC 26. Supply Current/Amplifier vs. Supply Voltage TPC 29. Settling Time to 0.1% vs. Step Size 80 70 60 50 40 30 20 10 0 10 0% VOLTAGE NOISE DENSITY – nV/ Hz VS = 2.5V TA = 25 C VCM = 0V 100 90 2mV 1s VS = 2.5V AV = 10k en = 0.8 V p-p 1 10 100 FREQUENCY – Hz 1k TPC 27. Voltage Noise Density vs. Frequency TPC 30. 0.1 Hz to 10 Hz Noise –10– REV. C OP196/OP296/OP496 100mV 100 90 100 90 VS = 2.5V RL = 10k 10 0V 0% 20mV VS = 2.5V AV = 1 RL = 10k CL = 100pF TA = 25 C 10 0% 2s 1V 10 s TPC 31. Small Signal Transient Response TPC 33. Large Signal Transient Response 100mV 100 90 100 90 VS = 2.5V RL = 100k 10 0V 0% 20mV VS = 2.5V AV = 1 RL = 100k CL = 100pF TA = 25 C 10 0% 2s 1V 10 s TPC 32. Small Signal Transient Response CH A: 40.0 V FS MKR: 36.8 V/ Hz TPC 34. Large Signal Transient Response 5.00 V/DIV 0Hz MKR: 1.00Hz BW: 145mHz 10Hz TPC 35. 1/f Noise Corner, VS = ± 5 V, AV = 1,000 VCC R1 I1 R2 D3 Q11 Q5 2x Q3 1x 1x Q7 +IN Q1 Q2 2x 2x Q4 1x 1x Q13 Q8 2x Q9 Q10 QC2 R5 –IN R3A I2 R3B VEE 1* 5* R4B R4A I3 Q15 CC1 Q16 Q20 D7 1.5x D10 1x R9 Q14 D5 Q18 D6 2x Q19 1x Q23 QC1 CF1 CF2 CC2 OUT Q6 Q12 D4 Q17 D8 Q21 QL1 R6 R7 I4 R8 D9 I5 Q22 *OP196 ONLY TPC 36. Simplified Schematic REV. C –11– OP196/OP296/OP496 APPLICATIONS INFORMATION Functional Description VOLTAGE – 5V/DIV The OP196 family of operational amplifiers is comprised of singlesupply, micropower, rail-to-rail input and output amplifiers. Input offset voltage (VOS) is only 300 µV maximum, while the output will deliver ± 5 mA to a load. Supply current is only 50 µA, while bandwidth is over 450 kHz and slew rate is 0.3 V/µs. TPC 36 is a simplified schematic of the OP196—it displays the novel circuit design techniques used to achieve this performance. Input Overvoltage Protection the supply rails. In the circuit of Figure 2, the source amplitude is ± 15 V, while the supply voltage is only ± 5 V. In this case, a 2 kΩ source resistor limits the input current to 5 mA. 5V 100 90 V S = 5V AV = 1 VIN 0 The OPx96 family of op amps uses a composite PNP/NPN input stage. Transistor Q1 in Figure 36 has a collector-base voltage of 0 V if +IN = VEE. If +IN then exceeds VEE, the junction will be forward biased and large diode currents will flow, which may damage the device. The same situation applies to +IN on the base of transistor Q5 being driven above VCC. Therefore, the inverting and noninverting inputs must not be driven above or below either supply rail unless the input current is limited. Figure 1 shows the input characteristics for the OPx96 family. This photograph was generated with the power supply pins connected to ground and a curve tracer’s collector output drive connected to the input. As shown in the figure, when the input voltage exceeds either supply by more than 0.6 V, internal pn-junctions energize and permit current flow from the inputs to the supplies. If the current is not limited, the amplifier may be damaged. To prevent damage, the input current should be limited to no more than 5 mA. 8 6 100 90 VOUT 10 0% 0 5V TIME – 1ns/DIV 1ms Figure 2. Output Voltage Phase Reversal Behavior Input Offset Voltage Nulling The OP196 provides two offset adjust terminals that can be used to null the amplifier’s internal VOS. In general, operational amplifier terminals should never be used to adjust system offset voltages. A 100 kΩ potentiometer, connected as shown in Figure 3, is recommended to null the OP196’s offset voltage. Offset nulling does not adversely affect TCVOS performance, providing that the trimming potentiometer temperature coefficient does not exceed ± 100 ppm/°C. V+ 2 7 OP196 4 3 1 100k 5 6 INPUT CURRENT – mA 4 2 0 –2 –4 –6 –8 V– 10 0% Figure 3. Offset Nulling Circuit Driving Capacitive Loads –1.5 –1 –0.5 0 0.5 1 1.5 INPUT VOLTAGE – V Figure 1. Input Overvoltage I-V Characteristics of the OPx96 Family Output Phase Reversal OP196 family amplifiers are unconditionally stable with capacitive loads less than 170 pF. When driving large capacitive loads in unity-gain configurations, an in-the-loop compensation technique is recommended, as illustrated in Figure 4. RG VIN CF RF Some other operational amplifiers designed for single-supply operation exhibit an output voltage phase reversal when their inputs are driven beyond their useful common-mode range. Typically for single-supply bipolar op amps, the negative supply determines the lower limit of their common-mode range. With these common-mode limited devices, external clamping diodes are required to prevent input signal excursions from exceeding the device’s negative supply rail (i.e., GND) and triggering output phase reversal. The OPx96 family of op amps is free from output phase reversal effects due to its novel input structure. Figure 2 illustrates the performance of the OPx96 op amps when the input is driven beyond the supply rails. As previously mentioned, amplifier input current must be limited if the inputs are driven beyond RX OP296 CL VOUT RX = RO RG RF WHERE RO = OPEN-LOOP OUTPUT RESISTANCE + ( | AICL| ) ( RFR RG ) CL RO F CF = I+ Figure 4. In-the-Loop Compensation Technique for Driving Capacitive Loads –12– REV. C OP196/OP296/OP496 A Micropower False-Ground Generator Some single supply circuits work best when inputs are biased above ground, typically at 1/2 of the supply voltage. In these cases, a false-ground can be created by using a voltage divider buffered by an amplifier. One such circuit is shown in Figure 5. This circuit will generate a false-ground reference at 1/2 of the supply voltage, while drawing only about 55 µA from a 5 V supply. The circuit includes compensation to allow for a 1 µF bypass capacitor at the false-ground output. The benefit of a large capacitor is that not only does the false-ground present a very low dc resistance to the load, but its ac impedance is low as well. 5V OR 12V 10k 240k 0.022 F same potential and no current flows in R1. Since there is no current flow in R1, the same condition must exist in R2; thus, the output of the circuit tracks the input signal. When the input signal is below 0 V, the output voltage of A1 is forced to 0 V. This condition now forces A2 to operate as an inverting voltage follower because the noninverting terminal of A2 is also at 0 V. The output voltage of VOUTA is then a full-wave rectified version of the input signal. A resistor in series with A1’s noninverting input protects the ESD diodes when the input signal goes below ground. Square Wave Oscillator 2 7 100 6 1F 2.5V OR 6V OP196 3 240k 1F 4 Figure 5. A Micropower False-Ground Generator Single-Supply Half-Wave and Full-Wave Rectifiers The oscillator circuit in Figure 7 demonstrates how a rail-to-rail output swing can reduce the effects of power supply variations on the oscillator’s frequency. This feature is especially valuable in battery powered applications, where voltage regulation may not be available. The output frequency remains stable as the supply voltage changes because the RC charging current, which is derived from the rail-to-rail output, is proportional to the supply voltage. Since the Schmitt trigger threshold level is also proportional to supply voltage, the frequency remains relatively independent of supply voltage. For a supply voltage change from 9 V to 5 V, the output frequency only changes about 4 Hz. The slew rate of the amplifier limits the oscillation frequency to a maximum of about 200 Hz at a supply voltage of 5 V. V+ 100k 59k An OP296, configured as a voltage follower operating from a single supply, can be used as a simple half-wave rectifier in low frequency (
OP296GS 价格&库存

很抱歉,暂时无法提供与“OP296GS”相匹配的价格&库存,您可以联系我们找货

免费人工找货