0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP297

OP297

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    OP297 - Dual Low Bias Current Precision Operational Amplifier - Analog Devices

  • 数据手册
  • 价格&库存
OP297 数据手册
Dual Low Bias Current Precision Operational Amplifier OP297 FEATURES Low Offset Voltage: 50 V Max Low Offset Voltage Drift: 0.6 V/ C Max Very Low Bias Current: 100 pA Max Very High Open-Loop Gain: 2000 V/mV Min Low Supply Current (Per Amplifier): 625 A Max Operates From 2 V to 20 V Supplies High Common-Mode Rejection: 120 dB Min Pin Compatible to LT1013, AD706, AD708, OP221, LM158, and MC1458/1558 with Improved Performance APPLICATIONS Strain Gage and Bridge Amplifiers High Stability Thermocouple Amplifiers Instrumentation Amplifiers Photo-Current Monitors High Gain Linearity Amplifiers Long-Term Integrators/Filters Sample-and-Hold Amplifiers Peak Detectors Logarithmic Amplifiers Battery-Powered Systems PIN CONNECTIONS OUTA 1 –INA 2 8 V+ OUTB –INB +INB A B 7 6 5 +INA 3 V– 4 Precision performance of the OP297 includes very low offset, under 50 µV, and low drift, below 0.6 µV/°C. Open-loop gain exceeds 2000 V/mV, ensuring high linearity in every application. Errors due to common-mode signals are eliminated by the OP297’s common-mode rejection of over 120 dB, which minimizes offset voltage changes experienced in battery-powered systems. Supply current of the OP297 is under 625 µA per amplifier, and the part can operate with supply voltages as low as ± 2 V. The OP297 uses a super-beta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25°C, but double for every 10°C rise in temperature, to reach the nanoamp range above 85°C. Input bias current of the OP297 is under 100 pA at 25°C and is under 450 pA over the military temperature range. Combining precision, low power, and low bias current, the OP297 is ideal for a number of applications, including instrumentation amplifiers, log amplifiers, photodiode preamplifiers, and longterm integrators. For a single device, see the OP97; for a quad, see the OP497. 400 1200 UNITS TA = 25 C VS = 15V VCM = 0V GENERAL DESCRIPTION The OP297 is the first dual op amp to pack precision performance into the space-saving, industry-standard, 8-lead SOIC package. Its combination of precision with low power and extremely low input bias current makes the dual OP297 useful in a wide variety of applications. 60 VS = 15V VCM = 0V 40 INPUT CURRENT (pA) 20 IB– 0 IB+ –20 IOS –40 NUMBER OF UNITS 300 200 100 –60 –75 –50 –25 0 25 50 TEMPERATURE ( C) 75 100 125 0 –100 –80 –60 –40 –20 0 20 40 60 INPUT OFFSET VOLTAGE ( V) 80 100 Figure 1. Low Bias Current over Temperature Figure 2. Very Low Offset R EV. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved. OP297–SPECIFICATIONS ELECTRICAL CHARACTERISTICS Parameter Input Offset Voltage Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Input Resistance Differential Mode Input Resistance Common-Mode Large-Signal Voltage Gain Input Voltage Range* Common-Mode Rejection Power Supply Rejection Output Voltage Swing Supply Current per Amplifier Supply Voltage Slew Rate Gain Bandwidth Product Channel Separation Input Capacitance *Guaranteed by CMR test. Specifications subject to change without notice. (@ VS = 15 V, TA = 25 C, unless otherwise noted.) Min OP297E OP297F OP297G Typ Max Min Typ Max Min Typ Max 25 0.1 20 20 0.5 20 17 20 30 500 50 50 0.1 35 35 0.5 20 17 20 30 500 1500 ± 13 114 114 ± 13 ± 13 625 ± 20 ±2 0.05 3200 ± 14 135 125 ± 14 ± 13.7 525 625 ± 20 0.15 500 150 3 1200 ± 13 114 114 ± 13 ± 13 ±2 0.05 100 80 0.1 50 50 0.5 20 17 20 30 500 3200 ± 14 135 125 ± 14 ± 13.7 525 625 ± 20 0.15 500 150 3 200 Unit µV Symbol Conditions VOS IOS IB en p-p en in RIN RINCM AVO VCM CMRR PSRR VO ISY VS SR GBWP CS CIN VCM = 0 V VCM = 0 V 0.1 Hz to 10 Hz fO = 10 Hz fO = 1000 Hz fO = 10 Hz 100 ± 100 150 ± 150 µV/mo 200 pA ± 200 pA µV p-p nV/√Hz nV/√Hz fA/√Hz MΩ GΩ V/mV V dB dB V V µA V V/µs kHz dB pF 2000 ± 13 120 VCM = ± 13 V VS = ± 2 V to ± 20 V 120 R L = 10 k Ω ± 13 ± 13 R L = 2 kΩ No Load Operating Range ±2 0.05 A V = +1 VO = 20 V p-p fO = 10 Hz VO = ± 10 V R L = 2 kΩ 4000 ± 14 140 130 ± 14 ± 13.7 525 0.15 500 150 3 ELECTRICAL CHARACTERISTICS Parameter Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large-Signal Voltage Gain Input Voltage Range* Common-Mode Rejection Power Supply Rejection Output Voltage Swing Supply Current per Amplifier Supply Voltage *Guaranteed by CMR test. Specifications subject to change without notice. (@ VS = 15 V, –40 C Min TA +85 C for OP297E/F/G, unless otherwise noted.) Min OP297F OP297G Typ Max Min Typ Max 80 0.5 80 80 1000 2500 ± 13 ± 13.5 108 130 108 ± 13 0.15 ± 13.4 550 750 ± 20 300 2.0 750 ± 750 800 ± 13 108 108 ± 13 110 0.6 80 80 2500 ± 13.5 130 400 Unit µV Symbol Conditions VOS TCVOS IOS IB AVO VCM CMRR PSRR VO ISY VS OP297E Typ Max 35 0.2 50 50 100 0.6 450 ± 450 VCM = 0 V VCM = 0 V VO = ± 10 V, R L = 2 kΩ VCM = ± 13 VS = ± 2.5 V to ± 20 V R L = 10 k Ω No Load Operating Range 2.0 µV/°C 750 pA ± 750 pA V/mV V dB dB V µA V 1200 3200 ± 13 ± 13.5 114 130 114 ± 13 ± 2.5 0.15 ± 13.4 550 750 ± 20 ± 2.5 0.3 ± 13.4 550 750 ± 2.5 ± 20 –2– R EV. E OP297 ABSOLUTE MAXIMUM RATINGS 1 Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . 40 V Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite Storage Temperature Range Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Operating Temperature Range OP297E (Z) . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C OP297F, OP297G (P, S) . . . . . . . . . . . . . . –40°C to +85°C Junction Temperature Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C Package Types 8-Lead CERDIP (Z) 8-Lead PDIP (P) 8-Lead SOIC (S) JA 3 JC Unit °C/W °C/W °C/W 134 96 150 12 37 41 NOTES 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2 For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage. 3 JA is specified for worst case mounting conditions, i.e., JA is specified for device in socket for CERDIP and PDIP, packages; JA is specified for device soldered to printed circuit board for SOIC package. ORDERING GUIDE Model OP297EZ OP297FP OP297FS OP297FS-REEL OP297FS-REEL7 OP297GP OP297GS OP297GS-REEL OP297GS-REEL7 Temperature Range –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C Package Description 8-Lead CERDIP 8-Lead PDIP 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC Package Options Q-8 N-8 R-8 R-8 R-8 N-8 R-8 R-8 R-8 CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP297 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. 1/2 OP297 2k V1 20Vp-p @ 10Hz 50k 50 1/2 OP297 V2 CHANNEL SEPARATION = 20 log ) V1 V2 /10000 ) Figure 3. Channel Separation Test Circuit R EV. E –3– OP297–Typical Performance Characteristics 400 1200 UNITS 250 TA = 25 C VS = 15V VCM = 0V NUMBER OF UNITS 400 1200 UNITS TA = 25 C VS = 15V VCM = 0V 300 NUMBER OF UNITS 1200 UNITS 200 TA = 25 C VS = 15V VCM = 0V NUMBER OF UNITS 300 150 200 200 100 100 50 100 0 –100 –80 –60 –40 –20 0 20 40 60 80 100 INPUT OFFSET VOLTAGE (pA) 0 –100 –80 –60 –40 –20 0 20 40 60 80 100 INPUT BIAS CURRENT (pA) 0 –100 –80 –60 –40 –20 0 20 40 60 80 100 INPUT OFFSET VOLTAGE (pA) TPC 1. Typical Distribution of Input Offset Voltage TPC 2. Typical Distribution of Input Bias Current TPC 3. Typical Distribution of Input Offset Current 60 VS = 15V VCM = 0V 60 DEVIATION FROM FINAL VALUE ( V) VS = 15V VCM = 0V 40 IB– IB + 20 INPUT CURRENT (pA) 3 TA = 25 C VS = 15V VCM = 0V 2 40 INPUT CURRENT (pA) 20 IB– IB + 0 0 IOS –20 –20 IOS –40 1 –60 –75 –50 –25 0 25 50 75 TEMPERATURE ( C) 100 125 –40 –15 –10 –5 0 5 10 COMMON-MODE VOLTAGE (V) 15 0 0 1 2 3 4 5 TIME AFTER POWER APPLIED (Minutes) TPC 4. Input Bias, Offset Current vs. Temperature TPC 5. Input Bias, Offset Current vs. Common-Mode Voltage TPC 6. Input Offset Voltage Warm-Up Drift EFFECTIVE OFFSET VOLTAGE DRIFT ( V/ C) 10000 EFFECTIVE OFFSET VOLTAGE ( V) BALANCED OR UNBALANCED VS = 15V VCM = 0V 1000 100 SHORT-CIRCUIT CURRENT (mA) BALANCED OR UNBALANCED VS = 15V VCM = 0V 10 35 30 25 20 15 10 5 0 –5 –10 –15 –20 –25 –30 –35 TA = –55 C TA = +25 C TA = +125 C VS = 15V OUTPUT SHORTED TO GROUND TA = +125 C TA = +25 C TA = –55 C 0 1 2 3 4 TIME FROM OUTPUT SHORT (Minutes) 100 –55 C TA +125 C 1 10 10 TA = +25 C 100 1k 10k 100k 1M SOURCE RESISTANCE ( ) 10M 0.1 100 1k 10k 100k 1M 10M SOURCE RESISTANCE ( ) 100M TPC 7. Effective Offset Voltage vs. Source Resistance TPC 8. Effective TCVOS vs. Source Resistance TPC 9. Short Circuit Current vs. Time, Temperature –4– R EV. E OP297 1300 NO LOAD COMMON-MODE REJECTION (dB) 160 POWER SUPPLY REJECTION (dB) 160 TA = 25 C VS = 15V 140 TA = 25 C VS = 15V VS = 10Vp-p TOTAL SUPPLY CURRENT ( A) 1200 TA = +125 C 140 120 120 100 1100 TA = +25 C 1000 TA = –55 C 900 100 80 80 60 40 60 40 0.1 800 0 5 10 15 SUPPLY VOLTAGE (V) 20 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M TPC 10. Total Supply Current vs. Supply Voltage TPC 11. Common-Mode Rejection Frequency TPC 12. Power Supply Rejection vs. Frequency 1000 VOLTAGE NOISE DENSITY (nV/ Hz) TA = 25 C VS = 2V TO 15V 1000 CURRENT NOISE DENSITY (fA/ Hz) 10 TA = 25 C VS = 2V TO 20V 10000 TA = +25 C OPEN-LOOP GAIN (V/mV) TA = –55 C TOTAL NOISE DENSITY (nV/ Hz) 100 CURRENT NOISE VOLTAGE NOISE 100 1 10Hz TA = +125 C 1000 1kHz 0.1 10 10 1kHz 10Hz 100 103 104 105 106 SOURCE RESISTANCE ( ) 107 1 VS = VO = 15V 10V 345 10 2 LOAD RESISTANCE (k ) 20 1 1 10 100 FREQUENCY (Hz) 1 1000 0.01 102 TPC 13. Voltage Noise Density and Current Noise Density vs. Frequency TPC 14. Total Noise Density vs. Source Resistance TPC 15. Open-Loop Gain vs. Load Resistance DIFFERENTIAL INPUT VOLTAGE (10 V/DIV) 35 RL = 10k VS = 15V VCM = 0V 30 OUTPUT SWING (Vp-p) 35 TA = 25 C VS = 15V AVCL = +1 1%THD fO = 1kHz 30 TA = 25 C VS = 15V AVCL = +1 1%THD fO = 1kHz RL = 10k OUTPUT SWING (Vp-p) 10k TA = +125 C 25 20 15 10 5 0 25 20 15 10 5 0 100 TA = +25 C 0 TA = –55 C –15 –10 –5 0 5 10 OUTPUT VOLTAGE (V) 15 10 100 1k LOAD RESISTANCE ( ) 1k 10k FREQUENCY (Hz) 100k TPC 16. Differential Input Voltage vs. Output Voltage TPC 17. Output Swing vs. Load Resistance TPC 18. Maximum Output Swing vs. Frequency R EV. E –5– OP297 100 80 GAIN OPEN-LOOP GAIN (dB) 70 1000 TA = 25 C VS = 15V AVCL = +1 VOUT = 100mV p-p PHASE SHIFT (Deg) 60 40 20 0 –20 PHASE OVERSHOOT (%) 50 40 OUTPUT IMPEDANCE ( ) VS = 15V CL = 30pF RL = 1M 60 –EDGE 100 TA = 25 C VS = 15V 10 TA = –55 C +EDGE 30 20 10 1 0.1 0.01 0.001 10 TA = +125 C –40 100 0 1k 100 10k FREQUENCY (Hz) 1M 10M 0 100 1000 LOAD CAPACITANCE (pF) 10000 100 1k 10k 100k FREQUENCY (Hz) 1M TPC 19. Open Loop Gain, Phase vs. Frequency TPC 20. Small-Signal Overshoot vs. Load Capacitance TPC 21. Open Loop Output Impedance vs Frequency APPLICATIONS INFORMATION Extremely low bias current over a wide temperature range makes the OP297 attractive for use in sample-and-hold amplifiers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is unnecessary with the OP297. Offset voltage and TCVOS are degraded only minimally by high source resistance, even when unbalanced. The input pins of the OP297 are protected against large differential voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted and may vary over the full range of the supply voltages used. The OP297 requires very little operating headroom about the supply rails and is specified for operation with supplies as low as 2 V. Typically, the common-mode range extends to within 1 V of either rail. The output typically swings to within 1 V of the rails when using a 10 kΩ load. AC PERFORMANCE 100 90 10 0% 20mV 5s Figure 5. Small-Signal Transient Response (CLOAD = 1000 pF, AVCL = 1) The OP297’s ac characteristics are highly stable over its full operating temperature range. Unity gain small-signal response is shown in Figure 4. Extremely tolerant of capacitive loading on the output, the OP297 displays excellent response with 1000 pF loads (Figure 5). 100 90 10 0% 100 90 20mV 5s Figure 6. Large-Signal Transient Response (AVCL = 1) 10 0% 20mV 5s Figure 4. Small-Signal Transient Response (CLOAD = 100 pF, AVCL = 1) –6– R EV. E OP297 UNITY-GAIN FOLLOWER NONINVERTING AMPLIFIER APPLICATIONS PRECISION ABSOLUTE VALUE AMPLIFIER 1/2 OP297 1/2 OP297 The circuit of Figure 9 is a precision absolute value amplifier with an input impedance of 30 MΩ. The high gain and low TCVOS of the OP297 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a commonmode signal to the op amps. The CMR of the OP297 exceeds 120 dB, yielding an error of less than 2 ppm. +15V C2 0.1 F INVERTING AMPLIFIER 8 MINI-DIP BOTTOM VIEW 1 R1 1k R3 1k A C1 30pF 2 8 D1 1N4148 5 1/2 OP297 B VIN 3 1/2 OP297 4 1 D2 1N4148 6 R2 2k 1/2 OP297 0V 7 VOUT 10V C3 0.1 F Figure 7. Guard Ring Layout and Connections GUARDING AND SHIELDING –15V Figure 9. Precision Absolute Value Amplifier To maintain the extremely high input impedances of the OP297, care must be taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide a humidity barrier. Even a clean PC board can have 100 pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces are operated at a voltage close to that on the inputs, as shown in Figure 7, so that leakage currents become minimal. In noninverting applications, the guard ring should be connected to the common-mode voltage at the inverting input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be on both sides of the circuit board. OPEN-LOOP GAIN LINEARITY PRECISION CURRENT PUMP Maximum output current of the precision current pump shown in Figure 10 is ± 10 mA. Voltage compliance is ± 10 V with ± 15 V supplies. Output impedance of the current transmitter exceeds 3 MΩ with linearity better than 16 bits. R3 10k R1 10k VIN R2 10k 2 3 1/2 OP297 1 +15V R6 10k IOUT 10mA R4 10k 8 7 5 The OP297 has both an extremely high gain of 2000 V/mV minimum and constant gain linearity. This enhances the precision of the OP297 and provides for very high accuracy in high closed loop gain applications. Figure 8 illustrates the typical open-loop gain linearity of the OP297 over the military temperature range. DIFFERENTIAL INPUT VOLTAGE (10 V/DIV) 1/2 OP297 6 IOUT = VIN R5 = VIN 100 = 10mA/V –15V Figure 10. Precision Current Pump RL = 10k VS = 15V VCM = 0V TA = +125 C TA = +25 C 0 TA = –55 C –15 –10 –5 0 5 10 OUTPUT VOLTAGE (V) 15 Figure 8. Open-Loop Linearity of the OP297 R EV. E –7– OP297 PRECISION POSITIVE PEAK DETECTOR In Figure 11, the CH must be of polystyrene, Teflon®, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the OP297. 1k +15V 1N4148 2 1k 8 0.1 F 6 1k CH RESET 1k 2N930 –15V All the transistors of the MAT04 are precisely matched and at the same temperature, so the IS and VT terms cancel, giving 2 ln IIN = ln IO + ln IREF = ln(IO × IREF ) Exponentiating both sides of the equation leads to IO = (IIN )2 IREF VIN 3 1/2 OP297 1 5 1/2 OP297 7 VOUT Op amp A2 forms a current-to-voltage converter, which gives VOUT = R2 × IO. Substituting (VIN/R1) for IIN and the above equation for IO yields  R 2   VIN  VOUT =     IREF   R1  2 0.1 F A similar analysis made for the square-root circuit of Figure 14 leads to its transfer function VOUT = R 2 Figure 11. Precision Positive Peak Detector SIMPLE BRIDGE CONDITIONING AMPLIFIER (VIN )(IREF ) R1 C2 100pF R2 33k 6 IO Figure 12 shows a simple bridge conditioning amplifier using the OP297. The transfer function is  ∆R  RF VOUT = VREF    R + ∆R  R The REF43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, RF should be 0.1% or better with a low temperature coefficient. 15V RF 2 1 Q1 3 5 1/2 OP297 7 VOUT 6 7 Q2 5 8 MAT04E IREF 14 13 Q4 12 R3 50k R4 50k –15V VREF REF43 2 4 R+ R 3 C1 100pF V+ 1/2 OP297 1 VOUT VIN R1 33k Q3 10 1 9 2 8 3 1/2 OP297 4 6 8 V– 7 VOUT = VREF R R+ R RF R 5 1/2 OP297 4 Figure 13. Squaring Amplifier R2 33k C2 100pF 6 IO Figure 12. A Simple Bridge Conditioning Amplifier Using the OP297 NONLINEAR CIRCUITS Due to its low input bias currents, the OP297 is an ideal log amplifier in nonlinear circuits such as the square and squareroot circuits shown in Figures 13 and 14. Using the squaring circuit of Figure 13 as an example, the analysis begins by writing a voltage loop equation across transistors Q1, Q2, Q3, and Q4. 5 1/2 OP297 7 VOUT IREF Q1 C1 100pF V+ VIN R1 33k 2 8 6 1 3 7 Q2 5 8 MAT04E 13 14 Q4 12 I  I  I  I  VT1 ln  IN  + VT 2 ln  IN  = VT 3 ln  O  + VT 4 ln  REF   I S1   IS 2   IS 3   IS 4  Q3 10 9 3 1/2 OP297 4 V– 1 R3 50k R4 50k –15V Figure 14. Square-Root Amplifier –8– R EV. E OP297 In these circuits, IREF is a function of the negative power supply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference may be used to set IREF. An important consideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R4 can be changed to scale IREF, or R1, and R2 can be varied to keep the output voltage within the usable range. Unadjusted accuracy of the square-root circuit is better than 0.1% over an input voltage range of 100 mV to 10 V. For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%. OP297 SPICE MACRO MODEL Figures 14 and 15 show the node end net list for a SPICE macro model of the OP297. The model is a simplified version of the actual device and simulates important dc parameters such as VOS, IOS, IB, AVO, CMR, VO, and ISY. AC parameters such as slew rate, gain and phase response, and CMR change with frequency are also simulated by the model. The model uses typical parameters for the OP297. The poles and zeros in the model were determined from the actual openand closed-loop gain and phase response of the OP297. In this way, the model presents an accurate ac representation of the actual device. The model assumes an ambient temperature of 25°C. 99 V2 R3 C2 5 6 12 15 –IN 2 RIN2 8 R1 CIN +IN 1 RIN1 7 IOS 3 R2 EOS D1 D2 Q1 10 R5 4 Q2 11 R6 98 D4 14 I1 50 C6 R11 C7 R13 V3 EREF G1 R7 C3 R4 13 D3 R8 16 R9 C4 E1 9 G1 98 R10 C5 E2 R12 E3 R14 G3 R15 C8 9 99 D7 R16 ISYS 22 23 D6 27 D5 26 D8 V4 G6 R18 V5 25 L1 R17 D9 50 28 29 G7 G4 G5 D10 R19 Figure 15. Macro Model R EV. E –9– OP297 SPICE Net List *OP297 SPICE MACRO-MODEL * *NODE ASSIGNMENTS NONINVERTING INPUT INVERTING INPUT OUTPUT POSITIVE SUPPLY NEGATIVE SUPPLY *SUBCKT OP297 1 2 30 99 50 * *INPUT STAGE & POLE AT 6 MHz * RIN1 1 7 2500 RIN2 2 8 2500 R1 8 3 5E11 R2 7 3 5E11 R3 5 99 612 R4 6 99 612 CIN 7 8 3E-12 C2 5 6 21.67E-12 I1 4 50 0.1E-3 IOS 7 8 20E-12 EOS 9 7 POLY(1) 19 23 25E-6 1 Q1 5 8 10 QX Q2 6 9 11 QX R5 10 4 96 R6 11 4 96 D1 8 9 DX D2 9 8 DX * EREF 98 0 23 0 1 * *GAIN STAGE & DOMINANT POLE AT 0.13 HZ * R7 12 98 2.45E9 C3 12 98 500E-12 G1 98 12 56 1.634E-3 V2 99 13 1.5 V3 14 50 1.5 D3 12 13 DX D4 14 12 DX * *NEGATIVE ZERO AT -1.8 MHz * R8 15 16 1E6 C4 15 16 –88.4E-15 R9 16 98 1 E1 15 98 12 23 1E6 * *POLE AT 1.8 MHz * R10 17 98 1E6 C5 17 98 88 4E-15 G2 98 17 16 23 1 E-6 * *COMMON-MODE GAIN NETWORK WITH ZERO AT 50 HZ * R11 18 19 1E6 C6 18 19 3.183E-9 R12 19 98 1 E2 18 98 3 23 100E-3 * *POLE AT 6 MHz * R15 22 98 1E6 C8 22 98 26.53E-15 G3 98 22 17 23 1 E-6 * *OUTPUT STAGE * R16 23 99 160E3 R17 23 50 160E3 ISY 99 50 331E-6 R18 25 99 200 R19 25 50 200 L1 25 30 1E-7 G4 28 50 22 25 5E-3 G5 29 50 25 22 5E-3 G6 25 99 99 22 5E-3 G7 50 25 22 50 5E-3 V4 26 25 1.8 V5 25 27 1.3 D5 22 26 DX D6 27 22 DX D7 99 28 DX D8 99 29 DX D9 50 28 DY D10 50 29 DY * *MODELS USED * .MODEL QX NPN BF=2.5E6) .MODEL DX D IS = 1E-15) .MODEL DY D IS = 1E-15 BV = 50) .ENDS OP297 –10– R EV. E OP297 OUTLINE DIMENSIONS 8-Lead Plastic Dual In-Line Package [PDIP] P-Suffix (N-8) Dimensions shown in inches and (millimeters) 0.375 (9.53) 0.365 (9.27) 0.355 (9.02) 8 5 8-Lead Ceramic Dual In-Line Package [CERDIP] Z-Suffix (Q-8) Dimensions shown in inches and (millimeters) 0.005 (0.13) MIN 8 0.055 (1.40) MAX 5 1 4 0.295 (7.49) 0.285 (7.24) 0.275 (6.98) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.015 (0.38) MIN SEATING PLANE 0.060 (1.52) 0.050 (1.27) 0.045 (1.14) PIN 1 1 4 0.310 (7.87) 0.220 (5.59) 0.100 (2.54) BSC 0.150 (3.81) 0.135 (3.43) 0.120 (3.05) 0.100 (2.54) BSC 0.180 (4.57) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.405 (10.29) MAX 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 15 0 0.320 (8.13) 0.290 (7.37) 0.015 (0.38) 0.010 (0.25) 0.008 (0.20) 0.015 (0.38) 0.008 (0.20) COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN 8-Lead Standard Small Outline Package (SOIC) Narrow Body S-Suffix (R-8) Dimensions shown in millimeters and (inches) 5.00 (0.1968) 4.80 (0.1890) 8 5 4 4.00 (0.1574) 3.80 (0.1497) 1 6.20 (0.2440) 5.80 (0.2284) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY SEATING 0.10 PLANE 1.75 (0.0688) 1.35 (0.0532) 8 0.25 (0.0098) 0 0.17 (0.0067) 0.50 (0.0196) 0.25 (0.0099) 45 0.51 (0.0201) 0.31 (0.0122) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN R EV. E –11– OP297 Revision History Location 7/03—Data Sheet changed from REV. D to REV. E. Page Changes to TPCS 13 and 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Edits to Figures 12 and 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Changes to NONLINEAR CIRCUITS Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 10/02—Data Sheet changed from REV. C to REV. D. C00300–0–7/03(E) Edits to Figure 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 10/02—Data Sheet changed from REV. B to REV. C. Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Deleted WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Deleted DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Deleted ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 –12– R EV. E
OP297 价格&库存

很抱歉,暂时无法提供与“OP297”相匹配的价格&库存,您可以联系我们找货

免费人工找货