0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP400_07

OP400_07

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    OP400_07 - Quad Low Offset, Low Power Operational Amplifier - Analog Devices

  • 数据手册
  • 价格&库存
OP400_07 数据手册
Quad Low Offset, Low Power Operational Amplifier OP400 FEATURES Low input offset voltage: 150 μV maximum Low offset voltage drift over –55°C to +125°C: 1.2 pV/°C maximum Low supply current (per amplifier): 725 μA maximum High open-loop gain: 5000 V/mV minimum Input bias current: 3 nA maximum Low noise voltage density: 11 nV/√Hz at 1 kHz Stable with large capacitive loads: 10 nF typical Pin-compatible to LM148, HA4741, RM4156, and LT1014, with improved performance Available in die form OUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 – + + – – + + – FUNCTIONAL BLOCK DIAGRAMS OUTA 1 14 13 12 16 – + + – OUT D –IN D +IN D V– +IN C –IN C OUT C 00304-002 OUT D –IN D +IN D V– +IN C 00304-001 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 NC 8 15 14 OP400 – + + – 13 12 11 10 9 OP400 11 10 9 8 –IN C OUT C NC NC = NO CONNECT Figure 1. 14-Pin Ceramic DIP (Y-Suffix) and 14-Pin Plastic DIP (P-Suffix) Figure 2. 16-Pin SOIC (S-Suffix) GENERAL DESCRIPTION The OP400 is the first monolithic quad operational amplifier that features OP77-type performance. Precision performance is not sacrificed with the OP400 to obtain the space and cost savings offered by quad amplifiers. The OP400 features an extremely low input offset voltage of less than 150 μV with a drift of less than 1.2 μV/°C, guaranteed over the full military temperature range. Open-loop gain of the OP400 is more than 5 million into a 10 kΩ load, input bias current is less than 3 nA, CMR is more than 120 dB, and PSRR is less than 1.8 μV/V. On-chip Zener zap trimming is used to achieve the low input offset voltage of the OP400 and eliminates the need for offset nulling. The OP400 conforms to the industrystandard quad pinout, which does not have null terminals. The OP400 features low power consumption, drawing less than 725 μA per amplifier. The total current drawn by this quad amplifier is less than that of a single OP07, yet the OP400 offers significant improvements over this industry-standard op amp. Voltage noise density of the OP400 is a low 11 nV/√Hz at 10 Hz, half that of most competitive devices. The OP400 is pin-compatible with the LM148, HA4741, RM4156, and LT1014 operational amplifiers and can be used to upgrade systems having these devices. The OP400 is an ideal choice for applications requiring multiple precision operational amplifiers and where low power consumption is critical. V+ BIAS VOLTAGE LIMITING NETWORK +IN –IN OUT V– 00304-003 Figure 3. Simplified Schematic (One of Four Amplifiers Is Shown) Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved. OP400 TABLE OF CONTENTS Features .............................................................................................. 1 Functional Block Diagrams............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics............................................................. 3 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 ESD Caution.................................................................................. 5 Typical Performance Characteristics ..............................................6 Applications..................................................................................... 11 Dual Low Power Instrumentation Amplifier ......................... 11 Bipolar Current Transmitter ..................................................... 12 Differential Output Instrumentation Amplifier .................... 12 Multiple Output Tracking Voltage Reference......................... 13 Outline Dimensions ....................................................................... 14 Ordering Guide .......................................................................... 15 SMD Parts and Equivalents ...................................................... 15 REVISION HISTORY 1/07—Rev. D to Rev. E Updated Format..................................................................Universal Changes to Figure 1 and Figure 2 ................................................... 1 Removed Figure 4 ............................................................................. 4 Changes to Table 3 ............................................................................ 4 Changes to Figure 16 through Figure 19, Figure 21..................... 8 Changes to Figure 27 ........................................................................ 9 Changes to Figure 28 ...................................................................... 10 Changes to Figure 33 ...................................................................... 13 Updated Outline Dimensions ....................................................... 14 3/06—Rev. C to Rev. D Updated Format..................................................................Universal Deleted Wafer Test Limits Table ..................................................... 4 New Package Drawing: R-14 ......................................................... 15 Updated Outline Dimensions ....................................................... 15 Changes to Ordering Guide .......................................................... 16 6/03—Rev. B to Rev. C Edits to Specifications .......................................................................2 10/02—Rev. A to Rev. B Addition of Absolute Maximum Ratings .......................................5 Edits to Outline Dimensions......................................................... 12 4/02—Rev. 0 to Rev. A Edits to Features.................................................................................1 Edits to Ordering Information ........................................................1 Edits to Pin Connections..................................................................1 Edits to General Descriptions..................................................... 1, 2 Edits to Package Type .......................................................................2 Rev. E | Page 2 of 16 OP400 SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ VS = ±15 V, TA = +25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Input Offset Voltage Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Resistance Differential Mode Input Resistance Common Mode Large Signal Voltage Gain Symbol VOS Conditions Min OP400A/E Typ Max 40 0.1 VCM = 0 V VCM = 0 V 0.1 Hz to 10 Hz 0.1 0.75 0.5 10 200 VO = ±10 V RL = 10 kΩ R L = 2 kΩ Input Voltage Range 1 Common-Mode Rejection Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Channel Separation Capacitive Load Stability NOISE PERFORMANCE Input Noise Voltage Density 3 Input Noise Current Input Noise Current Density 1 2 Min OP400F Typ Max 60 0.1 0.1 0.75 0.5 10 200 230 Min OP400G/H Typ Max 80 0.1 0.1 0.75 0.5 10 200 300 Unit μV μV/mo nA nA μV p-p MΩ GΩ 150 IOS IB en p-p RIN RINCM AVO 1.0 3.0 2.0 6.0 3.5 7.0 IVR CMR CIN VCM = 12 V 5000 12,000 2000 3500 ±12 ±13 120 140 3.2 3000 1500 ±12 115 7000 3000 ±13 140 3.2 3000 1500 ±12 110 7000 3000 ±13 135 3.2 V/mV V/mV V dB pF VO PSRR ISY RL = 10 kΩ VS = 3 V to 18 V No load ±12 ±12.6 0.1 600 1.8 725 ±12 ±12.6 0.1 600 3.2 725 ±12 ±12.6 0.2 600 5.6 725 V μV/V μA SR GBWP CS 0.1 AV = 1 VO = 20 V p-p, fO = 10 Hz 2 AV = 1, no oscillations fO = 10 Hz3 fO = 1000 Hz3 0.1 Hz to 10 Hz fO = 10 Hz 123 0.15 500 135 10 0.1 0.15 500 135 10 0.1 0.15 500 135 10 V/μs kHz dB nF 123 123 en in p-p in 22 11 15 0.6 36 18 22 11 15 0.6 36 18 22 11 15 0.6 nV/√Hz nV/√Hz pA p-p pA/√Hz Guaranteed by CMR test. Guaranteed but not 100% tested. 3 Sample tested. Rev. E | Page 3 of 16 OP400 @ VS = ±15 V, −55°C ≤ TA ≤ +125°C for OP400A, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Input Voltage Range 1 Common-Mode Rejection OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability 1 Symbol VOS TCVOS IOS IB AVO IVR CMR VO PSRR ISY Conditions Min Typ 70 0.3 0.1 1.3 9000 2300 ±12.5 115 ±12.4 0.2 600 8 Max 270 1.2 2.5 5.0 Unit μV μV/°C nA nA V/mV V dB VCM = 0 V VCM = 0 V VO = ±10 V, RL = 10 kΩ RL = 2 kΩ VCM = ±12 V RL = 10 kΩ VO = 3 V to 18 V No load AV = 1, no oscillations 3000 1000 ±12 130 ±12 3.2 775 μV/V μA nF Guaranteed by CMR test. @ VS = ±15 V, −25°C ≤ TA ≤ +85°C for OP400E/F, 0°C ≤ TA ≤ 70°C for OP400G, −40°C ≤ TA ≤ +85°C for OP400H, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Symbol VOS TCVOS IOS VCM = 0 V E, F, G grades H grade VCM = 0 V E, F, G grades H grade VCM = 0 V RL = 10 kΩ R L = 2 kΩ VCM = ±12 V RL = 10 kΩ RL = 2 kΩ VS = ±3 V to ±18 V No load Conditions Min OP400E Typ Max 60 0.3 220 1.2 Min OP400F Typ Max 80 0.3 350 2.0 Min OP400G/H Typ Max 110 0.6 400 2.5 Unit μV μV/°C 0.1 2.5 0.1 3.5 0.2 0.2 1.0 1.0 2000 1000 ±12 105 ±12 ±11 5000 2000 ±12.5 130 ±12.6 ±12.2 0.3 600 6.0 12.0 12.0 20.0 nA nA nA nA V/mV V/mV V dB V V Input Bias Current IB 0.9 5.0 0.9 10.0 Large-Signal Voltage Gain AVO Input Voltage Range 1 Common-Mode Rejection OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability 1 IVR CMR VO 3000 1500 ±12 115 ±12 ±11 10,000 2700 ±12.5 135 ±12.4 ±12 0.15 600 3.2 775 2000 1000 ±12 110 ±12 ±11 5000 2000 ±12.5 135 ±12.4 ±12 0.15 600 5.6 775 PSRR ISY 10.0 775 μV/V μA No oscillations 10 10 10 nF Guaranteed by CMR test. Rev. E | Page 4 of 16 OP400 ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Supply Voltage Differential Input Voltage Input Voltage Output Short-Circuit Duration Storage Temperature Range P, Y Packages Lead Temperature (Soldering 60 sec) Junction Temperature (TJ) Range Operating Temperature Range OP400A OP400E, OP400F OP400G OP400H Rating ±20 V ±30 V Supply voltage Continuous −65°C to +150°C 300°C −65°C to +150°C −55°C to +125°C −25°C to +85°C 0°C to 70°C −40°C to +85°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply to both dice and packaged parts, unless otherwise noted. THERMAL RESISTANCE θJA is specified for worst-case mounting conditions, that is, θJA is specified for device in socket for CERDIP and PDIP packages; θJA is specified for device soldered to printed circuit board for SOIC package. Table 5. Thermal Resistance Package Type 14-Pin Ceramic DIP (Y) 14-Pin Plastic DIP (P) 16-Pin SOIC (S) θJA 94 76 88 θJC 10 33 23 Unit °C/W °C/W °C/W ESD CAUTION Rev. E | Page 5 of 16 OP400 TYPICAL PERFORMANCE CHARACTERISTICS 3 TA = 25°C VS = ±15V CHANGE IN OFFSET VOLTAGE (μV) INPUT OFFSET CURRENT (pA) 120 VS = ±15V 110 2 100 1 90 0 00304-004 80 –75 –50 –25 0 25 50 75 100 0 1 2 3 4 5 125 TIME (Minutes) TEMPERATURE (°C) Figure 4. Warmup Drift 70 VS = ±15V 60 INPUT OFFSET VOLTAGE (μV) INPUT BIAS CURRENT (nA) 1.0 1.1 Figure 7. Input Offset Current vs. Temperature 50 0.9 40 0.8 30 20 00304-005 0.7 00304-008 10 –75 –50 –25 0 25 50 75 100 125 0.6 –15 –10 –5 0 5 10 15 TEMPERATURE (°C) COMMON-MODE VOLTAGE (V) Figure 5. Input Offset Voltage vs. Temperature 2.0 VS = ±15V 1.6 INPUT BIAS CURRENT (nA) COMMON-MODE REJECTION (dB) Figure 8. Input Bias Current vs. Common-Mode Voltage 140 120 100 80 60 40 20 0 TA = 25°C VS = ±15V 1.2 0.8 0.4 00304-006 0 –75 –50 –25 0 25 50 75 100 125 1 10 100 1k 10k 100k TEMPERATURE (°C) FREQUENCY (Hz) Figure 6. Input Bias Current vs. Temperature Figure 9. Common-Mode Rejection vs. Frequency Rev. E | Page 6 of 16 00304-009 00304-007 OP400 100 2.5 FOUR AMPLIFIERS TA = 25°C NOISE VOLTAGE DENSITY (nV/ Hz) TOTAL SUPPLY CURRENT (mA) 2.4 2.3 2.2 00304-013 00304-010 10 1 10 100 FREQUENCY (Hz) 1k 2.1 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18 ±20 SUPPLY VOLTAGE (V) Figure 10. Noise Voltage Density vs. Frequency 1k TA = 25°C VS = ±15V Figure 13. Total Supply Current vs. Supply Voltage 2.5 FOUR AMPLIFIERS VS = ±15V CURRENT NOISE DENSITY (fA/ Hz) TOTAL SUPPLY CURRENT (mA) 800 2.4 600 2.3 400 2.2 200 00304-011 2.1 –75 –50 –25 0 25 50 75 100 125 0 1 10 100 FREQUENCY (Hz) 1k 150 TEMPERATURE (°C) Figure 11. Current Noise Density vs. Frequency 140 120 100 80 60 40 20 0 0.1 Figure 14. Total Supply Current vs. Temperature POWER SUPPLY REJECTION (dB) NEGATIVE SUPPLY POSITIVE SUPPLY 00304-012 0 2 4 6 8 10 1 10 100 FREQUENCY (Hz) 1k 10k 100k TIME (Seconds) Figure 12. 0.1 Hz to 10 Hz Noise Figure 15. Power Supply Rejection vs. Frequency Rev. E | Page 7 of 16 00304-015 00304-014 OP400 144 VS = ±15V POWER SUPPLY REJECTION (dB) 142 80 AV = 1000 TA = 25°C VS = ±15V 60 GAIN (dB) 140 40 AV = 100 138 AV = 10 20 136 00304-016 0 AV = 1000 00304-019 134 –75 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125 150 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M Figure 16. Power Supply Rejection vs. Temperature 5k VS = ±15V 4k RL = 2kΩ Figure 19. Closed-Loop Gain vs. Frequency TA = 25°C VS = ±15V OUTPUT SWING (V p-p AT 1% Distortion) 25 OPEN-LOOP GAIN (V/mV) 20 3k 15 2k 10 1k 00304-017 5 00304-020 0 –75 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125 150 10 100 1k FREQUENCY (Hz) 10k 100k Figure 17. Open-Loop Gain vs. Temperature TA = 25°C VS = ±15V Figure 20. Maximum Output Swing Frequency TA = 25°C 10 VS = ±15V VOUT = 10V p-p RL = 2kΩ DISTORTION (%) 120 100 80 60 40 20 0 OPEN-LOOP GAIN (dB) PHASE SHIFT (Degrees) 0 GAIN PHASE 45 90 135 1 AV = 100 AV = 10 AV = 1 0.1 0.01 10 100 1k 10k FREQUENCY (Hz) 100k 1M 00304-018 100 1k FREQUENCY (Hz) 10k Figure 18. Open-Loop Gain and Phase Shift vs. Frequency Figure 21. Total Harmonic Distortion vs. Frequency Rev. E | Page 8 of 16 000304-021 180 0.001 OP400 50 45 40 35 TA = 25°C VS = ±15V AV = +1 FALLING TA = 25°C VS = ±15V AV = +1 OVERSHOOT (%) 30 25 20 15 10 000304-022 RISING 5 0 0 0.5 1.0 1.5 2.0 CAPACITIVE LOAD (nF) 2.5 5V 100μs 3.0 Figure 22. Overshoot vs. Capacitive Load TA = 25°C 34 SHORT-CIRCUIT CURRENT (mA) Figure 25. Large Signal Transient Response VS = ±15V TA = 25°C VS = ±15V AV = +1 32 SINKING 30 SOURCING 00304-023 28 20mV 5μs 0 1 2 3 TIME (Minutes) 4 5 Figure 23. Short Circuit vs. Time 140 TA = 25°C VS = ±15V VIN = 20V p-p Figure 26. Small Signal Transient Response TA = 25°C VS = ±15V AV = +1 CHANNEL SEPARATION (dB) 130 120 110 100 00304-024 20mV 5μs 90 10 100 1k FREQUENCY (Hz) 10k 100k Figure 24. Channel Separation vs. Frequency Figure 27. Small Signal Transient Response, CLOAD = 1 nF Rev. E | Page 9 of 16 00304-027 00304-026 00304-025 OP400 100Ω 10kΩ – – – – OP400 + 1/4 OP400 + 1/4 OP400 + 1/4 eOUT OP400 + TO SPECTRUM ANALYZER 1/4 eOUT ( Figure 28. Noise Test Schematic –18V 14 – + + 13 12 11 V– 10 9 – + + 8 4 3 V+ 1 GND +18V 00304-029 2 3 4 5 6 Figure 29. Burn-In Circuit Rev. E | Page 10 of 16 – – 1 2 7 00304-028 nV ~ ) 2 × en ( nV ) × 101 Hz = Hz OP400 APPLICATIONS The OP400 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load-driving capability of the OP400. Total supply current can be reduced by connecting the inputs of an unused amplifier to V−. This turns the amplifier off, lowering the total supply current. Table 6. Gain Bandwidth Gain 5 10 100 1000 Bandwidth 150 kHz 67 kHz 7.5 kHz 500 Hz + VIN – + + DUAL LOW POWER INSTRUMENTATION AMPLIFIER A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 30. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (G = 1000). Offset voltage drift is typically 0.4 μV/°C over the military temperature range, which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low power instrumentation amplifier is a function of gain and is shown in Table 6. The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from −10 V to +10 V if required. OP400A OP400A – 1/4 – 1/4 VOUT REFERENCE 20kΩ 5kΩ 5kΩ 20kΩ RG VOUT VIN =5+ 40,000 RG + VIN – + + OP400A OP400A – 1/4 – 1/4 VOUT REFERENCE 20kΩ 5kΩ 5kΩ 20kΩ 00304-030 RG Figure 30. Dual Low Power Instrumentation Amplifier Rev. E | Page 11 of 16 OP400 BIPOLAR CURRENT TRANSMITTER In the circuit of Figure 31, which is an extension of the standard three op amp instrumentation amplifier, the output current is proportional to the differential input voltage. Maximum output current is ±5 mA, with voltage compliance equal to ±10 V when using ±15 V supplies. Output impedance of the current transmitter exceeds 3 MΩ, and linearity is better than 16 bits with gain set for a full-scale input of ±100 μV. DIFFERENTIAL OUTPUT INSTRUMENTATION AMPLIFIER The output voltage swing of a single-ended instrumentation amplifier is limited by the supplies, normally at ±15 V, to a maximum of 24 V p-p. The differential output instrumentation amplifier shown in Figure 32 can provide an output voltage swing of 48 V p-p when operated with ±15 V supplies. The extended output swing is due to the opposite polarity of the outputs. Both outputs swing 24 V p-p, but with opposite polarity, for a total output voltage swing of 48 V p-p. The reference input can be used to set a common-mode output voltage over the range ±10 V. The PSRR of the amplifier is less than 1 μV/V with CMRR (G = 1000) better than 115 dB. Offset voltage drift is typically 0.4 μV/°C over the military temperature range. 25kΩ – + OP400E – 25kΩ 1/4 25kΩ – OP400E + 1/4 VOUT 200Ω IOUT 5mA VIN RG 25kΩ – OP400E + 1/4 25kΩ 25kΩ OP400E – 00304-031 1/4 + + IOUT – VIN 200Ω 1 – 50,000 RG Figure 31. Bipolar Current Transmitter 22pF – + OP400A – 25kΩ VIN RG 1/4 25kΩ 25kΩ + OP400A 25kΩ 1/4 – 22pF – OP400A + 1/4 25kΩ 25kΩ 22pF 25kΩ 22pF + VIN VOUT = 50kΩ + R G RG 25kΩ VOUT – REFERENCE INPUT + Figure 32. Differential Output Instrumentation Amplifier Rev. E | Page 12 of 16 00304-032 OP400A 1/4 OP400 MULTIPLE OUTPUT TRACKING VOLTAGE REFERENCE Figure 33 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V, and 2.5 V for use as a system voltage reference. Maximum output current from each reference is 5 mA with load regulation under 25 μV/mA. Line regulation is better than 15 μV/V, and output voltage drift is under 20 μV/°C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 μV p-p from the 10 V output and proportionately less from the 7.5 V, 5 V, and 2.5 V outputs. 15V 10kΩ 22kΩ 1N4002 10V + OP400A 1μF 2 1/4 7.5V – 10kΩ REF 43 2.5V REFERENCE 4 6 10kΩ 10kΩ + OP400A – 2μF 10kΩ 10kΩ 1/4 + OP400A – 1/4 5V + 10kΩ OP400A 1μF 1/4 2.5V – Figure 33. Multiple Output Tracking Voltage Reference Rev. E | Page 13 of 16 00304-033 OP400 OUTLINE DIMENSIONS 0.005 (0.13) MIN 14 1 0.098 (2.49) MAX 8 10.50 (0.4134) 10.10 (0.3976) 0.310 (7.87) 0.220 (5.59) 16 9 7 1 7.60 (0.2992) 7.40 (0.2913) 8 PIN 1 0.100 (2.54) BSC 0.785 (19.94) MAX 0.320 (8.13) 0.290 (7.37) 0.060 (1.52) 0.015 (0.38) 0.30 (0.0118) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 1.27 (0.0500) BSC 10.65 (0.4193) 10.00 (0.3937) 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 2.65 (0.1043) 2.35 (0.0925) 0.50 (0.0197) 0.25 (0.0098) 8° 0° 0.33 (0.0130) 0.20 (0.0079) 45° 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 15° 0° 0.015 (0.38) 0.008 (0.20) SEATING PLANE 1.27 (0.0500) 0.40 (0.0157) CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. COMPLIANT TO JEDEC STANDARDS MS-013- AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 34. 14-Lead Ceramic Dual In-Line Package [CERDIP] (Q-14) [Y-Suffix] Dimensions shown in inches and (millimeters) 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 14 1 8 Figure 36. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (R-16) [S-Suffix] Dimensions shown in millimeters and (inches) 7 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.060 (1.52) MAX 0.015 (0.38) MIN SEATING PLANE 0.005 (0.13) MIN 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.100 (2.54) BSC 0.210 (5.33) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) 0.015 (0.38) GAUGE PLANE 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 35. 14-Lead Plastic Dual In-Line Package [PDIP] (N-14) [P-Suffix] Dimensions shown in inches and (millimeters) Rev. E | Page 14 of 16 070606-A 060606-A OP400 ORDERING GUIDE Model OP400AY OP400EY OP400FY OP400GP OP400GPZ 1 OP400HP OP400HPZ1 OP400GS OP400GS-REEL OP400GSZ1 OP400GSZ-REEL1 OP400HS OP400HS-REEL OP400HSZ1 OP400HSZ-REEL1 OP400GBC 1 Temperature Range −55°C to +125°C −25°C to +85°C −25°C to +85°C 0°C to +70°C 0°C to +70°C −40°C to +85°C −40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 14-Lead CERDIP 14-Lead CERDIP 14-Lead CERDIP 14-Lead PDIP 14-Lead PDIP 14-Lead PDIP 14-Lead PDIP 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W Die Package Option Y-Suffix (Q-14) Y-Suffix (Q-14) Y-Suffix (Q-14) P-Suffix (N-14) P-Suffix (N-14) P-Suffix (N-14) P-Suffix (N-14) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) Z = Pb-free part. SMD PARTS AND EQUIVALENTS SMD Part Number 1 5962-8777101M3A 5962-8777101MCA 1 Analog Devices Equivalent OP400ATCMDA OP400AYMDA For military processed devices, please refer to the standard microcircuit drawing (SMD) available at the Defense Supply Center Columbus website. Rev. E | Page 15 of 16 OP400 NOTES ©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00304-0-1/07(E) Rev. E | Page 16 of 16
OP400_07 价格&库存

很抱歉,暂时无法提供与“OP400_07”相匹配的价格&库存,您可以联系我们找货

免费人工找货