Low Voltage, Micropower,
Quad Operational Amplifier
OP490
FUNCTIONAL BLOCK DIAGRAMS
OUT A
1
14 OUT D
–IN A
2
13
+IN A
3
12 +IN D
OP490
–IN D
V+
4
+IN B
5
10 +IN C
–IN B
6
9
–IN C
OUT B
7
8
OUT C
11
V–
00308-001
Single/dual-supply operation
1.6 V to 36 V
±0.8 V to ±18 V
Single-supply operation; input and output
voltage ranges include ground
Low supply current: 80 μA maximum
High output drive: 5 mA minimum
Low offset voltage: 1.0 mV maximum
High open-loop gain: 800 V/mV typical
Industry-standard quad pinouts
TOP VIEW
(Not to Scale)
Figure 1. 14-Lead Plastic DIP
(P-Suffix)
OUT A
1
16
–IN A
2
15
–IN D
+IN A
3
14
+IN D
V+
4
+IN B
5
OP490
OUT D
13
V–
12
+IN C
–IN B
6
11
–IN C
OUT B
7
10
OUT C
NC
8
TOP VIEW
(Not to Scale)
9
NC
NC = NO CONNECT
00308-002
FEATURES
Figure 2. 16-Lead SOIC
(S-Suffix)
GENERAL DESCRIPTION
The OP490 is a high performance micropower quad op amp
that operates from a single supply of 1.6 V to 36 V or from dual
supplies of ±0.8 V to ±18 V. The input voltage range includes
the negative rail allowing the OP490 to accommodate input
signals down to ground in single-supply operation. The output
swing of the OP490 also includes ground when operating from
a single supply, enabling zero-in, zero-out operation.
The quad OP490 draws less than 20 μA of quiescent supply
current per amplifier, but each amplifier is able to deliver over
5 mA of output current to a load. Input offset voltage is under
0.5 mV. Gain exceeds over 400,000 and CMR is better than
90 dB. A PSRR of under 5.6 μV/V minimizes offset voltage
changes experienced in battery-powered systems.
The quad OP490 combines high performance with the space
and cost savings of quad amplifiers. The minimal voltage and
current requirements of the OP490 make it ideal for battery and
solar-powered applications, such as portable instruments and
remote sensors.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©1987–2010 Analog Devices, Inc. All rights reserved.
OP490
TABLE OF CONTENTS
Features .............................................................................................. 1
Battery-Powered Applications .....................................................9
Functional Block Diagrams ............................................................. 1
Single-Supply Output Voltage Range..........................................9
General Description ......................................................................... 1
Input Voltage Protection ........................................................... 10
Revision History ............................................................................... 2
Micropower Voltage-Controlled Oscillator ............................ 10
Specifications..................................................................................... 3
Electrical Characteristics ............................................................. 3
Micropower Single-Supply Quad Voltage-Output 8-Bit DAC
....................................................................................................... 11
Absolute Maximum Ratings............................................................ 5
High Output Amplifier .............................................................. 12
Thermal Resistance ...................................................................... 5
Single-Supply Micropower Quad Programmable Gain
Amplifier ..................................................................................... 12
ESD Caution .................................................................................. 5
Typical Performance Characteristics ............................................. 6
Applications Information ................................................................ 9
Outline Dimensions ....................................................................... 14
Ordering Guide .......................................................................... 15
REVISION HISTORY
5/10—Rev. D to Rev. E
Changes to Features Section............................................................ 1
Changes to Figure 24 ...................................................................... 12
7/09—Rev. C to Rev. D
Deleted 14-Lead CERDIP (Y-Suffix) ............................... Universal
Deleted Figure 1, Renumbered Figures Sequentially ................... 1
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Changes to Figure 16 ........................................................................ 8
Updated Outline Dimensions ....................................................... 14
Changes to Ordering Guide .......................................................... 15
4/02—Rev. B to Rev. C
Deleted 28-Pin LCC (TC-Suffix) Pin Connection Diagram ...... 1
Deleted Electrical Characteristics .................................................. 3
Edits to Absolute Maximum Ratings ............................................ 6
Edits to Ordering Guide ............................................................... 16
Rev. E | Page 2 of 16
OP490
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
@ VS = ±1.5 V to ±15 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Input Offset Voltage
Input Offset Current
Input Bias Current
Large Signal Voltage Gain
Symbol
VOS
IOS
IB
AVO
Input Voltage Range 1
Common-Mode Rejection Ratio
IVR
CMRR
Input Resistance Differential Mode
Input Resistance Common-Mode
RIN
RINCM
OUTPUT CHARACTERISTICS
Output Voltage Swing
Output Voltage High
Output Voltage Low
Capacitive Load Stability
VO L
VOH
VOL
DYNAMIC PERFORMANCE
Slew Rate
Channel Separation 2
Gain Bandwidth Product
SR
CS
GBWP
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current (All Amplifiers)
PSRR
ISY
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
en p-p
en
in
1
2
Conditions
VCM = 0 V
VCM = 0 V
VS = ±15 V, VO = ±10 V
RL = 100 kΩ
RL = 10 kΩ
RL = 2 kΩ
V+ = 5 V, V− = 0 V, 1 V < VO < 4 V
RL = 100 kΩ
RL = 10 kΩ
V+ = 5 V, V− = 0 V
V+ = 5 V, V− = 0 V, 0 V < VCM < 4 V
VS = ±15 V, −15 V < VCM < +13.5 V
VS = ±15 V
VS = ±15 V
Min
Typ
Max
Unit
0.6
0.4
4.2
1.0
5
25
mV
nA
nA
400
200
100
800
400
200
V/mV
V/mV
V/mV
100
70
0
80
90
250
140
100
120
30
20
V/mV
V/mV
V
dB
dB
MΩ
GΩ
VS = ±15 V, RL = 10 kΩ
VS = ±15 V, RL = 2 kΩ
V+ = 5 V, V− = 0 V, RL = 2 kΩ
V+ = 5 V, V− = 0 V, RL = 10 kΩ
AV = 1
±13.5
±10.5
4.0
±14.2
±11.5
4.2
100
650
V
V
V
μV
pF
VS = ±15 V
fO = 10 Hz, VO = 20 V p-p, VS = ±15 V
AV = 1
5
120
4
12
150
20
VS = ±1.5 V, no load
VS = ±15 V, no load
3.2
40
60
fO = 0.1 Hz to 10 Hz, VS = ±15 V
f = 1 kHz
f = 1 kHz
3
60
0.07
Guaranteed by CMRR test.
Guaranteed but not 100% tested.
Rev. E | Page 3 of 16
500
V/ms
dB
kHz
10
60
80
μV/V
μA
μA
μV p-p
nV/√Hz
pA/√Hz
OP490
@ VS = ±1.5 V to ±15 V, −40°C ≤ TA ≤ +85°C
Table 2.
Parameter
INPUT CHARACTERISTICS
Input Offset Voltage
Average Input Offset Voltage Drift
Input Offset Current
Input Bias Current
Large Signal Voltage Gain
VOS
TCVOS
IOS
IB
AVO
Conditions
VS = ±15 V
VCM = 0 V
VCM = 0 V
VS = ±15 V, VO = ±10 V
RL = 100 kΩ
RL = 10 kΩ
RL = 2 kΩ
V+ = 5 V, V− = 0 V, 1 V < VO < 4 V
RL = 100 kΩ
RL = 10 kΩ
V+ = 5 V, V− = 0 V
Input Voltage Range 1
IVR
Common-Mode Rejection Ratio
CMRR
V+ = 5 V, V− = 0 V, 0 V < VCM < 3.5 V
VS = ±15 V, −15 V < VCM < +13.5 V
VO
VS = ±15 V
RL = 2 kΩ
V+ = 5 V, V− = 0 V, RL = 2 kΩ
V+ = 5 V, V− = 0 V, RL = 10 kΩ
OUTPUT CHARACTERISTICS
Output Voltage Swing
Output Voltage High
Output Voltage Low
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current (All Amplifiers)
VOH
VOL
PSRR
ISY
Min
Typ
Max
Unit
0.8
4
1.3
4.4
1.5
mV
μV/°C
nA
nA
7
25
300
150
75
600
250
125
V/mV
V/mV
V/mV
80
40
0.3
−15
80
90
160
90
100
110
V/mV
V/mV
V
V
dB
dB
±14
±11
4.1
100
500
V
V
V
μV
5.6
60
75
17.8
100
120
μV/V
mA
mA
5
+13.5
±13
±10
3.9
VS = ±1.5 V, no load
VS = ±15 V, no load
Guaranteed by CMRR test.
V+
+IN
OUTPUT
–IN
V–
Figure 3. Simplified Schematic
Rev. E | Page 4 of 16
00308-003
1
Symbol
OP490
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 3.
Parameter
Supply Voltage
Digital Input Voltage
Common-Mode Input Voltage
Output Short-Circuit Duration
Storage Temperature Range
Operating Temperature Range
Junction Temperature (TJ) Range
Lead Temperature (Soldering,
60 sec)
Rating
±18 V
[(V−) − 20 V] to [(V+) + 20 V]
[(V−) − 20 V] to [(V+) + 20 V]
Continuous
−65°C to +150°C
−40°C to +85°C
−65°C to +150°C
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
θJA is specified for worst-case mounting conditions, that is, θJA is
specified for a device in socket for the PDIP package; θJA is
specified for a device soldered to a printed circuit board (PCB)
for the SOIC package.
Table 4.
Package Type
14-Lead PDIP_N (S-Suffix)
16-Lead SOIC_R (S-Suffix)
ESD CAUTION
Rev. E | Page 5 of 16
θJA
76
92
θJC
33
27
Unit
°C/W
°C/W
OP490
TYPICAL PERFORMANCE CHARACTERISTICS
0.4
90
80
TOTAL SUPPLY CURRENT (µA)
INPUT OFFSET VOLTAGE (mA)
VS = ±15V
0.3
0.2
0.1
70
60
VS = ±15V
50
VS = ±1.5V
–50
–25
0
25
50
75
125
TEMPERATURE (°C)
30
–75
00308-004
50
75
125
TA = 25°C
RL = 10kΩ
1.4
500
OPEN-LOOP GAIN (V/mV)
1.2
1.0
0.8
0.6
25°C
400
85°C
300
125°C
200
–25
0
25
50
75
125
TEMPERATURE (°C)
0
00308-005
–50
0
140
120
OPEN-LOOP GAIN (dB)
4.6
4.4
4.2
4.0
3.8
50
75
TEMPERATURE (°C)
125
25
30
100
0
GAIN
80
45
PHASE
60
90
40
135
20
180
0
0.1
00308-006
25
20
VS = ±15V
TA = 25°C
RL = 10kΩ
VS = ±15V
0
15
Figure 8. Open-Loop Gain vs. Single-Supply Voltage
4.8
–25
10
SINGLE-SUPPLY VOLTAGE (V)
Figure 5. Input Offset Current vs. Temperature
–50
5
00308-008
100
0.4
1
10
100
1k
10k
100k
FREQUENCY (Hz)
Figure 6. Input Bias Current vs. Temperature
Figure 9. Open-Loop Gain and Phase Shift vs. Frequency
Rev. E | Page 6 of 16
PHASE SHIFT (Degrees)
INPUT OFFSET CURRENT (nA)
25
600
VS = ±15V
INPUT BIAS CURRENT (nA)
0
Figure 7. Total Supply Current vs. Temperature
1.6
3.6
–75
–25
TEMPERATURE (°C)
Figure 4. Input Offset Voltage vs. Temperature
0.2
–75
–50
00308-009
2
–75
00308-007
40
OP490
60
120
TA = 25°C
20
0
–20
10
100
1k
10k
100k
FREQUENCY (Hz)
NEGATIVE SUPPLY
100
80
POSITIVE SUPPLY
60
40
20
1
10
100
1k
LOAD RESISTANCE (Ω)
Figure 10. Closed-Loop Gain vs. Frequency
Figure 13. Power Supply Rejection vs. Frequency
6
140
V+ = 5V, V– = 0V
TA = 25°C
VS = ±15V
TA = 25°C
4
3
2
1
1k
10k
100k
LOAD RESISTANCE (Ω)
100
80
60
40
0.1
00308-011
100
1k
Figure 14. Common-Mode Rejection vs. Frequency
16
1k
VS = ±15V
TA = 25°C
VOLTAGE NOISE DENSITY (nV/ Hz)
VS = ±15V
TA = 25°C
12
POSITIVE
10
8
NEGATIVE
6
4
2
1k
10k
LOAD RESISTANCE (Ω)
100k
100
10
1
0.1
00308-012
OUTPUT SWING (V)
10
FREQUENCY (Hz)
Figure 11. Output Voltage Swing vs. Load Resistance
0
100
1
1
10
100
FREQUENCY (Hz)
Figure 15. Voltage Noise Density vs. Frequency
Figure 12. Output Voltage Swing vs. Load Resistance
Rev. E | Page 7 of 16
1k
00308-015
0
100
120
00308-014
COMMON-MODE REJECTION (dB)
OUTPUT VOLTAGE SWING (V)
5
14
00308-013
POWER SUPPLY REJECTION (dB)
40
00308-010
CLOSED-LOOP GAIN (dB)
VS = ±15V
TA = 25°C
OP490
10
1
0.1
0.1
1
10
100
1k
FREQUENCY (Hz)
TIME (1ms/DIV)
Figure 16. Current Noise Density vs. Frequency
Figure 18. Large Signal Transient Response
00308-017
VOLTAGE (20mV/DIV)
VS = ±15V
TA = 25°C
AV = 1
RL = 10kΩ
CL = 500pF
TIME (100µs/DIV)
VS = ±15V
TA = 25°C
AV = 1
RL = 10kΩ
CL = 500pF
Figure 17. Small Signal Transient Response
Rev. E | Page 8 of 16
00308-018
VOLTAGE (5V/DIV)
VS = ±15V
TA = 25°C
00308-016
CURRENT NOISE DENSITY (pA/ Hz)
100
OP490
APPLICATIONS INFORMATION
BATTERY-POWERED APPLICATIONS
–18V
13
12
11
10
9
D
C
A
B
1
2
3
4
5
8
6
High performance portable equipment and instruments
frequently use lithium cells because of their long shelf life, light
weight, and high energy density relative to older primary cells.
Most lithium cells have a nominal output voltage of 3 V and are
noted for a flat discharge characteristic. The low supply current
requirement of the OP490, combined with the flat discharge
characteristic of the lithium cell, indicates that the OP490 can
be operated over the entire useful life of the cell. Figure 21
shows the typical discharge characteristic of a 1 Ah lithium cell
powering an OP490 with each amplifier, in turn, driving full
output swing into a 100 kΩ load.
7
00308-019
GND
+18V
Figure 19. Burn-In Circuit
+15V
+
1kΩ
LITHIUM-SULPHUR DIOXIDE CELL VOLTAGE (V)
+15V
1/4
+
OP490
A
OP37
A
–
V2
–
100Ω
10kΩ
–15V
–15V
+
1/4
OP490
B
–
+
V1
20V p-p @ 10Hz
1/4
3
2
1
0
0
V1
CHANNEL SEPARATION = 20 log
V2/1000
250
500
750
1000
1250
HOURS
1500
Figure 21. Lithium-Sulphur Dioxide Cell Discharge Characteristic with
OP490 and 100 kΩ Loads
OP490
C
–
SINGLE-SUPPLY OUTPUT VOLTAGE RANGE
+
1/4
OP490
D
–
Figure 20. Channel Separation Test Circuit
00308-020
VIN
4
00308-021
14
The OP490 can be operated on a minimum supply voltage of
1.6 V or with dual supplies of ±0.8 V drawing only 60 μA of
supply current. In many battery-powered circuits, the OP490
can be continuously operated for hundreds of hours before
requiring battery replacement, thereby reducing equipment
downtime and operating costs.
In single-supply operation the input and output ranges of the
OP490 include ground. This allows true zero-in, zero-out
operation. The output stage provides an active pull-down to
around 0.8 V above ground. Below this level, a load resistance of up
to 1 MΩ to ground is required to pull the output down to zero.
In the region from ground to 0.8 V, the OP490 has voltage gain
equal to the data sheet specification. Output current source
capability is maintained over the entire voltage range including
ground.
Rev. E | Page 9 of 16
OP490
charging current symmetrically to yield positive and negative
ramps. The integrator is bounded by B, which acts as a Schmitt
trigger with a precise hysteresis of 1.67 V, set by Resistors R5,
R6, and R7, and the associated CMOS switches. The resulting
output of A is a triangle wave with upper and lower levels of
3.33 V and 1.67 V. The output of B is a square wave with almost
rail-to-rail swing. With the components shown, frequency of
operation is given by the equation
INPUT VOLTAGE PROTECTION
The OP490 uses a PNP input stage with protection resistors in
series with the inverting and noninverting inputs. The high
breakdown of the PNP transistors coupled with the protection
resistors provides a large amount of input protection, allowing
the inputs to be taken 20 V beyond either supply without
damaging the amplifier.
MICROPOWER VOLTAGE-CONTROLLED
OSCILLATOR
fOUT = VCONTROL (Volts) × 10 Hz/V
but this is easily changed by varying C1. The circuit operates
well up to a few hundred hertz.
An OP490 in combination with an inexpensive quad CMOS
switch comprise the precision VCO of Figure 22. This circuit
provides triangle and square wave outputs and draws only 75 μA
from a 5 V supply. A acts as an integrator; S1 switches the
C1
75nF
+15V
+15V
R1
200kΩ
2 –
1/4
VCONTROL
3
R5
200kΩ
4
OP490
+ A
1
6 –
1/4
11
R2
200kΩ
5
R4
200kΩ
R3
100kΩ
OP490
+ B
7
SQUARE
OUT
TRIANGLE
OUT
R8
200kΩ
+5V
IN/OUT
VDD
1
14
+5V
R6
200kΩ
R7
200kΩ
S1
OUT/IN
CONT
2
13
OUT/IN
3
S2
CONT
12
IN/OUT
IN/OUT
4
11
CONT
5
OUT/IN
S3
10
OUT/IN
CONT
6
+5V
9
S4
IN/OUT
8
00308-022
7
VSS
Figure 22. Micropower Voltage Controlled Oscillator
Rev. E | Page 10 of 16
OP490
MICROPOWER SINGLE-SUPPLY QUAD VOLTAGEOUTPUT 8-BIT DAC
The circuit shown in Figure 23 uses the DAC8408 CMOS quad
8-bit DAC, and the OP490 to form a single-supply quad voltage
output DAC with a supply drain of only 140 μA. The DAC8408
is used in voltage switching mode and each DAC has an output
resistance (≈10 kΩ) independent of the digital input code. The
output amplifiers act as buffers to avoid loading the DACs. The
100 kΩ resistors ensure that the OP490 outputs swing below 0.8 V
when required.
+5V
4
4
REFERENCE
VOLTAGE
1.5V
2
–
3
+ A
1/4
IOUT1A
OP490
DAC A
VREF A
1/4
2
1
DAC8408
11
5
IOUT2A/2B
6
1/4
6
IOUT1B
25
IOUT1C
VREF B
1/4
8
5
7
R2
100kΩ
13
–
1/4
VREF C
1/4
OP490
27
12
14
R3
100kΩ
IOUT2C/2D
9
–
1/4
DAC D
23
IOUT1D
VREF D
1/4
VOUTC
+ C
DAC8408
24
VOUTB
+ B
DAC8408
DAC C
R1
100kΩ
–
OP490
DAC B
VOUTA
OP490
21
10
8
VOUTD
+ D
DAC8408
R4
100kΩ
OP490
DAC DATA BUS
PIN 9 (LSB) TO PIN 16 (MSB)
DIGITAL
CONTROL
SIGNALS
18
19
20
A/B
R/W
DAC8408
DS1
DS2
DGND
28
00308-023
17
Figure 23. Micropower Single-Supply Quad Voltage Output 8-Bit DAC
Rev. E | Page 11 of 16
OP490
R5
5kΩ
4
1/4
OP490
8
11
–15V
6 –
1/4
OP490
5 +
R4
50Ω
7
RL
R8
50Ω
14
B
9
1/4
OP490
C
A
10
13
1/4
OP490
D
+
3 +
R7
50Ω
–
VIN
R3
50Ω
1
12
00308-024
2 –
+
R1
1kΩ
R6
5kΩ
R2
9kΩ
–
+15V
Figure 24. High Output Amplifier
HIGH OUTPUT AMPLIFIER
The amplifier shown in Figure 24 is capable of driving 25 V p-p
into a 1 kΩ load. Design of the amplifier is based on a bridge
configuration. A amplifies the input signal and drives the load
with the help of B. Amplifier C is a unity-gain inverter which
drives the load with help from D. Gain of the high output
amplifier with the component values shown is 10, but can easily
be changed by varying R1 or R2.
SINGLE-SUPPLY MICROPOWER QUAD
PROGRAMMABLE GAIN AMPLIFIER
The combination of a quad OP490 and the DAC8408 quad 8-bit
CMOS DAC creates a quad programmable-gain amplifier with
a quiescent supply drain of only 140 μA. The digital code
present at the DAC, which is easily set by a microprocessor,
determines the ratio between the fixed DAC feedback resistor
and the resistance of the DAC ladder seen by the op amp feedback loop. The gain of each amplifier is:
VOUT
V IN
=−
256
n
where n equals the decimal equivalent of the 8-bit digital code
present at the DAC. If the digital code present at the DAC
consists of all zeros, the feedback loop opens causing the op
amp output to saturate. The 10 MΩ resistors placed in parallel
with the DAC feedback loop eliminate this problem with a very
small reduction in gain accuracy. The 2.5 V reference biases the
amplifiers to the center of the linear region providing maximum
output swing.
Rev. E | Page 12 of 16
OP490
VDD
C1
0.1µF
VINA
1
+5V
4
3 RFBA
DAC A
VREF A
2
IOUT1A
4
R1
10MΩ
2
–
1/4
1/4
OP490
DAC8408
3
1
VOUTA
+ A
11
C2
0.1µF
VINB
7 RFBB
IOUT2A/2B
5
VREF B
8
R2
10MΩ
DAC B
1/4
DAC8408
IOUT1B
6
6
–
5
+ B
9
–
1/4
OP490
C3
0.1µF
VINC
25 RFBC
DAC C
VREF C
27
IOUT1C
25
R3
10MΩ
1/4
1/4
OP490
DAC8408
C4
0.1µF
VIND
IOUT2C/2D
24
VREF D
21
10
+ C
13
–
7
VOUTB
8
VOUTC
14
VOUTD
22 RFBD
R4
10MΩ
DAC D
1/4
DAC8408
IOUT1D
23
1/4
OP490
12
+ D
DAC DATA BUS
PIN 9 (LSB) TO PIN 16 (MSB)
DIGITAL
CONTROL
SIGNALS
18
19
20
OP490
A/B
R/W
+2.5V
REFERENCE
VOLTAGE
DAC8408
DS1
DS2
DGND
28
00308-025
17
Figure 25. Single-Supply Micropower Quad Programmable Gain Amplifier
Rev. E | Page 13 of 16
OP490
OUTLINE DIMENSIONS
0.775 (19.69)
0.750 (19.05)
0.735 (18.67)
14
8
1
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
7
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
0.060 (1.52)
MAX
0.210 (5.33)
MAX
0.015
(0.38)
MIN
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
SEATING
PLANE
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.015 (0.38)
GAUGE
PLANE
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.430 (10.92)
MAX
0.005 (0.13)
MIN
0.070 (1.78)
0.050 (1.27)
0.045 (1.14)
070606-A
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
Figure 26. 14-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
P-Suffix
(N-14)
Dimensions shown in inches and (millimeters)
10.50 (0.4134)
10.10 (0.3976)
9
16
7.60 (0.2992)
7.40 (0.2913)
8
1.27 (0.0500)
BSC
0.30 (0.0118)
0.10 (0.0039)
COPLANARITY
0.10
0.51 (0.0201)
0.31 (0.0122)
10.65 (0.4193)
10.00 (0.3937)
0.75 (0.0295)
0.25 (0.0098)
2.65 (0.1043)
2.35 (0.0925)
SEATING
PLANE
45°
8°
0°
0.33 (0.0130)
0.20 (0.0079)
COMPLIANT TO JEDEC STANDARDS MS-013- AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 27. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body
S-Suffix
(RW-16)
Dimensions shown in millimeters and (inches)
Rev. E | Page 14 of 16
1.27 (0.0500)
0.40 (0.0157)
032707-B
1
OP490
ORDERING GUIDE
Model 1
OP490GP
OP490GPZ
OP490GS
OP490GSZ
OP490GSZ-REEL
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
14-Lead PDIP_N
14-Lead PDIP_N
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
Z = RoHS Compliant Part.
Rev. E | Page 15 of 16
Package Option
N-14 (P-Suffix)
N-14 (P-Suffix)
RW-16 (S-Suffix)
RW-16 (S-Suffix)
RW-16 (S-Suffix)
OP490
NOTES
©1987–2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00308-0-5/10(E)
Rev. E | Page 16 of 16