Data Sheet, Rev. 6 March 2006
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
1 Features
Complies with Universal Serial Bus Specification Rev. 2.0. Can be used as a USB device transceiver or a USB host transceiver. Supports full-speed (12 Mbits/s) and low-speed (1.5 Mbits/s) serial data rates. Includes two single-ended receivers with hysteresis. Low-power operation helps maximize battery life of portable electronic devices. Available in a small MLCC16 package measuring 3 mm x 3 mm. (A lead-free package is also available. See Ordering Information on page 14.) Supports a digital I/O voltage range from 1.75 V to 3.3 V. Supports the full industrial operating temperature range, −40 °C to +85 °C.
2 Description
Agere’s USS810 is a Universal Serial Bus (USB) transceiver that is fully compliant with the Universal Serial Bus Specification Rev. 2.0. The USS810 can transmit and receive serial data at full-speed (12 Mbits/s) and low-speed (1.5 Mbits/s) data rates and, therefore, can be used as either a USB device transceiver or a USB host transceiver. Since the USS810 operates at digital I/O voltages between 1.75 V to 3.3 V, it is particularly suitable for portable electronic devices such as mobile phones, digital still cameras, personal digital assistants (PDAs), and a variety of information appliances. This transceiver provides an ideal interface to the physical layer of the universal serial bus for application-specific ICs (ASICs) and programmable logic devices (PLDs) with power supply voltages in the above range. The USB transceiver is currently available in an MLCC16 package that supports single-ended input data interface.
3 Suitable Applications
Portable electronic devices, such as the following: Mobile phone Digital still camera Personal digital assistant (PDA) Information appliances
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
Data Sheet, Rev. 6 March 2006
Table of Contents
Contents
1 2 3 4 5
Page
Features ...............................................................................................................................................................1 Description ............................................................................................................................................................1 Suitable Applications ............................................................................................................................................1 Functional Diagram ..............................................................................................................................................3 Pin Information .....................................................................................................................................................3 5.1 Pin Descriptions ............................................................................................................................................ 4 6 Functional Description ..........................................................................................................................................5 6.1 Function Selection ........................................................................................................................................ 5 6.1 Operating Functions...................................................................................................................................... 5 7 Limiting Values .....................................................................................................................................................6 7.1 Absolute Maximum Ratings .......................................................................................................................... 6 8 Static Characteristics ............................................................................................................................................6 9 Dynamic Characteristics .......................................................................................................................................8 10 Test Information ................................................................................................................................................ 11 11 Package Outline Diagrams ............................................................................................................................... 12 11.1 16-Pin MLCC, 3 mm x 3 mm..................................................................................................................... 12 12 USB Application Support Contact Information .................................................................................................. 14 13 Ordering Information ......................................................................................................................................... 14
Figure
Page
Figure 1. USS810 Functional Diagram ..................................................................................................................... 3 Figure 2. USS810 MLCC Pin Diagram (Top View) ................................................................................................... 3 Figure 3. Rise and Fall Times ................................................................................................................................... 9 Figure 4. Timing of OE to D+, D– ........................................................................................................................... 10 Figure 5. Timing of D+, D– to RCV, VP, VM .......................................................................................................... 10 Figure 6. Timing of VO, FSE0 to D+, D– ................................................................................................................ 10 Figure 7. Load for D+, D– ....................................................................................................................................... 11
Table
Page
Table 1. USS810 Pin Description ............................................................................................................................ 4 Table 2. Function Table........................................................................................................................................... 5 Table 3. Transmit Function Using Single-Ended Input Data Interface (OE = L)...................................................... 5 Table 4. Receive Function (OE = H) ....................................................................................................................... 5 Table 5. Absolute Maximum Ratings....................................................................................................................... 6 Table 6. Recommended Operating Conditions ....................................................................................................... 6 Table 7. Static Characteristics: Supply Pins............................................................................................................ 6 Table 8. Static Characteristics: Digital Pins............................................................................................................. 7 Table 9. Static Characteristics: Analog I/O Pins (D+, D–) ....................................................................................... 7 Table 10. Dynamic Characteristics: Analog I/O Pins (D+, D–)1 .............................................................................. 8 Table 11. Pitch Variation ....................................................................................................................................... 13 Table 12. Common Dimensions ............................................................................................................................ 13
2
Agere Systems Inc.
Data Sheet, Rev. 6 March 2006
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
4 Functional Diagram
VDD(I/O)
VDD
SOFTCON OE SPEED FSE0 VO SUSPND RCV LEVEL SHIFTER
VPU(3.3) D+ D– 24 Ω (1%) 24 Ω (1%) 1.5 kΩ1
+ –
VP
VM
GND
1. Connect pull-up to D– for low-speed operation.
Figure 1. USS810 Functional Diagram
5 Pin Information
SOFTCON 16 VPU(3.3) 15
VDD 13
NU 14
OE RCV VP VM
1 2 3 4 5 SUSPND 6 GND 7 VDD(I/O) 8 SPEED
12 11
FSE0 VO D+ D–
USS810 MLCC
10 9
Figure 2. USS810 MLCC Pin Diagram (Top View)
Agere Systems Inc.
3
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
Data Sheet, Rev. 6 March 2006
5 Pin Information (continued)
5.1 Pin Descriptions
Table 1. USS810 Pin Description Symbol
VPU(3.3)
MLCC Pin
15
Type
—
Description
Pull-Up Voltage Source. Connect this pin through an external 1.5 kΩ resistor to D+ (for full-speed operation) or D– (for low-speed operation). This pin’s function is controlled by the SOFTCON input pin. To ensure zero pull-up current, set SOFTCON = low to cause VPU(3.3) to float (high impedance); when SOFTCON = high, VPU(3.3) = 3.3 V. Software-Controlled USB Connection. This pin allows USB connect/disconnect signaling to be controlled by software. A high level on this pin applies 3.3 V to pin VPU(3.3), which is connected to an external 1.5 kΩ pull-up resistor.
SOFTCON
16
I
OE 1 RCV VP VM SUSPND
1 2 3 4 5
I O O O I
Output Enable. This active-low pin enables the transceiver to transmit data on the USB bus. Differential Data Receiver. When the SUSPND input is high, this pin is driven low. The state of RCV is unknown when FSE0 = 1. Single-Ended D+ Receiver. The VP pin is used for external detection of singleended zero (SE0), error conditions, and speed of connected device. Single-Ended D− Receiver. The VM pin is used for external detection of singleended zero (SE0), error conditions, and speed of connected device. Suspend. When SUSPND is high, it enables a low-power state while the USB is inactive and drives output RCV to a low level. No dc power is consumed when SUSPND is high. Device Ground. Power Supply for Digital I/O. 1.75 V to 3.3 V. Speed Selection. This pin adjusts the slew rate of differential data outputs D+ and D–. Tie this pin low to enable low-speed data transmission (1.5 Mbits/s) and high to enable full-speed data transmission (12 Mbits/s).
GND VDD(I/O) SPEED
6 7 8
P P I
D–
9
D+
10
Analog Negative USB Differential Data Bus. If this device is used in a USB peripheral I/O application, connect an external 24 Ω ± 1% resistor in series with this signal in order to meet the USB Specification, Rev. 2.0 impedance requirement. Connect this signal to pin VPU(3.3) via a 1.5 kΩ ± 5% resistor for low-speed USB peripheral applications. Analog Positive USB Differential Data Bus. If this device is used in a USB peripheral I/O application, connect an external 24 Ω ± 1% resistor in series with this signal in
order to meet the USB Specification Rev. 2.0 impedance requirement. Connect this signal to pin VPU(3.3) via a 1.5 kΩ ± 5% resistor for full-speed USB peripheral applications.
VO FSE0 VDD NU 11 12 13 14 I I P — Single-Ended Data Input. Refer to Table 3.. Single-Ended Zero Mode. Refer to Table 3.. 3.3 V Power Supply. This voltage supply is used for the USB signals D+/D– and the internal level shifter. Not Usable. No external connections to this pin are allowed.
1. Symbol names with an overscore (e.g., NAME) indicate active-low signals.
4
Agere Systems Inc.
Data Sheet, Rev. 6 March 2006
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
6 Functional Description
6.1 Function Selection
Table 2. Function Table SUSPND L L H H OE L H L H (D+, D–) Transmitting and Receiving Receiving1 High-Z 3 High-Z 3 RCV Active Active L2 L2 VP/VM Active Active Active Active Function Normal transmit (differential receiver active) Receiving Transmitting during suspend (differential receiver inactive) Low-power state
1. Signal levels on (D+, D–) are determined by other USB devices and external pull-up/down resistors. 2. In suspend mode (SUSPND = high), the differential receiver is inactive and output RCV is always low. Out-of-suspend (K) signaling is detected via the single-ended receivers VP and VM. 3. In suspend mode, the D+/D– output is tristated.
6.1 Operating Functions
Table 3. Transmit Function Using Single-Ended Input Data Interface (OE = L) FSE0 L L H H VO L H L H Data Differential logic 0 Differential logic 1 SE0 SE0
Table 4. Receive Function (OE = H) (D+, D–) Differential Logic 0 Differential Logic 1 SE0 RCV L H Unknown1 VP L H L VM H L L
1. The state of RCV is unknown when FSE0 = 1.
Agere Systems Inc.
5
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
Data Sheet, Rev. 6 March 2006
7 Limiting Values
7.1 Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.
Table 5. Absolute Maximum Ratings Symbol VDD(I/O) VDD(3.3) VI Tstg Parameter I/O Supply Voltage 3.3 V Supply Voltage dc Input Voltage Storage Temperature Conditions — — — — Min 1.7 3.0 –0.5 –40 Max 3.3 3.6 VDD + 0.5 125 Unit V V V °C
Table 6. Recommended Operating Conditions Symbol VDD(I/O) VDD(3.3) VI VI(AI/O) Tamb Parameter Conditions Min 1.75 3.135 0 0 –40 Typical — 3.3 — — — Max 3.3 3.465 3.3 VDD(I/O) 85 Unit V V V V °C
I/O Supply Voltage — 3.3 V Supply Voltage 3.3 V operation Input Voltage — Input Voltage on Analog — I/O Pins (D+/D–) Operating Ambient — Temperature
8 Static Characteristics
Table 7. Static Characteristics: Supply Pins VDD = 3.3 V; VDD(I/O) = 1.75 V to 3.3 V; VGND = 0 V; Tamb = –40 °C to +85 °C; unless otherwise specified. Symbol
IDD IDD(I/O) IDD(susp)
Parameter
Operating Supply Current Operating I/O Supply Current Suspend Supply Current
Conditions
Full-speed transmit and receive Full-speed transmit and receive at 12 Mbits/s SUSPND = high
Min
— — —
Typical 5 —
—
Max 8 100 10
Unit
mA µA µA
6
Agere Systems Inc.
Data Sheet, Rev. 6 March 2006
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
8 Static Characteristics (continued)
Table 8. Static Characteristics: Digital Pins VDD(I/O) = 1.75 V to 3.3 V; VGND = 0 V; Tamb = −40 °C to +85 °C; unless otherwise specified. Symbol Parameter Conditions Min Typical Max Unit
VDD(I/O) = 1.75 V to 3.3 V Input Levels: VIL Low-level Input Voltage High-level Input Voltage VIH Output Levels: VOL Low-level Output Voltage High-level Output Voltage VOH — — IOL ≤ 6 mA IOH ≤ 6 mA — 1.7 — VDD – 0.4 — — — — 0.7 — 0.4 — V V V V
Table 9. Static Characteristics: Analog I/O Pins (D+, D–) VDD = 3.3 V; VGND = 0 V; Tamb = −40 °C to +85 °C; unless otherwise specified. Symbol Input Levels VDI VCM Differential Receiver Differential Input Sensitivity IVI(D+) – VI(D–)I Differential Common-mode Includes VDI range Voltage Single-Ended Receiver Hysteresis Voltage —
RL = 1.5 kΩ to 3.6 V RL = 15 kΩ to GND
Parameter
Conditions
Min
Typical
Max
Unit
0.2 0
— —
— VDD
V V
Vhys Output Levels VOL Low-level Output Voltage
0.3 — 2.8 –10
— — — —
— 0.3 3.6 10
V V V µA
VOH High-level Output Voltage Leakage Current ILZ High-impedance Leakage Current Capacitance CIN Transceiver Capacitance
OE = 1
Pin to GND
—
—
3
pF
Agere Systems Inc.
7
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
Data Sheet, Rev. 6 March 2006
9 Dynamic Characteristics
Table 10. Dynamic Characteristics: Analog I/O Pins (D+, D–)1 VDD = 3.3 V; VDD(I/O) = 1.75 V to 3.3 V; VGND = 0 V; Tamb = –40 °C to +85 °C; unless otherwise specified. Symbol Parameter Conditions Driver Characteristics Full-Speed Mode (Speed = 1) tR Rise Time OE = 0, CL = 50 pF; 10% to 90% of |VOL − VOH|; see Figure 3.. OE = 0, CL = 50 pF; 90% to 10% of |VOH − VOL|; see Figure 3. OE = 0, CL = 50 pF: see Figures 4, 5, 6. OE = 0, CL = 50 pF or 350 pF; 10% to 90% of |VOL − VOH|; see Figure 3. OE = 0, CL = 50 pF or 350 pF; 90% to 10% of |VOH − VOL|; see Figure 3. CL = 50 pF or 350 pF; see Figures 4, 5, 6. Driver Timing Full-Speed Mode (Speed = 1)
tPLH tPHL tPHZ tPLZ tPZH tPZL
Min
Typical
Max
Unit
4
—
20
ns
tF
Fall Time
4
—
20
ns
DRFM VCRS
Differential Rise/Fall Time Matching OE = 0, CL = 50 pF. Output Signal Crossover Voltage
90 1.3
100 —
110 2.0
% V
Low-Speed Mode (Speed = 0)
tR
Rise Time
75
—
300
ns
tF
Fall Time
75
—
300
ns
DRFM VCRS
Differential Rise/Fall Time Matching CL = 50 pF or 350 pF. Output Signal Crossover Voltage
80 1.3
100 —
120 2.0
% V
Driver Propagation Delay: OE = 0, CL = 50 pF; see Low-to-High (VO, FSE0 to D+, D–) Figure 6. OE = 0, CL = 50 pF; see Driver Propagation Delay: High-to-Low (VO, FSE0 to D+, D–) Figure 6. Tristate Output Disable: High-to-Off OE switching; see Figure 4. (OE to D+, D−) Tristate Output Disable: Low-to-Off OE switching; see Figure 4. (OE to D+, D−) Tristate Output Enable: Off-to-High OE switching; see Figure 4. (OE to D+, D−) Tristate Output Enable: Off-to-Low OE switching; see Figure 4. (OE to D+, D−)
— — — — — —
— — — — — —
18 18 2.5 2.5 20 20
ns ns ns ns ns ns
1. Test circuit: see Figure 7.
8
Agere Systems Inc.
Data Sheet, Rev. 6 March 2006
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
9 Dynamic Characteristics (continued)
Table 10. Dynamic Characteristics: Analog I/O Pins (D+, D–)1 (continued) Symbol Parameter Conditions Driver Timing (continued) Low-Speed Mode (SPEED = 0)
tPLH tPHL tPHZ tPLZ tPZH tPZL
Min
Typical
Max
Unit
tPLH(dif) tPHL(dif)
tPLH(se) tPHL(se)
— Driver Propagation Delay: OE = 0, CL = 50 pF; see Low-to-High (VO, FSE0 to D+, D–) Figure 6. — OE = 0, CL = 50 pF; see Driver Propagation Delay: High-to-Low (VO, FSE0 to D+, D–) Figure 6. Tristate Output Disable: High-to-Off OE switching; see Figure 4. — (OE to D+, D−) — Tristate Output Disable: Low-to-Off OE switching; see Figure 4. (OE to D+, D−) — Tristate Output Enable: Off-to-High OE switching; see Figure 4. (OE to D+, D−) — Tristate Output Enable: Off-to-Low OE switching; see Figure (OE to D+, D−) 4.. Receiver Timing (Full-Speed and Low-Speed Mode) Differential Receiver See Figure 5.. — Propagation Delay; Low-to-High (D+, D− to RCV) See Figure 5.. — Propagation Delay; High-to-Low (D+, D− to RCV) Single-Ended Receiver See Figure 5.. — Propagation Delay; Low-to-High (D+, D− to VP, VM) See Figure 5.. — Propagation Delay; High-to-Low (D+, D− to VP, VM)
— — — — — —
250 250 4 4 400 400
ns ns ns ns ns ns
— —
5 5
ns ns
— —
3 3
ns ns
1. Test circuit: see Figure 7 .
t FRt,R LR t VOH 90% 90%
t FFtFt LF ,
10% VOL
10%
MGS963
Figure 3. Rise and Fall Times
Agere Systems Inc.
9
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
Data Sheet, Rev. 6 March 2006
9 Dynamic Characteristics (continued)
1.65 1.75 V V
LOGIC INPUT logic input
0.9 V
0.9 V
0V t PZH t PZL VOH differential DIFFERENTIAL data lines DATA LINES VOL VCRS VOL + 0.3 V
MGS966
t PHZ t PLZ VOH − 0.3 V
Figure 4. Timing of OE to D+, D–
2.0 V
DIFFERENTIAL differential DATA LINES data lines
VCRS
VCRS
0.8 V t PLH(rcv) t PLH(se) VOH
LOGIC OUTPUT logic output
t PHL(rcv) t PHL(se)
0.9 V
0.9 V
VOL
MGS965
Figure 5. Timing of D+, D– to RCV, VP, VM
1.75 V 1.65 V LOGIC INPUT logic input
0.9 V
0.9 V
0V t PLH(drv) VOH
DIFFERENTIAL differential DATA data lines LINES
t PHL(drv)
VCRS
VCRS
VOL
MGS964
Figure 6. Timing of VO, FSE0 to D+, D–
10
Agere Systems Inc.
Data Sheet, Rev. 6 March 2006
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
10 Test Information
VPU(3.3) DUT D+/D– 24 Ω2 CL 1.5 kΩ1
TEST POINT
15 kΩ
Load Capacitance: CL = 50 pF (full-speed mode). CL = 50 pF or 350 pF (low-speed mode). 1. Full-speed mode: connected to D+, low-speed mode: connected to D–. 2. Complies with USB2.0.
Figure 7. Load for D+, D–
Agere Systems Inc.
11
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
Data Sheet, Rev. 6 March 2006
11 Package Outline Diagram
11.1 16-Pin MLCC, 3 mm x 3 mm
Dimensions are in millimeters.
4 2X 0.10 C A A D D/2 D1 D1/2 N 2X 0.10 C B 4X P 1 5 6 0.50 DIA 2 E1 E E2/2 (MIN. 0.35) 0.10 C B 2X TOP VIEW 0.10 C 2X 0.10 C 0.05 C
DATUM A OR B
b D2
0.10 M C A B 0.05 M C SEE DETAIL A FOR PIN #1 ID AND TIE BAR MARK OPTION PIN #1 ID R0.20 1
D2/2 4X P N
E1/2
E/2 0.45
2
E2 (Ne – 1) X e REF.
B A
(MIN. 0.35) e (Nd – 1) X e REF. BOTTOM VIEW
A1 A2 A3
STANDARD
NX R (L) 4 A1 10 e/2 e
DETAIL A - PIN# ID AND TIEBAR MARK FIGURES
FOR EVEN TERMINAL/SIDE
b
SECTION C-C SCALE: NONE
GENERAL: NOMINAL EXPOSED PAD (D2/E2) DIMENSION = NOMINAL DIE ATACHED PAD DIMENSION – 0.
NOMINAL DIE ATTACH PAD DIMENSION
0.10
NOMINAL EXPOSED PAD (D2/E2) DIMENSION
0.10
C SIDE VIEW
SEATING PLANE
Notes (Refer also to Tables 11 and 12): 1. Die thickness allowable is 0.305 mm maximum (0.012 inches maximum). 2. Dimensioning and tolerances conform to ASME Y14.5M-1994. 3. N is the number of terminals. Nd is the number of terminals in X direction, and Ne is the number of terminals in the Y direction. 4. Dimension b applies to plated terminal and is measured between 0.2 mm and 0.25 mm from terminal tip. 5. The pin #1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body. 6. Exact shape and size of this feature is optional. 7. All dimensions are in millimeters. 8. The shape shown on four corners is not actual I/O. 9. Bilateral coplanarity zone applies to the exposed pad as well as the terminals. 10. Applied only for terminals. 11. Q and R apply only for straight tie bar shapes.
12 12
Agere Systems Inc.
Data Sheet, Rev. 6 March 2006
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
11 Package Outline Diagram (continued)
Table 11. Pitch Variation Symbol Min e N Nd Ne L b D2 E2 Pitch Variation Nom 0.5 BSC 16 4 4 0.4 0.23 1.50 1.50 Max — 3 3 3 — 4 — — Notes
0.3 0.18 1.40 1.40
0.5 0.3 1.60 1.60
Table 12. Common Dimensions Symbol Min A A1 A2 A3 D D1 E E1 θ P R 0.8 0.0 0.6 Common Dimensions Nom 0.85 0.01 0.65 0.20 REF 3.0 BSC 2.75 BSC 3.0 BSC 2.75 BSC — 0.42 0.17 Max 0.9 0.05 0.70 — 11 — — — — — — — — 12 Notes
0 0.24 0.13
12 0.6 0.23
Agere Systems Inc.
13
USS810 USB 2.0 Full-Speed/Low-Speed Transceiver
Data Sheet, Rev. 6 March 2006
12 USB Application Support Contact Information
E-mail: usb@agere.com
13 Ordering Information
Device Code USS810M-D USS810M-DT L-USS810M-D*† L-USS810M-D*† Description USS810 in dry-packed tube USS810 in dry-packed tape and reel Lead-free USS810 in dry-packed tube Lead-free USS810 in dry-packed tape and reel Package MLCC16 MLCC16 MLCC16 MLCC16 Comcode 700057479 700058082 700067200 700067201
* Lead-free: No intentional addition of lead, and less than 1000 ppm. † Agere Systems lead-free devices are fully compliant with the Restriction of Hazardous Substances (RoHS) directive that restricts the content of six hazardous substances in electronic equipment in the European Union. Beginning July 1, 2006, electronic equipment sold in the European Union must be manufactured in accordance with the standards set by the RoHS directive.
For additional information, contact your Agere Systems Account Manager or the following: INTERNET: Home: http://www.agere.com Sales: http://www.agere.com/sales E-MAIL: docmaster@agere.com N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA: CHINA: (86) 21-54614688 (Shanghai), (86) 755-25881122 (Shenzhen), (86) 10-65391096 (Beijing) JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6741-9855, TAIWAN: (886) 2-2725-5858 (Taipei) EUROPE: Tel. (44) 1344 296 400
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. Agere, Agere Systems, and the Agere logo are registered trademarks of Agere Systems Inc.
Copyright © 2006 Agere Systems Inc. All Rights Reserved
March 2006 DS05-035CMPR-6 (Replaces DS05-035CMPR-5)