AIC1642
3-Pin One-Cell Step-Up DC/DC Converter
FEATURES
DESCRIPTION
A Guaranteed Start-Up from less than 0.9 V.
High Efficiency.
Low Quiescent Current.
Less Number of External Components needed.
Low Ripple and Low Noise.
Fixed Output Voltage: 2.0V, 2.2V, 2.7V, 2.8V,
3.0V, 3.1V, 3.3V, 3.7V, 4.5V and 5V.
Space Saving Packages: SOT-89, TO-92 (3 pin)
and SOT-23 (3 & 5 pin).
The AIC1642 is a high efficiency step-up DC/DC
converter for applications using 1 to 4 NiMH battery cells. Only three external components are required to deliver a fixed output voltage of 2.0V,
2.2V, 2.7V, 2.8V, 3.0V, 3.1V, 3.3V, 3.7V, 4.5V or
5V. The AIC1642 starts up from less than 0.9V input with 1mA load. Pulse Frequency Modulation
scheme brings optimized performance for applications with light output loading and low input voltages. The output ripple and noise are lower compared with the circuits operating in PSM mode.
APPLICATIONS
Pagers.
Cameras.
Wireless Microphones.
Pocket Organizers.
Battery Backup Suppliers.
Portable Instruments.
The PFM control circuit operating in 100KHz
(max.) switching rate results in smaller passive
components. The space saving SOT-23, SOT89 and TO-92 packages make the AIC1642 an
ideal choice of DC/DC converter for space conscious applications, like pagers, electronic
cameras, and wireless microphones.
■ TYPICAL APPLICATION CIRCUIT
VIN
VOUT
VIN
D1
GS SS12
L1
100H
D1
GS SS12
L1
100H
+
C1
22F SW
C1
SW
22F
VOUT
+ C2
47F
ENABLE
+ C2
47F
AIC1642
AIC1642
+
VOUT
VOUT
EN
GND
GND
One Cell Step-Up DC/DC Converter
Analog Integrations Corporation
One Cell Step-Up DC/DC Converter with Enable Control
Si-Soft Research Center
DS-1642G-06 20141215
st
3A1, 1 Li-Hsin 1 Rd., Science Park , Hsinchu 300, Taiwan , R.O.C.
TEL: 886-3-5772500
FAX: 886-3-5772510
www.analog.com.tw
1
AIC1642
■ ORDERING INFORMATION
AI C1642 -X X XX XX
PIN CO N FIGUR A TIO N
P ACK ING TYP E
T R: TAP E & REE L
T B: TUB E
B G : BA G
P ACK AG E TYPE
U : SO T-23
V : S OT-23 -5
V L:S OT -2 3-5
X : S O T-8 9
Z: TO-92
C : CO MME RCIA L
P : LE AD FRE E C OM MER CIAL
G : GRE EN P ACK AG E
O UTP UT V OL TAG E
20: 2. 0V
22: 2. 2V
27: 2. 7V
28: 2.8V
30: 3. 0V
31: 3. 1V
33: 3. 3V
37: 3. 7V
45: 4. 5V
50: 5. 0V
E xa mple: A IC164 2-27CX TR
2 .7V Version , in SO T-89 P ackag e &
T ape & Reel Pa ck in g Typ e
A IC164 2-27PX TR
SO T-89
TOP VI EW
1: GN D
2: VO UT
3: SW
1
TO -92
TO P VIE W
1: G ND
2: V OU T
3: S W
2
3
1
2
3
SO T-23
TO P V IEW
1: G ND
2: SW
3: VO UT
3
1
SO T-23-5(G V)
TOP VI EW
1: E N
2: V OUT
3: NC
4: G ND
5: S W
2
4
5
1
2
3
2 .7V Version , in Lead Free SO T-89
P ackage & Tape & Re el P acking
SO T-23-5(G VL )
TO P V IEW
1: S W
2: G ND
3: O UT
4: NC
5: NC
5
1
4
2
3
2
AIC1642
■ ORDERING INFORMATION
(Continuous)
SOT-23-5 MARKING
Part No.
GV
GVL
AIC1642-20
GW20G
GY20G
AIC1642-22
GW22G
GY22G
AIC1642-27
GW27G
GY27G
AIC1642-28
GW28G
GY28G
AIC1642-30
GW30G
GY30G
AIC1642-31
GW31G
GY31G
AIC1642-33
GW33G
GY33G
AIC1642-37
GW37G
GY37G
AIC1642-45
GW45G
GY45G
AIC1642-50
GW50G
GY50G
SOT-23 MARKING
Part No.
CU
PU
GU
AIC1642-20
GM20
GM20P
GM20G
AIC1642-22
GM22
GM22P
GM22G
AIC1642-27
GM27
GM27P
GM27G
AIC1642-28
GM28
GM28P
GM28G
AIC1642-30
GM30
GM30P
GM30G
AIC1642-31
GM31
GM31P
GM31G
AIC1642-33
GM33
GM33P
GM33G
AIC1642-37
GM37
GM37P
GM37G
AIC1642-45
GM45
GM45P
GM45G
AIC1642-50
GM50
GM50P
GM50G
SOT-89 MARKING
Part No.
CX
PX
GX
AIC1642-20
AM20
AM20P
AM20G
AIC1642-22
AM22
AM22P
AM22G
AIC1642-27
AM27
AM27P
AM27G
AIC1642-28
AM28
AM28P
AM28G
AIC1642-30
AM30
AM30P
AM30G
AIC1642-31
AM31
AM31P
AM31G
AIC1642-33
AM33
AM33P
AM33G
AIC1642-37
AM37
AM37P
AM37G
AIC1642-45
AM45
AM45P
AM45G
AIC1642-50
AM50
AM50P
AM50G
3
AIC1642
■ ABSOLUATE MAXIMUM RATINGS
Supply Voltage (VOUT pin)
6V
SW pin Voltage
6V
SW pin Switch Current
0.6A
EN pin Voltage
6V
-40C to 85C
Operating Temperature Range
125C
Maximum Junction Temperature
-65C to 150 C
Storage Temperature Range
260C
120C/W
Lead Temperature (Soldering 10 Sec.)
Thermal Resistance Junction to Case TO-92
SOT-23
115C/W
SOT-23-5
115C/W
45C/W
SOT-89
Thermal Resistance Junction to Ambient
150C/W
TO-92
250C/W
(Assume no ambient airflow, no heatsink) SOT-23
SOT-23-5
250C/W
SOT-89
160C/W
Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
■ TEST CIRCUIT
VIN
VOUT
IIN
D1
SS12
L1
100H
IS
AIC1642
+ C2
22F SW
VOUT
AIC1642
VOUT
VS
+ C1
47F
SW
VSW
GND
GND
Fig. 1 Test Circuit 1
Fig. 2 Test Circuit 2
AIC1642
100
VS
VOUT
SW
FOSC
GND
Fig. 3 Test Circuit 3
4
AIC1642
ELECTRICAL CHARACTERISTICS
(TA=25C, IOUT=10mA, Unless otherwise specified) (Note1)
PARAMETER
Output Voltage
TEST CONDITIONS
TEST
CKT
SYMBOL
TYP.
MAX.
AIC1642-20
VIN=1.8V
1.950
2.000
2.050
AIC1642-22
VIN=1.8V
2.145
2.200
2.255
AIC1642-27
VIN=1.8V
2.633
2.700
2.767
AIC1642-28
VIN=1.8V
2.732
2.800
2.868
AIC1642-30
VIN=1.8V
2.925
3.000
3.075
3.022
3.100
3.177
1
VOUT
UNIT
V
AIC1642-31
VIN=1.8V
AIC1642-33
VIN=2.0V
3.218
3.300
3.382
AIC1642-37
VIN=2.0V
3.607
3.700
3.792
AIC1642-45
VIN=3.0V
4.387
4.500
4.613
AIC1642-50
VIN=3.0V
4.875
5.000
5.125
0.8
0.9
V
0.7
V
Start-Up Voltage
IOUT=1mA, VIN:02V
1
VSTART
Min. Hold-on Voltage
IOUT=1mA, VIN:20V
1
VHOLD
No-Load Input Current
IOUT=0mA
1
IIN
SW Leakage Current
VSW=6V, VS=VOUT + 0.5V
2
Supply Current
MIN.
0.5
AIC1642-20
16
AIC1642-22
20
AIC1642-27
42
AIC1642-28
44
AIC1642-30
50
AIC1642-31
55
AIC1642-33
2
A
15
IS1
60
AIC1642-37
65
AIC1642-45
70
AIC1642-50
VS=VOUT x 0.95
Measurement of the IC input current (VOUT pin)
90
A
A
5
AIC1642
ELECTRICAL CHARACTERISTICS
PARAMETER
Supply Current
SW Switch-On Resistance
TEST CONDITIONS
(Continued)
TEST
CKT
SYMBOL
MIN.
TYP.
AIC1642-20
7
AIC1642-22
7
AIC1642-27
7
AIC1642-28
7
AIC1642-30
7
AIC1642-31
7
AIC1642-33
2
IS2
7
AIC1642-45
7
AIC1642-50
VS=VOUT + 0.5V
Measurement of the IC input current (VOUT pin)
7
AIC1642-20
2.3
AIC1642-22
2.3
AIC1642-27
2.2
AIC1642-28
2.2
AIC1642-30
2.1
2
2.1
RON
AIC1642-33
2.0
AIC1642-37
2.0
AIC1642-45
1.9
AIC1642-50
VS=VOUT x 0.95,
VSW=0.4V
1.9
UNIT
A
7
AIC1642-37
AIC1642-31
MAX.
Oscillator Duty Cycle
VS=VOUT x 0.95
Measurement of the SW
pin waveform
3
DUTY
65
75
85
%
Max. Oscillator Freq.
VS=VOUT x 0.95
Measurement of the SW
pin waveform
3
FOSC
80
105
130
KHz
1
85
VEN = VOUT
IEN
0.1
Chip Enable
VENH
Chip Disable
VENL
Efficiency
EN Pin Current
EN Input Threshold
%
1
A
1.6
V
0.4
Note 1: Specifications are production tested at TA=25C. Specifications over the -40C to 85C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls
(SQC).
6
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS
2.8
85
2.7
80
2.6
VIN =1.8V
VIN =1.5V
VIN =2.0V
Efficiency (%)
Output Voltage (V)
Test circuit refer to typical application circuit
Capacitor (C2) : 47 F (Tantalum Type)
Diode (D1) : 1N5819 Schottky Type
V IN =1.2V
2.5
2.4
75
VIN=1.8V
70
VIN =2.0V
65
VIN=1.5V
V IN =0.9V
60
2.3
VIN =1.2V
VIN=0.9V
55
2.2 0
20
40
60
80
100
120
140
160
180
0
20
40
60
80
100
120
140
160
Output Current (mA)
Output current (mA)
Fig. 4 AIC1642-27 Load Regulation (L=100H CD54)
Fig. 5 AIC1642-27 Efficiency (L=100H CD54)
2.8
180
85
80
2.7
Efficiency (%)
Output Voltage (V)
75
2.6
VIN=1.5V
VIN=1.2V
VIN=2.0V
VIN=1.8V
2.5
70
VIN=2.0V
VIN=1.8V
65
60
VIN=1.2V
2.4
VIN=0.9V
2.3
0
20
40
60
80
100
120
140
160
180
200
220
50
240
0
20
40
60
Output Current (mA)
Fig. 6
AIC1642-27 Load Regulation (L=47H CD54)
100
120
140
160
180
220 240
200
1.0
0.9
0.9
0.8
Start up
0.6
0.5
Hold on
0.4
Start up
0.8
0.7
Input Voltage (V)
Input Voltage (V)
80
Output current (mA)
AIC1642-27 Efficiency (L=47H CD54)
Fig. 7
1.0
VIN=1.5V
VIN=0.9V
55
0.3
0.2
0.7
0.6
0.5
Hold on
0.4
0.3
0.2
0.1
0.1
0.0
0
Fig. 8
2
4
6
8
10
12
14
16
18
Output Current (mA)
AIC1642-27 Start-Up & Hold-ON Voltage (L=47H CD54)
0.0
0
2
4
6
8
10
12
14
16
18
Output Current (mA)
Fig. 9 AIC1642-27 Start-Up & Hold-ON Voltage (L=100H CD54)
7
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
2.80
160
2.78
Switching Frequency (kHz)
2.76
Output Voltage (V)
2.74
2.72
2.70
2.68
2.66
2.64
140
120
100
80
60
2.62
2.60
-40
-20
0
20
40
60
80
40
-40
100
Temperature (C)
Fig. 10 AIC1642-27 Output Voltage vs. Temperature
0
20
40
60
80
100
Temperature (C)
Fig. 11 AIC1642-27 Switching Frequency vs. Temperature
80
1.8
SW Turn ON Resistance ()
Maximum Duty Cycle (%)
-20
78
76
74
72
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
70
-40
0.0
-20
0
20
40
60
80
100
Temperature (C)
Fig. 12 AIC1642-27 Maximum Duty Cycle vs. Temperature
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 13 AIC1642-27 SW Turn ON Resistance vs. Temperature
45
3.1
VIN=2.0V
3.0
40
Output voltage VOUT(V)
Supply Current (A)
2.9
35
30
25
20
15
VIN=1.5V
2.8
VIN=1.8V
2.7
2.6
2.5
2.4
2.3
VIN=1.2V
2.2
10
VIN=0.9V
2.1
5
-40
-20
0
20
40
60
80
Temperature (C)
Fig. 14 AIC1642-27 Supply Current vs. Temperature
100
2.0
0
10
20
30
40
50
60
70
80
90
100 110 120 130 140
Output Current (mA)
Fig. 15 AIC1642-30 Load Regulation (L=100H, CD54)
8
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
85
3.1
3.0
80
2.9
Output Voltage (V)
Efficiency (%)
75
70
VIN=2.0
VIN=1.8V
65
60
VIN=1.2V
2.8
VIN=2.0V
VIN=1.8V
VIN=1.5V
2.7
2.6
2.5
VIN=1.5V
2.4
55
VIN=1.2V
VIN=0.9V
2.3
2.2
50
0
20
40
60
80
100
120
140
160
180
VIN=0.9V
0
20
40
60
80
100
120
140
160
180
200
220
Output Current (mA)
Output Current (mA)
Fig. 17 AIC1642-30 Load Regulation (L=47H CD54)
Fig. 16 AIC1642-30 Efficiency (L=100H, CD54)
85
1.0
Start up
0.9
80
0.8
Input Voltage (V)
Efficiency (%)
75
70
65
VIN=2.0V
VIN=1.8V
60
0.7
0.6
Hold on
0.5
0.4
0.3
0.2
55
VIN=1.5V
VIN=0.9V
50
0
0.1
VIN=1.2V
25
50
75
100
125
150
175
200
Output Current (mA)
Fig. 18
0.0
225
0
4
6
8
10
12
14
16
18
20
Output Current (mA)
Fig. 19 AIC1642-30 Start-up & Hold-on Voltage (L=100H CD54)
AIC1642-30 Efficiency (L=47H CD54)
3.10
1.0
3.08
Start up
0.9
3.06
Output Voltage (V)
0.8
Input Voltage (V)
2
0.7
0.6
0.5
Hold on
0.4
0.3
No Load
3.04
3.02
3.00
2.98
2.96
2.94
0.2
2.92
0.1
0.0
0
2
4
6
8
10
12
14
16
18
20
Output Current (mA)
Fig. 20 AIC1642-30 Start-up & Hold-on Voltage (L=47H CD54)
2.90
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 21 AIC1642-30 Output Voltage vs. Temperature
9
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
80
Maximum Duty Cycle (%)
Switching Frequency (kHz)
160
140
120
100
80
60
40
-40
-20
0
20
40
60
80
76
74
72
70
-40
100
Temperature (C)
Fig. 22 AIC1642-30 Switching Frequency vs. Temperature
-20
0
20
40
60
80
100
Temperature (C)
Fig. 23 AIC1642-30 Maximum Duty Cycle vs. Temperature
45
1.8
1.6
40
1.4
35
Supply Current (A)
SW Turn ON Resistance ()
78
1.2
1.0
0.8
0.6
30
25
20
15
0.4
10
0.2
0.0
-40
-20
0
20
40
60
80
5
-40
100
Temperature (C)
Fig. 24 AIC1642-30 SW Turn ON Resistance vs. Temperature
-20
0
20
40
60
80
100
Temperature (C)
Fig. 25 AIC1642-30 Supply Current vs. Temperature
90
3.4
VIN=2.0V
3.3
85
3.1
80
VIN=1.8V
VIN=1.5V
Efficiency (%)
Output Voltage (V)
3.2
3.0
2.9
VIN=1.2V
2.8
2.7
2.6
VIN=2.0V
75
70
VIN=1.8V
65
60
VIN=1.2V
2.5
2.4
2.3
0
25
50
75
VIN=1.5V
55
VIN=0.9V
VIN=0.9V
100
125
150
175
Output Current (mA)
Fig. 26 AIC1642-33 Load Regulation (L=100H, CD54)
200
50
0
25
50
75
100
125
150
175
200
Output Current (mA)
Fig. 27 AIC1642-33 Efficiency (L=100H, CD54)
10
AIC1642
3.4
90
3.3
85
3.2
80
3.1
VIN=1.5V
VIN=2.0V
VIN=1.8V
Efficiency (%)
Output Voltage (V)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
3.0
2.9
2.8
VIN=2.0V
70
65
60
55
2.7
VIN=1.2V
2.6
0
25
50
VIN=0.9V
75
100
125
150
175
200
40
225
0
25
50
75
100
125
150
175
200
225
250
Output Current (mA)
Fig. 29
AIC1642-33 Efficiency (L=47H,CD54)
3.50
1.1
1.0
3.45
Output Voltage Vout (V)
Start up
0.9
0.8
Input Voltage (V)
VIN=1.2V
45
Output Current (mA)
Fig. 28 AIC1642-33 Load Regulation (L=47H, CD54)
0.7
0.6
0.5
Hold on
0.4
0.3
0.2
3.40
3.35
No Load
3.30
3.25
3.20
3.15
3.10
3.05
0.1
0.0
VIN=1.8V
VIN=1.5V
50
VIN=0.9V
2.5
2.4
75
0
2
4
6
8
10
12
14
16
18
3.00
-40
20
-20
0
20
40
60
80
100
Temperature (C)
Output Current (mA)
Fig. 30 AIC1642-33 Start-up & Hold-on Voltage (L=100H CD54)
Fig. 31 AIC1642-33 Output Voltage vs. Temperature
80
Maximum Duty Cycle (%)
Switching Frequency (kHz)
160
140
120
100
80
60
40
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 32 AIC1642-33 Switching Frequency vs. Temperature
78
76
74
72
70
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 33 AIC1642-33 Maximum Duty Cycle vs. Temperature
11
AIC1642
1.8
45
1.6
40
Supply Current IDD1 (A)
SW Turn ON Resistance ()
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
1.4
1.2
1.0
0.8
0.6
0.4
35
30
25
20
15
0.2
0.0
-40
-20
0
20
40
60
80
10
-40
100
Temperature (C)
Fig. 34 AIC1642-33 SW Turn ON Resistance vs. Temperature
-20
0
20
40
60
80
100
Temperature (C)
Fig. 35 AIC1642-33 Supply Current vs. Temperature
90
3.8
3.7
85
3.6
80
VIN=1.2V
3.4
VIN=2.5V
3.3
VIN=1.8V
3.2
75
Efficiency (%)
Output Voltage (V)
3.5
VIN =2.0V
3.1
3.0
2.9
2.8
2.7
VIN =2.5V
70
65
VIN=1.2V
VIN=1.8V
55
VIN=0.9V
50
2.6
VIN =0.9V
2.5
45
2.4
40
0
25
50
75
100
125
150
175
200
225
250
275
0
Output Current (mA)
Fig. 36 AIC1642-37 Load Regulation (L=100H)
25
50
75
100
125
150
175
200
225
250
Output Current (mA)
Fig. 37 AIC1642-37 Efficiency (100H)
90
3.8
3.7
85
3.6
80
3.5
3.4
VIN=2.5V
3.3
VIN=1.8V
3.2
75
Efficiency (%)
Output Voltage (V)
VIN=2.0V
60
VIN=2.0V
3.1
3.0
2.9
VIN=1.2V
2.8
2.7
VIN=2.5V
70
65
VIN=1.8V
60
55
VIN=0.9V VIN=1.2V
50
2.6
2.5
45
VIN=0.9V
2.4
VIN=2.0V
2.3
40
0
25
50
75
100
125
150
175
200
225
Output Current (mA)
Fig. 38 AIC1642-37 Load Regulation (L=47H)
250
275
0
25
50
75
100
125
150
175
200
225
250
275
Output Current (mA)
Fig. 39 AIC1642-37 Efficiency (47H)
12
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
4.00
1.6
3.95
1.4
3.90
3.85
Output Voltage (V)
Input Voltage (V)
1.2
Start up
3.80
1.0
No Load
3.75
0.8
3.70
3.65
Hold on
0.6
3.60
0.4
3.55
3.50
0.2
3.45
0.0
0
5
10
15
3.40
-40
20
Output Current (mA)
Fig. 40 AIC1642-37 Start-up & Hold-on Voltage (L=100H)
-20
0
20
40
60
80
100
Temperature (C)
Fig. 41 AIC1642-37 Output Voltage vs. Temperature
80
Maximum Duty Cycle (%)
Switching Frequency (KHz)
160
140
120
100
80
60
40
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 42 AIC1642-37 Switching Frequency vs. Temperature
78
76
74
72
70
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 43 AIC1642-37 Maximum Duty Cycle vs Temperature
90
4.6
4.4
85
4.2
VIN=3.0V
Efficiency (%)
Output Voltage (V)
80
4.0
3.8
VIN=1.5V
3.6
VIN=2.0V
3.4
3.2
VIN=0.9V
VIN=1.2V
3.0
75
70
VIN=3.0V
65
VIN=2.0V
60
VIN=1.5V
2.8
VIN=0.9V
55
2.6
2.4
VIN=1.2V
50
2.2
0
50
100
150
200
250
300
350
Output Current (mA)
Fig. 44 AIC1642-45 Load Regulation (L=100H)
400
0
50
100
150
200
250
300
350
400
Output Current (mA)
Fig. 45 AIC1642-45 Efficiency (L=100H)
13
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
1.6
4.6
4.4
1.4
1.2
4.0
Input Voltage (V)
Output Voltage (V)
4.2
VIN=3.0V
3.8
VIN=1.5V
3.6
VIN=2.0V
3.4
3.2
VIN=0.9V
VIN=1.2V
3.0
Start up
1.0
Hold on
0.8
0.6
0.4
2.8
2.6
0.2
2.4
0.0
2.2
0
50
100
150
200
250
300
350
0
400
Output Current (mA)
Fig. 46 AIC1642-45 Load Regulation (L=100H)
5
10
15
20
Output Current (mA)
Fig. 47 AIC1642-45 Start-up & Hold-On Voltage (L=100H)
5.0
90
4.9
80
Supply Current (A)
Output Voltage (V)
4.8
4.7
4.6
No Load
4.5
4.4
4.3
70
60
50
40
30
4.2
20
4.1
4.0
-40
-20
0
20
40
60
80
10
100
-40
Temperature (C)
Fig. 48 AIC1642-45 Output Voltage vs. Temperature
-20
0
20
40
60
80
100
Temperature (C)
Fig. 49 AIC1642-45 Supply Current vs. Temperature
80
Maximum Duty Cycle (%)
Switching Frequency (kHz)
160
140
120
100
80
60
40
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 50 AIC1642-45 Switching Frequency vs. Temperature
78
76
74
72
70
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 51 AIC1642-45 Maximum Duty Cycle vs. Temperature
14
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
5.5
1.6
5.0
1.4
4.5
Output Voltage (V)
SW Turn ON Resistance ()
1.8
1.2
1.0
0.8
0.6
VIN=3.0V
VIN=2.0V
4.0
3.5
VIN=1.5V
3.0
VIN=1.2V
2.5
0.4
VIN=0.9V
2.0
0.2
0.0
1.5
-40
-20
0
20
40
60
80
0
100
5.5
90
5.0
80
4.5
Output Voltage (V)
Efficiency (%)
100
70
VIN=3.0V
VIN=2.0V
60
VIN=0.9V
50
VIN=1.5V
VIN=1.2V
40
0
50
100
150
200
250
300
350
100
150
200
250
300
350
400
VIN=3.0V
VIN=2.0V
4.0
3.5
VIN=1.5V
3.0
VIN=1.2V
2.5
2.0
30
20
50
Output Current (mA)
Fig. 53 AIC1642-50 Load Regulation ( L=100H CD54)
Temperature (C)
Fig. 52 AIC1642-45 SW Turn ON Resistance vs. Temperature
VIN=0.9V
1.5
0
400
50
100
150
200
250
300
350
400
Output Current (mA)
Output Current (mA)
Fig. 54 AIC1642-50 Efficiency (L=100H CD54)
Fig. 55 AIC1642-50 Load Regulation (L=47H CD54)
90
1.8
85
1.6
80
Input Voltage (V)
Efficiency (%)
1.4
75
70
VIN=3.0V
65
60
VIN=2.0V
55
50
45
0
100
Start up
0.8
0.6
0.4
VIN=1.2V
50
1.0
Hold on
VIN=1.5V
VIN=0.9V
1.2
0.2
150
200
250
300
350
Output Current (mA)
Fig. 56 AIC1642-50 Efficiency (L=47H CD54)
400
0.0
0
2
4
6
8
10
12
14
16
18
20
Output Current (mA)
Fig. 57 AIC1642-50 Start-up & Hold-on Voltage (L=100H CD50)
15
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
5.3
160
Switching Frequency (kHz)
Output Voltage VOUT (V)
5.2
5.1
No Load
5.0
4.9
4.8
4.7
4.6
4.5
4.4
-40
-20
0
20
40
60
80
120
100
80
60
40
-40
100
Temperature (C)
Fig. 58 AIC1642-50 Output Voltage vs. Temperature
-20
0
20
40
60
80
100
Temperature (C)
Fig. 59 AIC1642-50 Switching Frequency vs. Temperature
80
1.8
SW Turn ON Resistance ()
Maximum Duty Cycle (%)
140
78
76
74
72
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
70
-40
0.0
-20
0
20
40
60
80
100
Temperature (C)
Fig. 60 AIC1642-50 Maximum Duty Cycle vs. Temperature
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 61 AIC1642-50 SW Turn ON Resistance vs. Temperature
100
90
VOUT
Supply Current IDD1 (A)
80
50mV/div
70
60
10mA
50
40
Load Step
30
50mA/div
20
10
-40
-20
0
20
40
60
80
100
Temperature (C)
Fig. 62 AIC1642-50 Supply Current vs. Temperature
Fig. 63 Load Transient Response
(L1=100H, C2=47F, VIN=2V)
16
AIC1642
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
VOUT
20mv/div
VIN
0.5V/div
Fig. 64 Line Transient Response
(L1=100H, C2=47F)
■ BLOCK DIAGRAM
SW
1.25V REF.
VOUT
1M
+
EN
GND
OSC, 100KHz
■ PIN DESCRIPTIONS
GND
–
Ground. Must be low impedance; sorer directly to ground
plane.
VOUT
–
IC supply pin. Connect VOUT
to the regulator output.
SW
–
Internal drain of N-MOSFET
switch.
EN (5 Pin)
–
Chip Enable. This pin is not
allowed to float.
17
AIC1642
3-Pin One-Cell Step-Up DC/DC Converter
■ APPLICATION INFORMATION
GENERAL DESCRIPTION
AIC1642 PFM (pulse frequency modulation) controller ICs combine a switch mode regulator, N-channel
power MOSFET, precision voltage reference, and
voltage detector in a single monolithic device. They
offer extreme low quiescient current, high efficiency,
and very low gate threshold voltage to ensure startup with low battery voltage (0.8V typ.). Designed to
maximize battery life in portable products, and minimize switching losses by only switching as needed
service the load.
PFM controllers transfer a discrete amount of energy
per cycle and regulate the output voltage by modulating switching frequency with the constant turn-on
time. Switching frequency depends on load, input
voltage, and inductor value, and it can range up to
100KHz. The SW on-resistance is typically 1.9 to
2.2 to minimize switch losses.
When the output voltage drops, the error comparator
enables 100kHz oscillator that turns on the MOSFET
around 7.5us and 2.5us off time. Turning on the
MOSFET allows inductor current to ramp up, storing
energy in a magnetic field. When MOSFET turns off
that force inductor current through diode to the output capacitor and load. As the stored energy is depleted, the current ramp down until the diode turns
off. At this point, inductor may ring due to residual
energy and stray capacitance. The output capacitor
stores charge when current flowing through the diode is high, and release it when current is low,
thereby maintaining a steady voltage across the load.
As the load increases, the output capacitor discharges faster and the error comparator initiates
cycles sooner, increasing the switching frequency.
The maximum duty cycle ensure adequate time for
energy transfer to output during the second half
each cycle. Depending on circuit, PFM controller can
operate in either discontinuous mode or continuous
conduction mode. Continuous conduction mode
Analog Integrations Corporation
means that the inductor current does not ramp to
zero during each cycle.
VIN
IIN
ID
IOUT
SW
VOUT
+
EXT
Isw
Ico
VEXT
IIN
IPK
ISW
Charge Co.
ID
IOUT
TDIS
VSW
Discharge Co.
t
Discontinuous Conduction Mode
Si-Soft Research Center
DS-1642G-06 20141215
st
3A1, 1 Li-Hsin 1 Rd., Science Park , Hsinchu 300, Taiwan , R.O.C.
TEL: 886-3-5772500
FAX: 886-3-5772510
www.analog.com.tw
18
AIC1642
In the continuous mode, the switching frequency is
VEXT
1 VOUT VD VIN
TON (VOUT VD VSW )
x
VIN VSW
* [1 (
)]
2 VOUT VD VSW
1 VOUT VD VIN
TON VOUT VD VSW
fSW
IIN
IPK
where Vsw = switch drop and proportion to output
current.
ISW
ID
IOUT
VSW
t
Continuous Conduction Mode
Continuous Conduction Mode
At the boundary between continuous and discontinuous mode, output current (IOB) is determined by
VIN 1 VIN
* TON * (1 x )
IOB
* *
VOUT 2 L
where Vd is the diode drop,
x (RON RS ) *
TON
L
RON= Switch turn on resistance, RS= Inductor DC
resistance
TON = Switch ON time
In the discontinuous mode, the switching frequency
(Fsw) is
Fsw =
2 * (L) * (VOUT VD VIN) * (IOUT)
VIN 2 TON 2
Inductor Selection
To operate as an efficient energy transfer element,
the inductor must fulfill three requirements. First, the
inductance must be low enough for the inductor to
store adequate energy under the worst case condition of minimum input voltage and switch ON time.
Second, the inductance must also be high enough
so maximum current rating of AIC1642 and inductor
are not exceed at the other worst case condition of
maximum input voltage and ON time. Lastly, the inductor must have sufficiently low DC resistance so
excessive power is not lost as heat in the windings.
But unfortunately this is inversely related to physical
size.
Minimum and maximum input voltage, output voltage and output current must be established in advance and then inductor can be selected.
In discontinuous mode operation, at the end of the
switch ON time, peak current and energy in the inductor build according to
RON Rs
VIN
* TON)
IPK
* 1 exp(
L
RON Rs
x
VIN
* TON * 1
L
2
VIN
TON
L
(simple loss equation),
(1 x )
where x (RON RS ) *
EL =
TON
L
1
L Ipk 2
2
Power required from the inductor per cycle must be
equal or greater than
19
AIC1642
1
)
fsw
In order for the converter to regulate the output.
VOUT VD VSW x
VIN VSW
x
IPK
* IOUT
* TON * 1
V
V
2
2L
IN
SW
2
Valley current (Iv) is
When loading is over IOB, PFM controller operates
in continuous mode. Inductor peak current can be
derived from
VOUT VD VSW x
VIN VSW
x
IV
* IOUT
* TON* 1
V
VSW
2
2L
IN
2
PL/fSW (VOUT VD VIN) * (IOUT) * (
Table 1 Indicates resistance and height for each coil.
Power Inductor Type
Coilcraft SMT Type
DS1608
(www.coilcraft.com)
DO3316
Sumida SMT Type CD54
Hold SMT Type PM54
Inductance ( H ) Resistance ( )
Rated Current (A)
22
0.10
0.7
47
0.18
0.5
100
0.38
0.3
22
0.08
2.7
47
0.14
1.8
47
0.25
0.7
100
0.50
0.5
47
0.25
0.7
100
0.50
0.5
Hold SMT Type PM75
33
Capacitor Selection
A poor choice for an output capacitor can result
in poor efficiency and high output ripple. Ordinary
aluminum electrolytic, while inexpensive may
have unacceptably poor ESR and ESL. There are
low ESR aluminum capacitors for switch mode
DC-DC converters which work much well than
general unit. Tantalum capacitors provide still
better performance at more expensive. OS-CON
capacitors have extremely low ESR in a small
size. If capacitance is reduced, output ripple will
increase.
Most of the input supply is supplied by the input
bypass capacitor, the capacitor voltage rating
should be at least 1.25 times greater than a maximum input voltage.
Diode Selection
Speed, forward drop, and leakage current are the
three main considerations in selecting a rectifier
diode. Best performance is obtained with
Schottky rectifier diode such 1N5819. Motorola
makes MBR0530 in surface mount. For lower
Height (mm)
2.9
5.2
4.5
4.5
0.11
1.2
5.0
output power a 1N4148 can be used although efficiency and start-up voltage will suffer substantially.
Component Power Dissipation
Operating in discontinuous mode, power loss in
the winding resistance of inductor can be approximate equal to
PD L
2 TON
VOUT VF
* RD *
* POUT
3 L
VOUT
where POUT=VOUT * IOUT; RS=Inductor DC R;
VD = Diode drop.
The power dissipated in a switch loss is
PDSW
2 TON
VOUT VD VIN
* RON *
* POUT
3 L
VOUT
The power dissipated in rectifier diode is
VD
PDd
* POUT
VOUT
20
AIC1642
3-Pin One-Cell Step-Up DC/DC Converter
■ PHYSICAL DIMENSIONS (unit: mm)
SOT-23
D
A
A
E
E1
e
e1
SEE VIEW B
WITH PLATING
c
A
A2
b
BASE METAL
A1
SECTION A-A
0.25
S
Y
M
B
O
L
GAUGE PLANE
SEATING PLANE
L1
VIEW B
θ
L
Note: 1. Refer to JEDEC MO-178.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 10 mil per side.
3. Dimension "E1" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch
dimensions are not necessarily exact.
SOT-23
MILLIMETERS
MIN.
MAX.
1.45
A
0.95
A1
0.00
0.15
A2
0.90
1.30
b
0.30
0.50
c
0.08
0.22
D
2.80
3.00
E
2.60
3.00
E1
1.50
1.70
e
0.95 BSC
e1
1.90 BSC
L
θ
0.60
0.30
0.60 REF
L1
0°
8°
21
AIC1642
SOT-89
D
A
C
L
H
E
D1
e
S
Y
M
B
O
L
e1
MIN.
MAX.
1.40
1.60
B
0.44
0.56
B1
0.36
0.48
A
B1
B
SOT-89
MILLIMETERS
C
0.35
0.44
D
4.40
4.60
D1
1.50
1.83
E
2.29
2.60
e
1.50 BSC
e1
3.00 BSC
H
3.94
4.25
L
0.89
1.20
Note: 1. Refer to JEDEC TO-243AA.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 6 mil per side.
3. Dimension "E" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch
dimensions are not necessarily exact.
22
AIC1642
TO-92 (Straight lead option available in Bag packing)
E
b
S
D
S
Y
M
B
O
L
A
j
TO-92
MILLIMETERS
MIN.
MAX.
A
4.32
5.33
b
0.36
0.47
D
4.45
5.20
E
3.18
4.19
e
2.42
2.66
e1
1.15
1.39
j
3.43
L
12.70
S
2.03
2.66
L
Note: 1. Refer to JEDEC TO-226.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 6 mil per side .
3. Dimension "A" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch
dimensions are not necessarily exact.
e1
e
23
AIC1642
TO-92 (Formed lead option available in Reel packing)
A
W
B
E
F
P1
P
e
φD
T
SYMBOL
W
A
B
E
F
SPEC.
1 8 .0 ± 0 .2
9 .0 ± 0 .2
6 .0 ± 0 .2 0
1 6 .0 ± 0 .5
1 9 .0 ± 0 .5
SYMBOL
P
P1
D
e
T
SPEC.
1 2 .7 B S C
1 2 .7 B S C
4 .0 ± 0 .2
2 .5 B S C
0 .6 ± 0 .1
Note:
Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than
circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We
reserve the right to change the circuitry and specifications without notice.
Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are
devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when
properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
user.
24