0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AIC1642-50GXTR

AIC1642-50GXTR

  • 厂商:

    AIC(沛亨半导体)

  • 封装:

    SOT89-3

  • 描述:

    功能类型:升压型;同步整流:否;输出通道数:1;拓扑结构:升压式;输入电压:0.9V~1.5V;输出电压:5V;输出电流(最大值):400mA;开关频率:100kHz;

  • 数据手册
  • 价格&库存
AIC1642-50GXTR 数据手册
AIC1642 3-Pin One-Cell Step-Up DC/DC Converter  FEATURES         DESCRIPTION A Guaranteed Start-Up from less than 0.9 V. High Efficiency. Low Quiescent Current. Less Number of External Components needed. Low Ripple and Low Noise. Fixed Output Voltage: 2.0V, 2.2V, 2.7V, 2.8V, 3.0V, 3.1V, 3.3V, 3.7V, 4.5V and 5V. Space Saving Packages: SOT-89, TO-92 (3 pin) and SOT-23 (3 & 5 pin). The AIC1642 is a high efficiency step-up DC/DC converter for applications using 1 to 4 NiMH battery cells. Only three external components are required to deliver a fixed output voltage of 2.0V, 2.2V, 2.7V, 2.8V, 3.0V, 3.1V, 3.3V, 3.7V, 4.5V or 5V. The AIC1642 starts up from less than 0.9V input with 1mA load. Pulse Frequency Modulation scheme brings optimized performance for applications with light output loading and low input voltages. The output ripple and noise are lower compared with the circuits operating in PSM mode.  APPLICATIONS       Pagers. Cameras. Wireless Microphones. Pocket Organizers. Battery Backup Suppliers. Portable Instruments. The PFM control circuit operating in 100KHz (max.) switching rate results in smaller passive components. The space saving SOT-23, SOT89 and TO-92 packages make the AIC1642 an ideal choice of DC/DC converter for space conscious applications, like pagers, electronic cameras, and wireless microphones. ■ TYPICAL APPLICATION CIRCUIT VIN VOUT VIN D1 GS SS12 L1 100H D1 GS SS12 L1 100H + C1 22F SW C1 SW 22F VOUT + C2 47F ENABLE + C2 47F AIC1642 AIC1642 + VOUT VOUT EN GND GND One Cell Step-Up DC/DC Converter Analog Integrations Corporation One Cell Step-Up DC/DC Converter with Enable Control Si-Soft Research Center DS-1642G-06 20141215 st 3A1, 1 Li-Hsin 1 Rd., Science Park , Hsinchu 300, Taiwan , R.O.C. TEL: 886-3-5772500 FAX: 886-3-5772510 www.analog.com.tw 1 AIC1642 ■ ORDERING INFORMATION AI C1642 -X X XX XX PIN CO N FIGUR A TIO N P ACK ING TYP E T R: TAP E & REE L T B: TUB E B G : BA G P ACK AG E TYPE U : SO T-23 V : S OT-23 -5 V L:S OT -2 3-5 X : S O T-8 9 Z: TO-92 C : CO MME RCIA L P : LE AD FRE E C OM MER CIAL G : GRE EN P ACK AG E O UTP UT V OL TAG E 20: 2. 0V 22: 2. 2V 27: 2. 7V 28: 2.8V 30: 3. 0V 31: 3. 1V 33: 3. 3V 37: 3. 7V 45: 4. 5V 50: 5. 0V E xa mple: A IC164 2-27CX TR  2 .7V Version , in SO T-89 P ackag e & T ape & Reel Pa ck in g Typ e A IC164 2-27PX TR  SO T-89 TOP VI EW 1: GN D 2: VO UT 3: SW 1 TO -92 TO P VIE W 1: G ND 2: V OU T 3: S W 2 3 1 2 3 SO T-23 TO P V IEW 1: G ND 2: SW 3: VO UT 3 1 SO T-23-5(G V) TOP VI EW 1: E N 2: V OUT 3: NC 4: G ND 5: S W 2 4 5 1 2 3 2 .7V Version , in Lead Free SO T-89 P ackage & Tape & Re el P acking SO T-23-5(G VL ) TO P V IEW 1: S W 2: G ND 3: O UT 4: NC 5: NC 5 1 4 2 3 2 AIC1642 ■ ORDERING INFORMATION    (Continuous) SOT-23-5 MARKING Part No. GV GVL AIC1642-20 GW20G GY20G AIC1642-22 GW22G GY22G AIC1642-27 GW27G GY27G AIC1642-28 GW28G GY28G AIC1642-30 GW30G GY30G AIC1642-31 GW31G GY31G AIC1642-33 GW33G GY33G AIC1642-37 GW37G GY37G AIC1642-45 GW45G GY45G AIC1642-50 GW50G GY50G SOT-23 MARKING Part No. CU PU GU AIC1642-20 GM20 GM20P GM20G AIC1642-22 GM22 GM22P GM22G AIC1642-27 GM27 GM27P GM27G AIC1642-28 GM28 GM28P GM28G AIC1642-30 GM30 GM30P GM30G AIC1642-31 GM31 GM31P GM31G AIC1642-33 GM33 GM33P GM33G AIC1642-37 GM37 GM37P GM37G AIC1642-45 GM45 GM45P GM45G AIC1642-50 GM50 GM50P GM50G SOT-89 MARKING Part No. CX PX GX AIC1642-20 AM20 AM20P AM20G AIC1642-22 AM22 AM22P AM22G AIC1642-27 AM27 AM27P AM27G AIC1642-28 AM28 AM28P AM28G AIC1642-30 AM30 AM30P AM30G AIC1642-31 AM31 AM31P AM31G AIC1642-33 AM33 AM33P AM33G AIC1642-37 AM37 AM37P AM37G AIC1642-45 AM45 AM45P AM45G AIC1642-50 AM50 AM50P AM50G 3 AIC1642 ■ ABSOLUATE MAXIMUM RATINGS Supply Voltage (VOUT pin) 6V SW pin Voltage 6V SW pin Switch Current 0.6A EN pin Voltage 6V -40C to 85C Operating Temperature Range 125C Maximum Junction Temperature -65C to 150 C Storage Temperature Range 260C 120C/W Lead Temperature (Soldering 10 Sec.) Thermal Resistance Junction to Case TO-92 SOT-23 115C/W SOT-23-5 115C/W 45C/W SOT-89 Thermal Resistance Junction to Ambient 150C/W TO-92 250C/W (Assume no ambient airflow, no heatsink) SOT-23 SOT-23-5 250C/W SOT-89 160C/W Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. ■ TEST CIRCUIT VIN VOUT IIN D1 SS12 L1 100H IS AIC1642 + C2 22F SW VOUT AIC1642 VOUT VS + C1 47F SW VSW GND GND Fig. 1 Test Circuit 1 Fig. 2 Test Circuit 2 AIC1642 100 VS VOUT SW FOSC GND Fig. 3 Test Circuit 3 4 AIC1642  ELECTRICAL CHARACTERISTICS (TA=25C, IOUT=10mA, Unless otherwise specified) (Note1) PARAMETER Output Voltage TEST CONDITIONS TEST CKT SYMBOL TYP. MAX. AIC1642-20 VIN=1.8V 1.950 2.000 2.050 AIC1642-22 VIN=1.8V 2.145 2.200 2.255 AIC1642-27 VIN=1.8V 2.633 2.700 2.767 AIC1642-28 VIN=1.8V 2.732 2.800 2.868 AIC1642-30 VIN=1.8V 2.925 3.000 3.075 3.022 3.100 3.177 1 VOUT UNIT V AIC1642-31 VIN=1.8V AIC1642-33 VIN=2.0V 3.218 3.300 3.382 AIC1642-37 VIN=2.0V 3.607 3.700 3.792 AIC1642-45 VIN=3.0V 4.387 4.500 4.613 AIC1642-50 VIN=3.0V 4.875 5.000 5.125 0.8 0.9 V 0.7 V Start-Up Voltage IOUT=1mA, VIN:02V 1 VSTART Min. Hold-on Voltage IOUT=1mA, VIN:20V 1 VHOLD No-Load Input Current IOUT=0mA 1 IIN SW Leakage Current VSW=6V, VS=VOUT + 0.5V 2 Supply Current MIN. 0.5 AIC1642-20 16 AIC1642-22 20 AIC1642-27 42 AIC1642-28 44 AIC1642-30 50 AIC1642-31 55 AIC1642-33 2 A 15 IS1 60 AIC1642-37 65 AIC1642-45 70 AIC1642-50 VS=VOUT x 0.95 Measurement of the IC input current (VOUT pin) 90 A A 5 AIC1642  ELECTRICAL CHARACTERISTICS PARAMETER Supply Current SW Switch-On Resistance TEST CONDITIONS (Continued) TEST CKT SYMBOL MIN. TYP. AIC1642-20 7 AIC1642-22 7 AIC1642-27 7 AIC1642-28 7 AIC1642-30 7 AIC1642-31 7 AIC1642-33 2 IS2 7 AIC1642-45 7 AIC1642-50 VS=VOUT + 0.5V Measurement of the IC input current (VOUT pin) 7 AIC1642-20 2.3 AIC1642-22 2.3 AIC1642-27 2.2 AIC1642-28 2.2 AIC1642-30 2.1 2 2.1 RON AIC1642-33 2.0 AIC1642-37 2.0 AIC1642-45 1.9 AIC1642-50 VS=VOUT x 0.95, VSW=0.4V 1.9 UNIT A 7 AIC1642-37 AIC1642-31 MAX.  Oscillator Duty Cycle VS=VOUT x 0.95 Measurement of the SW pin waveform 3 DUTY 65 75 85 % Max. Oscillator Freq. VS=VOUT x 0.95 Measurement of the SW pin waveform 3 FOSC 80 105 130 KHz 1  85 VEN = VOUT IEN 0.1 Chip Enable VENH Chip Disable VENL Efficiency EN Pin Current EN Input Threshold % 1 A 1.6 V 0.4 Note 1: Specifications are production tested at TA=25C. Specifications over the -40C to 85C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC). 6 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS 2.8 85 2.7 80 2.6 VIN =1.8V VIN =1.5V VIN =2.0V Efficiency (%) Output Voltage (V) Test circuit refer to typical application circuit Capacitor (C2) : 47  F (Tantalum Type) Diode (D1) : 1N5819 Schottky Type V IN =1.2V 2.5 2.4 75 VIN=1.8V 70 VIN =2.0V 65 VIN=1.5V V IN =0.9V 60 2.3 VIN =1.2V VIN=0.9V 55 2.2 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 Output Current (mA) Output current (mA) Fig. 4 AIC1642-27 Load Regulation (L=100H CD54) Fig. 5 AIC1642-27 Efficiency (L=100H CD54) 2.8 180 85 80 2.7 Efficiency (%) Output Voltage (V) 75 2.6 VIN=1.5V VIN=1.2V VIN=2.0V VIN=1.8V 2.5 70 VIN=2.0V VIN=1.8V 65 60 VIN=1.2V 2.4 VIN=0.9V 2.3 0 20 40 60 80 100 120 140 160 180 200 220 50 240 0 20 40 60 Output Current (mA) Fig. 6 AIC1642-27 Load Regulation (L=47H CD54) 100 120 140 160 180 220 240 200 1.0 0.9 0.9 0.8 Start up 0.6 0.5 Hold on 0.4 Start up 0.8 0.7 Input Voltage (V) Input Voltage (V) 80 Output current (mA) AIC1642-27 Efficiency (L=47H CD54) Fig. 7 1.0 VIN=1.5V VIN=0.9V 55 0.3 0.2 0.7 0.6 0.5 Hold on 0.4 0.3 0.2 0.1 0.1 0.0 0 Fig. 8 2 4 6 8 10 12 14 16 18 Output Current (mA) AIC1642-27 Start-Up & Hold-ON Voltage (L=47H CD54) 0.0 0 2 4 6 8 10 12 14 16 18 Output Current (mA) Fig. 9 AIC1642-27 Start-Up & Hold-ON Voltage (L=100H CD54) 7 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 2.80 160 2.78 Switching Frequency (kHz) 2.76 Output Voltage (V) 2.74 2.72 2.70 2.68 2.66 2.64 140 120 100 80 60 2.62 2.60 -40 -20 0 20 40 60 80 40 -40 100 Temperature (C) Fig. 10 AIC1642-27 Output Voltage vs. Temperature 0 20 40 60 80 100 Temperature (C) Fig. 11 AIC1642-27 Switching Frequency vs. Temperature 80 1.8 SW Turn ON Resistance () Maximum Duty Cycle (%) -20 78 76 74 72 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 70 -40 0.0 -20 0 20 40 60 80 100 Temperature (C) Fig. 12 AIC1642-27 Maximum Duty Cycle vs. Temperature -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 13 AIC1642-27 SW Turn ON Resistance vs. Temperature 45 3.1 VIN=2.0V 3.0 40 Output voltage VOUT(V) Supply Current (A) 2.9 35 30 25 20 15 VIN=1.5V 2.8 VIN=1.8V 2.7 2.6 2.5 2.4 2.3 VIN=1.2V 2.2 10 VIN=0.9V 2.1 5 -40 -20 0 20 40 60 80 Temperature (C) Fig. 14 AIC1642-27 Supply Current vs. Temperature 100 2.0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Output Current (mA) Fig. 15 AIC1642-30 Load Regulation (L=100H, CD54) 8 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 85 3.1 3.0 80 2.9 Output Voltage (V) Efficiency (%) 75 70 VIN=2.0 VIN=1.8V 65 60 VIN=1.2V 2.8 VIN=2.0V VIN=1.8V VIN=1.5V 2.7 2.6 2.5 VIN=1.5V 2.4 55 VIN=1.2V VIN=0.9V 2.3 2.2 50 0 20 40 60 80 100 120 140 160 180 VIN=0.9V 0 20 40 60 80 100 120 140 160 180 200 220 Output Current (mA) Output Current (mA) Fig. 17 AIC1642-30 Load Regulation (L=47H CD54) Fig. 16 AIC1642-30 Efficiency (L=100H, CD54) 85 1.0 Start up 0.9 80 0.8 Input Voltage (V) Efficiency (%) 75 70 65 VIN=2.0V VIN=1.8V 60 0.7 0.6 Hold on 0.5 0.4 0.3 0.2 55 VIN=1.5V VIN=0.9V 50 0 0.1 VIN=1.2V 25 50 75 100 125 150 175 200 Output Current (mA) Fig. 18 0.0 225 0 4 6 8 10 12 14 16 18 20 Output Current (mA) Fig. 19 AIC1642-30 Start-up & Hold-on Voltage (L=100H CD54) AIC1642-30 Efficiency (L=47H CD54) 3.10 1.0 3.08 Start up 0.9 3.06 Output Voltage (V) 0.8 Input Voltage (V) 2 0.7 0.6 0.5 Hold on 0.4 0.3 No Load 3.04 3.02 3.00 2.98 2.96 2.94 0.2 2.92 0.1 0.0 0 2 4 6 8 10 12 14 16 18 20 Output Current (mA) Fig. 20 AIC1642-30 Start-up & Hold-on Voltage (L=47H CD54) 2.90 -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 21 AIC1642-30 Output Voltage vs. Temperature 9 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 -20 0 20 40 60 80 76 74 72 70 -40 100 Temperature (C) Fig. 22 AIC1642-30 Switching Frequency vs. Temperature -20 0 20 40 60 80 100 Temperature (C) Fig. 23 AIC1642-30 Maximum Duty Cycle vs. Temperature 45 1.8 1.6 40 1.4 35 Supply Current (A) SW Turn ON Resistance () 78 1.2 1.0 0.8 0.6 30 25 20 15 0.4 10 0.2 0.0 -40 -20 0 20 40 60 80 5 -40 100 Temperature (C) Fig. 24 AIC1642-30 SW Turn ON Resistance vs. Temperature -20 0 20 40 60 80 100 Temperature (C) Fig. 25 AIC1642-30 Supply Current vs. Temperature 90 3.4 VIN=2.0V 3.3 85 3.1 80 VIN=1.8V VIN=1.5V Efficiency (%) Output Voltage (V) 3.2 3.0 2.9 VIN=1.2V 2.8 2.7 2.6 VIN=2.0V 75 70 VIN=1.8V 65 60 VIN=1.2V 2.5 2.4 2.3 0 25 50 75 VIN=1.5V 55 VIN=0.9V VIN=0.9V 100 125 150 175 Output Current (mA) Fig. 26 AIC1642-33 Load Regulation (L=100H, CD54) 200 50 0 25 50 75 100 125 150 175 200 Output Current (mA) Fig. 27 AIC1642-33 Efficiency (L=100H, CD54) 10 AIC1642 3.4 90 3.3 85 3.2 80 3.1 VIN=1.5V VIN=2.0V VIN=1.8V Efficiency (%) Output Voltage (V)  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 3.0 2.9 2.8 VIN=2.0V 70 65 60 55 2.7 VIN=1.2V 2.6 0 25 50 VIN=0.9V 75 100 125 150 175 200 40 225 0 25 50 75 100 125 150 175 200 225 250 Output Current (mA) Fig. 29 AIC1642-33 Efficiency (L=47H,CD54) 3.50 1.1 1.0 3.45 Output Voltage Vout (V) Start up 0.9 0.8 Input Voltage (V) VIN=1.2V 45 Output Current (mA) Fig. 28 AIC1642-33 Load Regulation (L=47H, CD54) 0.7 0.6 0.5 Hold on 0.4 0.3 0.2 3.40 3.35 No Load 3.30 3.25 3.20 3.15 3.10 3.05 0.1 0.0 VIN=1.8V VIN=1.5V 50 VIN=0.9V 2.5 2.4 75 0 2 4 6 8 10 12 14 16 18 3.00 -40 20 -20 0 20 40 60 80 100 Temperature (C) Output Current (mA) Fig. 30 AIC1642-33 Start-up & Hold-on Voltage (L=100H CD54) Fig. 31 AIC1642-33 Output Voltage vs. Temperature 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 32 AIC1642-33 Switching Frequency vs. Temperature 78 76 74 72 70 -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 33 AIC1642-33 Maximum Duty Cycle vs. Temperature 11 AIC1642 1.8 45 1.6 40 Supply Current IDD1 (A) SW Turn ON Resistance ()  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1.4 1.2 1.0 0.8 0.6 0.4 35 30 25 20 15 0.2 0.0 -40 -20 0 20 40 60 80 10 -40 100 Temperature (C) Fig. 34 AIC1642-33 SW Turn ON Resistance vs. Temperature -20 0 20 40 60 80 100 Temperature (C) Fig. 35 AIC1642-33 Supply Current vs. Temperature 90 3.8 3.7 85 3.6 80 VIN=1.2V 3.4 VIN=2.5V 3.3 VIN=1.8V 3.2 75 Efficiency (%) Output Voltage (V) 3.5 VIN =2.0V 3.1 3.0 2.9 2.8 2.7 VIN =2.5V 70 65 VIN=1.2V VIN=1.8V 55 VIN=0.9V 50 2.6 VIN =0.9V 2.5 45 2.4 40 0 25 50 75 100 125 150 175 200 225 250 275 0 Output Current (mA) Fig. 36 AIC1642-37 Load Regulation (L=100H) 25 50 75 100 125 150 175 200 225 250 Output Current (mA) Fig. 37 AIC1642-37 Efficiency (100H) 90 3.8 3.7 85 3.6 80 3.5 3.4 VIN=2.5V 3.3 VIN=1.8V 3.2 75 Efficiency (%) Output Voltage (V) VIN=2.0V 60 VIN=2.0V 3.1 3.0 2.9 VIN=1.2V 2.8 2.7 VIN=2.5V 70 65 VIN=1.8V 60 55 VIN=0.9V VIN=1.2V 50 2.6 2.5 45 VIN=0.9V 2.4 VIN=2.0V 2.3 40 0 25 50 75 100 125 150 175 200 225 Output Current (mA) Fig. 38 AIC1642-37 Load Regulation (L=47H) 250 275 0 25 50 75 100 125 150 175 200 225 250 275 Output Current (mA) Fig. 39 AIC1642-37 Efficiency (47H) 12 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 4.00 1.6 3.95 1.4 3.90 3.85 Output Voltage (V) Input Voltage (V) 1.2 Start up 3.80 1.0 No Load 3.75 0.8 3.70 3.65 Hold on 0.6 3.60 0.4 3.55 3.50 0.2 3.45 0.0 0 5 10 15 3.40 -40 20 Output Current (mA) Fig. 40 AIC1642-37 Start-up & Hold-on Voltage (L=100H) -20 0 20 40 60 80 100 Temperature (C) Fig. 41 AIC1642-37 Output Voltage vs. Temperature 80 Maximum Duty Cycle (%) Switching Frequency (KHz) 160 140 120 100 80 60 40 -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 42 AIC1642-37 Switching Frequency vs. Temperature 78 76 74 72 70 -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 43 AIC1642-37 Maximum Duty Cycle vs Temperature 90 4.6 4.4 85 4.2 VIN=3.0V Efficiency (%) Output Voltage (V) 80 4.0 3.8 VIN=1.5V 3.6 VIN=2.0V 3.4 3.2 VIN=0.9V VIN=1.2V 3.0 75 70 VIN=3.0V 65 VIN=2.0V 60 VIN=1.5V 2.8 VIN=0.9V 55 2.6 2.4 VIN=1.2V 50 2.2 0 50 100 150 200 250 300 350 Output Current (mA) Fig. 44 AIC1642-45 Load Regulation (L=100H) 400 0 50 100 150 200 250 300 350 400 Output Current (mA) Fig. 45 AIC1642-45 Efficiency (L=100H) 13 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1.6 4.6 4.4 1.4 1.2 4.0 Input Voltage (V) Output Voltage (V) 4.2 VIN=3.0V 3.8 VIN=1.5V 3.6 VIN=2.0V 3.4 3.2 VIN=0.9V VIN=1.2V 3.0 Start up 1.0 Hold on 0.8 0.6 0.4 2.8 2.6 0.2 2.4 0.0 2.2 0 50 100 150 200 250 300 350 0 400 Output Current (mA) Fig. 46 AIC1642-45 Load Regulation (L=100H) 5 10 15 20 Output Current (mA) Fig. 47 AIC1642-45 Start-up & Hold-On Voltage (L=100H) 5.0 90 4.9 80 Supply Current (A) Output Voltage (V) 4.8 4.7 4.6 No Load 4.5 4.4 4.3 70 60 50 40 30 4.2 20 4.1 4.0 -40 -20 0 20 40 60 80 10 100 -40 Temperature (C) Fig. 48 AIC1642-45 Output Voltage vs. Temperature -20 0 20 40 60 80 100 Temperature (C) Fig. 49 AIC1642-45 Supply Current vs. Temperature 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 50 AIC1642-45 Switching Frequency vs. Temperature 78 76 74 72 70 -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 51 AIC1642-45 Maximum Duty Cycle vs. Temperature 14 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 5.5 1.6 5.0 1.4 4.5 Output Voltage (V) SW Turn ON Resistance () 1.8 1.2 1.0 0.8 0.6 VIN=3.0V VIN=2.0V 4.0 3.5 VIN=1.5V 3.0 VIN=1.2V 2.5 0.4 VIN=0.9V 2.0 0.2 0.0 1.5 -40 -20 0 20 40 60 80 0 100 5.5 90 5.0 80 4.5 Output Voltage (V) Efficiency (%) 100 70 VIN=3.0V VIN=2.0V 60 VIN=0.9V 50 VIN=1.5V VIN=1.2V 40 0 50 100 150 200 250 300 350 100 150 200 250 300 350 400 VIN=3.0V VIN=2.0V 4.0 3.5 VIN=1.5V 3.0 VIN=1.2V 2.5 2.0 30 20 50 Output Current (mA) Fig. 53 AIC1642-50 Load Regulation ( L=100H CD54) Temperature (C) Fig. 52 AIC1642-45 SW Turn ON Resistance vs. Temperature VIN=0.9V 1.5 0 400 50 100 150 200 250 300 350 400 Output Current (mA) Output Current (mA) Fig. 54 AIC1642-50 Efficiency (L=100H CD54) Fig. 55 AIC1642-50 Load Regulation (L=47H CD54) 90 1.8 85 1.6 80 Input Voltage (V) Efficiency (%) 1.4 75 70 VIN=3.0V 65 60 VIN=2.0V 55 50 45 0 100 Start up 0.8 0.6 0.4 VIN=1.2V 50 1.0 Hold on VIN=1.5V VIN=0.9V 1.2 0.2 150 200 250 300 350 Output Current (mA) Fig. 56 AIC1642-50 Efficiency (L=47H CD54) 400 0.0 0 2 4 6 8 10 12 14 16 18 20 Output Current (mA) Fig. 57 AIC1642-50 Start-up & Hold-on Voltage (L=100H CD50) 15 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 5.3 160 Switching Frequency (kHz) Output Voltage VOUT (V) 5.2 5.1 No Load 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -40 -20 0 20 40 60 80 120 100 80 60 40 -40 100 Temperature (C) Fig. 58 AIC1642-50 Output Voltage vs. Temperature -20 0 20 40 60 80 100 Temperature (C) Fig. 59 AIC1642-50 Switching Frequency vs. Temperature 80 1.8 SW Turn ON Resistance () Maximum Duty Cycle (%) 140 78 76 74 72 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 70 -40 0.0 -20 0 20 40 60 80 100 Temperature (C) Fig. 60 AIC1642-50 Maximum Duty Cycle vs. Temperature -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 61 AIC1642-50 SW Turn ON Resistance vs. Temperature 100 90 VOUT Supply Current IDD1 (A) 80 50mV/div 70 60 10mA 50 40 Load Step 30 50mA/div 20 10 -40 -20 0 20 40 60 80 100 Temperature (C) Fig. 62 AIC1642-50 Supply Current vs. Temperature Fig. 63 Load Transient Response (L1=100H, C2=47F, VIN=2V) 16 AIC1642  TYPICAL PERFORMANCE CHARACTERISTICS (Continued) VOUT 20mv/div VIN 0.5V/div Fig. 64 Line Transient Response (L1=100H, C2=47F) ■ BLOCK DIAGRAM SW 1.25V REF. VOUT 1M + EN GND OSC, 100KHz ■ PIN DESCRIPTIONS GND – Ground. Must be low impedance; sorer directly to ground plane. VOUT – IC supply pin. Connect VOUT to the regulator output. SW – Internal drain of N-MOSFET switch. EN (5 Pin) – Chip Enable. This pin is not allowed to float. 17 AIC1642 3-Pin One-Cell Step-Up DC/DC Converter ■ APPLICATION INFORMATION GENERAL DESCRIPTION AIC1642 PFM (pulse frequency modulation) controller ICs combine a switch mode regulator, N-channel power MOSFET, precision voltage reference, and voltage detector in a single monolithic device. They offer extreme low quiescient current, high efficiency, and very low gate threshold voltage to ensure startup with low battery voltage (0.8V typ.). Designed to maximize battery life in portable products, and minimize switching losses by only switching as needed service the load. PFM controllers transfer a discrete amount of energy per cycle and regulate the output voltage by modulating switching frequency with the constant turn-on time. Switching frequency depends on load, input voltage, and inductor value, and it can range up to 100KHz. The SW on-resistance is typically 1.9 to 2.2 to minimize switch losses. When the output voltage drops, the error comparator enables 100kHz oscillator that turns on the MOSFET around 7.5us and 2.5us off time. Turning on the MOSFET allows inductor current to ramp up, storing energy in a magnetic field. When MOSFET turns off that force inductor current through diode to the output capacitor and load. As the stored energy is depleted, the current ramp down until the diode turns off. At this point, inductor may ring due to residual energy and stray capacitance. The output capacitor stores charge when current flowing through the diode is high, and release it when current is low, thereby maintaining a steady voltage across the load. As the load increases, the output capacitor discharges faster and the error comparator initiates cycles sooner, increasing the switching frequency. The maximum duty cycle ensure adequate time for energy transfer to output during the second half each cycle. Depending on circuit, PFM controller can operate in either discontinuous mode or continuous conduction mode. Continuous conduction mode Analog Integrations Corporation means that the inductor current does not ramp to zero during each cycle. VIN IIN ID IOUT SW VOUT + EXT Isw Ico VEXT IIN IPK ISW Charge Co. ID IOUT TDIS VSW Discharge Co. t Discontinuous Conduction Mode Si-Soft Research Center DS-1642G-06 20141215 st 3A1, 1 Li-Hsin 1 Rd., Science Park , Hsinchu 300, Taiwan , R.O.C. TEL: 886-3-5772500 FAX: 886-3-5772510 www.analog.com.tw 18 AIC1642 In the continuous mode, the switching frequency is VEXT 1 VOUT  VD  VIN TON (VOUT  VD  VSW ) x VIN  VSW * [1  ( )] 2 VOUT  VD  VSW 1  VOUT  VD  VIN     TON  VOUT  VD  VSW  fSW  IIN IPK where Vsw = switch drop and proportion to output current. ISW ID IOUT VSW t Continuous Conduction Mode Continuous Conduction Mode At the boundary between continuous and discontinuous mode, output current (IOB) is determined by  VIN  1 VIN * TON * (1  x ) IOB   * *  VOUT  2 L where Vd is the diode drop, x  (RON  RS ) * TON L RON= Switch turn on resistance, RS= Inductor DC resistance TON = Switch ON time In the discontinuous mode, the switching frequency (Fsw) is Fsw = 2 * (L) * (VOUT  VD  VIN) * (IOUT) VIN 2  TON 2 Inductor Selection To operate as an efficient energy transfer element, the inductor must fulfill three requirements. First, the inductance must be low enough for the inductor to store adequate energy under the worst case condition of minimum input voltage and switch ON time. Second, the inductance must also be high enough so maximum current rating of AIC1642 and inductor are not exceed at the other worst case condition of maximum input voltage and ON time. Lastly, the inductor must have sufficiently low DC resistance so excessive power is not lost as heat in the windings. But unfortunately this is inversely related to physical size. Minimum and maximum input voltage, output voltage and output current must be established in advance and then inductor can be selected. In discontinuous mode operation, at the end of the switch ON time, peak current and energy in the inductor build according to RON  Rs VIN     * TON)  IPK    * 1  exp(  L  RON  Rs    x  VIN     * TON  * 1   L 2      VIN TON L (simple loss equation), (1  x ) where x  (RON  RS ) * EL = TON L 1 L  Ipk 2 2 Power required from the inductor per cycle must be equal or greater than 19 AIC1642 1 ) fsw In order for the converter to regulate the output.  VOUT VD  VSW x   VIN VSW  x IPK     * IOUT   * TON * 1  V  V 2 2L IN SW      2 Valley current (Iv) is When loading is over IOB, PFM controller operates in continuous mode. Inductor peak current can be derived from  VOUT VD  VSW x   VIN VSW  x IV     * IOUT   * TON* 1  V  VSW 2 2L IN      2 PL/fSW  (VOUT  VD  VIN) * (IOUT) * ( Table 1 Indicates resistance and height for each coil. Power Inductor Type Coilcraft SMT Type DS1608 (www.coilcraft.com) DO3316 Sumida SMT Type CD54 Hold SMT Type PM54 Inductance ( H ) Resistance (  ) Rated Current (A) 22 0.10 0.7 47 0.18 0.5 100 0.38 0.3 22 0.08 2.7 47 0.14 1.8 47 0.25 0.7 100 0.50 0.5 47 0.25 0.7 100 0.50 0.5 Hold SMT Type PM75 33 Capacitor Selection A poor choice for an output capacitor can result in poor efficiency and high output ripple. Ordinary aluminum electrolytic, while inexpensive may have unacceptably poor ESR and ESL. There are low ESR aluminum capacitors for switch mode DC-DC converters which work much well than general unit. Tantalum capacitors provide still better performance at more expensive. OS-CON capacitors have extremely low ESR in a small size. If capacitance is reduced, output ripple will increase. Most of the input supply is supplied by the input bypass capacitor, the capacitor voltage rating should be at least 1.25 times greater than a maximum input voltage. Diode Selection Speed, forward drop, and leakage current are the three main considerations in selecting a rectifier diode. Best performance is obtained with Schottky rectifier diode such 1N5819. Motorola makes MBR0530 in surface mount. For lower Height (mm) 2.9 5.2 4.5 4.5 0.11 1.2 5.0 output power a 1N4148 can be used although efficiency and start-up voltage will suffer substantially. Component Power Dissipation Operating in discontinuous mode, power loss in the winding resistance of inductor can be approximate equal to PD L  2  TON   VOUT  VF    * RD  *   * POUT  3 L   VOUT  where POUT=VOUT * IOUT; RS=Inductor DC R; VD = Diode drop. The power dissipated in a switch loss is PDSW  2  TON   VOUT  VD  VIN    * RON  *   * POUT  3 L  VOUT   The power dissipated in rectifier diode is  VD  PDd    * POUT   VOUT  20 AIC1642 3-Pin One-Cell Step-Up DC/DC Converter ■ PHYSICAL DIMENSIONS (unit: mm)  SOT-23 D A A E E1 e e1 SEE VIEW B WITH PLATING c A A2 b BASE METAL A1 SECTION A-A 0.25 S Y M B O L GAUGE PLANE SEATING PLANE L1 VIEW B θ L Note: 1. Refer to JEDEC MO-178. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side. 3. Dimension "E1" does not include inter-lead flash or protrusions. 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact. SOT-23 MILLIMETERS MIN. MAX. 1.45 A 0.95 A1 0.00 0.15 A2 0.90 1.30 b 0.30 0.50 c 0.08 0.22 D 2.80 3.00 E 2.60 3.00 E1 1.50 1.70 e 0.95 BSC e1 1.90 BSC L θ 0.60 0.30 0.60 REF L1 0° 8° 21 AIC1642  SOT-89 D A C L H E D1 e S Y M B O L e1 MIN. MAX. 1.40 1.60 B 0.44 0.56 B1 0.36 0.48 A B1 B SOT-89 MILLIMETERS C 0.35 0.44 D 4.40 4.60 D1 1.50 1.83 E 2.29 2.60 e 1.50 BSC e1 3.00 BSC H 3.94 4.25 L 0.89 1.20 Note: 1. Refer to JEDEC TO-243AA. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. Dimension "E" does not include inter-lead flash or protrusions. 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact. 22 AIC1642 TO-92 (Straight lead option available in Bag packing) E b S D S Y M B O L A j TO-92 MILLIMETERS MIN. MAX. A 4.32 5.33 b 0.36 0.47 D 4.45 5.20 E 3.18 4.19 e 2.42 2.66 e1 1.15 1.39 j 3.43 L 12.70 S 2.03 2.66 L  Note: 1. Refer to JEDEC TO-226. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side . 3. Dimension "A" does not include inter-lead flash or protrusions. 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact. e1 e 23 AIC1642  TO-92 (Formed lead option available in Reel packing) A W B E F P1 P e φD T SYMBOL W A B E F SPEC. 1 8 .0 ± 0 .2 9 .0 ± 0 .2 6 .0 ± 0 .2 0 1 6 .0 ± 0 .5 1 9 .0 ± 0 .5 SYMBOL P P1 D e T SPEC. 1 2 .7 B S C 1 2 .7 B S C 4 .0 ± 0 .2 2 .5 B S C 0 .6 ± 0 .1 Note: Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice. Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 24
AIC1642-50GXTR 价格&库存

很抱歉,暂时无法提供与“AIC1642-50GXTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货