0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AK09970N

AK09970N

  • 厂商:

    AKM(旭化成)

  • 封装:

    QFN16_3X3MM

  • 描述:

    AK09970N

  • 数据手册
  • 价格&库存
AK09970N 数据手册
[AK09970N] AK09970N 3D Magnetic Sensor with Programmable Switch 1. Genaral Description AK09970N is a 3D magnetic sensor IC with high sensitivity and wide measurement range utilizing our latest Hall sensor technology. Our ultra-small package of AK09970N incorporates magnetic sensors, chopper stabilized signal, amplifier chain, and all necessary interface logic for detecting weak to strong magnetic fields in the X, Y and Z planes independently. From its compact foot print, thin package, and extremely low power consumption, it is suitable for a wide range of applications such as connected home, door & window opening/close sensing, and magnetic tamper detection of IoT systems or smart meters just to name a few. 2. Features Functions: ¾ 16 bit data out for each 3-axis magnetic component ¾ Programmable threshold 3-axis magnetometer ¾ Built-in A to D Converter for magnetometer data output ¾ Selectable sensor measurement range and sensitivity setting — High sensitivity setting z Sensitivity: 1.1 μT/LSB (typ.) z Measurement range: ± 36 mT — Wide range setting z Sensitivity: 3.1 μT/LSB (typ.) z Measurement range: X and Y-axis Æ ±34.9mT, Z-axis Æ ±101.5mT ¾ Serial interface — I2C bus interface Standard and Fast mode compliant with Philips I2C specification Ver.2.1 — 4-wire SPI ¾ Operation mode — Power-down, Single measurement, Continuous measurement ¾ 3-axis programmable switch function ¾ Output pin for event notification — INT pin and OD-INT pin ¾ DRDY function for measurement data ready ¾ Magnetic sensor overflow monitor function ¾ Built-in oscillator for internal clock source ¾ Selectable sensor drive — Low power drive / Low noise drive ‹ Operating temperatures: ¾ -4Û&WRÛ& ‹ Operating supply voltage: ¾ +1.7V to +3.6V ‹ Current consumption (VDD = +1.8V, +2Û&): ¾ Power-down: 2.0 nA (typ.) ¾ Measurement: — Average current consumption at 1 Hz/10Hz repetition rate z Low power drive: 1.0 μA(typ.)@1HzODR, 3.5 μA(typ.)@10HzODR z Low noise drive: 2.0 μA(typ.) @1HzODR, 12.0 μA(typ.)@10HzODR ‹ Package ¾ AK09970N 16-pin QFN package: 3.0mm x 3.0mm x 0.75mm ‹ 017006194-E-00 2017/5 -1- [AK09970N] 3. Table of Contents 1. 2. 3. 4. Genaral Description ............................................................................................................................ 1 Features .............................................................................................................................................. 1 Table of Contents................................................................................................................................ 2 Block Diagram and Functions ............................................................................................................. 4 4.1. Block Diagram.............................................................................................................................. 4 4.2. Functions ..................................................................................................................................... 4 5. Pin Configurations and Functions....................................................................................................... 5 6. Absolute Maximum Ratings ................................................................................................................ 6 7. Recommended Operating Conditions................................................................................................. 6 8. Electrical Characteristics..................................................................................................................... 7 8.1. DC Characteristics........................................................................................................................... 7 8.2. AC Characteristics of RSTN ............................................................................................................ 7 8.3. AC Characteristics of INT and OD-INT ........................................................................................... 8 8.4. Overall Characteristics .................................................................................................................... 9 8.5. 4-wire SPI ...................................................................................................................................... 10 8.6. I2C Bus Interface............................................................................................................................ 11 9. Status Description ............................................................................................................................. 12 9.1. State Transition Diagram............................................................................................................... 12 9.2. Power States ................................................................................................................................. 13 9.3. Register States .............................................................................................................................. 13 9.4. Pin States ...................................................................................................................................... 13 10. Functional Descriptions ................................................................................................................. 14 10.1. Reset Functions........................................................................................................................... 14 10.2. Operation modes ......................................................................................................................... 14 10.2.1. Description of Each Operation Mode.............................................................................. 14 10.3. Data Ready.................................................................................................................................. 16 10.3.1. Normal Measurement Data Read Sequence ................................................................. 16 10.3.2. Data Read Start during Measurement............................................................................ 17 10.3.3. Data Skip......................................................................................................................... 17 10.3.4. End Operation................................................................................................................. 18 10.4. Programmable Switch Function .................................................................................................. 18 10.5. Error Notification Function........................................................................................................... 19 10.5.1. Magnetic Sensor Overflow.............................................................................................. 19 10.5.2. ADC Overflow ................................................................................................................. 19 10.6. Interrupt Function ........................................................................................................................ 20 10.6.1. Timing of Interrupt Function Operation........................................................................... 21 10.7. Sensor Drive Select..................................................................................................................... 22 10.8. Sensor Measurement Range and Sensitivity Select................................................................... 22 11. Serial Interface .............................................................................................................................. 23 11.1. 4-wire SPI .................................................................................................................................... 23 11.1.1. Writing Data .................................................................................................................... 23 11.1.2. Reading Data .................................................................................................................. 24 11.2. I2C Bus Interface.......................................................................................................................... 24 11.2.1. Data Transfer .................................................................................................................. 24 11.2.2. WRITE Instruction........................................................................................................... 26 11.2.3. READ Instruction ............................................................................................................ 27 12. Registers ....................................................................................................................................... 29 12.1. Description of Registers .............................................................................................................. 29 12.2. Register Map ............................................................................................................................... 30 12.3. Detailed Description of Registers ................................................................................................ 32 12.3.1. WIA[15:0]: Company ID and Device ID .......................................................................... 32 12.3.2. RSV[15:0]: Reserved Register ....................................................................................... 32 12.3.3. ST[15:0]: Status .............................................................................................................. 32 12.3.4. HX[15:0]/HY[15:0]/HZ[15:0]: Measurement Data........................................................... 33 12.3.5. CNTL1[15:0]: Interrupt Output Setting............................................................................ 35 017006194-E-00 2017/5 -2- [AK09970N] 12.3.6. CNTL2[7:0]: Operation Mode, Sensor Drive, Measurement Range and Sensitivity setting 36 12.3.7. BOP1,2 and BRP1,2 registers: Operating Threshold and Returning Threshold Setting of Programmable Switch Function........................................................................................................ 37 12.3.8. SRST[7:0]: Soft Reset .................................................................................................... 38 12.3.9. I2CDIS[7:0]: I2C Disable ................................................................................................. 38 12.3.10. TST1[15:0]/TST2[7:0]: Test register ............................................................................... 39 13. Recommended External Circuits................................................................................................... 40 13.1. I2C Bus Interface.......................................................................................................................... 40 13.2. 4-wire SPI .................................................................................................................................... 41 14. Package......................................................................................................................................... 42 14.1. Outline Dimensions ..................................................................................................................... 42 14.2. Pad Dimensions........................................................................................................................... 42 14.3. Marking ........................................................................................................................................ 43 14.4. Pin Assignment............................................................................................................................ 43 15. Magnetic Orientation ..................................................................................................................... 44 017006194-E-00 2017/5 -3- [AK09970N] 4. Block Diagram and Functions 4.1. Block Diagram 3-axis Hall sensor Chopper SW & MUX PreAMP ADC RSTN SCL/SK OSC1 OSC2 Analog Regulator Timing Control & Signal Processing Interface, Logic & Register SDA/SI CSB SO INT VREF OD-INT VSS VDD CAD 4.2. Functions Block 3-axis Hall sensor Chopper SW MUX Analog Regulator PREAMP ADC OSC1 OSC2 VREF Interface Logic & Register Timing Control & Signal Processing Function Monolithic Hall elements. Multiplexer for selecting Hall elements. Internal power supply. Differential amplifier used to amplify the magnetic sensor signal. Convert analog output to digital output. Generates an operating clock for sensor measurement. Generates an operating periodic clock for sequencer. Generates temperature independent reference voltage. Exchanges data with an external CPU. INT and OD-INT pin indicates State1 or/and State2 (selectable). State1: Sensor measurement has ended and data is ready to be read. State2: Measurement magnetic data exceeds setting switch threshold value. I2C bus interface using two pins (SCL and SDA). Standard and Fast modes are supported. 4-wire SPI is also supported by SK, SI, SO and CSB pins. Generates a timing signal required for internal operation. Magnetic sensitivity adjustment and switch calculation for switch function. 017006194-E-00 2017/5 -4- [AK09970N] 5. Pin Configurations and Functions Pin No. 1 Pin name INT I/O Type Function O CMOS 2 CSB I CMOS 3 SCL I CMOS N/C SDA I/O CMOS SI I 6 SO O CMOS 7 8 9 10 11 N/C N/C N/C N/C OD-INT O 12 CAD I Open Drain CMOS 13 14 15 16 VSS N/C VDD RSTN I Power Power CMOS Interrupt pin “H” active. Refer to section 10.6. Chip select pin for 4-wire SPI “L” active. Connect to VDD when selecting I2C bus interface. When the I2C bus interface is selected (CSB pin is connected to VDD). SCL: Control clock input pin Input: Schmitt trigger When the 4-wire SPI is selected. SK: Serial clock input pin Non-connect. Keep this pin non-connected. When the I2C bus interface is selected (CSB pin is connected to VDD). SDA: Control data input/output pin Input: Schmitt trigger, Output: Open-drain When the 4-wire SPI is selected. SI: Serial data input pin When the I2C bus interface is selected (CSB pin is connected to VDD) Hi-Z output. Keep this pin electrically non-connected. When the 4-wire SPI is selected. Serial data output pin Non-connect. Keep this pin non-connected. Non-connect. Keep this pin non-connected. Non-connect. Keep this pin non-connected. Non-connect. Keep this pin non-connected. Open-drain interrupt pin ͆L” active. Refer to section 10.6. When the I2C bus interface is selected (CSB pin is connected to VDD). CAD: Slave address input pin Connect to VSS or VDD. When the 4-wire serial interface is selected. Connect to VSS. Ground pin Non-connect. Keep this pin non-connected. Positive power supply pin Reset pin Resets registers by setting to “L”. SK 4 5 017006194-E-00 2017/5 -5- [AK09970N] 6. Absolute Maximum Ratings VSS=0V Parameter Power supply voltage Input voltage Input current Storage temperature Symbol V+ VIN IIN Tstg Min. -0.3 -0.3 -10 -40 Max. +4.3 (V+)+0.3 +10 +125 Unit V V mA Û& Note: If the device is used in conditions exceeding these values, the device may be destroyed. Normal operations are not guaranteed in such exceeding conditions. 7. Recommended Operating Conditions VSS=0V Parameter Operating temperature Power supply voltage Remark VDD pin voltage Symbol Ta Vdd 017006194-E-00 Min. -40 1.7 Typ. 1.8 Max. +85 3.6 Unit Û& V 2017/5 -6- [AK09970N] 8. Electrical Characteristics The following conditions apply unless otherwise noted: Vdd = 1.7V to 3.6V, Temperature range = -4Û&WRÛ& Typical condition: Vdd = 1.8 V, Temperature = 25 Û& 8.1. DC Characteristics Parameter High level input voltage Low level input voltage Symbol VIH VIL Input current IIN Hysteresis input voltage *1 High level output voltage *2 Current consumption *4 VOH *2 VOL1 *3 VOL2 Low level output voltage 1 Low level output voltage 2 VHS IDD1 Pin CSB RSTN SCL/SK SDA/SI CAD CSB RSTN SCL/SK SDA/SI SO INT SO INT SDA/SI OD-INT VDD IDD2 IDD3 Condition - Min. 70%Vdd - VIN = Vss or Vdd -10 9GG•9 5%Vdd Vdd 80%Vdd 5 - - μs tSPRST RSTN - - - 1 μs Figure 8.1 Reset condition 017006194-E-00 2017/5 -7- [AK09970N] 8.3. AC Characteristics of INT and OD-INT Parameter Fall time of OD-INT Symbol TfOD Pin OD-INT Fall time of INT Rise time of INT TfINT TrINT INT INT Condition CL = 50 pF RL NŸ W\S CL = 50 pF CL = 50 pF Min. - Typ. - Max. 250 Unit ns - - 250 250 ns ns Figure 8.2 Output load circuit of OD-INT (recommended circuit) [Rise time and fall time] TfOD OD-INT 90%Vdd 10%Vdd TrINT TfINT 90%Vdd 10%Vdd INT 017006194-E-00 2017/5 -8- [AK09970N] 8.4. Overall Characteristics Table 8.1 High sensitivity setting Parameter Symbol Condition Min. Typ. Max. Unit Measurement data output bit Time for measurement DBIT - - 16 - Bit TSM SDR bit = “0” (Low noise drive) SDR bit = “1” (Low power drive) 7D Û&, SMR bit = “0” 7D Û&, SMR bit = “0” 7D Û&, X and Y-axis 7D Û& Z-axis SDR bit = “0” (Low noise drive) SDR bit = ”1” (Low power drive) - 0.792 0.872 ms - 0.23 0.253 0.99 1.1 1.21 μT/LSB s32.44 s36.04 s39.64 mT -614 - +614 LSB -868 - +868 - 5.0 - - 15.0 - Magnetic sensor sensitivity Magnetic sensor measurement range Magnetic sensor *5 initial offset *6 Noise BSE BRG BOF NIS μTrms Table 8.2 Wide range setting Parameter Symbol Condition Min. Typ. Max. Unit Measurement data output bit Time for measurement DBIT - - 16 - Bit TSM SDR bit = “0” (Low noise drive) - 0.792 0.872 ms SDR bit = “1” - 0.23 0.253 2.79 3.1 3.41 μT/LSB s31.42 s34.91 s38.4 mT s91.42 s101.57 s111.73 -218 - +218 -308 - +308 - 6.0 - Magnetic sensor sensitivity Magnetic sensor measurement range Magnetic sensor *5 initial offset *6 Noise BSE BRG BOF NIS (Low power drive) 7D Û&, SMR bit = “1” 7D Û&, X and Y-axis, SMR bit = “1” 7D Û&, Z-axis, SMR bit = “1” 7D Û&, X and Y-axis 7D Û& Z-axis SDR bit = “0” (Low noise drive) SDR bit = “1” (Low power drive) LSB μTrms 18.0 Note: * 5. Value of measurement data register on shipment test without applying magnetic field on purpose. * 6. Reference value for design. Under steady magnetic field. 017006194-E-00 2017/5 -9- [AK09970N] 8.5. 4-wire SPI 4-wire SPI is compliant with mode 3 (SPI-mode3) Parameter SK clock frequency CSB setup time Data setup time Data hold time SK high time Symbol Fspi Tcs Ts Th Twh SK low time Twl SK setup time *7 SK to SO delay time *7 CSB to SO delay time *8 SK rise time *8 SK fall time CSB high time Tsd Tdd Condition Vddt2.5V 2.5V>Vddt1.7V Vddt2.5V 2.5V>Vddt1.7V - Min. 50 50 50 100 150 100 150 50 - Typ. - Max. 4.0 50 Unit MHz ns ns ns ns ns ns ns ns ns Tcd Tr Tf Tch - 450 - 50 100 100 ns ns ns ns Notes: * 7.SO load capacitance: 20pF * 8.Reference value for design Tch Tcs CSB Tsd Ts Th Tdd Twh Tcd Twl SK SI Hi-Z Hi-Z SO Figure 8.3 4-wire SPI Tr Tf 0.9Vdd 0.1Vdd SK Figure 8.4 Rise time and fall time 017006194-E-00 2017/5 - 10 - [AK09970N] 8.6. I2C Bus Interface CSB pin = “H” I2C bus interface is compliant with Standard mode and Fast mode. Standard/Fast is selected automatically by fSCL. „ Standard mode I6&/”N+] Symbol fSCL tHIGH tLOW tR tF tHD:STA tSU:STA tHD:DAT tSU:DAT tSU:STO tBUF „ Parameter Min. Typ. Max. Unit SCL clock frequency SCL clock “High” time SCL clock “Low” time SDA and SCL rise time SDA and SCL fall time Start Condition hold time Start Condition setup time SDA hold time (vs. SCL falling edge) SDA setup time (vs. SCL rising edge) Stop Condition setup time Bus free time 4.0 4.7 4.0 4.7 0 - 100 1.0 0.3 - kHz μs μs μs μs μs μs μs 250 - - ns 4.0 4.7 - - μs μs Fast mode 100kHz BRPX1 (Switch function enable) BOPX1 < HX BRPX1 > HX Other relations 1 0 Previous result SWX1 bit = ”1”㻌 Hysteresis㻌 SWX1 bit = ”0”㻌 -BRG㻌 BRPX1㻌 BOPX1㻌 Measurement data (HX) BRG㻌 * 14 Figure 10.7 Relation between threshold values and SWX1 bit Note: * 14. SWX1 bit, SWY1 bit, SWZ1 bit, SWX2 bit, SWY2 bit and SWZ2 bit exhibits the same relationship 10.5. Error Notification Function 10.5.1. Magnetic Sensor Overflow AK09970N has a limitation for measurement range, where the absolute value of X-axis and Y-axis should be smaller than 36.04 mT (High sensitivity mode) or 34.91 mT (Wide range mode). When the magnetic field exceeds this limitation, AK09970N outputs limitation value at the X-axis or/and Y-axis (fixed value: 36.04 mT or 34.91 mT). This is called magnetic sensor overflow. When magnetic sensor overflow occurs, ERRXY bit turns to “1”. When the magnetic field less than limitation value, measurement data register (HX and HY) and ERRXY bit are updated. 10.5.2. ADC Overflow AK09970N has a limitation for ADC range, when the magnetic field exceeded this limitation, data stored at measurement data registers (HX, HY and HZ) are not correct. This is called ADC overflow. When ADC overflow occurs, ERRADC bit turns to “1”.When measurement data registers are updated, ERRADC bit is updated. 017006194-E-00 2017/5 - 19 - [AK09970N] 10.6. Interrupt Function AK09970N has two interrupt pins, INT pin (CMOS) and OD-INT pin (Open-drain). When CNTL1 register is set and interrupt event (magnetic event) occurred, AK09970N outputs selected interrupt event at the INT pin or/and OD-INT pin. AK09970N can output four type of interrupt event (Data ready, Magnetic sensor overflow, ADC overflow and Switch event) to pins. INTEN bit and ODINTEN bit can select interrupt function be enabled or disabled. When set INTEN bit/ODINTEN bit =”1” and magnetic event occurs, INT pin turn to “H” and OD-INT pin turn to “L”. Interrupt㻌 H㻌 Hysteresis㻌 Magnetic flux density L㻌 -BRG㻌 Returning Operating Threshold㻌 Threshold㻌 㻌 BRG㻌 Figure 10.8 Interrupt pin Content of interrupt event Data ready (Refer to 10.3) Table 10.3 Interrupt event and interrupt function INT Conditions of event INTEN ODINTEN pin output bit bit DRDYEN bit = ”1”, DRDY bit = ”1” 0 1 Magnetic sensor Overflow (Refer to 10.5.1) ERRXYEN bit =”1”, ERRXY bit = “1” 0 ADC overflow (Refer to 10.5.2) ERRADCEN bit =”1”, ERRADC bit = “1” 1 0 1 Switch event (Refer to 10.4) - * 15 0 SWEN bit =”1”, * 16 SW bit : ”0”Æ”1” or “1”Æ”0” 1 Other than those above condition Don’t care OD-INT pin output 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 L L H H L L H H L L H H L L H H H L H L H L H L H L H L H L H L Don’t care L H Note: * 15. SWX1EN bit, SWY1EN bit, SWZ1EN bit, SWX2EN bit, SWY2EN bit and/or SWZ2EN bit * 16. SWX1 bit, SWX2 bit, SWY1 bit, SWY2 bit, SWZ1 bit and/or SWZ2 bit 017006194-E-00 2017/5 - 20 - [AK09970N] 10.6.1. Timing of Interrupt Function Operation Timing of interrupt function operation is given below. Refer to Table 10.4, Figure 10.9 and Figure 10.10. Table 10.4 Timing of interrupt function operation Pin name INT pin OD-INT pin Output transition LÆH Timing of transition End of measurement Remarks - HÆL Read address 10h -1Fh or Write address 20h - 27h End of measurement During access to address, INT pin is always “L” state. - Read address 10h - 1Fh or Write address 20h - 27h During access to address, OD-INT pin is always “H” state. HÆL LÆH (N-1)th PS Nth Measurement (N+1)th Measurement PS ST register and Measurement Data Register (N-1)th Nth [Event 1 occur] PS (N+1)th [Event 2 occur] Interrupt for Event 1 Interrupt for Event 2 Interrupt for Event 1 Interrupt for Event 2 INT pin OD-INT pin Addr. ST,Data(N) Data read Addr. ST Figure 10.9 Timing chart of interrupt function (Normal read sequence) (N-1)th PS Nth Measurement (N+1)th Measurement PS ST register and Measurement Data Register (N-1)th Nth [Event 1 occur] PS (N+1)th [Event 2 occur] Interrupt for Event 1 Interrupt for Event 2 Interrupt for Event 1 Interrupt for Event 2 INT pin OD-INT pin Data read Addr. ST,Data(N) Figure 10.10 Timing chart of interrupt function (When Nth data is read start immediately before (N+1)th measurement end) 017006194-E-00 2017/5 - 21 - [AK09970N] 10.7. Sensor Drive Select Users can choose “Low power” or “Low noise” drive by the SDR bit. “Low power” is used to save the current consumption and “Low noise” is used to reduce the noise of the AK09970N. When Low noise (SDR bit = “0”) is set, output magnetic data noise is more reduced than Low power (about 70% of Low power). When Low power (SDR bit = “1”) is set, average current consumption at 10 Hz repetition rate is saved from 12.0 μA to 3.2 μA (VDD=1.8V, Û&). Default SDR bit is Low noise enable (SDR bit = “0”). 10.8. Sensor Measurement Range and Sensitivity Select Users can choose “High sensitivity (Normal measurement range and high sensitivity)” or “Wide range (Wide measurement range and normal sensitivity)” setting. “High sensitivity” is used to measure with high magnetic sensitivity and “Wide range” is used to measure strong magnetic field (apply only to Z-axis). When High sensitivity (SMR bit = “0”) is set, magnetic sensor sensitivity is about three times higher than Wide range (3.1 μT/LSB Æ 1.1μT/LSB). When Wide range (SMR bit = “1”) is set, Z-axis measurement range is about three times wider than High sensitivity (Z-axis measurement range:s36.04 mT Æ s101.57 mT). Default SMR bit is High sensitivity enable (SMR bit = “0”). 017006194-E-00 2017/5 - 22 - [AK09970N] 11. Serial Interface AK09970N supports I2C bus interface and 4-wire SPI. A selection is made by CSB pin. When used as 3-wire SPI, set SI pin and SO pin wired-OR externally. CSB pin = “L”: 4-wire SPI CSB pin = “H”: I2C bus interface 11.1. 4-wire SPI The 4-wire SPI consists of four digital signal lines: SK, SI, SO, and CSB, and is provided in 16bit protocol. Data consists of Read/Write control bit (R/W), register address (7-bit) and control data (8-bit). To read out all axes measurement data (X, Y, Z), an option to read out more than one byte data using automatic increment command is available. (Sequential read operation) CSB pin is low active. Input data is taken in on the rising edge of SK pin, and output data is changed on the falling edge of SK pin. (SPI-mode3) Communication starts when CSB pin transits to “L” and stops when CSB pin transits to “H”. SK pin must be “H” during CSB pin is in transition. Also, it is prohibited to change SI pin during CSB pin is “H” and SK pin is “H”. 11.1.1. Writing Data Input 16 bits data on SI pin in synchronous with the 16-bit serial clock input on SK pin. Out of 16 bits input data, the first 8-bit specify the R/W control bit (R/W = “0” when writing) and register address (7-bit), and the latter 8-bit are control data (8-bit). When any of addresses listed on Table 12.2 is input, AK09970N recognizes that it is selected and takes in latter 8-bit as setting data. If the number of clock pulses is less than 16, no data is written. It is compliant with serial write operation for multiple addresses. AK09970N has one increment line; 20h to 27h. AK09970N increments as follows: 20h Æ 21h Æ 22h Æ 23h ... Æ 27h Æ 20h Æ 21h … . CSB 1㻌 2㻌 3㻌 4㻌 5㻌 6㻌 7㻌 8㻌 9㻌 A5㻌 A4㻌 A3㻌 A2㻌 A1㻌 A0㻌 D7㻌 10㻌 11㻌 12㻌 13㻌 14㻌 15㻌 16㻌 SK SI RW A6 D6㻌 D5㻌 D4㻌 D3㻌 D2㻌 D1㻌 D0㻌 (INPUT) SO Hi-Z (OUTPUT) Figure 11.1 4-wire SPI writing data Figure 11.2 4-wire SPI serial writing data 017006194-E-00 2017/5 - 23 - [AK09970N] 11.1.2. Reading Data Input the R/W control bit (R/W = “1”) and 7-bit register address on SI pin in synchronous with the first 8-bit of the 16 bits of a serial clock input on SK pin. Then AK09970N outputs the data held in the specified register with MSB first from SO pin. When clocks are input continuously after one byte of data is read, the address is incremented and data in the next address is output. Accordingly, after the falling edge of the 15th clock and CSB pin is “L”, the data in the next address is output on SO pin. When CSB pin is driven “L” to “H”, SO pin is placed in the high-impedance state. AK09970N has one increment line; 20h to 27h. AK09970N increments as follows: 20h Æ 21h Æ 22h Æ 23h ... Æ 27h Æ 20h Æ 21h … . CSB 1㻌 2㻌 3㻌 4㻌 5㻌 6㻌 7㻌 8㻌 A5㻌 A4㻌 A3㻌 A2㻌 A1㻌 A0㻌 9㻌 10㻌 11㻌 12㻌 13㻌 14㻌 15㻌 16㻌 SK SI RW A6 (INPUT) SO (OUTPUT) Hi-Z Hi-Z D7㻌 D6㻌 D5㻌 D4㻌 D3㻌 D2㻌 D1㻌 D0㻌 Figure 11.3 4-wire SPI reading data Figure 11.4 4-wire SPI serial reading data 11.2. I2C Bus Interface The I2C bus interface of AK09970N supports the Standard mode (100 kHz max.) and the Fast mode (400 kHz max.). 11.2.1. Data Transfer To access AK09970N on the bus, generate a start condition first. Next, transmit a one-byte slave address including a device address. At this time, AK09970N compares the slave address with its own address. If these addresses match, AK09970N generates an acknowledgement, and then executes READ or WRITE instruction. At the end of instruction execution, generate a stop condition. 11.2.1.1. Change of Data A change of data on the SDA line must be made during “Low” period of the clock on the SCL line. When the clock signal on the SCL line is “High”, the state of the SDA line must be stable. (Data on the SDA line can be changed only when the clock signal on the SCL line is “Low”.) During the SCL line is “High”, the state of data on the SDA line is changed only when a start condition or a stop condition is generated. 017006194-E-00 2017/5 - 24 - [AK09970N] SCL SDA DATA LINE STABLE : DATA VALID CHANGE OF DATA ALLOWED Figure 11.5 Data Change 11.2.1.2. Start/Stop Condition If the SDA line is driven to “Low” from “High” when the SCL line is “High”, a start condition is generated. Every instruction starts with a start condition. If the SDA line is driven to “High” from “Low” when the SCL line is “High”, a stop condition is generated. Every instruction stops with a stop condition. SCL SDA START CONDITION STOP CONDITION Figure 11.6 Start and stop condition 11.2.1.3. Acknowledge The IC that is transmitting data releases the SDA line (in the “High” state) after sending 1-byte data. The IC that receives the data drives the SDA line to “Low” on the next clock pulse. This operation is referred as an acknowledge. With this operation, whether data has been transferred successfully can be checked. AK09970N generates an acknowledge after receipt of the start condition and slave address. When a WRITE instruction is executed, AK09970N generates an acknowledge after every byte that is received. When a READ instruction is executed, AK09970N generates an acknowledge then transfers the data stored at the specified address. Next, AK09970N releases the SDA line then monitors the SDA line. If a master IC generates an acknowledge instead of a stop condition, AK09970N transmits the 8-bit data stored at the next address. If no acknowledge is generated, AK09970N stops data transmission. 017006194-E-00 2017/5 - 25 - [AK09970N] Clock pulse for acknowledge SCL FROM MASTER 1 8 9 DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER START CONDITION acknowledge Figure 11.7 Generation of acknowledge 11.2.1.4. Slave Address The slave address of AK09970N can be selected from the following list by setting CAD0/1 pin. When CAD pin is fixed to VSS, the corresponding slave address bit is “0“. When CAD pin is fixed to VDD, the corresponding slave address bit is “1”. Table 11.1 Slave address and CAD pin CAD Slave Address 0 0Ch 1 0Dh MSB 0 LSB 0 0 1 1 0 CAD R/W Figure 11.8 Slave address The first byte including a slave address is transmitted after a start condition, and an IC to be accessed is selected from the ICs on the bus according to the slave address. When a slave address is transferred, the IC whose device address matches the transferred slave address generates an acknowledge then executes an instruction. The 8th bit (least significant bit) of the first byte is a R/W bit. When the R/W bit is set to “1“, READ instruction is executed. When the R/W bit is set to “0“, WRITE instruction is executed. 11.2.2. WRITE Instruction When the R/W bit is set to “0”, AK09970N performs write operation. In write operation, AK09970N generates an acknowledge after receiving a start condition and the first byte (slave address) then receives the second byte. The second byte is used to specify the address of an internal control register and is based on the MSB-first configuration. MSB A7 LSB A6 A5 A4 A3 A2 A1 A0 Figure 11.9 Register address After receiving the second byte (register address), AK09970N generates an acknowledge then receives the third byte. 017006194-E-00 2017/5 - 26 - [AK09970N] The third and the following bytes represent control data. Control data consists of 8-bit and is based on the MSB-first configuration. AK09970N generates an acknowledge after every byte is received. Data transfer always stops with a stop condition generated by the master. MSB D7 LSB D6 D5 D4 D3 D2 D1 D0 Figure 11.10 Control data AK09970N can write multiple bytes of data at a time. After reception of the third byte (control data), AK09970N generates an acknowledge then receives the next data. If additional data is received instead of a stop condition after receiving one byte of data, the address counter inside the LSI chip is automatically incremented and the data is written at the next address. The address is incremented from 20h to 27h. When the address is between 20h and 27h, the address is incremented 20h Æ 21h Æ 22h Æ 23h ... Æ 27h, and the address goes back to 20h after 27h. Actual data is written only to Read/Write registers (Table 12.2) S T A R T SDA S S T O P R/W="0" Slave Address Register Address(n) A C K Data(n+1) Data(n) A C K Data(n+x) A C K A C K A C K P A C K Figure 11.11 WRITE Instruction 11.2.3. READ Instruction When the R/W bit is set to “1”, AK09970N performs read operation. If a master IC generates an acknowledge instead of a stop condition after AK09970N transfers the data at a specified address, the data at the next address can be read. Address can be 20h to 27h. When the address is between 20h and 27h, the address is incremented 20h Æ 21h Æ 22h Æ 23h ... Æ 27h, and the address goes back to 20h after 27h. AK09970N supports one byte read and multiple byte read. 11.2.3.1. Current Address Read AK09970N has an address counter inside the LSI chip. In current address read operation, the data at an address specified by this counter is read. The internal address counter holds the next address of the most recently accessed address. For example, if the address most recently accessed (for READ instruction) is address “n”, and a current address read operation is attempted, the data at address “n+1” is read. In current address read operation, AK09970N generates an acknowledge after receiving a slave address for the READ instruction (R/W bit = “1”). Next, AK09970N transfers the data specified by the internal address counter starting with the next clock pulse, then increments the internal counter by one. If the master IC generates a stop condition instead of an acknowledge after AK09970N transmits one byte of data, the read operation stops. S T A R T SDA S S T O P R/W="1" Slave Address Data(n) A C K Data(n+1) A C K A C K Data(n+x) Data(n+2) A C K P A C K Figure 11.12 Current address read 017006194-E-00 2017/5 - 27 - [AK09970N] 11.2.3.2. Random Address Read By random address read operation, data at an arbitrary address can be read. The random address read operation requires to execute WRITE instruction as dummy before a slave address for the READ instruction (R/W bit = “1”) is transmitted. In random read operation, a start condition is first generated then a slave address for the WRITE instruction (R/W bit = “0”) and a read address are transmitted sequentially. After AK09970N generates an acknowledge in response to this address transmission, a start condition and a slave address for the READ instruction (R/W bit = “1”) are generated again. AK09970N generates an acknowledge in response to this slave address transmission. Next, AK09970N transfers the data at the specified address then increments the internal address counter by one. If the master IC generates a stop condition instead of an acknowledge after data is transferred, the read operation stops. S T A R T SDA S S T A R T R/W="0" Slave Address Register Address(n) A C K S A C K S T O P R/W="1" Slave Address Data(n+1) Data(n) A C K A C K Data(n+x) A C K P A C K Figure 11.13 Random address read 017006194-E-00 2017/5 - 28 - [AK09970N] 12. Registers 12.1. Description of Registers AK09970N has registers of 29 addresses as indicated in Table 12.1. Every address consists of 1-byte to 8-byte data. Data is transferred to or received from the external CPU via the serial interface described previously. Table 12.1 Register Table Description Byte width Remarks 00H Company ID, Device ID 4 Device Information 10H Status 2 ST data Address READ/ WRITE 11H 4 ST + X-axis data 12H 4 ST + Y-axis data 6 ST + X and Y-axis data Status and Measurement Magnetic Data 13H 14H 15H 16H 17H READ 4 ST + Z-axis data 6 ST + X and Z-axis data 6 ST + Y and Z-axis data 8 ST + X,Y and Z-axis data 18H 2 ST data 19H 3 ST + X-axis data 1AH Status and Measurement Magnetic Data (upper 8 bits of measurement data register) 1BH 1CH 1DH 3 ST + Y-axis data 4 ST + X and Y-axis data 3 ST + Z-axis data 4 ST + X and Z-axis data 1EH 4 ST + Y and Z-axis data 1FH 20H Control 1 5 2 ST + X,Y and Z-axis data Interrupt function settings 21H Control 2 1 Operation Mode, Sensor Drive, Measurement Range and Sensitivity 4 4 X-axis threshold 1 settings X-axis threshold 2 settings 4 Y-axis threshold 1 settings 4 Y-axis threshold 2 settings 4 Z-axis threshold 1 settings 4 Z-axis threshold 2 settings Soft reset 22H 23H 24H 25H 26H READ/ WRITE Control 3 (Switch threshold value) 27H 30H Reset 1 31H I2C disable 1 40H 41H Test 2 DO NOT ACCESS 1 DO NTO ACCESS Addresses 20h to 27h are compliant with automatic increment function of serial interface respectively. When the address is in 20h to 27h, the address is incremented 20h Æ 21h Æ 22h Æ 23h ... Æ 27h, and the address goes back to 20h after 27h. 017006194-E-00 2017/5 - 29 - [AK09970N] 12.2. Register Map Addr. Byte0 Byte1 00H 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH WIA[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] ST[15:8] WIA[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] ST[7:0] Table 12.2 Register Map Byte2 Byte3 Byte4 Read only register RSV[15:8] HX[15:8] HY[15:8] HY[15:8] HZ[15:8] HZ[15:8] HZ[15:8] HZ[15:8] HX[15:8] HY[15:8] HY[15:8] HZ[15:8] HZ[15:8] HZ[15:8] HZ[15:8] RSV[7:0] HX[7:0] HY[7:0] HY[7:0] HZ[7:0] HZ[7:0] HZ[7:0] HZ[7:0] HX[15:8] HX[15:8] HY[15:8] HY[15:8] HX[15:8] HX[15:8] HY[15:8] HY[15:8] HX[15:8] Byte5 Byte6 Byte7 HX[7:0] HX[7:0] HY[7:0] HY[7:0] - HX[15:8] - HX[7:0] -- Read/Write register 20H 21H 22H 23H 24H 25H 26H CNTL1[15:8] CNTL1[7:8] CNTL2[7:0] BOP1X[15:8] BOP1X[7:0] BRP1X[15:8] BRP1X[7:0] - - - - BOP2X[15:8] BOP2X[7:0] BRP2X[15:8] BRP2X[7:0] - - - - BOP1Y[15:8] BOP1Y[7:0] BRP1Y[15:8] BRP1Y[7:0] - - - - BOP2Y[15:8] BOP2Y[7:0] BRP2Y[15:8] BRP2Y[7:0] - - - - BOP1Z[15:8] BOP1Z[7:0] BRP1Z[15:8] BRP1Z[7:0] - - - - 27H BOP2Z[15:8] BOP2Z[7:0] BRP2Z[15:8] BRP2Z[7:0] - - - - 30H 31H 40H 41H SRST[7:0] - - - - - - I2CDIS[7:0] - - - - - - - - - - - - - - - - - - - - - - - 017006194-E-00 2017/5 - 30 - [AK09970N] Table 12.3 Further details about Register Map (D[7:0]) Register name WIA[7:0] RSV[7:0] ST[7:0] HX[7:0] HY[7:0] HZ[7:0] CNTL1[7:0] CNTL2[7:0] BOP1X[7:0] BRP1X[7:0] BOP2X[7:0] BRP2X[7:0] BOP1Y[7:0] BRP1Y[7:0] BOP2Y[7:0] BRP2Y[7:0] BOP1Z[7:0] BRP1Z[7:0] BOP2Z[7:0] BRP2Z[7:0] SRST[7:0] I2CDIS[7:0] TEST1[7:0] TEST2[7:0] 7 1 RSV7 ERRXY HX7 HY7 HZ7 ERRXYEN 0 BOP1X7 BRP1X7 BOP2X7 BRP2X7 BOP1Y7 BRP1Y7 BOP2Y7 BRP2Y7 BOP1Z7 BRP1Z7 BOP2Z7 BRP2Z7 0 I2CDIS7 - 6 1 RSV6 SWZ2 HX6 HY6 HZ6 SWZ2EN 0 BOP1X6 BRP1X6 BOP2X6 BRP2X6 BOP1Y6 BRP1Y6 BOP2Y6 BRP2Y6 BOP1Z6 BRP1Z6 BOP2Z6 BRP2Z6 0 I2CDIS6 - 5 0 RSV5 SWZ1 HX5 HY5 HZ5 SWZ1EN SMR BOP1X5 BRP1X5 BOP2X5 BRP2X5 BOP1Y5 BRP1Y5 BOP2Y5 BRP2Y5 BOP1Z5 BRP1Z5 BOP2Z5 BRP2Z5 0 I2CDIS5 - Bit number (D[7:0]) 4 3 0 0 RSV4 RSV3 SWY2 SWY1 HX4 HX3 HY4 HY3 HZ4 HZ3 SWY2EN SWY1EN SDR MODE3 BOP1X4 BOP1X3 BRP1X4 BRP1X3 BOP2X4 BOP2X3 BRP2X4 BRP2X3 BOP1Y4 BOP1Y3 BRP1Y4 BRP1Y3 BOP2Y4 BOP2Y3 BRP2Y4 BRP2Y3 BOP1Z4 BOP1Z3 BRP1Z4 BRP1Z3 BOP2Z4 BOP2Z3 BRP2Z4 BRP2Z3 0 0 I2CDIS4 I2CDIS3 - 2 0 RSV2 SWX2 HX2 HY2 HZ2 SWX2EN MODE2 BOP1X2 BRP1X2 BOP2X2 BRP2X2 BOP1Y2 BRP1Y2 BOP2Y2 BRP2Y2 BOP1Z2 BRP1Z2 BOP2Z2 BRP2Z2 0 I2CDIS2 - 1 0 RSV1 SWX1 HX1 HY1 HZ1 SWX1EN MODE1 BOP1X1 BRP1X1 BOP2X1 BRP2X1 BOP1Y1 BRP1Y1 BOP2Y1 BRP2Y1 BOP1Z1 BRP1Z1 BOP2Z1 BRP2Z1 0 I2CDIS1 - 0 0 RSV0 DRDY HX0 HY0 HZ0 DRDYEN MODE0 BOP1X0 BRP1X0 BOP2X0 BRP2X0 BOP1Y0 BRP1Y0 BOP2Y0 BRP2Y0 BOP1Z0 BRP1Z0 BOP2Z0 BRP2Z0 SRST I2CDIS0 - 9 0 RSV9 DOR HX9 HY9 HZ9 INTEN BOP1X9 BRP1X9 BOP2X9 BRP2X9 BOP1Y9 BRP1Y9 BOP2Y9 BRP2Y9 BOP1Z9 BRP1Z9 BOP2Z9 BRP2Z9 I2CDIS9 - 8 0 RSV8 ERRADC HX8 HY8 HZ8 ERRADCEN BOP1X8 BRP1X8 BOP2X8 BRP2X8 BOP1Y8 BRP1Y8 BOP2Y8 BRP2Y8 BOP1Z8 BRP1Z8 BOP2Z8 BRP2Z8 I2CDIS8 - Table 12.4 Further details about Register Map (D[15:8]) Register name WIA[15:8] RSV[15:8] ST[15:8] HX[15:8] HY[15:8] HZ[15:8] CNTL1[15:8] CNTL2[15:8] BOP1X[15:8] BRP1X[15:8] BOP2X[15:8] BRP2X[15:8] BOP1Y[15:8] BRP1Y[15:8] BOP2Y[15:8] BRP2Y[15:8] BOP1Z[15:8] BRP1Z[15:8] BOP2Z[15:8] BRP2Z[15:8] SRST[15:8] I2CDIS[15:8] TEST1[15:8] TEST2[15:8] 15 0 RSV15 1 HX15 HY15 HZ15 0 BOP1X15 BRP1X15 BOP2X15 BRP2X15 BOP1Y15 BRP1Y15 BOP2Y15 BRP2Y15 BOP1Z15 BRP1Z15 BOP2Z15 BRP2Z15 I2CDIS15 - 14 1 RSV14 1 HX14 HY14 HZ14 0 BOP1X14 BRP1X14 BOP2X14 BRP2X14 BOP1Y14 BRP1Y14 BOP2Y14 BRP2Y14 BOP1Z14 BRP1Z14 BOP2Z14 BRP2Z14 I2CDIS14 - 13 0 RSV13 1 HX13 HY13 HZ13 0 BOP1X13 BRP1X13 BOP2X13 BRP2X13 BOP1Y13 BRP1Y13 BOP2Y13 BRP2Y13 BOP1Z13 BRP1Z13 BOP2Z13 BRP2Z13 I2CDIS13 - Bit number (D[15:8]) 12 11 0 1 RSV12 RSV11 1 1 HX12 HX11 HY12 HY11 HZ12 HZ11 0 0 BOP1X12 BOP1X11 BRP1X12 BRP1X11 BOP2X12 BOP2X11 BRP2X12 BRP2X11 BOP1Y12 BOP1Y11 BRP1Y12 BRP1Y11 BOP2Y12 BOP2Y11 BRP2Y12 BRP2Y11 BOP1Z12 BOP1Z11 BRP1Z12 BRP1Z11 BOP2Z12 BOP2Z11 BRP2Z12 BRP2Z11 I2CDIS12 I2CDIS11 - 10 0 RSV10 1 HX10 HY10 HZ10 ODINTEN BOP1X10 BRP1X10 BOP2X10 BRP2X10 BOP1Y10 BRP1Y10 BOP2Y10 BRP2Y10 BOP1Z10 BRP1Z10 BOP2Z10 BRP2Z10 I2CDIS10 - When RSTN pin is applied VDD, all registers of AK09970N are initialized. TEST1 and TEST2 is test register for shipment test. Do not access this register. 017006194-E-00 2017/5 - 31 - [AK09970N] 12.3. Detailed Description of Registers 12.3.1. WIA[15:0]: Company ID and Device ID Addr. 00h Addr. 00h Register name WIA[7:0] Register name WIA[15:8] D7 D6 1 1 D15 D14 0 D5 D4 Read-only register 0 0 D13 D12 Read-only register 1 0 0 D3 D2 D1 D0 0 0 0 0 D11 D10 D9 D8 1 0 0 0 WIA[7:0] bits: Device ID of AKM. It is described in one byte and fixed value. C0h: fixed WIA[15:8] bits: Company ID of AK09970N. It is described in one byte and fixed value. 48h: fixed 12.3.2. RSV[15:0]: Reserved Register Addr. 00h Addr. 00h Register name RSV[7:0] Register name RSV[15:8] D7 RSV7 D15 RSV15 D6 D5 D4 Read-only register RSV6 RSV5 RSV4 D14 D13 D12 Read-only register RSV14 RSV13 RSV12 D3 D2 D1 D0 RSV3 RSV2 RSV1 RSV0 D11 D10 D9 D8 RSV11 RSV10 RSV9 RSV8 D3 D2 D1 D0 SWY1 0 SWX2 0 SWX1 0 DRDY 0 D11 D10 D9 D8 1 1 1 1 DOR 0 ERRADC RSV[7:0] bits/ RSV[15:8] bits: Reserved register for AKM. 12.3.3. ST[15:0]: Status Addr. 10h-1fh Addr. 10h-1fh Register name ST[7:0] Reset Register name ST[15:8] Reset D7 ERRXY 0 D15 1 1 D6 D5 D4 Read-only register SWZ2 SWZ1 SWY2 0 0 0 D14 D13 D12 Read-only register 1 1 1 1 1 1 0 DRDY bit: Data Ready “0”: Normal “1”: Data is ready DRDY bit turns to “1” when data is ready in Single measurement mode and Continuous measurement mode 1, 2, 3, 4, 5, 6, and 7. It returns to “0” when any one of measurement data register (HX,HY or/and HZ register) is read all the way through or access to Setting Registers (address 20h to 27h). DOR bit: Data Overrun “0”: Normal “1”: Data overrun 017006194-E-00 2017/5 - 32 - [AK09970N] DOR bit turns to “1” when data has been skipped in Continuous measurement mode 1, 2, 3, 4, 5, 6 or 7. DOR bit turns to “0” at the after the next measurement ended. SWX1 bit, SWY1 bit, SWZ1 bit: Measurement data of X, Y and Z-axis exceed switch threshold 1 “0”: Measurement data of X, Y and Z-axis exceed returning threshold 1 “1”: Measurement data of X, Y and Z-axis exceed operating threshold 1 SWX2 bit, SWY2 bit, SWZ2 bit: Measurement data of X, Y and Z-axis exceed switch threshold 2 “0”: Measurement data of X, Y and Z-axis exceed returning threshold 2 “1”: Measurement data of X, Y and Z-axis exceed operating threshold 2 Refer to 10.4 for detailed information. ERRXY bit: Magnetic sensor overflow “0”: Normal “1”: Magnetic sensor overflow occurred (X and/or Y-axis) Refer to 10.5.1 for detailed information. ERRADC bit: ADC overflow “0”: Normal “1”: ADC overflow occurred and measurement data is not correct Refer to 10.5.2 for detailed information. 12.3.4. HX[15:0]/HY[15:0]/HZ[15:0]: Measurement Data Addr. 10h | 1fh Addr. 10h | 1fh Register name HX[7:0] HY[7:0] HZ[7:0] Reset Register name HX[15:8] HY[15:8] HZ[15:8] Reset D7 D6 HX7 HY7 HZ7 0 HX6 HY6 HZ6 0 D15 D14 HX15 HY15 HZ15 0 D5 D4 Read-only register HX5 HX4 HY5 HY4 HZ5 HZ4 0 0 D13 D12 Read-only register HX14 HX13 HX12 HY14 HY13 HY12 HZ14 HZ13 HZ12 0 0 0 D3 D2 D1 D0 HX3 HY3 HZ3 0 HX2 HY2 HZ2 0 HX1 HY1 HZ1 0 HX0 HY0 HZ0 0 D11 D10 D9 D8 HX11 HY11 HZ11 0 HX10 HY10 HZ10 0 HX9 HY9 HZ9 0 HX8 HY8 HZ8 0 Measurement data of magnetic sensor X-axis/Y-axis/Z-axis HX[7:0] bits: X-axis measurement data lower 8-bit HX[15:8] bits: X-axis measurement data higher 8-bit HY[7:0] bits: Y-axis measurement data lower 8-bit HY[15:8] bits: Y-axis measurement data higher 8-bit HZ[7:0] bits: Z-axis measurement data lower 8-bit HZ[15:8] bits: Z-axis measurement data higher 8-bit Measurement data is stored in two’s complement. Measurement range of each axis is -32768 to 32767 in 16-bit output (High sensitivity setting). Measurement range of X and Y-axis are -11264 to 11264 in 16-bit output, Z-axis is -32768 to 32767 in 16-bit output (Wide range setting). 017006194-E-00 2017/5 - 33 - [AK09970N] Table 12.5 Measurement magnetic data format (High sensitivity setting) Measurement data (each axis) [15:0] bits Magnetic flux ERRXY bit density [mT] Two’s complement Hex Decimal 0111 1111 1111 1111 7FFF 32767 >36.0437 1 0111 1111 1111 1111 7FFF 32767 36.0437 0 | | | | | 0000 0000 0000 0001 0001 1 0.0011 0 0000 0000 0000 0000 0000 0 0 0 1111 1111 1111 1111 FFFF -1 -0.0011 0 | | | | | 1000 0000 0000 0000 8000 -32768 -36.0448 0 1000 0000 0000 0000 8000 -32768 34.9184 1 0010 1100 0000 0000 2C00 11264 34.9184 0 | | | | | 0000 0000 0000 0001 0001 1 0.0031 0 0000 0000 0000 0000 0000 0 0 0 1111 1111 1111 1111 FFFF -1 -0.0031 0 | | | | | 1101 0100 0000 0000 D400 -11264 -34.9184 0 1101 0100 0000 0000 D400 -11264 101.5777 0111 1111 1111 1110 7FFE 32766 101.5746 | | | | 0000 0000 0000 0001 0001 1 0.0031 0000 0000 0000 0000 0000 0 0 1111 1111 1111 1111 FFFF -1 -0.0031 | | | | 1000 0000 0000 0001 8001 -32767 -101.5777 1000 0000 0000 0000 8000 -32768
AK09970N 价格&库存

很抱歉,暂时无法提供与“AK09970N”相匹配的价格&库存,您可以联系我们找货

免费人工找货