0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AK4136VQ

AK4136VQ

  • 厂商:

    AKM(旭化成)

  • 封装:

    LQFP48

  • 描述:

    PREMIUMSRC2CH384KHZ

  • 数据手册
  • 价格&库存
AK4136VQ 数据手册
[AK4136] AK4136 32bit 384kHz SRC 1. General Description The AK4136 is a 2ch digital sample rate converter (SRC). The input sample rate ranges from 8kHz to 384kHz. The output sample rate is from 8kHz to 384kHz. The AK4136 has an internal Oscillator. Therefore it does not need any external master clocks and simplifies system configuration. The AK4136 is suitable for a high-resolution audio application interfacing to different sample rates such as Network Audios, USB DACs and Car Audios. Application: AV Receivers, CD/SACD Players, Network Audios, USB DACs, USB Headphones, Sound Plate/Bars, Car Audios, Automotive External Amplifiers, Measuring Instruments, Control Systems, Public Audios (PA), IC-Recorders, Bluetooth Headphones, HD Audio/Voice Conference Systems 2. Features  2 channels input/output  Asynchronous Sample Rate Converter  PCM Input Sample Rate Range (FSI): 8kHz ~ 384kHz Output Sample Rate Range (FSO): 8kHz ~ 384kHz  Input to Output Sample Rate Ratio: FSO/FSI = 1/6 ~ 12  THD+N: Up to -140dB  Dynamic Range: 176dB (A-weighted)  I/F format: MSB justified, LSB justified, I2S compatible and TDM  Oscillator for Internal Operation Clock  Clock for Master mode: 128/192/256/384/512/768fso  On-chip X’tal oscillator  Digital De-emphasis Filter (32kHz, 44.1kHz, 48kHz) (Serial Mode Only)  Soft Mute Function  SRC Bypass mode (Master/Slave, PCM)  uP Interface:I2C bus/SPI 4-wire  Power Supply DVDD: 3.0~3.6V (internal LDO enabled) DVDD: 1.7~1.9V (internal LDO disabled)  Ta: -40 ~ +105°C  Package: 48-pin LQFP (0.5mm pitch) 016000098-E-00 -1- 2016/01 [AK4136] 3. Table of Contents 1. 2. 3. 4. 5. General Description ............................................................................................................................ 1 Features .............................................................................................................................................. 1 Table of Contents ................................................................................................................................ 2 Block Diagram ..................................................................................................................................... 5 Pin Configurations and Functions ....................................................................................................... 6 ■ Pin Configurations ............................................................................................................................. 6 ■ Pin Functions..................................................................................................................................... 7 6. Absolute Maximum Ratings .............................................................................................................. 10 7. Recommended Operation Conditions............................................................................................... 10 8. SRC Characteristics ...........................................................................................................................11 ■ PCMIN → PCMOUT .......................................................................................................................11 9. Power Consumptions ........................................................................................................................ 12 ■ Internal LDO Mode .......................................................................................................................... 12 ■ DV18 External Supply Mode ........................................................................................................... 12 10. Filter Characteristics ...................................................................................................................... 13 ■ Sharp Roll-Off Filter Characteristics ............................................................................................... 13 ■ Slow Roll-Off Filter Characteristics ................................................................................................. 14 ■ Short Delay Sharp Roll-Off Filter Characteristics ........................................................................... 15 ■ Short Delay Slow Roll-Off Filter Characteristics ............................................................................. 16 11. Input and Output Examples ........................................................................................................... 16 12. DC Characteristics......................................................................................................................... 17 13. Switching Characteristics .............................................................................................................. 17 ■ Timing Diagrams ............................................................................................................................. 23 14. Functional Descriptions ................................................................................................................. 30 ■ Power-up Sequence ........................................................................................................................ 30 ■ SRC Bypass Mode .......................................................................................................................... 31 ■ System Clock and Audio Interface Format for Input PORT ............................................................ 33 ■ System Clock for Output PORT ...................................................................................................... 37 ■ Audio Interface Format for Output PORT ....................................................................................... 39 ■ Cascade Connection in TDM Mode ................................................................................................ 44 ■ Soft Mute Function .......................................................................................................................... 45 ■ Dither Circuit.................................................................................................................................... 46 ■ Digital Filter...................................................................................................................................... 47 ■ De-emphasis Filter .......................................................................................................................... 47 ■ Regulator ......................................................................................................................................... 47 ■ System Reset .................................................................................................................................. 48 ■ Internal Reset Function for Clock Change ...................................................................................... 49 ■ When the Frequency of ILRCK at Input Port Is Changed Without A Reset by The PDN Pin or RSTN Bit ............................................................................................................................................... 51 ■ When the Frequency of OLRCK at Output Port Is Changed Without A Reset by The PDN Pin or RSTN Bit ............................................................................................................................................... 51 ■ Pop Noise Reduction in Sampling Rate Conversion ...................................................................... 51 ■ Internal Status Pin ........................................................................................................................... 52 ■ Serial Control Interface ................................................................................................................... 53 ■ Register Map ................................................................................................................................... 57 ■ Register Definitions ......................................................................................................................... 58 15. Jitter Tolerance .............................................................................................................................. 61 16. Recommended External Circuit .................................................................................................... 62 17. Package ......................................................................................................................................... 64 ■ Outline Dimensions ......................................................................................................................... 64 ■ Material & Lead Finish .................................................................................................................... 64 016000098-E-00 -2- 2016/01 [AK4136] ■ Marking ............................................................................................................................................ 65 18. Ordering Guide .............................................................................................................................. 65 19. Revision History............................................................................................................................. 66 IMPORTANT NOTICE .............................................................................................................................. 67 016000098-E-00 -3- 2016/01 [AK4136] AK4137 bit DR(A-Weighted) THD+N fsi fso Ratio I/O Output Clock (Master Mode Operation) SRC Conversion SRC Bypass Function Soft Mute DITHER De-emphasis Internal Regulator External 1.8V Input Crystal Oscillator Pop Noise reduction on Rate Switching Micro Controller I/F 016000098-E-00 AK4136 32 186 150 8 ~ 768kHz 8 ~ 768kHz 1/6 ~ 24 ← 176 140 8 ~ 384kHz 8 ~ 384kHz 1/6 ~ 12 64/128/256/384/512/768fso 128/256/384/512/768fso PCM → PCM, DSD → DSD DSD → PCM, PCM → DSD DoP → DSD, DoP → PCM Available (Master, Slave) Available Semi-Auto Mode Mute Time Setting Adjustment PCM → PCM conversion only Available Available 3V→1.8V Available Available ← Available Semi-Auto Mode and Mute Time Adjustment are only available by register settings. Available (only by register settings) Available (only by register settings) ← ← ← Available ← I2C, 4-wire ← -4- 2016/01 [AK4136] SDTI ILRCK IBICK TDM ODIF1 ODIF0 OBIT1 OBIT0 SRCEN 4. Block Diagram BYPASS PCM Input Serial Audio I/F PCM FIR DEM PCM Output Serial Audio I/F SRC COMB SMUTE SRC Dither Internal OSC PDN OBICK DVSS DVDD CM2 CM1 Clock Div. CM0 XTO X’tal OSC XTI/OMCLK/TDMI CDTO SDA/CDTI/SLOW CSN/SMUTE SCL/CCLK/SD CAD0/IDIF0 CAD1/IDIF1 IDIF2 DV18 Internal Regulator UP/IF VSEL I2C OLRCK TEST1 TEST0 REF PSN SDTO Figure 1. Block Diagram 016000098-E-00 -5- 2016/01 [AK4136] 5. Pin Configurations and Functions DVDD DVDD DVSS XTI/OMCLK/TDMI CLKMODE XTO TDM OLRCK OBICK SDTO NC NC 36 35 34 33 32 31 30 29 28 27 26 25 ■ Pin Configurations OBIT0 37 24 NC OBIT1 38 23 NC CM0 39 22 NC CM1 40 21 ODIF0 CM2 41 20 ODIF1 NC 42 19 CSN/SMUTE VSEL 43 18 SCL/CCLK DV18 44 17 DVSS 45 16 SDA/CDTI/SL /SD CDTO OW SLOW DVDD 46 15 PSN NC 47 14 PDN NC 48 13 I2C AK4136 11 12 TEST1 9 IDIF2 TEST0 8 CAD1/IDIF1 F0 10 7 CAD0/IDI SRCEN 6 4 ILRCK SDTI 3 NC 5 2 NC IBICK 1 NC Top View Figure 2. Pin Layout 016000098-E-00 -6- 2016/01 [AK4136] ■ Pin Functions No. Pin Name I/O 9 NC NC NC ILRCK IBICK SDTI CAD0 IDIF0 CAD1 IDIF1 IDIF2 I I I I I I I I 10 SRCEN O 11 12 TEST0 TEST1 I I 13 I2C I 14 PDN I 15 PSN I 16 CDTO SDA CDTI SLOW SCL CCLK SD CSN O I/O I I I I I I SMUTE I ODIF1 ODIF0 NC NC I I - 1 2 3 4 5 6 7 8 17 18 19 Function This pin must be connected to DVSS. This pin must be connected to DVSS. This pin must be connected to DVSS. L/R Clock Pin in PCM Mode Audio Serial Data Clock Pin in PCM Mode Audio Serial Data Input Pin in PCM Mode Chip Address 0 Pin in Serial Control Mode Digital Input Format 0 Pin in Parallel Control Mode Chip Address 1 Pin in Serial Control Mode Digital Input Format 1 Pin in Parallel Control Mode Digital Input Format 2 Pin in Parallel Control Mode Unlock Status Pin When the PDN pin= “L”, this pin outputs “H”. Test pin 0. Must be connected to DVSS in normal use. Test pin 1. Must be connected to DVSS in normal use. Select serial mode “L”: 4-wire serial Mode ,“H”: I2C Mode Power-Down Mode Pin “H”: Power up, “L”: Power down reset and initializes the control register. The AK4136 should be reset once by bringing PDN pin = “L” upon power-up. Parallel/Serial Mode Select “L”: Serial Mode , “H”: Parallel Mode I2C= “L”: Control Data Output Pin in Serial Control Mode I2C= “H”: Control Data In/Out Pin in Serial Control Mode I2C= “L”: Control Data Input Pin in Serial Control Mode Digital Filter Select Pin in Parallel Control Mode I2C= “H”: Control Data Clock Input Pin in Serial Control Mode I2C= “L”: Control Data Clock Pin in Serial Control Mode Digital Filter Select Pin in Parallel Control Mode Chip Select Pin in Serial Control Mode, I2C= “L” Soft Mute Pin in Parallel Control Mode When this pin is changed to “H”, soft mute cycle is initiated. When returning “L”, the output mute releases. Audio Interface Format #1 Pin for Output PORT Audio Interface Format #0 Pin for Output PORT This pin must be connected to DVSS. This pin must be connected to DVSS. NC This pin must be connected to DVSS. NC This pin must be connected to DVSS. NC This pin must be connected to DVSS. Note 1. All input pins must not be allowed to float. DVDD must be connected to the same power supply. Note 2. PSN, CM2-0, OBIT1-0, TDM, ODIF1-0, IDIF2-0 and CAD1-0 pins must be changed when the PDN pin = “L”. 20 21 22 23 24 25 26 016000098-E-00 -7- 2016/01 [AK4136] No. Pin Name I/O Function Audio Serial Data Output Pin for Output PORT When the PDN pin = “L”, the SDTO pin outputs “L”. Audio Serial Data Clock Pin for Output PORT 28 OBICK I/O When the PDN pin = “L” in master mode, the OBICK pin outputs “L”. Output Channel Clock Pin for Output PORT 29 OLRCK I/O When the PDN pin = “L” in master mode, the OLRCK pin outputs “L”. TDM Format Select Pin 30 TDM I “L”(connected to DVSS): Stereo Mode “H”(connected to DVDD): TDM mode for Output X’tal Output Pin 31 XTO When the PDN pin = “L” or CM2-0 pins = “HHL” or “HHH”, XTO outputs O “L”. Master Clock Select Pin 32 CLKMODE I “L”(connected to DVSS): X'tal Mode “H”(connected to DVDD): External Master Clock or TDM pin = “H” XTI I X’tal Input Pin 33 OMCLK I External Master Clock Input TDMI I TDMI Daisy-Chain Input Pin 34 DVSS Digital Ground Pin 35 DVDD Digital Power Supply Pin, 3.0  3.6V or 1.7  1.9V 36 DVDD Digital Power Supply Pin, 3.0  3.6V or 1.7  1.9V 37 OBIT0 I Bit Length Select #0 Pin for Output Data 38 OBIT1 I Bit Length Select #1 Pin for Output Data 39 CM0 I Clock Select or Mode Select #0 Pin for Output PORT 40 CM1 I Clock Select or Mode Select #1 Pin for Output PORT 41 CM2 I Clock Select or Mode Select #2 Pin for Output PORT 42 NC This pin must be connected to DVSS. Digital Power select 43 VSEL I “L”: DV18 is Output pin, “H”: DV18 is Power Supply Pin Digital Power Pin, Typ 1.8V VSEL= “L”, Output When the PDN pin= “L”, the DV18 pin outputs “L”. Current must not be taken from this pin. A 10μF (±30%; including the temperature 44 DV18 I/O characteristics) capacitor should be connected between this pin and DVSS. When this capacitor is polarized, the positive polarity pin should be connected to the DV18 pin. VSEL= “H”, Input 45 DVSS Digital Ground Pin 46 DVDD Digital Power Supply Pin, 3.0  3.6V or 1.7  1.9V 47 NC This pin must be connected to DVSS. 48 NC This pin must be connected to DVSS. Note 1. All input pins must not be allowed to float. DVDD must be connected to the same power supply. Note 2. PSN, CM2-0, OBIT1-0, TDM, ODIF1-0, IDIF2-0 and CAD1-0 pins must be changed when the PDN pin = “L”. 27 SDTO 016000098-E-00 O -8- 2016/01 [AK4136] *Unused Input/Output Pins Classification Digital Pin Name CSN/SMUTE XTI/OMCLK/TDMI SRCEN, XTO, CDTO Setting Connect to DVSS Connect to DVSS (Slave Mode) Open * The status of OLRCK and OBICK pins, when the PDN pin = “L”, are shown below. (“L” output in Master mode) Setting Pins CM2 CM1 L L L L L H L H H L H L H H H H CM0 L H L H L H L H OLRCK, OBICK “L” Output Input “L” Output * The output pin status when the PDN pin = “L” is shown below. Output Pin SDTO SRCEN XTO CDTO 016000098-E-00 Status “L” Output “H” Output “L” Output Hi-z -9- 2016/01 [AK4136] 6. Absolute Maximum Ratings (DVSS=0V; Note 3) Parameter Power Supplies Digital (Internal Digital) (Note 4) Input Current, Any Pin Except Supplies Digital Input Voltage (Note 5) Symbol DVDD DV18 IIN Min. -0.3 -0.3 - VDIN -0.3 Max. 4.3 2.5 10 (DVDD+0.3) or 4.3 105 150 Unit V V mA V Ambient Temperature (Power applied) (Note 6) Ta -40 C Storage Temperature Tstg -65 C Note 3. All voltages are with respect to ground. Note 4. DVSS must be connected to the same ground. Note 5. ILRCK,IBICK, SDTI, IDIF0/CAD0, IDIF1/CAD1, IDIF2, PDN, PSN, I2C, SLOW/CDTI/SDA, SD/CCLK/SCL, SMUTE/CSN, OBIT1-0, ODIF1-0,CM2-0, VSEL, TEST1-0 pin Note 6. In the case that the PCB wiring density is more than 100% WARING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 7. Recommended Operation Conditions (DVSS=0V; Note 3; VSEL= “L”) Parameter Symbol Min. Typ. Power Supplies Digital DVDD 3.0 3.3 Max. 3.6 Unit V (DVSS=0V; Note 3; VSEL= “H”) Parameter Power Supplies: Digital (Note 7) Digital Symbol DVDD DV18 DVDD- DV18 Difference Note 3. All voltages are with respect to ground. Note 7. DVDD and DV18 should be connected externally. Min. 1.7 1.7 Typ. 1.8 1.8 Max. 1.9 1.9 Unit V V - 0 - V The PDN pin must be “L” when power up the AK4136. Set the PDN pin to “H” after all power supplies are ON. Writing by a microcontroller should be executed with a 5ms interval after the PDN pin = “H”. 016000098-E-00 - 10 - 2016/01 [AK4136] 8. SRC Characteristics ■ PCMIN → PCMOUT (Ta=-40 +105C; DVDD=3.03.6V or DVDD=DV18=1.7V1.9V; DVSS=0V; Signal Frequency = 1kHz; data = 32bit; measurement bandwidth = 20HzFSO/2; unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Resolution 32 Bits Input Sample Rate FSI 8 384 kHz Output Sample Rate FSO 8 384 kHz THD+N (Input = 1kHz, 0dBFS) FSO/FSI = 48kHz/48kHz -140 dB FSO/FSI = 48kHz/44.1kHz -133 dB FSO/FSI = 48kHz/192kHz -143 dB FSO/FSI = 192kHz/48kHz -134 dB Worst Case (FSO/FSI=32kHz/176.4kHz) -100 dB Dynamic Range (Input = 1kHz, -60dBFS) FSO/FSI = 48kHz/44.1kHz 170 dB FSO/FSI = 48kHz/192kHz 174 dB FSO/FSI = 192kHz/48kHz 170 dB FSO/FSI = 32kHz/176.4kHz 170 dB Worst Case (FSO/FSI = 48kHz/48kHz) 168 dB Dynamic Range (Input = 1kHz, -60dBFS, A-weighted) FSO/FSI = 8kHz/48kHz 176 dB Ratio between Input and Output Sample Rate FSO/FSI 1/6 12 - 016000098-E-00 - 11 - 2016/01 [AK4136] 9. Power Consumptions ■ Internal LDO Mode (Ta=-40 +105C; DVDD=3.03.6V) Parameter Symbol Power Supply Current Normal operation: (PDN = “H”) FSI=FSO=48kHz at Master Mode : DVDD=3.3V FSI=FSO=192kHz at Master Mode: DVDD=3.3V FSI=FSO=384kHz at Master Mode: DVDD=3.3V : DVDD=3.6V Power down: PDN pin = “L” (Note 8) DVDD=3.6V Note 8. All digital inputs including clock pins are held to DVSS. Min. Typ. Max. Unit - 11 33 40 - 60 mA mA mA mA 10 100 A ■ DV18 External Supply Mode (Ta=-40 +105C; DVDD=DV18=1.71.9V) Parameter Symbol Power Supply Current Normal operation: FSI=FSO=48kHz at Master Mode : DVDD=DV18=1.8V FSI=FSO=192kHz at Master Mode: DVDD=DV18=1.8V FSI=FSO=384kHz at Master Mode: DVDD=DV18=1.8V : DVDD=DV18=1.9V Power down: PDN pin = “L” (Note 8) DVDD=DV18=1.9V Note 8. All digital inputs including clock pins are held to DVSS. 016000098-E-00 - 12 - Min. Typ. Max. Unit - 11 28 32 - 50 mA mA mA mA 10 100 A 2016/01 [AK4136] 10. Filter Characteristics ■ Sharp Roll-Off Filter Characteristics (Ta=-40 +105C; DVDD=3.03.6V or DVDD=DV18=1.7V1.9V, DVSS=0V) Parameter Symbol Min. Typ. Max. Unit Digital Filter Passband 0.985  FSO/FSI  12.000 PB 0 kHz 0.4583FSI 0.01dB 0.905  FSO/FSI  0.985 PB 0 kHz 0.4167FSI 0.714  FSO/FSI  0.905 PB 0 kHz 0.3195FSI 0.656  FSO/FSI  0.714 PB 0 kHz 0.2852FSI 0.536  FSO/FSI  0.656 PB 0 kHz 0.2182FSI 0.492  FSO/FSI  0.536 PB 0 kHz 0.2177FSI 0.452  FSO/FSI  0.492 PB 0 kHz 0.1948FSI 0.357  FSO/FSI  0.452 PB 0 kHz 0.1458FSI 0.324  FSO/FSI  0.357 PB 0 kHz 0.1302FSI 0.246  FSO/FSI  0.324 PB 0 kHz 0.0917FSI 0.226  FSO/FSI  0.246 PB 0 kHz 0.0826FSI 0.1667  FSO/FSI  0.226 PB 0 kHz 0.0583FSI Stopband 0.985  FSO/FSI  12.000 SB 0.5417FSI kHz 0.905  FSO/FSI  0.985 SB 0.5021FSI kHz 0.714  FSO/FSI  0.905 SB 0.3965FSI kHz 0.656  FSO/FSI  0.714 SB 0.3643FSI kHz 0.536  FSO/FSI  0.656 SB 0.2974FSI kHz 0.492  FSO/FSI  0.536 SB 0.2813FSI kHz 0.452  FSO/FSI  0.492 SB 0.2604FSI kHz 0.357  FSO/FSI  0.452 SB 0.2116FSI kHz 0.324  FSO/FSI  0.357 SB 0.1969FSI kHz 0.246  FSO/FSI  0.324 SB 0.1573FSI kHz 0.226  FSO/FSI  0.246 SB 0.1471FSI kHz 0.1667  FSO/FSI  0.226 SB 0.1020FSI kHz 0.226  FSO/FSI 12.000 PR 0.01 dB Passband Ripple 0.1667  FSO/FSI  0.226 PR 0.03 dB Stopband 0.985  FSO/FSI  12.000 SA 140.2 dB Attenuation 0.905  FSO/FSI  0.985 SA 140.9 dB 0.714  FSO/FSI  0.905 SA 135.2 dB 0.656  FSO/FSI  0.714 SA 135.1 dB 0.536  FSO/FSI  0.656 SA 133.5 dB 0.492  FSO/FSI  0.536 SA 115.3 dB 0.452  FSO/FSI  0.492 SA 118.2 dB 0.357  FSO/FSI  0.452 SA 123.3 dB 0.324  FSO/FSI  0.357 SA 122.9 dB 0.246  FSO/FSI  0.324 SA 117.9 dB 0.226  FSO/FSI  0.246 SA 119.7 dB 0.1667  FSO/FSI  0.226 SA 90.3 dB Group Delay GD 64 1/fs (Note 9) Note 9. This is the time from a rising edge of ILRCK after L and R channels data is input to a rising edge of OLRCK before the L and R channels data is output, when there is no phase difference between input and output data. 016000098-E-00 - 13 - 2016/01 [AK4136] ■ Slow Roll-Off Filter Characteristics (Ta=-40 +105C; DVDD=3.03.6V or DVDD=DV18=1.7V1.9V, DVSS=0V) Parameter Symbol Min. Typ. Max. Unit Digital Filter Passband 0.01dB 0.1667  FSO/FSI  12.000 PB 0 0.0417FSI kHz Stopband 0.1667  FSO/FSI  12.000 SB 0.4167FSI kHz Passband Ripple PR 0.01 dB Stopband Attenuation SA 108.1 dB Group Delay (Note 9) GD 64 1/fs Note 9. This is the time from a rising edge of ILRCK after L and R channels data is input to a rising edge of OLRCK before the L and R channels data is output, when there is no phase difference between input and output data. 016000098-E-00 - 14 - 2016/01 [AK4136] ■ Short Delay Sharp Roll-Off Filter Characteristics (Ta=-40 +105C; DVDD=3.03.6V or DVDD=DV18=1.7V1.9V, DVSS=0V) Parameter Symbol Min. Typ. Digital Filter Passband PB 0 0.985  FSO/FSI  12.000 0.01dB PB 0 0.905  FSO/FSI  0.985 PB 0 0.714  FSO/FSI  0.905 PB 0 0.656  FSO/FSI  0.714 PB 0 0.536  FSO/FSI  0.656 PB 0 0.492  FSO/FSI  0.536 PB 0 0.452  FSO/FSI  0.492 PB 0 0.357  FSO/FSI  0.452 PB 0 0.324  FSO/FSI  0.357 PB 0 0.246  FSO/FSI  0.324 PB 0 0.226  FSO/FSI  0.246 PB 0 0.1667  FSO/FSI  0.226 Stopband SB 0.5417FSI 0.985  FSO/FSI  12.000 SB 0.5021FSI 0.905  FSO/FSI  0.985 SB 0.3965FSI 0.714  FSO/FSI  0.905 SB 0.3643FSI 0.656  FSO/FSI  0.714 SB 0.2974FSI 0.536  FSO/FSI  0.656 SB 0.2813FSI 0.492  FSO/FSI  0.536 SB 0.2604FSI 0.452  FSO/FSI  0.492 SB 0.2116FSI 0.357  FSO/FSI  0.452 SB 0.1969FSI 0.324  FSO/FSI  0.357 SB 0.1573FSI 0.246  FSO/FSI  0.324 SB 0.1471FSI 0.226  FSO/FSI  0.246 SB 0.1020FSI 0.1667  FSO/FSI  0.226 PR 0.226  FSO/FSI  12.000 Passband Ripple PR 0.1667  FSO/FSI  0.226 Stopband SA 140.2 0.985  FSO/FSI  24.000 Attenuation SA 140.9 0.905  FSO/FSI  0.985 SA 135.2 0.714  FSO/FSI  0.905 SA 135.1 0.656  FSO/FSI  0.714 SA 133.5 0.536  FSO/FSI  0.656 SA 115.3 0.492  FSO/FSI  0.536 SA 118.2 0.452  FSO/FSI  0.492 SA 123.3 0.357  FSO/FSI  0.452 SA 122.9 0.324  FSO/FSI  0.357 SA 117.9 0.246  FSO/FSI  0.324 SA 119.7 0.226  FSO/FSI  0.246 SA 90.3 0.1667  FSO/FSI  0.226 GD 20 0.905  FSO/FSI  12.000 GD 22 0.656  FSO/FSI  0.905 GD 26 0.536  FSO/FSI  0.656 GD 23 0.492  FSO/FSI  0.536 Group Delay GD 24 0.452  FSO/FSI  0.492 (Note 9) GD 26 0.324  FSO/FSI  0.452 GD 29 0.246  FSO/FSI  0.324 GD 30 0.226  FSO/FSI  0.246 GD 32 0.1667  FSO/FSI  0.226 016000098-E-00 - 15 - Max. Unit 0.4583FSI 0.4167FSI 0.3195FSI 0.2852FSI 0.2182FSI 0.2177FSI 0.1948FSI 0.1458FSI 0.1302FSI 0.0917FSI 0.0826FSI 0.0583FSI 0.01 0.03 - kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz dB dB dB dB dB dB dB dB dB dB dB dB dB dB 1/fs 1/fs 1/fs 1/fs 1/fs 1/fs 1/fs 1/fs 1/fs 2016/01 [AK4136] Note 9. This is the time from a rising edge of ILRCK after L and R channels data is input to a rising edge of OLRCK before the L and R channels data is output, when there is no phase difference between input and output data. ■ Short Delay Slow Roll-Off Filter Characteristics (Ta=-40 +105C; DVDD=3.03.6V or DVDD=DV18=1.7V1.9V, DVSS=0V) Parameter Symbol Min. Typ. Max. Unit Digital Filter Passband 0.01dB 0.1667FSO/FSI  12.000 PB 0 kHz 0.0417FSI Stopband 0.1667FSO/FSI  12.000 SB 0.4167FSI kHz Passband Ripple PR 0.01 dB Stopband Attenuation SA 108.1 dB Group Delay (Note 9) GD 21 1/fs Note 9. This is the time from a rising edge of ILRCK after L and R channels data is input to a rising edge of OLRCK before the L and R channels data is output, when there is no phase difference between input and output data. 11. Input and Output Examples Possible Input and Output data combinations are shown below. Fsi is the sampling rate of input data, and Fso is the sampling rate of output data. Fsi[kHz] PCM 8 11.025 16 32 44.1 48 88.2 96 176.4 192 Fso[kHz] PCM min 8 8 8 8 8 8 14.7 16 29.6 32 max 96 132.3 192 384 384 384 384 384 384 384 When the input data is 384 kHz and down converted, THD+N may degrade to 80dB. 016000098-E-00 - 16 - 2016/01 [AK4136] 12. DC Characteristics (Ta=-40 +105C; DVDD=3.03.6V: VSEL pin = “L” or DVDD=DV18=1.7V1.9V: VSEL pin = “H”) Parameter Symbol Min. Typ. Max. Unit High-Level Input Voltage VIH 70%DVDD V Low-Level Input Voltage VIL 30%DVDD V High-Level Output Voltage Except SDA pin (Iout=400A) VOH DVDD0.4 V Low-Level Output Voltage Except SDA pin (Iout=400A) VOL 0.4 V SDA pin (Iout=3mA) VOL 0.4 V Input Leakage Current Iin 10 A 13.Switching Characteristics (Ta=-40 +105C; DVDD=3.03.6V: VSEL pin = “L” or DVDD=DV18=1.7V1.9V: CL=20pF) Parameter Symbol Min. Typ. Master Clock Timing fXTAL 11.2896 Crystal Oscillator Frequency (256 times of 44.1, 48, 88.2 or 96kHz) OMCLK Input 128 FSO: fCLK 1.024 Pulse Width Low tCLKL 7 Pulse Width High tCLKH 7 256 FSO: fCLK 2.048 Pulse Width Low tCLKL 7 Pulse Width High tCLKH 7 384 FSO: fCLK 3.072 Pulse Width Low tCLKL 10 Pulse Width High tCLKH 10 512 FSO: fCLK 4.096 Pulse Width Low tCLKL 7 Pulse Width High tCLKH 7 768 FSO: fCLK 6.144 Pulse Width Low tCLKL 10 Pulse Width High tCLKH 10 016000098-E-00 - 17 - VSEL pin = “H”; Max. Unit 24.576 MHz 49.152 MHz ns ns MHz ns ns MHz ns ns MHz ns ns MHz ns ns 49.152 36.864 49.152 36.864 2016/01 [AK4136] Parameter Input PORT ILRCK Frequency Normal speed mode Double speed mode Quad speed mode Oct speed mode Duty Cycle Slave Mode Output PORT OLRCK Frequency Slave mode Normal speed mode Double speed mode Quad speed mode Oct speed mode Master mode OMCLK Input, 128FSO mode OMCLK Input, 256FSO mode OMCLK Input, 384FSO mode OMCLK Input, 512FSO mode OMCLK Input, 768FSO mode Duty Cycle Slave Mode Master Mode Input PORT ILRCK for TDM256 Mode Frequency “H” time (slave mode) “L” time (slave mode) Input PORT ILRCK for TDM512 Mode Frequency “H” time (slave mode) “L” time (slave mode) Output PORT OLRCK for TDM256 Mode Frequency “H” time (slave mode) “L” time (slave mode) Output PORT OLRCK for TDM512 Mode Frequency “H” time (slave mode) “L” time (slave mode) 016000098-E-00 Symbol Min. FSIN FSID FSIQ FSIO Duty 8 54 108 FSON FSOD FSOQ FSOO 8 54 108 FSO FSO FSO FSO FSO 8 8 8 8 8 Duty Duty 48 FSI tLRH tLRL 48 Typ. Max. 54 108 216 384 50 52 Unit kHz kHz kHz kHz kHz % 54 108 216 kHz kHz kHz kHz 384 192 96 96 48 kHz kHz kHz kHz kHz 52 % % 8 1/256FSI 1/256FSI 96 kHz ns ns FSI tLRH tLRL 8 1/512FSI 1/512FSI 48 kHz ns ns FSO tLRH tLRL 8 1/256 FSO 1/256 FSO 96 kHz ns ns FSO tLRH tLRL 8 1/512 FSO 1/512 FSO 48 kHz ns ns - 18 - 384 50 50 2016/01 [AK4136] Parameter Symbol Min. Typ. Audio Interface Timing Input PORT (Slave mode) IBICK Period Normal speed mode tBCK 1/256 FSIN Double speed mode tBCK 1/128 FSID Quad speed mode tBCK 1/64 FSIQ Oct speed mode tBCK 1/64 FSIO IBICK Pulse Width Low tBCKL 16 IBICK Pulse Width High tBCKH 16 ILRCK Edge to IBICK “↑” (Note 10) tLRB 10 IBICK “↑” to ILRCK Edge (Note 10) tBLR 10 SDTI Hold Time from IBICK “↑” tSDH 10 SDTI Setup Time to IBICK “↑” tSDS 6 Input PORT (TDM256 slave mode) IBICK Period tBCK 40 IBICK Pulse Width Low tBCKL 16 IBICK Pulse Width High tBCKH 16 ILRCK Edge to IBICK “↑” (Note 10) tLRB 10 IBICK “↑” to ILRCK Edge (Note 10) tBLR 10 SDTI Hold Time from IBICK “↑” tSDH 10 SDTI Setup Time to IBICK “↑” tSDS 6 Input PORT (TDM512 slave mode) IBICK Period tBCK 40 IBICK Pulse Width Low tBCKL 16 IBICK Pulse Width High tBCKH 16 ILRCK Edge to IBICK “↑” (Note 10) tLRB 10 IBICK “↑” to ILRCK Edge (Note 10) tBLR 10 SDTI Hold Time from IBICK “↑” tSDH 10 SDTI Setup Time to IBICK “↑” tSDS 6 Note 10. IBICK rising edge must not occur at the same time as ILRCK edge. Note 11. Maximum frequency of IBICK and OBICK is 24.576MHz. 016000098-E-00 - 19 - Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 2016/01 [AK4136] Parameter Audio Interface Timing Output PORT (Slave mode) OBICK Period Normal speed mode Double speed mode Quad speed mode Oct speed mode OBICK Pulse Width Low OBICK Pulse Width High OLRCK Edge to OBICK “↑” OBICK “↑” to OLRCK Edge (Note 10) (Note 10) Symbol Min. tBCK tBCK tBCK tBCK tBCKL tBCKH tLRB tBLR 1/256 FSON 1/128 FSOD 1/64 FSOQ 1/64 FSOO 16 16 10 10 Typ. Max. Unit ns ns ns ns DVDD=3.0V~3.6V (VSEL pin= “L”) OLRCK to SDTO(MSB) (Except I2S mode) OBICK “↓” to SDTO tLRS tBSD 10 10 ns ns DVDD=1.7V~1.9V (VSEL pin= “H”) (Except fso=384kHz) OLRCK to SDTO(MSB) (Except I2S mode) OBICK “↓” to SDTO tLRS tBSD 20 20 ns ns Note 10. IBICK rising edge must not occur at the same time as ILRCK edge. 016000098-E-00 - 20 - 2016/01 [AK4136] Parameter Audio Interface Timing Output PORT (TDM256 slave mode) DVDD=3.0V~3.6V (VSEL pin= “L”) OBICK Period OBICK Pulse Width Low OBICK Pulse Width High OLRCK Edge to OBICK “↑” (Note 10) OBICK “↑” to OLRCK Edge (Note 10) OBICK “↓” to SDTO Symbol Min. tBCK tBCKL tBCKH tLRB tBLR tBSD 40 16 16 10 10 Typ. DVDD=1.7V~1.9V (VSEL pin= “H”) OBICK Period tBCK 80 OBICK Pulse Width Low tBCKL 32 OBICK Pulse Width High tBCKH 32 OLRCK Edge to OBICK “↑” (Note 10) tLRB 20 OBICK “↑” to OLRCK Edge (Note 10) tBLR 20 OBICK “↓” to SDTO tBSD Output PORT (TDM512 slave mode) DVDD=3.0V~3.6V(VSEL pin= “L”) OBICK Period tBCK 40 OBICK Pulse Width Low tBCKL 16 OBICK Pulse Width High tBCKH 16 OLRCK Edge to OBICK “↑” (Note 10) tLRB 10 OBICK “↑” to OLRCK Edge (Note 10) tBLR 10 OBICK “↓” to SDTO tBSD Output PORT (Master mode) OBICK Frequency fBCK 64 FSO OBICK Duty dBCK 50 OBICK “↓” to OLRCK Edge tMBLR 5 OBICK “↓” to SDTO tBSD 5 Reset Timing PDN “L” Width after DVDD is on. (Note 13) tAPD1 150 PDN Accept Pulse Width (Note 13) tAPD2 700 PDN pin Pulse Width of Spike Noise tPDS 0 Suppressed by Input Filter (Note 14) Note 10. IBICK rising edge must not occur at the same time as ILRCK edge. Note 12. TDM modes are only supported in slave mode. Max. Unit 10 ns ns ns ns ns ns 20 ns ns ns ns ns sn 10 ns ns ns ns ns ns 5 5 Hz % ns ns 50 ns ms ns Note 13. The AK4136 can be reset by bringing the PDN pin = “L”. Note 14. “L” pulse width of spike noise suppressed by input filter of the PDN pin. 016000098-E-00 - 21 - 2016/01 [AK4136] Parameter Control Interface Timing CCLK Period CCLK Pulse Width High CCLK Pulse Width Low CDTI Setup Time CDTI Hold Time CSN High Time CSN “↓” to CCLK “↑” CCLK “↑” to CSN “↑” CCLK “↓” to CDTO CSN “↑” to CDTO “Hi-Z” Symbol Min. tCCK tCCKH tCCKL tCDS tCDH tCSW tCSS tCSH tDCD tCCZ 200 80 80 50 50 150 50 50 Typ. Max. Unit 45 70 ns ns ns ns ns ns ns ns ns ns Control Interface Timing (I2C Bus): SCL Clock Frequency fSCL 400 Bus Free Time Between Transmissions tBUF 1.3 Start Condition Hold Time tHD:STA 0.6 (prior to first clock pulse) Clock Low Time tLOW 1.3 Clock High Time tHIGH 0.6 Setup Time for Repeated Start Condition tSU:STA 0.6 SDA Hold Time from SCL Falling (Note 15) tHD:DAT 0 SDA Setup Time from SCL Rising tSU:DAT 0.1 Rise Time of Both SDA and SCL Lines tR 0.3 Fall Time of Both SDA and SCL Lines tF 0.3 Setup Time for Stop Condition tSU:STO 0.6 Pulse Width of Spike Noise tSP 0 50 Suppressed by Input Filter Capacitive load on bus Cb 400 Note 15. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. 016000098-E-00 - 22 - kHz s s s s s s s s s s ns pF 2016/01 [AK4136] ■ Timing Diagrams 1/fCLK VIH XTI VIL tCLKH tCLKL 1/fCLK VIH OMCLK(I) VIL tCLKH tCLKL dCLK=tCLKH(or fCKL)x fCLKx100 Figure 3. OMCLK, Clock Timing 016000098-E-00 - 23 - 2016/01 [AK4136] Slave Mode 1/FSI VIH ILRCK(I) VIL tLRCH tLRCL Duty=tLRCH(or tLRCL)xFSIx100 tBCK VIH IBICK(I) VIL tBCKH tBCKL TDM256 or TDM512 Mode and Slave Mode 1/FSI VIH ILRCK(I) VIL tLRH tLRL tBCK VIH IBICK(I) VIL tBCKH tBCKL Figure 4. ILRCK, IBICK Clock Timing 016000098-E-00 - 24 - 2016/01 [AK4136] Slave Mode 1/FSO VIH OLRCK(I) VIL tLRCH tLRCL Duty=tLRCH(or tLRCL)xFSOx100 tBCK VIH OBICK(I) VIL tBCKH tBCKL TDM256 or TDM512 Mode and Slave Mode 1/FSO VIH OLRCK(I) VIL tLRH tLRL tBCK VIH OBICK(I) VIL tBCKH tBCKL Figure 5. OLRCK, OBICK Clock Timing (Slave Mode) Master Mode 1/FSO 50%DVDD OLRCK(O) tLRCH tLRCL Duty=tLRCH(or tLRCL) x FSO X100 1/fBCK 50%DVDD OBICK(O) tBICKH tBICKL dBCK=tBICKH(or tBICKL) x fBCK X100 Figure 6. OLRCK, OBICK Clock Timing (Master Mode) 016000098-E-00 - 25 - 2016/01 [AK4136] Slave mode and TDM256 or TDM512 Slave Mode VIH ILRCK VIL tBLR tLRB VIH IBICK VIL tSDS tSDH VIH SDTI VIL Figure 7. Input PORT Audio Interface Timing Slave mode and TDM256 or TDM512 Slave Mode VIH OLRCK VIL tBLR tLRB VIH OBICK VIL tLRS tBSD 50%DVDD SDTO Figure 8. Output PORT Audio Interface Timing Master mode and TDM256 or TDM512 Master mode 50%DVDD OLRCK tMBLR 50%DVDD OBICK tBSD 50%DVDD SDTO Figure 9. Output PORT Audio Interface Timing 016000098-E-00 - 26 - 2016/01 [AK4136] 4-Wire Read VIH CSN tCCLK tCCKH tCSS VIH 1/2 Level of VIH/VIL VIL CCLK tCDS tCDH CDTI CAD1 tSCKL CAD0 R/W VIH A4 A0 VIL Hi-Z CDTO tCSW VIH CSN VIL tCSH VIH CCLK CDTI VIL D3 D2 D1 VIH D0 VIL Hi-Z CDTO Figure 10. 4-wire Serial Control Mode 016000098-E-00 - 27 - 2016/01 [AK4136] 4Wire Write VIL CSN CCLK VIL CDTI CDTO A1 A0 Hi-Z D7 D6 D5 VOH VOL tDCD tCSW VIH CSN VIL tCSH VIH VIL CCLK tCCZ CDTI Hi-Z CDTO D2 D1 VOH D0 Figure 11. 4-wire Serial Control Mode 016000098-E-00 - 28 - 2016/01 [AK4136] I2C Bus Control Mode VIH SDA VIL tLOW tBUF tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT tSU:STA tSU:STO Start Stop Start Figure 12. I2C Bus Control Mode PDN DVDD tAPD2 tPDS tAPD1 VIH VIL PDN “L” “H” “L” “H” Figure 13. Power Down & Reset Timing 016000098-E-00 - 29 - 2016/01 [AK4136] 14.Functional Descriptions ■ Power-up Sequence VSEL pin= “L” (regulator mode) DVDD (3.3V) PDN pin LDO 5ms(max) Internal reset XTI OSC Figure 14. Power-up Sequence (Regulator Mode) VSEL pin= “H” (regulator off mode) DVDD, DV18 (1.8V) PDN pin 5ms(max) Internal reset XTI OSC Figure 15. Power-up Sequence (Regulator Off Mode) 016000098-E-00 - 30 - 2016/01 [AK4136] ■ SRC Bypass Mode 1. SRC Mode Setting In parallel control mode (PSN pin = “H”), the CM2-0 pins selects SRC bypass mode or SRC mode. The CM2-0 pins select the master/slave mode and system clock simultaneously. (Table 7) Table 1. SRC/SRC Bypass Mode Setting (@Parallel Control Mode) CM2 CM1 CM0 SRC Mode / Mode pin pin pin SRC Bypass Mode 0 L L L 1 L L H 2 L H L SRC Mode 3 L H H 4 H L L 5 H L H 6 H H L SRC Bypass Mode 7 H H H In serial control mode (PSN pin = “L”), BYPS bit selects SRC bypass mode or SRC mode. The default value of the BYPS bit is “0” (SRC mode). Table 2. SRC/SRC Bypass Mode Setting (@Serial Control Mode) BYPS bit SRC mode 0 SRC (Default) 1 Bypass SDTI ILRCK IBICK TDM ODIF1 ODIF0 OBIT1 OBIT0 SRCEN 2. SRC Bypass Mode ・PCMIN → PCMOUT Mode (Slave Mode) SDTI input data is clocked in by ILRCK and IBICK according to the audio interface format shown in Table 3. SDTO output data is clocked out by OLRCK and OBICK according to the audio interface format shown in Table 9 and Table 10. OBICK must be synchronized with IBICK but the phase is not critical. OLRCK must be synchronized with ILRCK but the phase is not critical. PCM Input Serial Audio I/F PCM Output Serial Audio I/F SMUTE Dither Internal OSC SDTO OLRCK OBICK TEST1 PDN REF DVSS DVDD CM2 CM1 Clock Div. CM0 XTO X’tal OSC XTI/OMCLK/TDMI CDTO SDA/CDTI/SLOW CSN/SMUTE SCL/CCLK/SD CAD0/IDIF0 IDIF2 CAD1/IDIF1 DV18 Internal Regulator UP/IF VSEL I2C PSN TEST0 Figure 16. BYPASS Mode Slave (PCMIN→PCMOUT) 016000098-E-00 - 31 - 2016/01 [AK4136] SDTI ILRCK IBICK TDM ODIF1 ODIF0 OBIT1 OBIT0 SRCEN ・PCMIN → PCMOUT Mode (Master Mode) SDTI input data is clocked in by ILRCK and IBICK according to the audio interface format shown in Table 3. SDTO output data is clocked out by ILRCK and IBICK according to the audio interface format shown in Table 9 and Table 10. In this case, ILRCK is directly output from the OLRCK pin, and IBICK is directly output from the OBICK pin. PCM Input Serial Audio I/F PCM Output Serial Audio I/F SMUTE SDTO OLRCK OBICK Dither Internal OSC TEST1 TEST0 REF DVSS DVDD CM2 CM1 Clock Div. CM0 XTO CDTO SDA/CDTI/SLOW CSN/SMUTE SCL/CCLK/SD CAD0/IDIF0 IDIF2 CAD1/IDIF1 X’tal OSC XTI/OMCLK/TDMI Internal Regulator UP/IF DV18 I2C PSN VSEL PDN Figure 17. BYPASS Mode Master (PCMIN→PCMOUT) 016000098-E-00 - 32 - 2016/01 [AK4136] ■ System Clock and Audio Interface Format for Input PORT The input port of the AK4136 only supports slave mode. Both ILRCK and IBICK pins are inputs and master clock supplies are not necessary. The audio data format of input port is MSB first, 2’s complement format. The SDTI is latched on the rising edge of IBICK. In parallel control mode (PSN pin= “H”), IDIF2-0 pins control all audio interface formats of the input port. IDIF2-0 pins must be set during the PDN pin= “L”. Table 3. Input PORT Audio Interface Format (@Parallel Control mode) IDIF2 Pin IDIF1 Pin IDIF0 Pin ILRCK Mode SDTI Format IBICK Freq (Note 17) (Note 17) (Note 17) / IBICK 0 L L L 32bit, LSB justified 256FS or  64FSI 1 L L H 24bit, LSB justified 256FSI or  48FSI 2 L H L 32bit, MSB justified 256FSI or  64FSI 32 or 16 bit, I2S Compatible 256FSI or  64FSI 3 L H H 2 Input 16 bit, I S Compatible 32FSI 4 H L L TDM 32bit, MSB justified 256FSI 5 H L H TDM 32bit, I2S Compatible 6 H H L TDM 32bit, MSB justified 512FSI 7 H H H TDM 32bit, I2S Compatible Note 16. When IBICK = 32FSI, the AK4136 only supports 16-bit I2S Compatible format. Note 17. TDMICH2-1 bits select a data channel in TDM input mode. In serial control mode (PSN pin = “L”), the setting of IDIF2-0 pins is ignored and IDIF2-0 bits setting is reflected. IDIF2-0 bits should be changed after all SDTO output codes become zero during soft mute by SMUTE bit = “1” or the SMUTE pin = “H”. Table 4. Input PORT Audio Interface Format (@Serial Control Mode) IDIF2 bit IDIF1 bit IDIF0 bit ILRCK Mode SDTI Format IBICK Freq (Note 17) (Note 17) (Note 17) / IBICK 0 0 0 0 32bit, LSB justified 256FS or 64FSI 1 0 0 1 24bit, LSB justified 256FSI or  48FSI 2 0 1 0 32bit, MSB justified 256FSI or  64FSI 2 32 or 16 bit, I S Compatible 256FSI or  64FSI 3 0 1 1 16 bit, I2S Compatible Input 32FSI 4 1 0 0 TDM 32bit, MSB justified 256FSI 5 1 0 1 TDM 32bit, I2S Compatible 6 1 1 0 TDM 32bit, MSB justified 512FSI 7 1 1 1 TDM 32bit, I2S Compatible Note 16. When IBICK = 32FSI, the AK4136 only supports 16-bit I2S Compatible format. Note 17. TDMICH2-1 bits select a data channel in TDM input mode. 016000098-E-00 - 33 - 2016/01 [AK4136] ILRCK 0 1 2 20 21 22 32 33 63 0 1 2 20 21 22 32 33 63 0 1 IBICK(128fs) SDTI 31 0 1 2 12 13 14 23 1 24 0 31 31 0 1 2 12 13 14 23 1 24 0 31 0 1 IBICK(64fs) SDTI 31 30 20 19 18 8 9 0 1 31 30 20 19 18 Lch Data 8 9 0 1 31 Rch Data 31: MSB, 0:LSB Figure 18. Mode0 Timing (32-bit LSB) ILRCK 0 1 2 20 21 22 40 41 63 0 1 2 20 21 22 40 IBICK(128fs) 41 63 0 1 9 SDTI 23 0 1 2 9 10 11 23 1 24 0 31 23 0 1 2 9 10 11 23 1 24 0 31 0 1 IBICK(64fs) SDTI 23 19 18 8 9 0 1 23 19 18 Lch Data 8 9 0 1 31 Rch Data 23: MSB, 0:LSB Figure 19. Mode1 Timing (24-bit LSB) ILRCK 0 1 2 20 21 22 32 33 63 0 1 2 20 21 22 32 33 63 0 1 IBICK(128fs) SDTI 31 30 0 1 12 11 10 2 12 13 0 14 31 30 23 24 31 0 1 12 2 11 10 12 13 0 14 31 23 24 31 0 1 IBICK(64fs) SDTI 31 30 20 19 18 9 8 1 0 31 30 20 Lch Data 19 18 9 8 1 0 31 Rch Data 31: MSB, 0:LSB Figure 20. Mode2 timing (32-bit MSB) 016000098-E-00 - 34 - 2016/01 [AK4136] ILRCK 0 1 2 20 21 22 33 34 63 0 1 2 20 21 22 33 34 63 24 25 31 0 1 IBICK(128fs) SDTI 31 0 13 12 11 1 2 12 13 0 14 31 24 25 31 0 1 13 2 12 11 12 0 13 14 0 1 IBICK(64fs) SDTI 0 31 21 20 19 8 9 1 2 0 31 21 20 19 Lch Data 8 9 1 2 0 Rch Data 31: MSB, 0:LSB Figure 21. Mode3 Timing (32-bit I2S) 256 IBICK ILRCK(I) IBICK (I: 256FSI) SDTI(I) 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 L1 R1 L2 R2 L3 R3 L4 R4 32 IBICK 32 I BICK 32 I BICK 32 I BICK 32 IBICK 32 I BICK 32 I BICK 32 I BICK Figure 22. Mode4 Timing (32-bit MSB TDM256fs) 256 IBICK ILRCK(I) IBICK(I: 256FSI) SDTI(I) 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 L1 R1 L2 R2 L3 R3 L4 R4 32 IBICK 32 I BICK 32 I BICK 32 I BICK 32 IBICK 32 I BICK 32 I BICK 32 I BICK 1 0 Figure 23. Mode5 Timing (32-bit I2S TDM256fs) 016000098-E-00 - 35 - 2016/01 [AK4136] 512BICK ILRCK IBICK(I:512fs) SDTI(i) 31 30 1 0 31 30 L1 1 0 31 30 R1 1 0 31 30 L2 1 0 31 30 R2 1 0 31 30 L3 1 0 31 30 R3 1 0 31 30 1 0 31 30 L4 R4 1 0 31 30 1 0 31 30 R5 L5 1 0 31 30 1 0 31 30 R6 L6 L7 1 0 31 30 1 0 31 30 R7 L8 1 0 31 30 1 0 31 30 R8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 24. Mode6 Timing (32-bit MSB TDM512fs) 512BICK ILRCK IBICK(I:512fs) SDTI(i) 31 30 L1 1 0 31 30 R1 1 0 31 30 L2 1 0 31 30 R2 1 0 31 30 L3 1 0 31 30 R3 1 0 31 30 L4 1 0 31 30 R4 1 31 0 30 L5 1 0 31 30 1 0 31 30 R5 1 0 31 30 L6 1 0 31 30 R6 L7 1 0 31 30 1 0 31 30 R7 L8 1 0 31 30 1 0 31 30 R8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 25. Mode7 Timing (32-bit I2S TDM512fs) 016000098-E-00 - 36 - 2016/01 [AK4136] ■ System Clock for Output PORT The output ports work both in master and slave modes. 1. Slave Mode Both OLRCK and OBICK pins are input when the AK4136 is in slave mode. Master clock is unnecessary. 2. Master Mode Both OLRCK pin and OBICK pin are output when the AK4136 is in master mode. Master clock is supplied to the XTI/OMCLK pin. The supplying method of Master clock is selected by CLKMODE pin. Table 5. Master/Slave Mode Setting OBICK CLKMODE pin XTI/OMCLK pin pin Mode OLRCK pin Slave Mode Input Input Connect to DVSS Connect to DVSS OPEN Master Mode Output Output L H X’tal Input External Clock Input X’tal Output “L” Output XTO pin ・X’tal Mode XTI/OMCLK C C XTO AK4136 Note: Refer to Table 6 for the capacitor and resistance values for the X’tal oscillator. Figure 26. X’tal (XTI) Mode Table 6. Equivalent Series Resistor and External Capacitor for External X’tal Oscillator Normal Frequency [MHz] 11.2896 12.288 22.5792 24.576 Equivalent Series Resistance [Ω] max 60 External Capacitor C[pF] max 15 In X’tal mode at 256FSO mode OMCLK input, FSO ranges from 44.1kHz to 96kHz. In X’tal mode at 384FSO mode OMCLK input, FSO ranges from 29.4kHz to 64kHz. In X’tal mode at 512FSO mode OMCLK input, FSO ranges from 22.05kHz to 48kHz. In X’tal mode at 768FSO mode OMCLK input, FSO ranges from 14.7kHz to 32kHz. In X’tal mode at 128FSO mode OMCLK input, FSO ranges from 88.2kHz to 192kHz. ・External Clock Mode XTI/OMCLK The XTO pin = “L” in External Clock mode. External Clock XTO AK4136 Figure 27. External Clock (OMCLK) Mode 016000098-E-00 - 37 - 2016/01 [AK4136] The CM2-0 pins select the master/slave mode and SRC bypass mode. Table 7. Output PORT Master/Slave/ Bypass Mode Control (@Parallel Control Mode) FSO CM2 CM1 CM0 OMCLK Input Mode Master / Slave pin pin pin (Note 18) PCM 0 L L L Master 256FSO 8k  192kHz 1 L L H Master 384FSO 8k  96kHz 2 L H L Master 512FSO 8k  96kHz 3 L H H Master 768FSO 8k  48kHz 4 H L L Slave Not used 8k  384kHz 5 H L H Master 128FSO 8k  384kHz 6 H H L Slave (Bypass) Not used 7 H H H Master (Bypass) Note 18. Use for a clock input or connect to DVSS. In Mode 6-7, OMCLK/XTI input is ignored internally. Table 8. Output PORT Master/Slave/ Bypass Mode Control (@Serial Control Mode) FSO CM2 CM1 CM0 BYPS Master / OMCLK Input Mode pin pin pin bit Slave (Note 20) PCM 0 1 2 3 L L L L L L H H L H L H 0 0 0 0 Master Master Master Master 4 H L L 0 Slave 5 6 H H L H H L 0 0 Master Slave (Bypass) 7 H H H 0 Master (Bypass) 256FSO 384FSO 512FSO 768FSO Not used. (Note 19) 128FSO Not used. (Note 19) 8k  192kHz 8k  96kHz 8k  96kHz 8k  48kHz 8k  384kHz 8k  384kHz - 8 L L L 1 Master (Bypass) 9 L L H 1 Master (Bypass) 10 L H L 1 Master (Bypass) 11 L H H 1 Master (Bypass) Not used. (Note 19) 12 H L L 1 Slave (Bypass) 13 H L H 1 Master (Bypass) 14 H H L 1 Slave (Bypass) 15 H H H 1 Master (Bypass) Note 19. Use for a clock input or connect to DVSS. Mode 6, 7, 8-15, OMCLK/XTI/TDMI input is ignored internally. Note 20. In SRC mode, even if input port clocks ILRCK and IBICK are stopped, the AK4136 keeps outputting divided clock of the XTI/OMCLK inputs if the device is in master mode and a clock input to the XTI/OMCLK pin is supplied. In SRC bypass mode of master mode, ILRCK is input through and output from the OLRCK pin, and IBICK is input through and output from the OBICK pin. Therefore the OLRCK output will be stopped if ILRCK clock at the input port is stopped, and the OBICK will be stopped if IBICK clock at the input port is stopped. 016000098-E-00 - 38 - 2016/01 [AK4136] ■ Audio Interface Format for Output PORT The ODIF1-0 pins and OBIT1-0 pins select the audio interface format for the output port. The audio data is MSB first, 2’s complement format. The SDTO is clocked out on a falling edge of OBICK. Select the audio interface format for output port while the PDN pin = “L”. If the AK4136 is in slave mode at bypass mode, IBICK and OBICK must be synchronized but the phase is not critical. ILRCK and OLRCK must be synchronized but the phase is not critical. The audio interface format of SDTO is controlled by ODIF1-0 pins, OBIT1-0 pins and TDM pin. Output ports become TDM mode when the TDM pin = “H”. 6 channels or 14 channels serial data should be input to the XTI/OMCLK/TDMI pin. The SDTO pin outputs serial data for 8 channels or 16 channels. TDM mode is only available when the AK4136 is in slave mode. Mode 0 1 2 3 4 5 6 7 Table 9. Output PORT Audio Interface Format 1 TDM ODIF1 ODIF0 SDTO Format L L L LSB justified 2 L L H I S Compatible L H L MSB justified 2 L H H I S Compatible H L L TDM256 mode 32bit MSB justified H L H TDM256 mode 32bit I2S Compatible H H L TDM512 mode 32bit MSB justified H H H TDM512 mode 32bit I2S Compatible Table 10. Output PORT Audio Interface Format 2 Mode TDM Master / Slave OBIT1 OBIT0 SDTO OLRCK pin setting pin pin pin OBICK OBICK Frequency MSB LSB 2 justified, I S justified  64FSO  48FSO 64FSO  40FSO  32FSO 0 L L 32bit Slave 1 L H 24bit (CM2-0 = Input Input 2 H L 20bit “HLL”/“HHL”) 3 H H 16bit L 4 L L 32bit Master 5 L H 24bit (CM2-0 ≠ Output Output 64FSO 6 H L 20bit “HLL”/“HHL”) 7 H H 16bit 8 Slave TDM 9 256FSO H (CM2-0 = * * mode Input Input 512FSO 10 “HLL”/“HHL”) 32bit 11 (* The data length is fixed to 32 bits in TDM mode. The OBIT1-0 pin settings are ignored. Connect these pins to DVSS.) 016000098-E-00 - 39 - 2016/01 [AK4136] OLRCK 0 1 2 9 10 12 13 16 17 31 0 1 2 9 10 12 13 16 17 31 0 1 OBICK(64fs) SDTO(O) 15 SDTO(O) SDTO(O) SDTO(O) 31 30 1 0 15 1 0 19 15 1 0 19 15 1 0 23 22 19 15 1 0 31 30 23 22 19 15 1 0 23 22 19 15 1 0 31 30 23 22 19 15 1 0 31 Lch Data Rch Data 31: MSB, 0:LSB @ 32bit Figure 28. Stereo Mode LSB Justified Timing (Except when the output port is Master (Bypass) Mode and the audio interface of the input port is TDM mode (24bit MSB justified or 24bit I2S Compatible)) OLRCK 0 1 2 15 16 19 20 23 24 31 0 1 2 15 16 19 20 23 24 31 0 1 OBICK(64fs) SDTO(O) 15 14 SDTO(O) 19 SDTO(O) SDTO(O) 1 0 4 0 23 22 19 18 4 0 31 30 23 22 12 8 18 5 1 Lch Data 0 15 14 1 0 19 18 5 4 23 22 19 18 4 0 31 30 23 22 12 8 0 1 0 31 Rch Data 31: MSB, 0:LSB @ 32bit Figure 29. TDM 256 mode 32bit MSB Justified Timing at Slave Mode (Except when the output port is Master (Bypass) Mode and the audio interface of the input port is TDM mode (24bit MSB justified or 24bit I2S Compatible)) 016000098-E-00 - 40 - 2016/01 [AK4136] OLRCK 0 1 2 16 17 20 21 24 25 31 0 1 2 16 17 20 21 24 25 31 0 1 OBICK(64fs) SDTO(O) 15 SDTO(O) 19 SDTO(O) SDTO(O) 0 1 4 0 23 19 18 4 0 0 31 23 22 12 8 5 1 2 15 1 0 19 5 4 23 19 18 4 0 0 31 24 23 12 8 0 2 1 0 31 Lch Data Rch Data 31: MSB, 0:LSB @ 32bit Figure 30. Stereo Mode I2S Compatible Timing (Except when the output port is Master (Bypass) Mode and the audio interface of the input port is TDM mode (32bit MSB justified or 24bit I2S Compatible)) 256 BICK OLRCK OBICK(256fs) #1 SDTO(o) = #2 TDMIN(i) #2 SDTO(o) = #3 TDMIN(i) #3 SDTO(o) = #4 TDMIN(i) #4 SDTO(o) 31 30 1 0 31 30 1 L #1 R #1 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #3 R #3 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #4 R #4 L #3 R #3 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 31 30 Figure 31. TDM 256 Mode 32bit MSB Justified Timing at Slave Mode 016000098-E-00 - 41 - 2016/01 [AK4136] 256 BICK OLRCK OBICK(256fs) #1 SDTO(o) 31 = #4 TDMIN(i) #4 SDTO(o) 0 31 2 1 L #1 R #1 32 BICK 31 = #3 TDMIN(i) #3 SDTO(o) 1 32 BICK = #2 TDMIN(i) #2 SDTO(o) 2 31 2 1 0 31 2 1 0 31 0 31 2 1 0 31 2 1 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 2 1 0 31 2 1 0 31 2 1 0 31 2 1 0 31 0 31 2 1 0 31 2 L #3 R #3 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 31 2 1 0 31 2 1 0 31 2 1 0 31 2 1 0 31 2 1 0 31 2 1 0 31 1 0 31 2 1 0 31 2 L #4 R #4 L #3 R #3 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 1 0 31 Figure 32. TDM 256 Mode 32bit I2S Compatible Timing at Slave Mode 512 BICK OLRCK OBICK(512fs) #1 SDTO(o) = #2 TDMIN(i) #2 SDTO(o) = #3 TDMIN(i) #7 SDTO(o) = #8 TDMIN(i) #8 SDTO(o) 31 30 1 0 31 30 1 L #1 R #1 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #7 R #7 L #6 R #6 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #8 R #8 L #7 R #7 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 31 30 Figure 33. TDM 512 Mode 32bit MSB Justified Timing at Slave Mode 016000098-E-00 - 42 - 2016/01 [AK4136] 512 BICK OLRCK OBICK(512fs ) #1 SDTO(o) 31 = #8 TDMIN(i) #8 SDTO(o) 0 31 2 1 L #1 R #1 32 BICK 31 = #3 TDMIN(i) #7 SDTO(o) 1 32 BICK = #2 TDMIN(i) #2 SDTO(o) 2 31 2 1 0 31 2 1 0 31 0 31 2 1 0 31 2 1 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 2 1 0 31 2 1 0 31 2 1 0 31 2 1 0 31 0 31 2 1 0 31 2 L #7 R #7 L #6 R #6 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 31 2 1 0 31 2 1 0 31 2 1 0 31 2 1 0 31 2 1 0 31 2 1 0 31 1 0 31 2 1 0 31 2 L #8 R #8 L #7 R #7 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 1 0 31 Figure 34. TDM 512 Mode 32bit I2S Compatible Timing at Slave Mode 016000098-E-00 - 43 - 2016/01 [AK4136] ■ Cascade Connection in TDM Mode The AK4136 supports cascading of up to four devices (8 channels data) in a daisy chain configuration in TDM mode. In this mode, SDTO pin of device #1 is connected to OMCLK (TDMIN) pin of device #2. The SDTO pin of device #2 can output 4 channels of TDM data multiplexed with 2-channel of TDM data from device #1 and 2-channel of TDM data from device #2. Figure 35 shows a connection example of a daisy chain. AK4136 #1 OLRCK 48kHz OBICK 256fs OMCLK (TDMIN) GND SDTO AK4136 #2 OLRCK OBICK OMCLK (TDMIN) (TDMIN of AK4136 #3) SDTO Figure 35. Cascade Connection Example 256 BICK OLRCK OBICK(256fs) #1 SDTO(o) = #2 TDMIN(i) #2 SDTO(o) = #3 TDMIN(i) #3 SDTO(o) = #4 TDMIN(i) #4 SDTO(o) 31 30 1 0 31 30 1 L #1 R #1 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #3 R #3 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 1 0 31 30 0 31 30 1 0 31 30 1 L #4 R #4 L #3 R #3 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 31 30 Figure 36. TDM Cascade 016000098-E-00 - 44 - 2016/01 [AK4136] ■ Soft Mute Function 1. Manual Mode The soft mute operation is performed in the digital domain of the SRC output. SRC soft mute is controlled by the SMUTE pin in parallel control mode (PSN pin = “H”) or SMUTE bit in serial control mode (PSN pin = “L”). The SRC output data is attenuated to  in 1024 OLRCK cycles by setting SMUTE pin to “H” (or SMUTE bit = “1”). When setting the SMUTE pin to “L” (or SMUTE bit to “0”), the mute is cancelled and the output attenuation level gradually changes to 0dB in 1024 OLRCK cycles. If the soft mute is cancelled before attenuating to , the attenuation is discontinued and the attenuation level returns to 0dB by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission. Soft mute cycle is set by SMT2-0 bits (PSN pin= “L”). The setting of SMT2-0 bits must not be changed during soft mute transition. Table 11. Soft Mute Cycle Setting (PCM) SMT2 bit 0 0 0 0 1 1 1 1 SMT1 bit 0 0 1 1 0 0 1 1 SMT0 bit 0 1 0 1 0 1 0 1 Period fso=48kHz fso=96kHz 1024/fso 2048/fso 4096/fso 8192/fso 16384/fso 32768/fso reserved reserved 21.3ms 42.7ms 85.3ms 170.7ms 341.3ms 682.7ms - 10.7ms 21.3ms 42.7ms 85.3ms 170.7ms 341.1ms - fso=192kHz fso=384kHz 5.3ms 10.7ms 21.3ms 42.7ms 85.3ms 170.7ms - 2.7ms 5.3ms 10.7ms 21.3ms 42.7ms 85.3ms - SMUTE 0dB (1) (1) (3) Attenuation - SDTO Figure 37. Soft Mute Manual Mode 1. Soft mute cycle is set by SMT2-0 bits (Table 11). The output data is attenuated to  in the soft mute cycle. 2. If the soft mute is cancelled before attenuating to , the attenuation is discontinued and the attenuation level returns to 0dB by the same clock cycles. 3. If the soft mute is cancelled within the soft mute cycle after starting soft mute operation, the attenuation is discontinued and the attenuation level returns to 0dB by the same cycle. 4. The transition time can only be set by registers. 016000098-E-00 - 45 - 2016/01 [AK4136] 2. Semi-Auto Mode The AK4136 enters Semi-auto Soft Mute mode by detecting reset release (RSTN bit=“0”→“1”) while the PSN pin=“L” and SMUTE bit = “1”. The soft mute is cancelled automatically in 4410/FSO=100ms @FSO=44.1kHz after detecting a rising edge of the RSTN bitn = “0” → “1”. Soft mute will not be cancelled if the SMUTE bit is “1” after reset is released. The setting of SMSEMI bit must be changed during RSTN bit = “0”. RSTN bit “0” SMUTE Pin Don’t Care “L” (1) 0dB Attenuation 4410/fso - SDTO Figure 38. Soft Mute Semi-Auto Mode (1) The output data is attenuated by  during the soft mute cycle (Table 11). (only When the SMUTE pin=“L”. When the SMUTE pin=“H”, the output data is kept muted.) (2) When the attenuation level is 0dB by a soft mute release after 4410/FSO, the output signal is able to mute or release mute by the soft mute cycle (Table 11). ■ Dither Circuit The AK4137 includes a dither circuit. The dither circuit adds a dither signal after the lowest bit of all the output data set by the OBIT1-0 pins when DITHER bit = “1”, regardless of SRC and SRC bypass modes. If the output data has 32-bit length in SRC bypass mode, the output code will not be affected by the DITHER bit setting. 016000098-E-00 - 46 - 2016/01 [AK4136] ■ Digital Filter The AK4136 has four kinds of digital filters and they are selected by the SD pin and the SLOW pin in parallel control mode (PSN pin = “H”). In serial control mode (PSN pin = “L”), the SD pin and the SLOW pin becomes the SCLK/CCLK pin and the SDA/CDTI pin, respectively and the filter setting by these pins are ignored. Table 12. Digital Filter Setting (@Parallel Control Mode) SD pin SLOW pin Mode L L Sharp roll-off filter L H Slow roll-off filter H L Short delay Sharp roll-off filter H H Short delay Slow roll-off filter SD bit 0 0 1 1 Table 13. Digital Filter Setting (@Serial Control Mode) SLOW bit Mode 0 Sharp Roll-off Filter 1 Slow Roll-off Filter 0 Short delay Sharp Roll-off Filter 1 Short delay Slow Roll-off Filter (default) ■ De-emphasis Filter In serial control mode (PSN pin = “L”), de-emphasis setting of the SRC is controlled by DEM1-0 bits. In parallel control mode (PSN pin = “H”), DEM1-0 bits setting is invalid and de-emphasis setting of the SRC is controlled by DEM1-0 pins. Table 14. De-emphasis Filter Setting DEM1bit DEM0 bit Mode 0 0 44.1kHz 0 1 OFF 1 0 48kHz 1 1 32kHz ■ Regulator The AK4136 has an internal regulator which suppresses the voltage to 1.8V from DVDD. The generated 1.8V power is used as power supply for internal circuits only. When an over-current flows into the regulator output, over-current detection circuit will work. When an over-voltage flows into the regulator output, over-voltage detection circuit will work. The regulator block is powered-down and the AK4136 becomes reset state when over-current detection or over-voltage detection is executed. The AK4136 does not return to normal operation without a reset by the PDN pin when these detection circuits are worked. When over-current or over-voltage is detected, the PDN pin should be brought into “L” at once, and set to “H” again to recover normal operation. The SRCEN pin indicates the internal status of the device. It outputs “L” in SRC normal operation and outputs “H” when over-current or over-voltage is detected. 016000098-E-00 - 47 - 2016/01 [AK4136] ■ System Reset Bringing the PDN pin = “L” sets the AK4136 power-down mode and initializes digital filters. The AK4136 should be reset once by bringing the PDN pin = “L” upon power-up. When the PDN pin is “L”, the SDTO output is “L”. It takes 32ms (max) to output SDTO data after power-down state is released by a clock input. Until then, the SDTO pin outputs “L”. The internal SRC circuit is powered up on an edge of ILRCK after the internal regulator is powered up. Case 1 External clocks (Input port) Don’t care Input Clocks 1 Input Clocks 2 Don’t care SDTI Don’t care Input Data 1 Input Data 2 Don’t care External clocks (Output port) Don’t care Output Clocks 1 Output Clocks 2 Don’t care PDN (Internal state) Power-down SDTO (1) (1) < 32ms < 32ms LDO Up & Ratio detection & GD “0” data Normal operation Normal data PD LDO Up & Ratio detection & GD “0” data Normal operation Power-down Normal data “0” data SRCEN LDO: Internal Regulator GD: Group Delay PD: Power Down Figure 39. System Reset 1 The setting of the PSN, CM2-0, OBIT1-0, TDM, ODIF1-0, IDIF2-0, CAD1-0 pins must be changed while the PDN pin is “L”. The SRCEN pin outputs “H” during “L” period of the PDN pin. If the internal regulator is normal operation and ratio detection is completed, SRC data is output from the SDTO pin after a rising edge of the PDN pin. 016000098-E-00 - 48 - 2016/01 [AK4136] Case 2 External clocks (Input port) (No Clock) SDTI External clocks (Output port) Input Clocks Don’t care (Don’t care) Input Data Don’t care (Don’t care) Output Clocks Don’t care PDN (1) < 27ms (Internal state) Power-down ILCK LDO Up Ratio detection & GD “0” data SDTO Normal operation Power-down Normal data “0” data SRCEN LDO: Internal Regulator GD: Group Delay PD: Power Down Figure 40. System Reset 2 ■ Internal Reset Function for Clock Change Clock change timing is shown in Figure 41 and Figure 42. When changing the clock, the AK4136 should be reset by the PDN pin in parallel control mode and it should be reset by the PDN pin or RSTN bit in serial control mode. External clocks (input port or output port) Clocks 1 (Don’t care) Clock 2 PDN < 32msec (interlal state) Normal operation LDO ON & Ratio detection & GD Normal operation Note 21 SDTO Normal data SMUTE (Note 22, recommended) Att.Level Power down normal data 1024/fso 1024/fso 0dB -dB LDO: Internal Regulator GD: Group Delay Figure 41. Sequence of Changing Clocks (Parallel Control Mode, PSN pin=“H”) Note 21. The data on SDTO may cause a clicking noise. To prevent this, set “0” to the SDTI more than 1024/fs (GD) before the PDN pin changes to “L”. It makes the data on SDTO remain as “0”. Note 22. SMUTE can also remove the clicking noise (Note 21). 016000098-E-00 - 49 - 2016/01 [AK4136] External clocks (input port or output port) Clocks 1 (Don’t care) Clock 2 PDN < 32msec (interlal state) Normal operation Power down LDO ON & Ratio detection & GD Normal operation Note 23 SDTO Normal data SMUTE (Note 24, recommended) Att.Level Normal data 1024/fso 1024/fso 0dB -dB LDO: Internal Regulator GD: Group Delay Figure 42. Sequence of Changing Clocks (Serial Control Mode, PSN pin= “L”) Note 23. The data on SDTO may cause a clicking noise. To prevent this, set “0” to the SDTI more than 1024/fs (GD) before the PDN pin changes to “L”. It makes the data on SDTO remain as “0”. Note 24. SMUTE can also remove the clicking noise (Note 23). Note 25. The digital block except serial control interface and registers is powered-down. The internal oscillator and regulator are not powered-down. Note 26. It is the total time of “0.5/FSI+8/FSI(O)+204/FSO” or “1.5/FSI+8/FSI(O)+204/FSO”. (FSI(O) is lower frequency between FSI and FSO) 016000098-E-00 - 50 - 2016/01 [AK4136] ■ When the Frequency of ILRCK at Input Port Is Changed Without A Reset by The PDN Pin or RSTN Bit When the difference of internal oscillator clock number in one ILRCK cycle between before ILRCK frequency is changed (FSO/FSI ratio is stabilized) and after the change is more than 1/16 for 8cycles, an internal reset is made automatically and sampling frequency ratio detection is executed again. SDTO outputs “L” when the internal reset is made, and SRC data is output after “214/FSO” (FSI(O) is lower frequency between FSI and FSO). If the difference of internal oscillator clock number in one ILRCK cycle between before ILRCK frequency is changed and after the change is less than 1/16 or more than 1/16 but shorter than 8 cycles, the internal reset is not executed. In both cases; when ILRCK frequency is changed immediately without transition time or with transition time which is not long enough for an internal reset, it takes 5148/FSO** (max. 643.5ms PCM Output @FSO=8kHz) to output normal SRC data. Distorted data may be output until normal SRC output. When ILRCK is stopped, an internal reset is executed automatically. It takes “214/FSO” [s] to output normal SRC data after ILRCK is input again (FSI(O) is lower frequency between FSI and FSO). ■ When the Frequency of OLRCK at Output Port Is Changed Without A Reset by The PDN Pin or RSTN Bit When the difference of internal oscillator clock number in one OLRCK cycle between before OLRCK frequency is changed (FSO/FSI ratio is stabilized) and after the change is more than 1/16 for 8 cycles, an internal reset is made automatically and sampling frequency ratio detection is executed again. SDTO outputs “L” when the internal reset is made, and SRC data is output after “214/FSO” (FSI(O) is lower frequency between FSI and FSO). If the difference of internal oscillator clock number in one OLRCK cycle between before an OLRCK frequency change and after the change is less than 1/16 or more than 1/16 but shorter than 8 cycles, the internal reset is not executed. It takes 5148/FSO** (max. 643.5ms PCM output @FSO=8kHz) to output normal SRC data. Distorted data may be output until normal SRC output. When OLRCK is stopped, an internal reset is executed automatically. It takes “214/FSO” [s] to output normal SRC data after ILRCKx is input again. ** When FSO=8kHz and FSO/FSI ratio is changed from 1/6 to 1/5.99. It is 160.9ms when FSO=32kHz and FSO/fSI ratio is changed from 1/6 to 1/5.99. ■ Pop Noise Reduction in Sampling Rate Conversion When ILRCK and OLRCK frequencies of the input port are changed without a reset by the PDN pin or RSTN bit, the output signal is soft muted automatically if internal reset is executed by ASCHON bit = “1”. Soft mute time is the setting value shown in Table 11. 016000098-E-00 - 51 - 2016/01 [AK4136] ■ Internal Status Pin The SRCEN pin indicates internal status of the device. This pin outputs “H” when the PDN pin = “L”. SRC data is output from the SDTO pin, which corresponds to the each sampling frequency ratio detected SRC, after a rising edge “↑” of PDN if the internal regulator is in normal operation. When an over-current/voltage flows into the internal regulator, the SRCEN pin outputs “H”. An OR’ed result of the flags between over-current/voltage detection at the internal regulator and SRC sampling frequency detection complete is output from this pin. Over-Current/Voltage Limit Flag (“L” Normal, “H” Over-Current(Voltage)detect) SRC Sampling Frequency Ratio Detection Complete Flag SRCEN pin Figure 43. Internal Flags and SRCEN pin Output In parallel control mode, if the AK4136 is set in SRC bypass mode by CM2-0 pins during the PDN pin = “L” and powered-up, the SRCEN pin outputs “L” after the power-up time of the internal regulator (max. 5ms) from a rising edge “↑” of the PDN pin. In serial control mode, if BYPS bit is set to “1” while RSTN bit = “0”, the SRCEN pin immediately outputs “L” after register writing. 016000098-E-00 - 52 - 2016/01 [AK4136] ■ Serial Control Interface The AK4136 becomes serial control mode by setting the PSN pin to “L”. The AK4136 supports 4-wire serial Interface (I2S pin = “L”) and I2C bus (I2S pin = “H”) modes for internal register accessing. 1. 4-wire Serial Control Mode (I2C pin = “L”) The internal registers may be written by the 4-wire µP interface pins: CSN, CCLK and CDTI. The data on this interface consists of Chip address (2bits, C1/0), Read/Write (Write= “1”, Read= “0”), Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in on the rising edge of CCLK and data is clocked out on the falling edge. Data write becomes available by a rising edge of CSN pin. For read operations, the CDTO output goes high impedance after a low-to-high transition of CSN. The maximum speed of CCLK is 5MHz. Internal register values are initialized by setting the PDN pin to “L”. The internal register timing circuit is reset by setting RSTN bit to “0” in serial control mode. In this case, the register values are not initialized. CSN CCLK CDTI C1 C0 R/W A4 A3 A2 A1 A0 CDTO D7 D6 D5 D4 D3 D2 D1 D0 D5 D4 D3 D2 D1 D0 Hi-z Figure 44. Write Operation CSN CCL K CDT C1 C0 R/W A4 ICDTO A3 A2 A1 A0 D7 Hi-z D6 Figure 45. Read Operation C1-C0: Chip Address (C1 bit =CAD1 pin, C0 bit =CAD0 pin) R/W: READ/WRITE (Wirte=“1”, Read=”0”) A4-A0: Register Address D7-D0: Control Data 016000098-E-00 - 53 - 2016/01 [AK4136] 2. I2C-bus Control Mode (I2C pin = “H”) The AK4136 supports High speed mode I2C-bus (max: 400kHz) 2-1. WRITE Operation Figure 46 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates START condition (Figure 52). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant five bits of the slave address are fixed as “00100”. The next 6th and 7th bits are CAD0/CAD1(device address bit). This bit identifies the specific device on the bus. The hard-wired input pin (CAD0/CAD1 pin) set these device address bits. If the slave address matches that of the AK4136, the AK4136 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 53). R/W bit = “1” indicates that the read operation is to be executed. “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK4136. The format is MSB first, and those most significant 3-bits are fixed to zeros (Figure 48). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 49). The AK4136 generates an acknowledge after each byte is received. Data transfer is always terminated by STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines STOP condition (Figure 52). The AK4136 can execute multiple one byte write operations in a sequence. After receipt of the third byte the AK4136 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 02H prior to generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (Figure 54) except for the START and STOP conditions. S T A R T SDA S T O P R/W="0" Slave S Address Sub Address(n) Data(n) A C K A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 46. Data Transfer Sequence at the I2C-Bus Mode 0 0 1 0 0 CAD1 CAD0 R/W A1 A0 D1 D0 Figure 47. The First Byte 0 0 0 A4 A3 A2 Figure 48. The Second Byte D7 D6 D5 D4 D3 D2 Figure 49. Byte Structure after the second byte 016000098-E-00 - 54 - 2016/01 [AK4136] 2-2. READ Operation Set the R/W bit = “1” for the READ operation of the AK4136. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 02H prior to generating stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out. The AK4136 supports two basic read operations: Current Address Read and Random Address Read. 2-2-1. Current Address Read The AK4136 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4136 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4136 discontinues transmission. S T A R T SDA S T O P R/W="1" Slave S Address Data(n) Data(n+1) A C K Data(n+2) A C K A C K Data(n+x) A C K A C K P A C K Figure 50. Current Address Read 2-2-2. Random Address Read The random read operation allows the master to access any memory location at random. Prior to issuing a slave address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit =“1”. The AK4136 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4136 discontinues transmission. S T A R T SDA S T A R T R/W="0" Slave S Address Sub Address(n) A C K Slave S Address A C K S T O P R/W="1" Data(n) A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 51. Random Address Read 016000098-E-00 - 55 - 2016/01 [AK4136] SDA SCL S P start condition stop condition Figure 52. START and STOP Conditions DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 53. Acknowledge on the I2C-Bus SDA SCL data line stable; data valid change of data allowed Figure 54. Bit Transfer on the I2C-Bus The pull-up resistance of SCL and SDA pins should be connected below the voltage of DVDD+0.3V. 016000098-E-00 - 56 - 2016/01 [AK4136] ■ Register Map Addr Register Name 00H Reset & Mute 01H 02H PCMCONT0 PCMCONT1 D7 D6 D5 D4 SMSEMI SMT2 SMT1 SMT0 SLOW 0 SD 0 DEM1 0 DEM0 0 D3 SMUTE D2 D1 D0 default BYPS FORCE STB RSTN 0x01 DITHER IDIF2 IDIF1 IDIF0 ASCHON TDMICH2 TDMICH1 TDMICH0 0x12 0x00 Note 27. Register values are initialized by setting the PDN pin to “L”. Note 28. Writing to the address except 00H ~ 02H is prohibited. The bits defined as 0 must contain a “0” value. Note 29. µP interface access becomes valid 5ms (max) after from the PDN pin “↑”. 016000098-E-00 - 57 - 2016/01 [AK4136] ■ Register Definitions Addr Register Name 00H D7 Reset & Mute SMSEMI R/W Default R/W 0 D6 D5 D4 D3 D2 SMT2 SMT1 SMT0 SMUTE BYPS R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 D1 FORCE STB R/W 0 D0 RSTN R/W 1 SMSEMI: Semi Auto Soft Mute 0: Semi Auto Soft Mute Off (default) 1: Semi Auto Soft Mute ON SMT2-0: Soft Mute Period 000: 1024/fso (default) 001: 2048/fso 010: 4096/fso 011: 8192/fso 100: 16384/fso 101: 32768/fso 110: reserved 111: reserved Soft Mute Cycle is determined. SMUTE: Soft Mute Control 0: Soft Mute Release (default) 1: Soft Mute In Serial Control Mode (PSN pin = “L”), the CSN/SMUTE pin functions as the CSN pin, and SMUTE setting is ignored. In Parallel Control Mode (PSN pin = “H”), the SMUTE pin setting is valid. BYPS: Bypass Mode Control (Table 8) 0: SRC Mode (default) 1: SRC Bypass Mode FORCESTB: CLKSTABLE signal (Checking signal for IRCK and OLRCK changes) is set to “1” forcibly. 0: Normal Operation (default) 1: CLKSTABLE = “1” RSTN: Digital Reset Control 0: Reset 1: Reset Release (default) Digital blocks are powered down by setting RSTN bit = “0”. However, I2C serial control interface and control register blocks are not powered down, and control register values are not initialized. In this case, control register writing is also available. Internal oscillator that generates internal clock, regulator and reference voltage generation circuits are not powered down. 016000098-E-00 - 58 - 2016/01 [AK4136] Addr 01H Register Name PCMCONT0 R/W Default D7 SLOW R/W 0 D6 SD R/W 0 D5 DEM1 R/W 0 D4 DEM0 R/W 1 D3 DITHER R/W 0 D2 IDIF2 R/W 0 D1 IDIF1 R/W 1 D0 IDIF0 R/W 0 SLOW: FIR1 Filter Coefficient Select 0: Sharp Roll OFF Filter (default) 1: Slow Roll OFF Filter In Serial Control Mode (PSN pin = “L”), the SDA/CDTI/SLOW pin functions as SDA/CDTI pin and SLOW setting is ignored. In Parallel Control Mode (PSN pin = “H”), the SLOW pin setting is valid. SD: FIR1 Filter Coefficient Select 0: Normal Delay Filter(default) 1: Short Delay Filter In Serial Control Mode (PSN pin = “L”), the SCL/CCLK/SD pin functions as SCL/CCLK pin and SD setting is ignored. In Parallel Control Mode (PSN pin = “H”), the SD pin setting is valid. DEM1, DEM0: De-emphasis Control 00: 44.1kHz 01: OFF (default) 10: 48kHz 11: 32kHz DITHER: Dither is added. 0: DITHER OFF (default) 1: DITHER ON IDIF2, IDIF1, IDIF0: Audio Interface Mode Select for Input Port (Table 3) 000: 32bit, LSB justified 001: 24bit, LSB justified 010: 32bit, MSB justified (default) 011: 32 or 16bit, I2S justified 100: TDM 32bit, MSB justified 101: TDM 32bit, I2S Compatible 110: TDM 32bit, MSB justified 111: TDM 32bit, I2S Compatible In Parallel Control Mode (PSN pin = “H”), IDIF2-0 bits settings are valid. 016000098-E-00 - 59 - 2016/01 [AK4136] Addr Register Name 02H PCMCONT1 R/W Default D7 0 R 0 D6 0 R 0 D5 0 R 0 D4 0 R 0 D3 D2 D1 ASCHON TDMICH2 TDMICH1 R/W 0 R/W 0 R/W 0 D0 TDMICH0 R/W 0 ASCHON: Auto Input Source Change Mode ON 0: Auto Input Source Change Mode OFF (default) 1: Auto Input Source Change Mode ON TDMICH2, TDMICH1, TDMICH0:TDM Input Mode Channel Sellect ・256fs Mode 000: Ch1 (Lch), Ch2 (Rch) (default) 001: Ch3 (Lch), Ch4 (Rch) 010: Ch5 (Lch), Ch6 (Rch) 011: Ch7 (Lch), Ch8 (Rch) 100: Ch1 (Lch), Ch2 (Rch) 101: Ch3 (Lch), Ch4 (Rch) 110: Ch5 (Lch), Ch6 (Rch) 111: Ch7 (Lch), Ch8 (Rch) ・512fs Mode 000: Ch1 (Lch), Ch2 (Rch) (default) 001: Ch3 (Lch), Ch4 (Rch) 010: Ch5 (Lch), Ch6 (Rch) 011: Ch7 (Lch), Ch8 (Rch) 100: Ch9 (Lch), Ch10 (Rch) 101: Ch11 (Lch), Ch12 (Rch) 110: Ch13 (Lch), Ch14 (Rch) 111: Ch15 (Lch), Ch16 (Rch) In Parallel Control Mode (PSN pin = “H”), Ch1 (Lch) and Ch2 (Rch) are selected. 016000098-E-00 - 60 - 2016/01 [AK4136] 15.Jitter Tolerance Figure 55 shows the jitter tolerance to ILRCK. The jitter quantity is defined by the jitter frequency and the jitter amplitude shown in Figure 55. When the jitter amplitude is 0.02UIpp or less, the AK4136 operates normally regardless of the jitter frequency. AK4136 Jitter Tolerance Jittter Amplitude [UIpp] 10.00 1.00 0.10 (2) 0.01 (1) 0.00 1 10 100 1000 10000 100000 Jittter Frequency [Hz] Figure 55. Jitter Tolerance (1) Normal Operation (2) There is a possibility that the output data is lost. Note ▪ Y axis is the jitter amplitude of ILRCK just before THD+N degradation starts. 1UI (Unit Interval) is one cycle of ILRCK. When FSI = 48kHz, 1[UIpp]=1/48kHz =20.8μs ▪ This data is evaluated by adding jitter to ILRCK and IBICK, and comparing to the corresponding data input. 016000098-E-00 - 61 - 2016/01 [AK4136] 16.Recommended External Circuit Figure 56 and Figure 57 shows the system connection diagram. An evaluation board (AKD4136) demonstrates application circuits, the optimum layout, power supply arrangements and measurement results.  Serial Control mode (PSN pin = “L”)  4-wire serial Control Mode, Chip Address = “00”  XTI/XTO = 256FSO, X’tal is used  Input PORT: Slave mode, 64FSI IBICK Input audio interface format can be set by registers.  Output PORT: Master mode, 32bit I2S Compatible, 64FSO OBICK.  De-emphasis filter can be switched ON/OFF by the register setting. Digital 3.3V + 10u 10u + 37 OBIT0 CM0 39 OBIT1 38 CM1 40 NC 42 CM2 41 VSEL 43 DV18 44 DVSS 45 NC 47 1 NC 2 NC DVDD 35 3 NC DVSS 34 DVDD 4 ILRCK 5 IBICK 6 SDTI 7 CAD0/IDIF0 8 9 36 0.1u + 10u + 0.1u 10u XTI/OMCLK/TDMI 33 AK4136 Top View CLKMODE 32 XTO 31 fso N CAD1/IDIF1 24.576MHz TDM 30 OLRCK 29 IDIF2 OBICK 28 10 SRCEN 64fso DAC NC 26 23 NC 22 NC 21 ODIF0 NC 25 20 ODIF1 19 CSN/SMUTE 18 SCL/CCLK/SD 16 CDTO 15 PSN 14 PDN 13 I2C 12 TEST1 17 SDA/CDTI/SLOW SDTO 27 11 TEST0 24 NC DSP DVDD 46 NC 48 0.1u 0.1u Micro-Controller + Electrolytic Capacitor Ceramic Capacitor Notes: - DVSS of the AK4136 must be distributed separately from the ground of external controllers. - All digital input pins should not be allowed to float. - Refer to Table 6 for the capacitor values near the X’tal. Figure 56. Typical Connection Diagram (serial control mode) 016000098-E-00 - 62 - 2016/01 [AK4136]  Parallel Control Mode (PSN pin = “H”).  XTI/XTO = 256FSO, X’tal is used.  Input PORT: Slave mode, 32 or 16 bit I2S Compatible, 64 FSI IBICK Input audio interface format can be set by registers.  Output PORT: Master mode, 32 bit I2S Compatible, 64FSO OBICK.  De-emphasis filter is fixed to OFF. Digital 3.3V + 10u 10u + 37 OBIT0 CM0 39 OBIT1 38 CM1 40 NC 42 CM2 41 VSEL 43 DV18 44 DVSS 45 NC 47 1 NC 2 NC DVDD 35 3 NC DVSS 34 4 ILRCK 5 IBICK 6 SDTI 7 CAD0/IDIF0 8 CAD1/IDIF1 9 DVDD 36 0.1u + 10u + 0.1u 10u XTI/OMCLK/TDMI 33 AK4136 Top View CLKMODE 32 XTO 31 24.576MHz TDM 30 fso OLRCK 29 IDIF2 OBICK 28 10 SRCEN 64fso DAC NC 26 23 NC 22 NC 21 ODIF0 NC 25 20 ODIF1 19 CSN/SMUTE 16 CDTO 15 PSN 14 PDN 13 I2C 12 TEST1 18 SCL/CCLK/SD 11 TEST0 17 SDA/CDTI/SLOW SDTO 27 24 NC DSP DVDD 46 NC 48 0.1u 0.1u Micro-Controller + Electrolytic Capacitor Ceramic Capacitor Notes: - DVSS of the AK4136 must be distributed separately from the ground of external controllers. - All digital input pins should not be allowed to float. - Refer to Table 6 for the capacitor values near the X’tal. Figure 57. Typical Connection Diagram (parallel control mode) 016000098-E-00 - 63 - 2016/01 [AK4136] 17.Package ■ Outline Dimensions 9.0 ± 0.2 C 48 37 1 7.0 ± 0.2 9.0 ± 0.2 36 A 12 25 13 0.08 M S A C 0.50 0.22 ± 0.05 0.10 0.00 ~ 0.2 1.40 ± 0.05 0.05 ~ 0.15 S 1.6 MAX 7.0 ± 0.2 S 0.60 ± 0.15 ■ Material & Lead Finish Package molding compound: Epoxy Lead frame material: Cu Pin surface treatment: Solder (Pb free) plate 016000098-E-00 - 64 - 2016/01 [AK4136] ■ Marking AK4136VQ XXXXXXX 1 XXXXXXX: Date code identifier 18. Ordering Guide AK4136VQ AKD4136 016000098-E-00 40  +105C 48-pin LQFP (0.5mm pitch) Evaluation Board for AK4136 - 65 - 2016/01 [AK4136] 19. Revision History Date (Y/M/D) Revision Reason 16/01/21 00 First Edition 016000098-E-00 Page Contents - 66 - 2016/01 [AK4136] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. 016000098-E-00 - 67 - 2016/01
AK4136VQ 价格&库存

很抱歉,暂时无法提供与“AK4136VQ”相匹配的价格&库存,您可以联系我们找货

免费人工找货