0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AK4438VN

AK4438VN

  • 厂商:

    AKM(旭化成)

  • 封装:

    32-WFQN,CSP

  • 描述:

    ICDACAUDIO32B192KSPS32QFN

  • 数据手册
  • 价格&库存
AK4438VN 数据手册
[AK4438] AK4438 108dB 768kHz 32bit 8-Channel Audio DAC 1. General Description The AK4438 is an 8-channel 32-bit DAC which corresponds to digital audio systems. An internal circuit includes newly developed 32-bit Digital Filter achieving short group delay and high quality sound. It corresponds to a 768kHz PCM input at maximum, suitable for play backing high resolution audio sources that are becoming widespread in network audios, USB-DACs and Car Audio Systems. In addition, “OSR-Doubler” technology is newly adopted, making the AK4438 capable of supporting wide range signals and achieving low out-of-band noise while realizing low power consumption. Moreover, the AK4438 has five types of 32-bit digital filters, realizing simple and flexible sound making in wide range of applications. Application: AV Receivers, CD/SACD Players, Network Audios, USB DACs, USB Headphones, Sound Plate/Bars, Car Audios, Automotive External Amplifiers, Measuring Instruments and Control Systems. 2. Features 1. 8ch 32bit DAC - 256 x Over sampling - 32-bit High Quality Sound Short Delay Digital Filter - Single-ended Output, Smoothing Filter - THD+N: 91dB - DR, S/N: 108dB - Channel Independent Digital Volume Control (0dB~-127dB, 0.5dB Step, Mute) - Soft Mute - De-emphasis Filter (supporting 32kHz, 44.1kHz and 48kHz) - I/F Format: MSB justified, LSB justified, I2S, TDM - Zero Detection 2. Sampling Frequency - Normal Speed Mode: 8kHz to 48kHz - Double Speed Mode: 48kHz to 96kHz - Quad Speed Mode: 96kHz to 192kHz - Oct Speed Mode: 384kHz - Hex Speed Mode: 768kHz 3. Master Clock 256fs, 384fs or 512fs, 768fs (Normal Speed Mode: fs=8kHz  48kHz) 256fs, 384fs (Double Speed Mode: fs=48kHz  96kHz) 128fs, 192fs (Quad Speed Mode: fs=96kHz  192kHz) 64fs, 96fs (Oct Speed Mode: fs=384kHz) 32fs, 48fs (Hex Speed Mode: fs=768kHz) 4. P Interface: 3-wire Serial/ I2C bus (Ver 1.0, 400kHz mode) 5. Power Supply - Analog Supply: AVDD = 3.0  3.6V - In/Output Buffer: TVDD = 1.7  3.6V - Integrated LDO for Digital Power Supply 8. Power Consumption: 31mA (fs=48kHz) 9. Operating Temperature: Ta = - 40  105℃ 10. Package: 32-pin QFN(0.5mm pitch) 016001925-E-00 2016/03 -1- [AK4438] 3. Table of Contents 1. 2. 3. 4. 5. General Description ............................................................................................................................. 1 Features............................................................................................................................................... 1 Table of Contents ................................................................................................................................ 2 Block Diagram and Functions ............................................................................................................. 3 Pin Configurations and Functions ....................................................................................................... 4 ■ Pin Configurations .............................................................................................................................. 4 ■ Pin Functions...................................................................................................................................... 5 ■ Handling of Unused Pin ..................................................................................................................... 6 6. Absolute Maximum Ratings................................................................................................................. 7 7. Recommended Operation Conditions ................................................................................................. 7 8. Electrical Characteristics ..................................................................................................................... 8 9. Filter Characteristics (fs=48kHz) ......................................................................................................... 9 ■ Sharp Roll-Off Filter (SD bit = “0”, SLOW bit = “0”) ........................................................................... 9 ■ Slow Roll-Off Filter (SD bit = “0”, SLOW bit = “1”) .......................................................................... 10 ■ Short Delay Sharp Roll-Off Filter (SD bit = “1”, SLOW bit = “0”) ..................................................... 11 ■ Short Delay Slow Roll-Off Filter (SD bit = “1”, SLOW bit = “1”) ....................................................... 12 10. DC Characteristics ......................................................................................................................... 13 11. Switching Characteristics ............................................................................................................... 14 ■ Timing Diagram ................................................................................................................................ 17 12. Functional Descriptions.................................................................................................................. 21 ■ System Clock ................................................................................................................................... 21 ■ De-emphasis Filter ........................................................................................................................... 24 ■ Audio Interface Format..................................................................................................................... 25 ■ Digital Filter ...................................................................................................................................... 34 ■ Zero Detection .................................................................................................................................. 34 ■ Digital Volume Function ................................................................................................................... 35 ■ LR Channel Output Signal Select .................................................................................................... 36 ■ Soft Mute Operation ......................................................................................................................... 38 ■ Error Detection ................................................................................................................................. 39 ■ System Reset ................................................................................................................................... 39 ■ Power Down Function ...................................................................................................................... 40 ■ Power Off and Reset Functions ....................................................................................................... 41 ■ Clock Synchronization ..................................................................................................................... 45 ■ Parallel Mode ................................................................................................................................... 47 ■ Audio Interface ................................................................................................................................. 47 ■ Soft Mute .......................................................................................................................................... 47 ■ Serial Control Interface .................................................................................................................... 48 ■ Register Map .................................................................................................................................... 52 ■ Register Definitions .......................................................................................................................... 53 13. Recommended External Circuits ................................................................................................... 58 ■ Typical Connection Diagram ............................................................................................................ 58 14. Package ......................................................................................................................................... 61 ■ Outline Dimensions .......................................................................................................................... 61 ■ Material & Lead Finish ..................................................................................................................... 61 ■ Marking............................................................................................................................................. 62 15. Ordering Guide............................................................................................................................... 62 ■ Ordering Guide ................................................................................................................................. 62 16. Revision History ............................................................................................................................. 62 IMPORTANT NOTICE............................................................................................................................ 63 016001925-E-00 2016/03 -2- [AK4438] 4. Block Diagram and Functions  Modulator Audio I/F AOUTL1 SMF SCF AOUTR1 SMF SCF MCLK MCLK LRCK BICK LRCK BICK AOUTL2 SMF SCF AOUTR2 SMF SCF AOUTL3 SMF SCF AOUTR3 SMF SCF AOUTL4 SMF SCF AOUTR4 SMF SCF 8X Interpolator DATT Soft Mute  Modulator 8X Interpolator DATT Soft Mute  Modulator 8X Interpolator DATT Soft Mute  Modulator 8X Interpolator DATT Soft Mute SDIN1 SDTI1 SDIN2 SDTI2 SDIN3 SDTI3 SDIN4 SDTI4 uP I/F (I2C/SPI) VREFL CAD0_I2C/CSN/DIF SCL/CCLK/TDM1 SDA/CDTI/TDM0 VREFH VSS2 AVDD PDN I2C TEST SMUTE/CAD1 PS/CAD0_SPI LDO VCOM DZF TVDD VSS1 LDOO Figure 1. Block Diagram 016001925-E-00 2016/03 -3- [AK4438] 5. Pin Configurations and Functions AOUTL3 AVDD VSS2 VCOM VREFL VREFH AOUTR2 AOUTL2 24 23 22 21 20 19 18 17 ■ Pin Configurations AOUTR3 25 16 AOUTR1 AOUTL4 26 15 AOUTL1 AOUTR4 27 14 PS/CAD0_SPI TEST 28 13 CAD0_I2C/CSN/DIF I2C 29 12 SCL/ CCLK/TDM1 TVDD 30 11 SDA/ CDTI /TDM0 VSS1 31 10 SMUTE / CAD1 LDOO 32 Top View Back TAB:Note 1 2 3 4 5 6 7 8 MCLK BICK LRCK SDTI1 SDTI2 SDTI3 SDTI4 DZF 9 PDN Figure 2. Pin Configurations Note: The exposed pad on the bottom surface of the package must be open or connected to the analog ground. 016001925-E-00 2016/03 -4- [AK4438] ■ Pin Functions No. 1 2 3 4 5 6 7 8 9 10 11 12 13 Pin Name I/O PD state MCLK BICK LRCK SDTI1 SDTI2 SDTI3 SDTI4 DZF I I I I I I I O Hi-z Hi-z Hi-z Hi-z Hi-z Hi-z Hi-z 50kΩ Pull-down PDN I Hi-z SMUTE I CAD1 SDA CDTI TDM0 SCL CCLK TDM1 CAD0_I2C CSN I I/O I I I I I I I Hi-z Hi-z Hi-z Hi-z DIF I PS I 15 16 17 18 19 20 CAD0_SPI AOUTL1 AOUTR1 AOUTL2 AOUTR2 VREFH VREFL I O O O O - 21 VCOM O 22 23 24 25 26 27 VSS2 AVDD AOUTL3 AOUTR3 AOUTL4 AOUTR4 O O O O 28 TEST - 29 I2C I Hi-z 30 31 TVDD VSS1 32 LDOO O 580Ω Pull-down 14 Hi-z Hi-z Hi-z Hi-z Hi-z Hi-z Hi-z 500Ω Pull-down Hi-z Hi-z Hi-z Hi-z 25kΩ Pull-down Function External Master Clock Input Pin Audio Serial Data Clock Pin Input Channel Clock Pin Audio Serial Data Input Audio Serial Data Input Audio Serial Data Input Audio Serial Data Input Zero Input Detect in I2C Bus or 3-wire serial control mode Power-Down & Reset Pin. When “L”, the AK4438 is powered-down and the control registers are reset to default state. Soft Mute Pin in Parallel control mode. When this pin is changed to “H”, soft mute cycle is initiated. When returning “L”, the output mute releases. 2 Chip Address 1 Pin in I C Bus or 3-wire serial control mode 2 Control Data Input Pin in I C Bus serial control mode Control Data Input Pin in 3-wire serial control mode TDM Mode select pin in Parallel control mode. 2 Control Data Clock Pin in I C Bus serial control mode Control Data Clock Pin in 3-wire serial control mode TDM Mode select pin in Parallel control mode. 2 Chip Address 0 Pin in I C Bus serial control mode Chip Select Pin in 3-wire serial control mode Audio Data Format Select in Parallel control mode. “L”: 32bit MSB, “H”: 32bit I2S (I2C pin = “H”) Control Mode Select Pin 2 “L”: I C Bus serial control mode, “H”: Parallel control mode. (I2C pin = “L”) Chip Address 0 Pin in 3-wire serial control mode Lch Analog Output Pin Rch Analog Output Pin Lch Analog Output Pin Rch Analog Output Pin Positive Voltage Reference Input Pin, AVDD Negative Voltage Reference Input Pin, VSS2 Common Voltage Output Pin, AVDDx1/2 Large external capacitor around 2.2µF is used to reduce power-supply noise. Analog Ground Pin Analog Power Supply Pin, 3.0V3.6V Lch Analog Output Pin Rch Analog Output Pin Lch Analog Output Pin Rch Analog Output Pin This pin must be connected to VSS1. Control Mode Select Pin “L”: 3-wire serial control mode 2 “H”: I C Bus serial control mode or Parallel control mode. Digital Power Supply Pin, 1.7V3.6V Digital Ground Pin LDO Output Pin. This pin must be connected to ground with 2.2uF ±50%. Note 1. All digital input pins must not be allowed to float. 016001925-E-00 2016/03 -5- [AK4438] ■ Handling of Unused Pin Unused I/O pins must be connected appropriately. Classification Analog Digital Pin Name AOUTL1-4, AOUTR1-4 DZF SDTI1-4 Setting Open Open Connect to VSS1 016001925-E-00 2016/03 -6- [AK4438] 6. Absolute Maximum Ratings (VSS1=VSS2=0V; Note 2) Parameter Symbol Min. Max. Unit Power Supplies Analog AVDD -0.3 4.3 V Digital TVDD -0.3 4.3 V Difference (VSS1 ~ 2) ΔGND -0.3 0.3 V Input Current (any pins except for supplies) IIN mA 10 Digital Input Voltage VIND -0.3 TVDD+0.3 V Ambient Temperature (power applied) Ta -40 105 C Storage Temperature Tstg -65 150 C Note 2. All voltages with respect to ground. VSS1 and VSS2 must be connected to the same analog ground plane. Note 3. The maximum Digital input voltage is smaller value between (LVDD+0.3)V and 4.3V. WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 7. Recommended Operation Conditions (VSS1=VSS2=0V; Note 2) Parameter Symbol Min. Typ. Max. Unit Analog AVDD 3.0 3.3 3.6 V Power Supplies Digital TVDD 1.7 3.3 3.6 V Voltage Reference “H” voltage reference VREFH AVDD0.5 AVDD V (Note 5) “L” voltage reference VREFL VSS2 V Note 4. The power up sequence between AVDD and TVDD is not critical. Note 5. The VREFL pin must be connected to VSS2. Note 6. Do not turn off the power supply of the AK4438 with the power supply of the peripheral device turned on. When using the I2C interface, pull-up resistors of SDA and SCL pins should be connected to TVDD or less voltage. * AKM assumes no responsibility for the usage beyond the conditions in this data sheet. 016001925-E-00 2016/03 -7- [AK4438] 8. Electrical Characteristics (Ta=25C; AVDD =TVDD=3.3V; VSS1=VSS2 =0V; VREFH=AVDD; fs=48kHz; BICK=64fs; Signal Frequency=1kHz; 32bit Data; Measurement Frequency=20Hz20kHz at 48kHz, 20Hz~40kHz at fs=96kHz, 20Hz~40kHz at fs=192kHz, unless otherwise specified.) Parameter Min. Typ. Max. Unit DAC Analog Output Characteristics Resolution 32 bit Output Voltage (Note 7) 2.55 2.83 3.11 Vpp S/(N+D) fs=48kHz 80 91 dB (0dBFS) fs=96kHz 89 dB fs=192kHz 89 dB Dynamic Range fs=48kHz (A-weighted) 104 108 dB (-60dBFS) fs=96kHz 101 dB fs=192kHz 101 dB S/N fs=48kHz (A-weighted) 104 108 dB fs=96kHz 101 dB fs=192kHz 101 dB Interchannel Isolation 90 110 dB Interchannel Gain Mismatch 0 0.7 dB Load Resistance (Note 8) 10 k Load Capacitance 30 pF Power Supply Rejection (Note 9) 50 dB Note 7. Full-scale output voltage. The output voltage is always proportional to AVDD (AVDD x 0.86). Note 8. AC Load Note 9. This is a value when applying a 1kHz 50mVpp sine wave to AVDD. Parameter Min. Typ. Max. Power Supplies Power Supply Current Normal Operation (PDN pin = “H”) AVDD fs=48kHz, 96kHz, 192kHz 27 36 TVDD fs=48kHz 3.4 4.5 TVDD fs=96kHz 4.9 6.4 TVDD fs=192kHz 8.0 10.4 Power-down mode (PDN pin = “L”) (Note 10) AVDD+TVDD 10 200 Note 10. Quiescent Current. All digital input pins including clock pins are fixed to VSS. 016001925-E-00 Unit mA mA mA mA µA 2016/03 -8- [AK4438] 9. Filter Characteristics (fs=48kHz) (Ta= -40  +105C; AVDD =3.0 3.6V, TVDD=1.7 3.6V; DEM=OFF) ■ Sharp Roll-Off Filter (SD bit = “0”, SLOW bit = “0”) fs=44.1kHz Parameter Symbol Min. Typ. Digital Filter 0.05dB PB 0 Passband (Note 11) PB 3.0dB 21.5 Passband Ripple (Note 12) PR -0.0032 Stopband (Note 11) SB 24.1 Stopband Attenuation (Note 14) SA 80 Group Delay (Note 13) GD 26.8 Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz -0.26 fs=96kHz Parameter Digital Filter 0.05dB 3.0dB Passband Ripple (Note 12) Stopband (Note 11) Stopband Attenuation (Note 14) Group Delay (Note 13) Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz Passband (Note 11) fs=192kHz Parameter Digital Filter Symbol Min. PB PB PR SB SA GD 0 Typ. Max. Unit 20.0 - kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 43.5 - kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 0.0032 46.8 -0.0032 52.5 80 - 0.0032 0 26.8 -0.53 Symbol Min. Typ. 0 87.0 0.05dB PB kHz PB kHz 3.0dB 93.6 Passband Ripple (Note 12) PR -0.0032 0.0032 dB Stopband (Note 11) SB 105 kHz Stopband Attenuation (Note 14) SA 80 dB Group Delay (Note 13) GD 26.8 1/fs Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz -1.9 0.1 dB Note 11. The pass band and stop band frequencies scale with fs. For example, PB=0.4535×fs, SB=0.546×fs. Note 12. It is the pass band gain amplitude of the double over sampling filter at the first step of the Interpolator. Note 13. The calculating delay time which occurred by digital filtering. This time is from setting the 16/20/24/32bit data of both channels to input register to the output of analog signal. Note 14. The output level is assumed as 0dB when inputting a 1kHz 0dB sine wave. Passband (Note 11) *Digital filter characteristics are based on simulation results. 016001925-E-00 2016/03 -9- [AK4438] ■ Slow Roll-Off Filter (SD bit = “0”, SLOW bit = “1”) fs=44.1kHz Parameter Digital Filter 0.05dB 3.0dB Passband Ripple (Note 12) Stopband (Note 15) Stopband Attenuation (Note 14) Group Delay (Note 13) Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz Passband (Note 15) fs=96kHz Parameter Digital Filter 0.05dB 3.0dB Passband Ripple (Note 12) Stopband (Note 15) Stopband Attenuation (Note 14) Group Delay (Note 13) Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz Passband (Note 15) fs=192kHz Parameter Digital Filter Symbol Min. PB PB PR SB SA GD 0 Typ. Max. Unit 8.1 - kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 17.7 - kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 18.2 -0.043 39.2 73 - 0.0032 6.3 -5.06 Symbol Min. PB PB PR SB SA GD 0 Typ. 39.5 -0.043 85.3 73 - 0.043 6.3 -5.23 Symbol Min. Typ. 0.05dB PB 0 35.5 3.0dB PB 79.0 Passband Ripple (Note 12) PR -0.043 0.043 Stopband (Note 15) SB 171 Stopband Attenuation (Note 14) SA 73 Group Delay (Note 13) GD 6.3 Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz -5.90 0.1 Note 15. The pass band and stop band frequencies scale with fs. For example, PB=0.185×fs, SB=0.888×fs. Passband (Note 15) 016001925-E-00 kHz kHz dB kHz dB 1/fs dB 2016/03 - 10 - [AK4438] ■ Short Delay Sharp Roll-Off Filter (SD bit = “1”, SLOW bit = “0”) fs=44.1kHz Parameter Digital Filter 0.05dB 3.0dB Passband Ripple (Note 12) Stopband (Note 11) Stopband Attenuation (Note 14) Group Delay (Note 13) Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz Passband (Note 11) fs=96kHz Parameter Digital Filter 0.05dB 3.0dB Passband Ripple (Note 12) Stopband (Note 11) Stopband Attenuation (Note 14) Group Delay (Note 13) Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz Passband (Note 11) fs=192kHz Parameter Digital Filter 0.05dB 3.0dB Passband Ripple (Note 12) Stopband (Note 11) Stopband Attenuation (Note 14) Group Delay (Note 13) Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz Passband (Note 11) Symbol Min. PB PB PR SB SA GD 0 Typ. Max. Unit 20.0 - kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 43.5 - kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 87.0 - kHz kHz dB kHz dB 1/fs 0.1 dB 21.5 -0.0031 24.1 80 - 0.0031 5.8 -0.26 Symbol Min. PB PB PR SB SA GD 0 Typ. 46.8 -0.0031 52.5 80 - 0.0031 0 5.8 -0.53 Symbol Min. PB PB PR SB SA GD 0 Typ. 93.6 -0.0031 105 80 -1.9 016001925-E-00 0.0031 5.8 2016/03 - 11 - [AK4438] ■ Short Delay Slow Roll-Off Filter (SD bit = “1”, SLOW bit = “1”) fs=44.1kHz Parameter Digital Filter 0.05dB 3.0dB Passband Ripple (Note 12) Stopband (Note 16) Stopband Attenuation (Note 14) Group Delay (Note 13) Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz Passband (Note 16) fs=96kHz Parameter Digital Filter 0.05dB 3.0dB Passband Ripple (Note 12) Stopband (Note 16) Stopband Attenuation (Note 14) Group Delay (Note 13) Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz Passband (Note 16) fs=192kH Parameter Digital Filter Symbol Min. PB PB PR SB SA GD 0 Typ. Max. Unit 11.1 - kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 24.2 - kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 19.4 -0.05 38.1 82 - 0.05 4.8 -5.06 Symbol Min. PB PB PR SB SA GD 0 Typ. 42.1 -0.05 83.0 82 - 0.05 4.8 -5.23 Symbol Min. Typ. 0.05dB PB 0 48.4 3.0dB PB 84.3 Passband Ripple (Note 12) PR -0.05 0.05 Stopband (Note 16) SB 165.9 Stopband Attenuation (Note 14) SA 82 Group Delay (Note 13) GD 4.8 Digital Filter + SCF + SMF (Note 14) Frequency Response : 0  20.0kHz -5.90 0.1 Note 16. The pass band and stop band frequencies scale with fs. For example, PB=0.252×fs, SB=0.864×fs. Passband (Note 16) 016001925-E-00 kHz kHz dB kHz dB 1/fs dB 2016/03 - 12 - [AK4438] 10. DC Characteristics (Ta= -40  +105C; AVDD =3.0 3.6V, TVDD=1.7 3.6V) Parameter Symbol Min. TVDD=1.7V  3.0V High-Level Input Voltage VIH1 80%TVDD Low-Level Input Voltage VIL1 TVDD=3.0V  3.6V High-Level Input Voltage VIH2 70%TVDD Low-Level Input Voltage VIL2 High-Level Output Voltage VOH TVDD0.5 (DZF pins: Iout= -100µA) Low-Level Output Voltage (DZF pin : Iout= 100µA) VOL1 (SDA pin, 2.0V  TVDD  3.6V: Iout= 3mA) VOL2 (SDA pin, 1.7V  TVDD  2.0V: Iout= 3mA) VOL3 Input Leakage Current Iin - 016001925-E-00 Typ. Max. Unit - 20%TVDD V V - 30%TVDD V V - - V - 0.5 0.4 20%TVDD 10 V V V A - 2016/03 - 13 - [AK4438] 11. Switching Characteristics (Ta=-40  105C; AVDD=3.0  3.6V, TVDD=1.7  3.6V; CL=20pF, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Master Clock Timing External Clock 256fsn: fCLK 2.048 12.288 Pulse Width Low tCLKL 32 Pulse Width High tCLKH 32 384fsn: fCLK 3.072 18.432 Pulse Width Low tCLKL 22 Pulse Width High tCLKH 22 512fsn, 256fsd, 128fsq, 64fso, 32fsh: fCLK 4.096 24.576 Pulse Width Low tCLKL 16 Pulse Width High tCLKH 16 768fsn, 384fsd, 192fsq, 96fso, 48fsh: fCLK 6.144 36.864 Pulse Width Low tCLKL 11 Pulse Width High tCLKH 11 LRCK Timing (Slave mode) Stereo mode (TDM1-0 bits = “00”) Normal Speed Mode fsn 8 48 Double Speed Mode fsd 48 96 Quad Speed Mode fsq 96 192 Oct speed mode fso 384 Hex speed mode fsh 768 Duty Cycle Duty 45 55 TDM128 mode (TDM1-0 bits = “01”) LRCK frequency fsn 8 48 fsd 48 96 fsq 96 192 “H” time tLRH 1/128fs “L” time tLRL 1/128fs TDM256 mode (TDM1-0 bits = “10”) LRCK frequency fsn 8 48 fsd 48 96 “H” time tLRH 1/256fs “L” time tLRL 1/256fs TDM512 mode (TDM1-0 bits = “11”) LRCK frequency fsn 8 48 “H” time tLRH 1/512fs “L” time tLRL 1/512fs 016001925-E-00 Unit MHz ns ns MHz ns ns MHz ns ns MHz ns ns kHz kHz kHz kHz kHz % kHz kHz kHz ns ns kHz kHz ns ns kHz ns ns 2016/03 - 14 - [AK4438] Parameter Symbol Min. Typ. Audio Interface Timing Stereo mode (TDM1-0 bits = “00”) BICK Period Normal Speed Mode tBCK 1/256fsn Double Speed Mode tBCK 1/128fsd Quad Speed Mode tBCK 1/64fsq Oct Speed Mode tBCK 1/64fso Hex Speed Mode tBCK 1/64fsh BICK Pulse Width Low tBCKL 9 BICK Pulse Width High tBCKH 9 tLRB 5 LRCK Edge to BICK “” (Note 17) tBLR 5 BICK “” to LRCK Edge (Note 17) tSDH 5 SDTI Hold Time 5 tSDS SDTI Setup Time TDM128 mode (TDM1-0 bits = “01”) BICK Period Normal Speed Mode tBCK 1/128fsn Double Speed Mode tBCK 1/128fsd Quad Speed Mode tBCK 1/128fsq BICK Pulse Width Low tBCKL 16 BICK Pulse Width High tBCKH 16 tBLR 5 LRCK Edge to BICK “” (Note 17) tLRB 5 BICK “” to LRCK Edge (Note 17) tSDH 5 SDTI Hold Time tSDS 5 SDTI Setup Time TDM256 mode (TDM1-0 bits = “10”) BICK Period Normal Speed Mode tBCK 1/256fsn Double Speed Mode tBCK 1/256fsd BICK Pulse Width Low tBCKL 16 BICK Pulse Width High tBCKH 16 LRCK Edge to BICK “” (Note 17) tBLR 5 tLRB 5 BICK “” to LRCK Edge (Note 17) tSDH 5 SDTI Hold Time tSDS 5 SDTI Setup Time TDM512 mode (TDM1-0 bits = “11”) BICK Period Normal Speed Mode tBCK 1/512fsn BICK Pulse Width Low tBCKL 16 BICK Pulse Width High tBCKH 16 LRCK Edge to BICK “” (Note 17) tBLR 5 tLRB 5 BICK “” to LRCK Edge (Note 17) tSDH 5 SDTI Hold Time tSDS 5 SDTI Setup Time Note 17. BICK rising edge must not occur at the same time as LRCK edge. 016001925-E-00 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 2016/03 - 15 - [AK4438] Parameter Control Interface Timing (3-wire Serial mode): CCLK Period CCLK Pulse Width Low Pulse Width High CDTI Setup Time CDTI Hold Time CSN “H” Time CSN “” to CCLK “” CCLK “” to CSN “” Control Interface Timing (I2C Bus mode): SCL Clock Frequency Bus Free Time Between Transmissions Start Condition Hold Time (prior to first clock pulse) Clock Low Time Clock High Time Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling (Note 18) SDA Setup Time from SCL Rising Rise Time of Both SDA and SCL Lines Fall Time of Both SDA and SCL Lines Setup Time for Stop Condition Pulse Width of Spike Noise Suppressed by Input Filter Capacitive load on bus Power-down & Reset Timing PDN Pulse Width (Note 19) Symbol Min. tCCK tCCKL tCCKH tCDS tCDH tCSW tCSS tCSH 200 80 80 40 40 150 50 50 fSCL tBUF tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tR tF tSU:STO tSP Cb 1.3 0.6 1.3 0.6 0.6 0 0.1 0.6 0 - Typ. Max. Unit ns ns ns ns ns ns ns ns 400 1.0 0.3 50 400 kHz s s s s s s s s s ns pF tAPD 800 ns tRPD 50 ns Note 18. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. Note 19. The AK4438 can be reset by setting the PDN pin to “L” upon power-up. The PDN pin must held “L” for more than 800ns for a certain reset. The AK4438 is not reset by the “L” pulse less than 50ns. Note 20. I2C-bus is a trademark of NXP B.V. PDN Reject Pulse Width 016001925-E-00 2016/03 - 16 - [AK4438] ■ Timing Diagram 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fsn, 1/fsd, 1/fsq VIH LRCK VIL tdLRKH tdLRKL Duty = tdLRKH (or tdLRKL) x fs x 100 tBCK VIH BICK VIL tBCKH tBCKL Figure 3. Clock Timing (TDM1-0 bits = “00”) 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs VIH LRCK VIL tLRH tLRL tBCK VIH BICK VIL tBCKH tBCKL Figure 4. Clock Timing (Except TDM1-0 bits = “00”) 016001925-E-00 2016/03 - 17 - [AK4438] VIH LRCK VIL tBLR tLRB VIH BICK VIL tSDS tSDH VIH SDTI VIL Figure 5. Audio Interface Timing (TDM1-0 bits = “00”) VIH LRCK VIL tBLR tLRB VIH BICK VIL tSDS tSDH VIH SDTI VIL Figure 6. Audio Interface Timing (Except TDM1-0 bits = “00”) 016001925-E-00 2016/03 - 18 - [AK4438] VIH CSN VIL tCSH tCSS tCCKL tCCKH VIH CCLK VIL tCDS tCDH VIH CDTI C1 C0 R/W VIL Figure 7. WRITE Command Input Timing (3-wire Serial mode) tCSW VIH CSN VIL tCSH tCSS VIH CCLK VIL VIH CDTI D2 D1 D0 VIL Figure 8. WRITE Data Input Timing (3-wire Serial mode) 016001925-E-00 2016/03 - 19 - [AK4438] VIH SDA VIL tLOW tBUF tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT Start tSU:STA tSU:STO Start Stop 2 Figure 9. I C Bus mode Timing tAPD tRPD PDN VIL Figure 10. Power-down & Reset Timing 016001925-E-00 2016/03 - 20 - [AK4438] 12. Functional Descriptions ■ System Clock The external clocks which are required to operate the AK4438 are MCLK, LRCK and BICK. MCLK should be synchronized with LRCK and BICK but the phase is not critical. There are two methods to set MCLK frequency. In Manual Setting Mode (ACKS bit= “0”: Default), the sampling speed is set by DFS2-0 bit (Table 1). The frequency of MCLK at each sampling speed is set automatically (Table 2, Table 3). In Auto Setting Mode (ACKS bit= “1”), as MCLK frequency is detected automatically (Table 4) and the internal master clock attains the appropriate frequency (Table 5), so it is not necessary to set DFS2-0 bits. After exiting reset at power-up (PDN pin = “L” →“H”), the AK4438 is in power-down mode until MCLK and LRCK are input. The AK4438 is set to Manual Setting Mode at power-up (PDN pin = “L” →“H”). When changing the clock, the AK4438 must be reset by the PDN pin or RSTN bit. If the clock is stopped, a click noise occurs when restarting the clock. Mute the digital output externally if the click noise affects system applications. 016001925-E-00 2016/03 - 21 - [AK4438] 1. Manual Setting Mode (ACKS bit = “0”) MCLK frequency is detected automatically and the sampling rate is set by DFS2-0 bits (Table 1). The MCLK frequency corresponding to each sampling speed should be provided externally (Table 2, Table 3). The AK4438 is set to Manual Setting Mode at power-up (PDN pin = “L” →“H”). When DFS2-0 bits are changed, the AK4438 should be reset by RSTN bit. DFS2 0 0 0 0 1 1 1 1 DFS1 0 0 1 1 0 0 1 1 DFS0 0 1 0 1 0 1 0 1 Sampling Speed Mode (fs) Normal Speed Mode 8kHz~48kHz Double Speed Mode 48kHz~96kHz Quad Speed Mode 96kHz~192kHz N/A N/A Oct Speed Mode Hex Speed Mode 384kHz 768kHz N/A N/A N/A N/A (default) (N/A: Not Available) Table 1. Sampling Speed (Manual Setting Mode) LRCK MCLK(MHz) Sampling Speed fs 32fs 48fs 64fs 96fs N/A N/A N/A N/A 8.0kHz N/A N/A N/A N/A 44.1kHz Normal N/A N/A N/A N/A 48.0kHz N/A N/A N/A N/A 88.2kHz Double N/A N/A N/A N/A 96.0kHz N/A N/A N/A N/A 176.4kHz Quad N/A N/A N/A N/A 192.0kHz N/A N/A 24.576 36.864 384.0kHz Oct N/A N/A 768.0kHz 24.576 36.864 Hex Table 2. System Clock Example (Manual Setting Mode) LRCK fs 8.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384.0kHz 768.0kHz 128fs 192fs N/A N/A N/A N/A N/A 22.5792 24.5760 N/A N/A N/A N/A N/A N/A N/A 33.8688 36.8640 N/A N/A MCLK(MHz) 256fs 384fs 2.0480 11.2896 12.2880 22.5792 24.5760 N/A N/A N/A N/A 3.0720 16.9344 18.4320 33.8688 36.8640 N/A N/A N/A N/A 512fs 768fs 4.0960 22.5792 24.5760 N/A N/A N/A N/A N/A N/A 6.1440 33.8688 36.8640 N/A N/A N/A N/A N/A N/A Sampling Speed Normal Double Quad Oct Hex Table 3. System Clock Example (Manual Setting Mode) 016001925-E-00 2016/03 - 22 - [AK4438] 2. Auto Setting Mode (ACKS bit = “1”) MCLK frequency and the sampling speed are detected automatically (Table 4) and DFS2-0 bits are ignored. The MCLK frequency corresponding to each sampling speed should be provided externally (Table 5, Table 6). MCLK Sampling Speed Mode 512fs/256fs 768fs/384fs Normal Speed Mode 256fs 384fs Double Speed Mode 128fs 192fs Quad Speed Mode 64fs 96fs Oct Speed Mode 32fs 48fs Hex Speed Mode Table 4. Sampling Speed (Auto Setting Mode) LRCK MCLK(MHz) Sampling Speed fs 32fs 48fs 64fs 96fs N/A N/A N/A N/A 8.0kHz N/A N/A N/A N/A 44.1kHz Normal N/A N/A N/A N/A 48.0kHz N/A N/A N/A N/A 88.2kHz Double N/A N/A N/A N/A 96.0kHz N/A N/A N/A N/A 176.4kHz Quad N/A N/A N/A N/A 192.0kHz N/A N/A 24.576 36.864 384.0kHz Oct N/A N/A 768.0kHz 24.576 36.864 Hex Table 5. System Clock Example (Auto Setting Mode) LRCK fs 8.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384.0kHz 768.0kHz 128fs 192fs N/A N/A N/A N/A N/A 22.5792 24.5760 N/A N/A N/A N/A N/A N/A N/A 33.8688 36.8640 N/A N/A MCLK(MHz) 256fs 384fs 2.0480 11.2896 12.2880 22.5792 24.5760 N/A N/A N/A N/A 3.0720 16.9344 18.4320 33.8688 36.8640 N/A N/A N/A N/A 512fs 768fs 4.0960 22.5792 24.5760 N/A N/A N/A N/A N/A N/A 6.1440 33.8688 36.8640 N/A N/A N/A N/A N/A N/A Sampling Speed Normal Double Quad Oct Hex Table 6. System Clock Example (Auto Setting Mode) MCLK= 256fs/384fs supports sampling rate of 8kHz~96kHz (Table 7). However, when the sampling rate is 8kHz~48kHz, DR and S/N will degrade by approximately 3dB as compared to when MCLK= 512fs/768fs. ACKS bit MCLK DR,S/N L 256fs/384fs/512fs/768fs 108dB H 256fs/384fs 105dB H 512fs/768fs 108dB Table 7. Relationship of DR, S/N and MCLK frequency (fs = 44.1kHz) 016001925-E-00 2016/03 - 23 - [AK4438] ■ De-emphasis Filter The AK4438 has a digital de-emphasis filter (tc=50/15µs) by an IIR filter. The de-emphasis filter only supports Normal Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz, 48kHz). De-emphasis of each DAC can be set individually for DAC1(SDTI1), DAC2(SDTI2), DAC3(SDTI3) and DAC4(SDTI4) by register settings. Mode 0 1 2 3 Sampling Speed Mode Normal Speed Mode Normal Speed Mode Normal Speed Mode Normal Speed Mode DEM11 (DEM41-21) 0 0 1 1 DEM10 (DEM40-20) 0 1 0 1 DEM 44.1kHz OFF 48kHz 32kHz (default) Table 8. De-emphasis Control 016001925-E-00 2016/03 - 24 - [AK4438] ■ Audio Interface Format TDM1-0 bits, DIF2-0 bits, SDS2-0 bits, TDM1-0 pins and DIF pin settings should not be changed during operation. [1] PCM Mode Normal Mode (TDM1-0 bit=“00”) Eight channels audio data is shifted in via the SDTI1-4 pins using BICK and LRCK inputs. Data is selected by SDS2-0 bits. Eight data formats are supported and selected by the DIF2-0 bits as shown in Table 9. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. Mode 2 can be used in 16-bit and 20-bit MSB justified and Mode 6 can be used in 16-bit, 20-bit and 24-bit MSB justified formats by zeroing the unused LSBs. TDM128 Mode (TDM1-0 bit=“01”) Eight channels audio data is shifted in via the SDTI1-2 pins using BICK and LRCK inputs. Data is selected by SDS2-0 bits. The data input to the SDTI3-4 pins are ignored. BICK is fixed to 128fs. Six data formats are supported and selected by the DIF2-0 bits as shown in Table 9. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. TDM256 Mode (TDM1-0 bit=“10”) Sixteen channels audio data is shifted in via the SDTI1-2 pins using BICK and LRCK inputs. Data is selected by SDS2-0 bits. The data input to the SDTI3-4 pins are ignored. BICK is fixed to 256fs. Six data formats are supported and selected by the DIF2-0 bits as shown in Table 9. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. TDM512 Mode (TDM1-0 bit=“11”) Sixteen channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected by SDS2-0 bits. The data input to the SDTI2-4 pins are ignored. BICK is fixed to 512fs. Six data formats are supported and selected by the DIF2-0 bits as shown in Table 9. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. 016001925-E-00 2016/03 - 25 - [AK4438] Mode TDM1 TDM0 DIF2 0 0 0 DIF1 0 0 1 DIF0 0 1 0 SDTI Format LRCK BICK 0 16-bit LSB justified H/L 32fs 1 20-bit LSB justified H/L 40fs 2 24-bit MSB justified H/L 48fs 16-bit I2S compatible L/H 32fs 3 0 1 1 Normal 2 24-bit I S compatible L/H 0 0 48fs (Note 21) 4 1 0 0 24-bit LSB justified H/L 48fs 5 1 0 1 32-bit LSB justified H/L 64fs 6 1 1 0 32-bit MSB justified H/L 64fs 7 1 1 1 32-bit I2S compatible L/H 64fs 0 0 0 N/A 128fs  0 0 1 N/A 128fs  8 0 1 0 24-bit MSB justified 128fs  9 0 1 1 24-bit I2S compatible 128fs  TDM128 0 1 10 1 0 0 24-bit LSB justified 128fs  11 1 0 1 32-bit LSB justified 128fs  12 1 1 0 32-bit MSB justified 128fs  13 1 1 1 32-bit I2S compatible 128fs  0 0 0 N/A 256fs  0 0 1 N/A 256fs  14 0 1 0 24-bit MSB justified 256fs  15 0 1 1 24-bit I2S compatible 256fs  TDM256 1 0 16 1 0 0 24-bit LSB justified 256fs  17 1 0 1 32-bit LSB justified 256fs  18 1 1 0 32-bit MSB justified 256fs  19 1 1 1 32-bit I2S compatible 256fs  0 0 0 N/A 512fs  0 0 1 N/A 512fs  20 0 1 0 24-bit MSB justified 512fs  21 0 1 1 24-bit I2S compatible 512fs  TDM512 1 1 22 1 0 0 24-bit LSB justified 512fs  23 1 0 1 32-bit LSB justified 512fs  24 1 1 0 32-bit MSB justified 512fs  2 25 1 1 1 32-bit I S compatible 512fs  Note 21. BICK that is input to each channel must be longer than the bit length of setting format. (N/A: Not available) Table 9. Audio Data Format 016001925-E-00 2016/03 - 26 - [AK4438] LRCK 0 1 10 11 12 13 14 15 0 1 10 11 12 13 14 15 0 1 BICK (32fs) SDTI1-4 Mode 0 15 0 14 6 1 5 14 4 15 3 16 2 1 17 0 31 15 0 14 6 1 5 14 4 15 3 16 2 1 17 0 31 15 14 0 1 0 1 0 1 BICK (64fs) SDTI1-4 Mode 0 Don’t care 15 14 0 Don’t care 15 14 0 15:MSB, 0:LSB Lch Data Rch Data Figure 11. Mode 0 Timing LRCK 0 1 8 9 10 11 12 31 0 1 8 9 10 11 12 31 BICK (64fs) SDTI1-4 Mode 1 Don’t care 19 0 Don’t care 19 0 Don’t care 19 0 19 0 19:MSB, 0:LSB SDTI1-4 Mode 4 Don’t care 23 22 21 20 23 22 20 21 23:MSB, 0:LSB Lch Data Rch Data Figure 12. Mode 1/4 Timing LRCK 0 1 2 22 23 24 30 31 0 1 2 22 23 24 30 31 BICK (64fs) SDTI1-4 23 22 1 0 Don’t care 23 22 1 0 Don’t care 23 22 23:MSB, 0:LSB Lch Data Rch Data Figure 13. Mode 2 Timing 016001925-E-00 2016/03 - 27 - [AK4438] LRCK 0 1 2 3 23 24 25 31 0 1 2 3 23 24 25 31 0 1 BICK (64fs) SDTI1-4 23 1 22 0 Don’t care 23 22 1 0 Don’t care 23 23:MSB, 0:LSB Lch Data Rch Data Figure 14. Mode 3 Timing LRCK 0 1 2 22 23 24 30 31 0 1 2 22 23 24 30 31 0 1 BICK (64fs) SDTI1-4 Mode 5,6 31 30 1 0 31 30 1 0 31 30 32:MSB, 0:LSB Lch Data Rch Data Figure 15. Mode 5/6 Timing LRCK 0 1 2 3 23 24 25 31 0 1 0 31 2 3 23 24 25 31 0 1 0 31 BICK (64fs) SDTI1-4 31 30 1 30 1 30 32:MSB, 0:LSB Lch Data Rch Data Figure 16. Mode 7 Timing 016001925-E-00 2016/03 - 28 - [AK4438] 128 BICK LRCK BICK(128fs) SDTI1-2 Mode8 23 22 SDTI1-2 Mode11,12 31 30 0 23 22 0 0 31 30 23 22 0 0 31 30 23 22 0 0 31 30 23 22 0 31 30 2 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK Figure 17. Mode 8/11/12 Timing 128 BICK LRCK BICK(128fs) SDTI1-2 Mode9 SDTI1-2 Mode13 0 23 22 0 23 22 31 30 0 23 22 0 31 30 23 22 0 31 30 L1 R1 32 BICK 32 BICK 23 0 0 31 30 2 0 31 30 L2 R2 32 BICK 32 BICK Figure 18. Mode 9/13 Timing 128 BICK LRCK BICK(128fs) SDTI1-2 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 Figure 19. Mode 10 Timing 016001925-E-00 2016/03 - 29 - [AK4438] 256 BICK LRCK BICK (256fs) SDTI1-2 Mode14 SDTI1-2 Mode17,18 23 22 0 31 30 23 22 0 0 31 30 23 22 0 0 31 30 23 22 0 0 31 30 23 22 0 0 31 30 23 22 0 0 31 30 23 22 0 0 31 30 23 22 0 0 31 30 23 22 0 31 30 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 23 Figure 20. Mode 14/17/18 Timing 256 BICK LRCK BICK (256fs) SDTI1-2 Mode15 SDTI1-2 Mode19 23 0 23 31 30 0 23 0 31 30 0 23 0 31 30 0 23 0 31 30 0 23 0 31 30 0 0 31 30 0 0 31 30 0 0 31 30 23 0 31 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 21. Mode 15/19 Timing 256 BICK LRCK BICK(256fs) SDTI1-2 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 23 Figure 22. Mode 16 Timing 016001925-E-00 2016/03 - 30 - [AK4438] 512BICK LRCK BICK(512fs) SDTI1 Mode8 SDTI1 Mode11,12 23 22 0 23 22 0 23 22 23 22 0 0 23 22 0 23 22 0 23 22 0 23 22 23 0 2 31 22 0 31 22 0 31 22 R1 L1 0 31 22 0 31 22 R2 L2 0 31 22 0 31 22 R3 L3 0 31 22 31 0 R4 L4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 23. Mode 20/23/24 Timing 512BICK LRCK BICK(512fs) SDTI1 Mode21 SDTI1 Mode25 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 23 0 2 31 22 0 31 22 0 31 22 R1 L1 0 31 22 0 31 22 R2 L2 0 31 22 0 31 22 R3 L3 0 31 22 31 0 R4 L4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 24. Mode 21/25 Timing 512BICK LRCK BICK(512fs) SDTI1 Mode22 23 22 0 L1 23 22 2 R1 0 23 22 L2 0 23 22 R2 0 23 22 L3 0 23 22 R3 0 23 22 L4 0 23 22 23 0 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 25. Mode 22 Timing 016001925-E-00 2016/03 - 31 - [AK4438] [2] Data Select SDS2-0 bits control the playback channel of each DAC. LRCK SDTI1 L1 R1 SDTI2 L2 R2 SDTI3 L3 R3 SDTI4 L4 R4 Figure 26. Data Slot in Normal Mode 128 BICK LRCK SDTI1 L1 R1 L2 R2 SDTI2 L3 R3 L4 R4 Figure 27. Data Slot in TDM128 Mode 256 BICK LRCK SDTI1 L1 R1 L2 R2 L3 R3 L4 R4 SDTI2 L5 R5 L6 R6 L7 R7 L8 R8 Figure 28. Data Slot in TDM256 Mode 512 BICK LRCK SDTI1 L1 R1 L2 R2 L3 R3 L4 R4 L5 R5 L6 R6 L7 R7 L8 R8 Figure 29. Data Slot in TDM512 Mode 016001925-E-00 2016/03 - 32 - [AK4438] 0 DAC1 Lch Rch L1 R1 DAC2 Lch Rch L2 R2 DAC3 Lch Rch L3 R3 DAC4 Lch Rch L4 R4 0 1 L2 R2 L3 R3 L4 R4 L1 R1 * 1 0 L3 R3 L4 R4 L1 R1 L2 R2 * 1 1 L4 R4 L1 R1 L2 R2 L3 R3 * 0 0 L1 R1 L2 R2 L3 R3 L4 R4 * 0 1 L2 R2 L3 R3 L4 R4 L1 R1 * 1 0 L3 R3 L4 R4 L1 R1 L2 R2 * 1 1 L4 R4 L1 R1 L2 R2 L3 R3 0 0 0 0 0 1 L1 L2 R1 R2 L2 L3 R2 R3 L3 L4 R3 R4 L4 L5 R4 R5 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 L3 L4 L5 L6 L7 L8 R3 R4 R5 R6 R7 R8 L4 L5 L6 L7 L8 L1 R4 R5 R6 R7 R8 R1 L5 L6 L7 L8 L1 L2 R5 R6 R7 R8 R1 R2 L6 L7 L8 L1 L2 L3 R6 R7 R8 R1 R2 R3 0 0 0 0 0 1 L1 L2 R1 R2 L2 L3 R2 R3 L3 L4 R3 R4 L4 L5 R4 R5 0 0 TDM512 1 1 1 1 (*: Do not care) 1 1 0 0 1 1 0 1 0 1 0 1 L3 L4 L5 L6 L7 L8 R3 R4 R5 R6 R7 R8 L4 L5 L6 L7 L8 L1 R4 R5 R6 R7 R8 R1 L5 L6 L7 L8 L1 L2 R5 R6 R7 R8 R1 R2 L6 L7 L8 L1 L2 L3 R6 R7 R8 R1 R2 R3 Normal TDM128 TDM256 SDS2 SDS1 SDS0 * 0 * Table 10. Data Select 016001925-E-00 2016/03 - 33 - [AK4438] ■ Digital Filter Five digital filters are available for playback, providing a choice of different sound colors. These digital filters are selected by SD bit, SLOW bit and SSLOW bit. SSLOW 0 0 0 0 1 SD bit 0 0 1 1 * SLOW bit Mode 0 Sharp roll-off filter 1 Slow roll-off filter 0 Short delay Sharp roll-off filter 1 Short delay Slow roll-off filter * Super Slow Roll-off Mode Table 11. Digital Filter Setting (*: don’t care) (default) ■ Zero Detection The AK4438 has channel-independent zero detection function. Zero detection channels (AOUTL1-4 and AOUTR1-4 pins) can be selected by 07H/08H registers (L1-4 bits, R1-4 bits). When the input data at each channel is continuously zeros for 8192 LRCK cycles, the DZF pin goes to “H”. The DZF pin immediately returns to “L” if the input data of each channel is not zero. If the RSTN bit is “0”, the DZF pins of both channels go to “H”. The DZF pin of both channels go to “L” after 4 ~ 5/fs when RSTN bit returns to “1”. The DZFB bit can invert the polarity of the DZF pin. If all channels are disabled, the DZF pin outputs “Not zero”. DZFB bit Data DZF pin Not zero L 0 Zero detect H Not zero H 1 Zero detect L Not zero: One of the zero detection channels set by L1-4 bits and R1-4 bits does not detect zero. Zero detect: All zero detection channels set by L1-4 bits and R1-4 bits detect zero. Table 12. DZF Pin Function 016001925-E-00 2016/03 - 34 - [AK4438] ■ Digital Volume Function The AK4438 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each DAC1-4 can be set by ATT7-0 bits (register 0A-11H), respectively (Table 13). ATT7-0bits Attenuation Level (register 0A-11H) FFH +0dB (default) FEH -0.5dB FDH -1.0dB : : : : 02H -126.5dB 01H -127.0dB 00H MUTE (-∞) Table 13. Attenuation level of Digital Attenuator Transition time between set values of ATT7-0 bits can be selected by the ATS1-0 bits (Table 14). The transition between set values is a soft transition in Mode0/1/2 eliminating switching noise in the transition. Mode 0 1 2 3 ATS1 0 0 1 1 ATS0 0 1 0 1 ATT speed 4080/fs 2040/fs 510/fs 255/fs (default) Table 14. Transition Time of Digital Volume The transition between set values is a soft transition of 4080 levels in Mode 0. It takes 4080/fs (85ms @fs=48kHz) from FFH to 00H. If the PDN pin goes to “L”, ATT7-0 bits are initialized to FFH. If the digital volume is changed during reset, the volume will be changed to the setting value after releasing the reset. If the volume is changed in 5/fs after releasing a reset, the volume is changed immediately without soft transition. 016001925-E-00 2016/03 - 35 - [AK4438] ■ LR Channel Output Signal Select Input and output signal combination of the AK4438 can be set by MONO1-4 bits and SELLR1-4 bits. The output signal phase of DAC is controlled by INVL1-4 and INVR1-4 bits. These settings are available for any audio format. MONO1 bit 0 SELLR1 bit INVL1 bit INVR1 bit L1ch Out R1ch Out 0 0 1 0 1 0 0 1 1 L1ch In L1ch In Invert L1ch In L1ch In Invert R1ch In R1ch In R1ch In Invert R1ch In Invert 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 R1ch In R1ch In Invert R1ch In R1ch In Invert L1ch In L1ch In Invert L1ch In L1ch In Invert L1ch In L1ch In L1ch In Invert L1ch In Invert L1ch In L1ch In L1ch In Invert L1ch In Invert 0 0 R1ch In 1 0 R1ch In Invert 0 1 R1ch In 1 1 R1ch In Invert Table 15. Output Select for DAC1 R1ch In R1ch In R1ch In Invert R1ch In Invert 0 1 1 0 1 1 MONO2 bit SELLR2 bit INVL2 bit INVR2 bit L2ch Out R2ch Out 0 0 1 0 1 0 0 1 1 L2ch In L2ch In Invert L2ch In L2ch In Invert R2ch In R2ch In R2ch In Invert R2ch In Invert 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 R2ch In R2ch In Invert R2ch In R2ch In Invert L2ch In L2ch In Invert L2ch In L2ch In Invert L2ch In L2ch In L2ch In Invert L2ch In Invert L2ch In L2ch In L2ch In Invert L2ch In Invert 0 0 R2ch In 1 0 R2ch In Invert 0 1 R2ch In 1 1 R2ch In Invert Table 16. Output Select for DAC2 R2ch In R2ch In R2ch In Invert R2ch In Invert 0 0 1 1 0 1 1 016001925-E-00 2016/03 - 36 - [AK4438] MONO3 bit SELLR3 bit INVL3 bit INVR3 bit L3 R3 0 0 1 0 1 0 0 1 1 L3ch In L3ch In Invert L3ch In L3ch In Invert R3ch In R3ch In R3ch In Invert R3ch In Invert 1 0 1 0 1 0 0 1 1 R3ch In R3ch In Invert R3ch In R3ch In Invert L3ch In L3ch In L3ch In Invert L3ch In Invert 0 0 1 0 1 0 0 1 1 L3ch In L3ch In Invert L3ch In L3ch In Invert L3ch In L3ch In L3ch In Invert L3ch In Invert 0 0 R3ch In 1 0 R3ch In Invert 0 1 R3ch In 1 1 R3ch In Invert Table 17. Output Select for DAC3 R3ch In R3ch In R3ch In Invert R3ch In Invert 0 0 1 1 1 MONO4 bit SELLR4 bit INVL4 bit INVR4 bit L4 R4 0 0 1 0 1 0 0 1 1 L4ch In L4ch In Invert L4ch In L4ch In Invert R4ch In R4ch In R4ch In Invert R4ch In Invert 1 0 1 0 1 0 0 1 1 R4ch In R4ch In Invert R4ch In R4ch In Invert L4ch In L4ch In L4ch In Invert L4ch In Invert 0 0 1 0 1 0 0 1 1 L4ch In L4ch In Invert L4ch In L4ch In Invert L4ch In L4ch In L4ch In Invert L4ch In Invert 0 0 R4ch In 1 0 R4ch In Invert 0 1 R4ch In 1 1 R4ch In Invert Table 18. Output Select for DAC4 R4ch In R4ch In R4ch In Invert R4ch In Invert 0 0 1 1 1 016001925-E-00 2016/03 - 37 - [AK4438] ■ Soft Mute Operation The soft mute operation is performed at digital domain. When the SMUTE pin goes to “H” or set SMUTE bit to “1”, the output signal is attenuated by  during ATT_DATA  ATT transition time from the current ATT level. When the SMUTE pin is returned to “L” or the SMUTE bit is returned to “0”, the mute is cancelled and the output attenuation gradually changes to the ATT level during ATT_DATA  ATT transition time. If the soft mute is cancelled before attenuating , the attenuation is discontinued and returned to ATT level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission. SMUTE pin or SMUTE bit (1) (1) ATT_Level (3) Attenuation - GD (2) GD (2) AOUT DZF pin (4) 8192/fs Notes: (1) ATT_DATA  ATT transition time. For example, this time is 4080LRCK cycles at ATT_DATA=255 in Normal Speed Mode. (2) The analog output corresponding to the digital input has group delay (GD). (3) If the soft mute is cancelled before attenuating  after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle. (4) When the input data for a zero detection channel is continuously zeros for 8192 LRCK cycles, the DZF pin goes to “H”. The DZF pin immediately returns to “L” if input data are not zero. Figure 30. Soft Mute Function and Zero Detection 016001925-E-00 2016/03 - 38 - [AK4438] ■ Error Detection Three types of error can be detected in I2C mode when the LDOE pin = “H”. (Table 19).When the error is detected, LDO is powered down and writing into the control registers is prohibited. Once the error is detected the AK4438 does not return to normal operation automatically even if the error condition is removed so restart the AK4438 by the PDN pin. In I2C mode, the AK4438 does not generate acknowledge (ACK) in error status. No Error Error Condition 1 Internal Reference Voltage Error Internal reference voltage is not powered up. 2 LDO Over Voltage Detection LDO voltage > 1.5V (typ.) 3 LDO Over Current Detection LDO current < 51mA (typ.) Table 19. Error Detection ■ System Reset The AK4438 should be reset once by bringing the PDN pin = “L” upon power-up. Power-down state of the reference voltage such as LDO and VCOM will be released by PDN pin = “H” and writing into resisters is valid in 1ms. The AK4438 is in power-down state until MCLK and LRCK input. 016001925-E-00 2016/03 - 39 - [AK4438] ■ Power Down Function The AK4438 is placed in power-down mode by bringing the PDN pin “L” and the analog outputs become floating (Hi-Z) state. Power-up and power-down timings are shown in Figure 31. Power PDN pin (1) LDOO pin (2) Internal PDN Internal State Normal Operation (Register Write and DAC input are available) DAC In (Digital) “0”data “0”data GD (4) DAC Out (Analog) Reset (3) (5) GD (5) (4) (6) Clock In Don’t care Don’t care MCLK,LRCK,BICK (8) DZF External Mute (7) Mute ON Mute ON Notes: (1) After AVDD and TVDD are powered-up, the PDN pin should be “L” for 800ns. (2) After PDN pin = “H”, the internal LDO and VCOM power-up. The internal registers are initialized. Register writing is available in 1msec after PDN pin = “H”. (3) The analog output corresponding to digital input has group delay (GD). (4) Analog outputs are floating (Hi-Z) in power down mode. (5) Click noise occurs at an edge of PDN signal. This noise is output even if “0” data is input. (6) MCLK, BICK and LRCK clocks can be stopped in power-down mode (PDN pin= “L”). (7) Mute the analog output externally if click noise (5) adversely affect system performance The timing example is shown in this figure. (8) The DZF pin outputs “L” in internal power-down mode. Figure 31. Pin Power Down/Up Sequence Example 016001925-E-00 2016/03 - 40 - [AK4438] ■ Power Off and Reset Functions RSTN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PW4-1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Analog Output DAC3 DAC2 Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z VCOM Hi-Z VCOM VCOM Hi-Z VCOM Hi-Z VCOM VCOM VCOM VCOM Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z VCOM Hi-Z VCOM VCOM Hi-Z VCOM Hi-Z VCOM VCOM VCOM VCOM Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Normal Hi-Z Normal Normal Hi-Z Normal Hi-Z Normal Normal Normal Normal Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Normal Hi-Z Normal Normal Hi-Z Normal Hi-Z Normal Normal Normal Normal DAC4 Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z VCOM VCOM VCOM VCOM VCOM VCOM VCOM VCOM Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Normal Normal Normal Normal Normal Normal Normal Normal DAC1 Hi-Z VCOM Hi-Z VCOM Hi-Z VCOM Hi-Z VCOM Hi-Z VCOM Hi-Z VCOM Hi-Z VCOM Hi-Z VCOM Hi-Z Normal Hi-Z Normal Hi-Z Normal Hi-Z Normal Hi-Z Normal Hi-Z Normal Hi-Z Normal Hi-Z Normal Table 20. Power OFF and Reset Function 016001925-E-00 2016/03 - 41 - [AK4438] (1) Power OFF Function (PW4-1 bits) All DAC4-1 can be powered down immediately by setting PW4-1 bits to “0000”. In this time, the analog output goes to floating state (Hi-z). DACs will be reset and the digital block is powered down by setting RSTN bit to “0”. In the reset state, the analog output becomes VCOM voltage if DAC is powered-up and MCLK, LRCK and BICK are supplied (Table 20). Internal register values are not initialized by power-off or reset by bit settings. Figure 32 shows a timing example of power-on and power-down. PMDA4-1bit Internal State Normal Operation Power-off D/A In (Digital) Normal Operation “0” data GD D/A Out (Analog) (1) GD (3) (2) (3) (1) (4) Clock In Don’t care MCLK, BICK, LRCK DZF External MUTE (6) (5) Mute ON Notes: (1) The analog output corresponding to digital input has group delay (GD). (2) Analog outputs are floating (Hi-Z) in power down mode. (3) Click noise occurs at the edges (“ ”) of the internal timing of PW4-1 bits. This noise is output even if “0” data is input. (4) Each clock input (MCLK, BICK, LRCK) can be stopped in power down mode (PW4-1 bits = “0000”). (5) Mute the analog output externally if the click noise (3) adversely affect system performance. (6) The DZF pin outputs “L”, in power down mode (PW4-1 bits = “0000”). Figure 32. Power-off/on Sequence Example 016001925-E-00 2016/03 - 42 - [AK4438] (2) Reset Function (RSTN bit) The DAC can be reset by setting RSTN bit to “0” but the internal registers are not initialized. In this time, the corresponding analog outputs go to VCOM and the DZF pin outputs “H” if clocks (MCLK, BICK and LRCK) are input. Figure 33 shows an example of reset sequence by RSTN bit. RSTN bit 3~4/fs (5) 2~3/fs Internal RSTN bit Internal State Normal Operation Power-down D/A In (Digital) “0” data (1) D/A Out (Analog) Clock In BICK Normal Operation Digital Block GD GD (3) (2) (3) (1) Don’t care 2/fs (4) DZF Notes: (1) he analog output corresponding to digital input has group delay (GD). (2) Analog outputs are VCOM in power down mode. (3) Click noise occurs at the edges (“ ”) of the internal timing of RSTN bit. This noise is output even if “0” data is input. (4) The DZF pin goes to “H” on the falling edge of RSTN bit and goes to “L” in 2/fs after a rising edge of the internal RSTN. (5) There is a delay, 3~4/fs from RSTN bit “0” to the internal RSTN bit “0”, and 2~3/fs from RSTN bit “1” to the internal RSTN bit “1”. Figure 33. Reset Sequence Example 016001925-E-00 2016/03 - 43 - [AK4438] (3) Reset Function (MCLK) The AK4438 is automatically placed in reset state when MCLK is stopped during normal operation (PDN pin = “H”), and the analog outputs go to VCOM voltage. When MCLK are input again, the AK4438 exits reset state and starts the operation. Zero detect function is disable when MCLK is stopped. AVDD pin TVDD pin (1) RSTN bit Internal State Power-down D/A In (Digital) Power-down Normal Operation (2) GD (5) Hi-Z (3) (2) (5) (5) Clock In MCLK Stop MCLK External MUTE Normal Operation (4) GD D/A Out (Analog) Digital Circuit Power-down (6) (6) (6) Notes: (1) After AVDD and TVDD are powered-up, the PDN pin should be “L” for 800ns. (2) The analog output corresponding to digital input has group delay (GD). (3) When MCLK is stopped, analog outputs go to VCOM voltage. (4) The digital data can be stopped. Click noise after MCLK is input again can be reduced by inputting “0” data during this period. (5) Click noise occurs within 3 ~ 4LRCK cycles from the riding edge (“↑”) of the PDN pin or MCLK inputs. This noise occurs even when “0” data is input. (6) Mute the analog output externally if click noise (5) influences system applications. The timing example is shown in this figure. Figure 34. Reset Sequence Example2 016001925-E-00 2016/03 - 44 - [AK4438] ■ Clock Synchronization The AK4438 has a function that resets the internal counter to keep a falling edge of the internal FSI clock is in 3/256fs from an edge of the external FSI clock. Clock synchronization function becomes valid when data at all channels are continuously “0” for 8192 times if SYNCE bit is set to “1” during operation in PCM mode or when RSTN bit is set to “0”. The operation clock is synchronized to a falling edge of LRCK in PCM mode and a rising edge of LRCK in I2C mode. The analog output becomes VCOM voltage when RSTN bit = “0” or zero data is detected. Figure 35 shows a synchronization sequence when the input data is “0” for 8192 times continuously. Figure 36 shows a synchronization sequence by RSTN bit. (1) Clock Synchronization Sequence when Input Data is “0” for 8192 Cycles Continuously The DZF pin goes to “H” and the synchronization function becomes enabled when input data is “0” for 8192 time continuously including when the data is attenuated. Figure 35 shows a synchronization sequence. D/A In (Digital) SMUTE (1) (1) ATT_Level Attenuation - GD GD GD (4) AOUT DZF pin (2) 8192/fs (2) 8192/fs Operation (2) Internal Counter Reset Internal Data Reset Operation (2) (5) 4~5/fs (3) Notes: (1) Refer to Table 14 internal transition time of ATT. (2) The synchronization function becomes enabled when all channels input data are “0” for 8192 times continuously. (3) Internal data is fixed to “0” for 4~5/fs forcibly when the internal counter is reset. (4) Click noise occurs when the internal counter is reset. This noise is output even if “0” data is input. Mute the analog output externally if this click noise adversely affects system performance. (5) The internal counter will not be reset when the internal and the external clocks are synchronized even if the synchronization function is enabled. Figure 35. Clock Synchronization Sequence with Continuous Zero Data 016001925-E-00 2016/03 - 45 - [AK4438] (2) Clock Synchronization Sequence with RSTN-bit The DZF pin outputs “H” by setting RSTN bit to “0”. The DAC is reset after 3~4/fs from the DZF pin = “H”, and the analog output goes to VCOM voltage. The synchronization function is enabled when the DZF pin = “H”. Figure 36 shows synchronization sequence with RSTN bit. RSTN bit 3~4/fs (4) 2~3/fs (4) Internal RSTN bit Internal State Normal Operation D/A In (Digital) force”0” (2) (3) D/A Out (Analog) Normal Operation Digital Block Power-down GD GD (3) (5) (5) 2/fs(4) DZF Operation (1) Internal Counter Reset Internal Data Reset 4~5/fs (2) Notes: (1) The DZF pin outputs “H” by a falling edge of RSTN bit, and returns to “L” after 2/fs from the internal rising edge of RSTN bit. During this period the synchronization function is enabled. (2) Internal data is fixed to “0” for 4~5/fs forcibly when the internal counter is reset. (3) The analog output corresponding to digital input has group delay (GD). It is recommended that when writing “0” data to RSTN bit, “0” period should be longer than the GD period. (4) It takes 3~4/fs to fall down and 2~3/fs to rise up for the internal RSTN signal from RSTN bit writing. There is a case that the internal counter is reset before internal RSTN bit is changed to “1” since the synchronization function becomes enabled immediately by setting RSTN bit = “0”. (5) A click noise occurs by an internal RSTN signal edge or an internal counter reset. This noise is output even if “0” data is input. Mute the analog output externally if the click noise adversely affects the system performance. Figure 36. Clock Synchronization Sequence by RSTN bit 016001925-E-00 2016/03 - 46 - [AK4438] ■ Parallel Mode Parallel mode is available by setting the I2C pin = “H” and the PS pin = “H”. In parallel mode, the register setting is ignored. Audio interface format and soft mute function are controlled by Pins. Other functions operate in default setting of registers. The system clock is always in auto setting mode. ■ Audio Interface Audio interface format of the parallel mode is controlled by TDM1-0 and DIF pins (Table 21). Zero detection function and functions set by registers are not available in parallel mode. TDM1 pin 0 0 0 0 1 1 1 1 TDM0 pin DIF pin 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 Table 21. Parallel Mode Mode Mode6 (Table 9) Mode7 (Table 9) Mode12 (Table 9) Mode13 (Table 9) Mode18 (Table 9) Mode19 (Table 9) Mode24 (Table 9) Mode25 (Table 9) ■ Soft Mute The soft mute operation is controlled by SMUTE pin (Figure 30). 016001925-E-00 2016/03 - 47 - [AK4438] ■ Serial Control Interface The AK4438’s functions are controlled through registers. The registers may be written by two types of control modes. The internal registers are controlled in 3-wire serial control mode when the I2C pin = “L” and the PS pin = “L”, and in I2C bus control mode when the I2C pin = “H” and the PS pin = “L”. Chip address is determined by the CAD0 and CAD1 pins. The internal registers are initialized by setting the PDN pin to “L”. The internal timing circuit is reset by setting RSTN bit = “0” but register values are not initialized.. *Register writings are not available when the PDN pin = “L”. (1) 3-wire Serial Control Mode (I2C pin = “L”) The internal registers may be written through the 3-wire µP interface pins (CSN, CCLK and CDTI). The data on this interface consists of a 2-bit Chip address, Read/Write (1bit, Fixed to “1”, Write only), Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is latched after a low-to-high transition of CSN. The clock speed of CCLK is 5MHz (max). The internal registers are initialized by setting the PDN pin = “L”. In serial mode, the internal timing circuit is reset by setting RSTN bit = “0” but register values are not initialized. CSN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CCLK CDTI C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 C1-C0: R/W: A4-A0: D7-D0: Chip Address (C1=CAD1, C0=CAD0) READ/WRITE (Fixed to “1”, Write only) Register Address Control Data Figure 37. Control I/F Timing * The AK4438 does not support read commands in 3-wire serial control mode. * When the AK4438 is in power down mode (PDN pin = “L”), a writing into the control registers is prohibited. * The control data cannot be written when the CCLK rising edge is 15 times or less, or 17 times or more during CSN is “L”. 016001925-E-00 2016/03 - 48 - [AK4438] (2) I2C-bus Control Mode (I2C pin = “H”) The AK4438 supports the fast-mode I2C-bus (max: 400kHz, Ver1.0). (2)-1. WRITE Operations Figure 38 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 44). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant five bits of the slave address are fixed as “00100”. The next bits are CAD1-0 (device address bits). These bits identify the specific device on the bus. The hard-wired input pins (CAD1-0 pins) set these device address bits (Figure 39). If the slave address matches that of the AK4438, the AK4438 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 45). R/W bit = “1” indicates that the read operation is to be executed. “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK4438. The format is MSB first, and those most significant 3-bits are fixed to zeros (Figure 40). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 41). The AK4438 generates an acknowledge after each byte is received. Data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines STOP condition (Figure 44). The AK4438 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4438 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds “14H” prior to generating a stop condition, the address counter will “roll over” to “00H” and the previous data will be overwritten. The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only be changed when the clock signal on the SCL line is LOW (Figure 46) except for the START and STOP conditions. S T A R T SDA S T O P R/W="0" Slave S Address Sub Address(n) A C K Data(n) A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 38. Data Transfer Sequence at the I2C-Bus Mode 0 0 1 0 0 CAD1 CAD0 R/W A1 A0 D1 D0 (CAD1 and CAD0 are determined by pin settings) Figure 39. The First Byte 0 0 0 A4 A3 A2 Figure 40. The Second Byte D7 D6 D5 D4 D3 D2 Figure 41. Byte Structure After The Second Byte 016001925-E-00 2016/03 - 49 - [AK4438] (2)-2. READ Operations Set the R/W bit = “1” for the READ operation of the AK4438. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds “14H” prior to generating stop condition, the address counter will “roll over” to “00H” and the data of “00H” will be read out. The AK4438 supports two basic read operations: Current Address Read and Random Address Read. (2)-2-1. Current Address Read The AK4438 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4438 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4438 ceases transmission. S T A R T SDA S T O P R/W="1" Slave S Address Data(n) Data(n+1) MA AC SK T E R A C K Data(n+2) MA AC SK T E R Data(n+x) MA AC SK T E R MA AC SK T E R P MN AA SC T EK R Figure 42. Current Address Read (2)-2-2. Random Address Read The random read operation allows the master to access any memory location at random. Prior to issuing a slave address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit =“1”. The AK4438 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4438 ceases transmission. S T A R T SDA S T A R T R/W="0" Slave S Address Sub Address(n) A C K Slave S Address A C K S T O P R/W="1" Data(n) A C K Data(n+1) MA AC S K T E R Data(n+x) MA AC S T K E R MA AC S T K E R P MN A A S T C E K R Figure 43. Random Address Read 016001925-E-00 2016/03 - 50 - [AK4438] SDA SCL S P start condition stop condition Figure 44. START and STOP Conditions DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 45. Acknowledge on the I2C-Bus SDA SCL data line stable; data valid change of data allowed Figure 46. Bit Transfer on the I2C-Bus 016001925-E-00 2016/03 - 51 - [AK4438] ■ Register Map Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H Register Name Control 1 Control 2 Control 3 L1ch ATT R1ch ATT Control 4 Control 6 Control 7 Control 8 Control 9 Control 10 Control 11 Control 12 L2ch ATT R2ch ATT L3ch ATT R3ch ATT L4ch ATT R4ch ATT D7 ACKS 0 0 ATT7 ATT7 INVL1 0 L3 L1 0 TDM1 ATS1 INVR4 MONO4 DEM41 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 D6 0 0 0 ATT6 ATT6 INVR1 0 R3 R1 0 TDM0 ATS0 INVL4 MONO3 DEM40 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 D5 0 SD 0 ATT5 ATT5 INVL2 0 L4 L2 0 SDS1 0 INVR3 MONO2 DEM31 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 D4 0 DFS1 0 ATT4 ATT4 INVR2 0 R4 R2 0 SDS2 SDS0 INVL3 0 DEM30 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 D3 DIF2 DFS0 MONO1 ATT3 ATT3 SELLR2 0 0 0 0 PW2 PW4 0 SELLR4 0 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 D2 DIF1 DEM11 DZFB ATT2 ATT2 0 0 0 0 0 PW1 PW3 0 SELLR3 0 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 D1 DIF0 DEM10 SELLR1 ATT1 ATT1 DFS2 0 0 0 0 DEM21 0 0 0 0 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 D0 RSTN SMUTE SLOW ATT0 ATT0 SSLOW 0 SYNCE 0 0 DEM20 0 0 0 0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 Notes: Data must not be written into addresses from 15H to 1FH. The bit defined as 0 must contain a “0” value. When the PDN pin goes to “L”, the registers are initialized to their default values. When RSTN bit goes to “0”, the internal timing is reset, but registers are not initialized. 016001925-E-00 2016/03 - 52 - [AK4438] ■ Register Definitions Addr 00H Register Name Control 1 R/W Default D7 ACKS R/W 0 D6 0 R/W 0 D5 0 R/W 0 D4 0 R/W 0 D3 DIF2 R/W 1 D2 DIF1 R/W 1 D1 DIF0 R/W 0 D0 RSTN R/W 1 D1 DEM10 R/W 1 D0 SMUTE R/W 0 RSTN: Internal Timing Reset 0: Reset The DZF pin goes “H” but register values are not initialized. 1: Normal Operation (default) DIF2-0: Audio Data Interface Modes (Table 9) Default value is “110” (Mode 6: 32-bit MSB justified). ACKS: Master Clock Frequency Auto Setting Mode Enable 0: Disable, Manual Setting Mode (default) 1: Enable, Auto Setting Mode When ACKS bit = “1”, the MCLK frequency is detected automatically. Addr 01H Register Name Control 2 R/W Default D7 0 R/W 0 D6 0 R/W 0 D5 SD R/W 1 D4 DFS1 R/W 0 D3 DFS0 R/W 0 D2 DEM11 R/W 0 SMUTE: Soft Mute Enable. 0: Normal Operation (default) 1: DAC outputs soft-muted. DEM11-0: DAC1 De-emphasis Response (Table 8) Default value is “01” (OFF). DFS2-0: Sampling Speed Control (Table 1) Default value is “000” (Normal Speed). A click noise occurs when switching DFS2-0 bits setting. SD: Short delay Filter Enable. (Table 11) 0: Sharp roll off filter or Slow roll off filter 1: Short delay Sharp roll off filter or Short delay Slow roll off filter (default) 016001925-E-00 2016/03 - 53 - [AK4438] Addr 02H Register Name Control 3 R/W Default D7 0 R/W 0 D6 0 R/W 0 D5 0 R/W 0 D4 0 R/W 0 D3 MONO1 R/W 0 D2 DZFB R/W 0 D1 SELLR1 R/W 0 D0 SLOW R/W 0 D1 ATT1 ATT1 R/W 1 D0 ATT0 ATT0 R/W 1 SLOW: Slow Roll-off Filter Enable (Table 11) 0: Sharp Roll-off Filter (default) 1: Slow Roll-off Filter SELLR1: The data selection of DAC1 (Table 15) Default value is “0” DZB: Inverting Enable of DZF (Table 12) 0: DZF pin goes “H” at Zero Detection (default) 1: DZF pin goes “L” at Zero Detection MONO1: DAC1 enters monaural output mode when MONO bit = “1” (Table 15). 0: Stereo mode (default) 1: MONO mode Addr 03H 04H Register Name L1ch ATT R1ch ATT R/W Default D7 ATT7 ATT7 R/W 1 D6 ATT6 ATT6 R/W 1 D5 ATT5 ATT5 R/W 1 D4 ATT4 ATT4 R/W 1 D3 ATT3 ATT3 R/W 1 D2 ATT2 ATT2 R/W 1 ATT7-0: Attenuation Level (Table 13) Default value is “FF” (0dB) Addr 05H Register Name Control 4 R/W Default D7 INVL1 R/W 0 D6 INVR1 R/W 0 D5 INVL2 R/W 0 D4 INVR2 R/W 0 D3 SELLR2 R/W 0 D2 0 R/W 0 D1 DFS2 R/W 0 D0 SSLOW R/W 0 SSLOW: Digital Filter bypass mode Enable (Table 11) 0: Disable (default) 1: Enable DFS2-0: Sampling Speed Control (Table 1) Default value is “000” (Normal Speed). A click noise occurs when switching DFS2-0 bits setting. SELLR2: The data selection of DAC2 (Table 16) Default value is “0” INVL1: AOUTL1 Output Phase Inverting Bit (Table 15) INVR1: AOUTR1 Output Phase Inverting Bit (Table 15) INVL2: AOUTL2 Output Phase Inverting Bit (Table 16) INVR2: AOUTR2 Output Phase Inverting Bit (Table 16) 0: Normal (default) 1: Inverted 016001925-E-00 2016/03 - 54 - [AK4438] Addr 07H Register Name Control 6 R/W Default D7 L3 R/W 0 D6 R3 R/W 0 D5 L4 R/W 0 D4 R4 R/W 0 D3 0 R/W 0 D2 0 R/W 0 D1 0 R/W 0 D0 SYNCE R/W 1 D3 0 R/W 0 D2 0 R/W 0 D1 0 R/W 0 D0 0 R/W 0 D3 PW2 R/W 1 D2 PW1 R/W 1 D1 DEM21 R/W 0 D0 DEM20 R/W 1 SYNCE: SYNC Mode Enable 0: SYNC Mode Disable 1: SYNC Mode Enable (default) L3-4, R3-4: Zero Detect Flag Enable Bit for the DZF pin 0: Disable(default) 1: Enable Addr 08H Register Name Control 7 R/W Default D7 L1 R/W 0 D6 R1 R/W 0 D5 L2 RD 0 D4 R2 RD 0 L1-2, R1-2: Zero Detect Flag Enable Bit for the DZF pin 0: Disable(default) 1: Enable Addr 0AH Register Name Control 8 R/W Default D7 TDM1 R/W 0 D6 TDM0 R/W 0 D5 SDS1 R/W 0 D4 SDS2 R/W 0 DEM21-20: DAC2 De-emphasis Response (Table 8) Default value is “01”. (OFF) PW2-1: Power Down control for DAC PW2: Power management for DAC2 0: DAC2 power OFF 1: DAC2 power ON (default) PW1: Power management for DAC1 0: DAC1 power OFF 1: DAC1 power ON (default) SDS2-0: DAC1-4 Data Select 0: Normal Operation 1: Output Other Slot Data (Table 10) Default value is “000”. TDM1-0: TDM Mode Select (Table 9) Default value is “00”. 016001925-E-00 2016/03 - 55 - [AK4438] Addr 0BH Register Name Control 9 R/W Default D7 ATS1 R/W 0 D6 ATS0 R/W 0 D5 0 R/W 0 D4 SDS0 R/W 0 D3 PW4 R/W 1 D2 PW3 R/W 1 D1 0 R/W 0 D0 0 R/W 0 PW4-3: Power Down control for DAC PW4: Power management for DAC4 0: DAC4 power OFF 1: DAC4 power ON (default) PW3: Power management for DAC3 0: DAC3 power OFF 1: DAC3 power ON (default) SDS2-0: DAC1-4 Data Select 0: Normal Operation 1: Output Other Slot Data (Table 10) The default value is “000”. ATS1-0: Transition Time between Set Values of ATT7-0 bits (Table 14) The default value is “00”. Addr 0CH Register Name Control 6 R/W Default D7 INVR4 R/W 0 D6 INVL4 R/W 0 D5 INVR3 R/W 0 D4 INVL3 R/W 0 D3 0 R/W 0 D2 0 R/W 0 D1 0 R/W 0 D0 0 R/W 0 D3 SELLR4 R/W 0 D2 SELLR3 R/W 0 D1 0 R/W 0 D0 0 R/W 0 INVL3: AOUTL3 Output Phase Inverting Bit (Table 17) INVR3: AOUTR3 Output Phase Inverting Bit (Table 17) INVL4: AOUTL4 Output Phase Inverting Bit (Table 18) INVR4: AOUTR4 Output Phase Inverting Bit (Table 18) 0: Normal (default) 1: Inverted Addr 0DH Register Name Control 6 R/W Default D7 MONO4 R/W 0 D6 MONO3 R/W 0 D5 MONO2 R/W 0 D4 0 R/W 0 SELLR3: The data selection of DAC3 (Table 17) SELLR4: The data selection of DAC4 (Table 18) The default value is “0”. MONO2: DAC2 enters Mono output mode when MONO2 bit =“1”. (Table 16) MONO3: DAC3 enters Mono output mode when MONO3 bit =“1”. (Table 17) MONO4: DAC4 enters Mono output mode when MONO4 bit =“1”. (Table 18) 0: Stereo mode (default) 1: MONO mode 016001925-E-00 2016/03 - 56 - [AK4438] Addr 0EH Register Name Control 6 R/W Default D7 DEM41 R/W 0 D6 DEM40 R/W 1 D5 DEM31 R/W 0 D4 DEM30 R/W 1 D3 0 R/W 0 D2 0 R/W 0 D1 0 R/W 0 D0 0 R/W 0 DEM31-30: DAC3 De-emphasis Response (Table 8) DEM41-40: DAC4 De-emphasis Response (Table 8) The default value is “01”, OFF Addr 0FH 10H 11H 12H 13H 14H Register Name L2ch ATT R2ch ATT L3ch ATT R3ch ATT L4ch ATT R4ch ATT R/W Default D7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 R/W 1 D6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 R/W 1 D5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 R/W 1 D4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 R/W 1 D3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 R/W 1 D2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 R/W 1 D1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 R/W 1 D0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 R/W 1 ATT7-0: Attenuation Level (Table 13) The default value is “FF”, (0dB) 016001925-E-00 2016/03 - 57 - [AK4438] 13. Recommended External Circuits ■ Typical Connection Diagram L1ch out R1ch out L2ch out R2ch out L3ch out R3ch out L4ch out R4ch out Power Supply 3.0  3.6V H : I2C L : SPI 19 18 VREFH AOUTR2 17 20 VREFL AOUTL2 21 VCOM 29 I2C 22 28 TEST VSS2 AOUTR4 23 27 AVDD AOUTL4 16 AOUTL1 15 PS/CAD0_SPI 14 CAD0_I2C/CSN/DIF 13 SCL/CCLK/TDM1 12 30 TVDD SDA/CDTI/TDM0 11 31 VSS1 SMUTE/CAD1 10 32 LDOO PDN AK4438 Top View P BICK LRCK SDTI1 SDTI2 SDTI3 SDTI4 DZF 3 4 5 6 7 8 0.1u 2 2.2u 26 AOUTR1 MCLK 10u + AOUTR3 10u + 0.1u 1 Power Supply 1.7  3.6V 25 AOUTL3 24 10u 2.2u + 0.1u 9 Analog Ground Digital Ground Analog Ground Digital Ground DSP Figure 47. Typical Connection Diagram Note: The AK4438 integrates smoothing filters. 016001925-E-00 2016/03 - 58 - [AK4438] 1. Grounding and Power Supply Decoupling The AK4438 requires careful attention to power supply and grounding arrangements. AVDD and TVDD are usually supplied from the analog supply of the system. If AVDD and TVDD are supplied separately, the power-up sequences between AVDD and TVDD is not critical. VSS1 and VSS2 must be connected to the same analog ground plane. System analog ground and digital ground should be wired separately and connected together as close as possible to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4438 as possible. 2. Voltage Reference The differential voltage between VREFH pin and VREFL pin sets the analog output range. The VREFH pin is normally connected to AVDD, and the VREFL pin is normally connected to VSS2. VREFHL and VREFL should be connected with a 0.1µF ceramic capacitor and 10µF electrolytic capacitor as near as possible to the pin to eliminate the effects of high frequency noise. VCOM is a signal ground of this chip and output the voltage AVDDx1/2. A 2.2F ±50% ceramic capacitor attached between the VCOM pin and VSS2 eliminates the effects of high frequency noise. This capacitor should be as close to the pin as possible. No load current may be drawn from the VCOM pin. All signals, especially clocks, should be kept away from the VREFH pin and the VCOM pin in order to avoid unwanted coupling into the AK4438. LDOO outputs 1.2V that is used for internal digital circuit. LDOO and VSS1 should be connected with a 2.2F ±50% ceramic capacitor as near as possible to the pin to stabilize internal LDO. No load current may be drawn from the VCOM pin. 3. Analog Output The output signal range is nominally 0.86 x VREFH Vpp centered around the VCOM voltage. The DAC input data format is 2’s complement. The output voltage is a positive full scale for 7FFFFFFFH (@32bit) and a negative full scale for 80000000H (@32bit). The ideal output is VCOM voltage for 00000000H (@32bit). The internal analog filters remove most of the noise generated by the delta-sigma modulator of DAC beyond the audio passband, in single-ended input mode. Normally, DC component is cut by an external capacitor since the DAC outputs have DC offsets of a few millivolts to the VCOM voltage. 016001925-E-00 2016/03 - 59 - [AK4438] 4. External Analog Outputs Circuit The output level of this circuit is 2.83Vpp (AK4438: typ. 2.83Vpp). Normally, DC component is cut by an external capacitor since the DAC outputs have DC offsets of a few millivolts to the VCOM voltage. The cutoff frequency of HPF is shown below. fc= 1/(2 × π × R × C) [Hz] Where the C is the external AC coupling capacitor and the R is load resistance. When C = 1μF and R = 10kΩ, then fs = 16Hz. AK4438 AOUT Analog Out C=1F R=10k 2.83Vppv (typ) Figure 48. Output Buffer Circuit Example 016001925-E-00 2016/03 - 60 - [AK4438] 14. Package ■ Outline Dimensions 32-pin QFN (Unit: mm) ■ Material & Lead Finish Package molding compound: Lead frame material: Terminal surface treatment: Epoxy, Halogen (Br and Cl) free Cu Solder (Pb free) plate 016001925-E-00 2016/03 - 61 - [AK4438] ■ Marking 4438 XXXX 1 1) Pin #1 indication 2) Date Code: XXXX (4 digits) 3) Marking Code: 4438 15. Ordering Guide ■ Ordering Guide AK4438VN AKD4438 -40  +105C 32-pin QFN (0.5mm pitch) Evaluation Board for the AK4438 16. Revision History Date (Y/M/D) 16/03/04 Revision 00 Reason First Edition Page Contents 016001925-E-00 2016/03 - 62 - [AK4438] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. 016001925-E-00 2016/03 - 63 -
AK4438VN 价格&库存

很抱歉,暂时无法提供与“AK4438VN”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AK4438VN
  •  国内价格 香港价格
  • 1000+20.430591000+2.45371
  • 2000+19.443212000+2.33512
  • 3000+19.082173000+2.29176

库存:3212

AK4438VN
  •  国内价格 香港价格
  • 1+51.252051+6.15535
  • 10+34.5673910+4.15153
  • 25+30.2442125+3.63232
  • 100+25.40291100+3.05088
  • 250+23.05262250+2.76861
  • 500+21.62026500+2.59659

库存:3212

AK4438VN
    •  国内价格
    • 1000+19.66941

    库存:2000