[AK4452]
AK4452
115dB 768kHz 32-bit 2ch Premium DAC
1. General Description
The AK4452 is a 32-bit 2ch Premium DAC, which achieves industry’s best low distortion characteristics by a
newly developed low distortion technology. It corresponds to a 768kHz PCM input and an 11.2MHz DSD
input at maximum, suitable for play backing high resolution audio sources that are becoming widespread in
network audios, USB-DACs and Car Audio Systems. In addition, “OSR-Doubler” technology is newly
adopted, making the AK4452 capable of supporting wide range signals and achieving low out-of-band noise
while realizing low power consumption. Moreover, the AK4452 has five types of 32-bit digital filters,
realizing simple and flexible sound making in wide range of applications.
Application: AV Receivers, CD/SACD Players, Network Audios, USB DACs, USB Headphones, Sound
Plate/Bars, Car Audios, Automotive External Amplifiers, Measuring Instruments and Control
Systems.
2. Features
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
DR, S/N: 115dB
THD+N: -107dB
256x Over sampling
Sampling Rate: 8kHz 768kHz
32Bit 8x Digital Filter
- Ripple: 0.0032dB, Attenuation: 80dB (Sharp Roll-Off Filter Setting)
- Five Types of High Quality Sound Filter Option
- Sharp Roll-Off Filter
- Slow Roll-Off Filter
- Short Delay Sharp Roll-Off Filter (GD=5.8/fs)
- Short Delay Slow Roll-Off Filter (GD=4.8/fs)
- Super Slow Roll-Off Filter
High Tolerance to Clock Jitter
Low Distortion Differential Output
DSD data input
Daisy Chain
Digital De-emphasis for 32, 44.1, 48kHz sampling
Soft Mute
Digital Attenuator (255 levels and 0.5dB step)
I/F Format:
- 24/32bit MSB justified
- 16/20/24/32bit
- LSB justified
- I2S
- DSD
- TDM
3-wire Serial and I2C μP I/F
Master Clock:
- 30kHz ~ 32kHz: 1152fs
- 30kHz ~ 54kHz: 512fs or 768fs
- 30kHz ~ 108kHz: 256fs or 384fs
- 108kHz ~ 216kHz: 128fs or 192fs
~ 384kHz: 64fs or 128fs
~ 768kHz: 64fs
015002211-E-03
2017/07
-1-
[AK4452]
(16) Digital Input Level: CMOS
(17) Power Supply:
- TVDD= 1.7 3.6V
- AVDD=3.0 5.5V
(18) Supporting 105°C Temperature (Exposed pad is connected to ground)
(19) Package: 32-pin QFN
015002211-E-03
2017/07
-2-
[AK4452]
3. Table of Contents
1.
2.
3.
4.
General Description ................................................................................................................................... 1
Features ...................................................................................................................................................... 1
Table of Contents ....................................................................................................................................... 3
Block Diagram and Functions ................................................................................................................... 5
■ Block Diagram.......................................................................................................................................... 5
■ Functions .................................................................................................................................................. 6
5. Pin Configurations and Functions .............................................................................................................. 7
■ Ordering Guide ......................................................................................................................................... 7
■ Pin Configurations .................................................................................................................................... 7
■ Pin Functions ............................................................................................................................................ 8
■ Handling of Unused Pin ........................................................................................................................... 9
6. Absolute Maximum Ratings .................................................................................................................... 10
7. Recommended Operation Conditions ...................................................................................................... 10
8. Electrical Characteristics ......................................................................................................................... 11
■ Analog Characteristics............................................................................................................................ 11
■ Sharp Roll-Off Filter Characteristics ...................................................................................................... 13
■ Slow Roll-Off Filter Characteristics ....................................................................................................... 15
■ Short Delay Sharp Roll-Off Filter Characteristics.................................................................................. 17
■ Short Delay Slow Roll-Off Filter Characteristics................................................................................... 19
■ DSD Mode Characteristics ..................................................................................................................... 21
■ DC Characteristics .................................................................................................................................. 21
■ Switching Characteristics ....................................................................................................................... 22
■ Timing Diagram ..................................................................................................................................... 26
9. Functional Descriptions ........................................................................................................................... 30
■ D/A Conversion Mode (PCM mode, DSD mode) .................................................................................. 30
■ System Clock .......................................................................................................................................... 30
■ Audio Interface Format .......................................................................................................................... 34
■ D/A Conversion Mode (PCM Mode, DSD Mode) Switching Timing ................................................... 46
■ Digital Filter (PCM mode) ..................................................................................................................... 47
■ De-emphasis Filter (PCM mode) ............................................................................................................ 47
■ Output Volume (PCM mode, DSD mode) ............................................................................................. 48
■ Out of Band Noise Reduction Filter (PCM mode, DSD mode) ............................................................. 49
■ Zero Detection (PCM mode, DSD mode) .............................................................................................. 56
■ LR Channel Output Signal Select (PCM mode, DSD mode) ................................................................. 56
■ Sound Quality Adjustment (PCM mode, DSD mode)............................................................................ 57
■ DSD Full Scale (FS) Signal Detection Function .................................................................................... 58
■ Soft Mute Operation (PCM mode, DSD mode) ..................................................................................... 59
■ Error Detection ....................................................................................................................................... 60
■ System Reset .......................................................................................................................................... 60
■ Power Down Function ............................................................................................................................ 61
■ Power Off and Reset Functions .............................................................................................................. 62
■ Clock Synchronization and BICK Edge Detection Functions ................................................................ 65
■ Parallel Mode.......................................................................................................................................... 66
■ Serial Control Interface .......................................................................................................................... 66
■ Function List........................................................................................................................................... 71
■ Register Map .......................................................................................................................................... 72
■ Register Definitions ................................................................................................................................ 73
10.
Recommended External Circuits.......................................................................................................... 80
015002211-E-03
2017/07
-3-
[AK4452]
■ Typical Connection Diagram.................................................................................................................. 80
11.
Package ................................................................................................................................................ 84
■ Outline Dimensions ................................................................................................................................ 84
■ Material & Lead finish ........................................................................................................................... 84
■ Marking .................................................................................................................................................. 85
12.
Revision History .................................................................................................................................. 85
IMPORTANT NOTICE ................................................................................................................................ 87
015002211-E-03
2017/07
-4-
[AK4452]
4. Block Diagram and Functions
■ Block Diagram
LDOE
TVDD
VDD18
DVSS
PDN
AVDD AVSS
Bias
LDO
BICK/DCLK
DATT
Soft Mute
LRCK/DSDL1
8X
Interpolator
SCF
AOUTL1P
AOUTL1N
SDTI1/DSDR1
PCM
Data
Interface
TDMO1
De-empha
sis
Modulator
DATT
Soft Mute
DSD Filter
Vref
VREFH1
VREFL1
Noise
Rejection
Filter
SCF
AOUTR1P
AOUTR1N
TST1
DSD
Data
Interface
TST2
TST3
TST4
DZF/SMUTE
TST5
CAD1/DCHAIN
TST6
TST7
I2C
CAD0_I2C/CSN/DIF
Control
Register
SCL/CCLK/TDM1
Clock
Divider
SDA/CDTI/TDM0
PS/CAD0_SPI
MCLK
Figure 1. Block Diagram
015002211-E-03
2017/07
-5-
[AK4452]
■ Functions
Block
Functions
This block executes serial/parallel conversion of SDTI input audio data by
PCM Data Interface
synchronizing with LRCK and BICK.
1-bit data that is input from DSDL1 and DSDR1 pins is received by synchronizing
DSD Data Interface
with DCLK.
Apply DATT and Soft Mute process to input data.
DATT、Soft Mute
De-emphasis
Apply De-emphasis process to input data.
8x Interpolator
FIR filters that over sample 1fs rate data to 8fs rate.
Output multi-bit data to SCF. This block consists of a third-order digital delta-sigma
ΔΣ Modulator
modulator.
Noise Rejection Filter Attenuate out of band noise to prevent degradation of analog characteristics.
A primary switched capacitor filter that converts a multi-bit output of delta-sigma
SCF
modulator to an analog signal.
LDO
Generate power for internal digital circuit (1.8V typ.).
Control Register
Clock Divider
Keep register settings for each mode.
Divide Master Clock
In PCM mode, master clock is divided automatically by fs rate auto detection
function. In DSD mode, the master clock frequency is set by DCKS bit.
015002211-E-03
2017/07
-6-
[AK4452]
5. Pin Configurations and Functions
■ Ordering Guide
40 +105°C (Exposed pad is connected to ground)
40 +85°C (Exposed pad is open)
32-pin QFN
Evaluation Board for AK4452
AK4452VN
AKD4452
TST4
TST3
TST2
AVDD
AVSS
AOUTR1P
AOUTR1N
VREFH1
24
23
22
21
20
19
18
17
■ Pin Configurations
TST5
25
16
VREFL1
TST6
26
15
AOUTL1N
TST7
27
14
AOUTL1P
LDOE
28
13
I2C
TVDD
29
12
PS/CAD0_SPI
DVSS
30
11
CAD0_I2C/CSN/DIF
VDD18
31
10
SCL/CCLK/TDM1
PDN
32
9
SDA/CDTI/TDM0
Top View
1
2
3
4
5
6
7
8
MCLK
BICK/DCLK
LRCK/DSDL1
SDTI1/DSDR1
TST1
TDMO1
DZF/SMUTE
CAD1/DCHAIN
Back Tab:Note1
Note 1. The exposed pad at back face of the package must be open or connected to the ground.
015002211-E-03
2017/07
-7-
[AK4452]
■ Pin Functions
No
.
1
Pin Name
I/O
Function
PD Status
5
MCLK
BICK
DCLK
LRCK
DSDL1
SDTI1
DSDR1
TST1
I
I
I
I
I
I
I
I
External Master Clock Input Pin
Audio Serial Data Clock Pin in PCM mode
DSD Clock Pin in DSD mode
Input Channel Clock Pin in PCM mode
Audio Serial Data Input in DSD mode
Audio Serial Data Input in PCM mode
Audio Serial Data Input in DSD mode
Test Pin. This pin must be connected to DVSS
6
TDMO1
O
Audio Serial Data Output in Daisy Chain mode
DZF
O
Zero Input Detect in I2C Bus or 3-wire serial control mode
Soft Mute Pin in Parallel control mode.
When this pin is changed to “H”, soft mute cycle is initiated.
When returning “L”, the output mute releases.
Chip Address 0 Pin in I2C Bus or 3-wire serial control mode
Daisy Chain Mode select pin in Parallel control mode.
Control Data Input Pin in I2C Bus serial control mode
Control Data Input Pin in 3-wire serial control mode
TDM Mode select pin in Parallel control mode.
Control Data Clock Pin in I2C Bus serial control mode
Control Data Clock Pin in 3-wire serial control mode
TDM Mode select pin in Parallel control mode.
Chip Address 0 Pin in I2C Bus serial control mode
Chip Select Pin in 3-wire serial control mode
Audio Data Format Select in Parallel control mode.
“L”:32-bit MSB, “H”:32-bit I2S
(I2C pin = “H”)
Control Mode Select Pin
“L”: I2C Bus serial control mode ,“H”: Parallel control mode.
(I2C pin = “L”)
Chip Address 0 Pin in 3-wire serial control mode
Control Mode Select Pin
“L”: 3-wire serial control mode
“H”: I2C Bus serial control mode or Parallel control mode.
L ch Positive Analog Output 1 Pin
L ch Negative Analog Output 1 Pin
Negative Voltage Reference Input Pin, AVSS
Positive Voltage Reference Input Pin, AVDD
R ch Negative Analog Output 1 Pin
R ch Positive Analog Output 1 Pin
Analog Ground Pin
Analog Power Supply Pin, 3.0V5.5V
Test Pin. This pin must be connected to AVSS.
Test Pin. This pin must be connected to AVSS.
Test Pin. This pin must be connected to AVSS.
Test Pin. This pin must be connected to AVSS.
2
3
4
7
8
9
10
11
SMUTE
CAD1
DCHAIN
SDA
CDTI
TDM0
SCL
CCLK
TDM1
CAD0_I2C
CSN
I
I
I
I/O
I
I
I
I
I
I
I
DIF
I
PS
I
12
CAD0_SPI
I
13
I2C
I
14
15
16
17
18
19
20
21
22
23
24
25
AOUTL1P
AOUTL1N
VREFL1
VREFH1
AOUTR1N
AOUTR1P
AVSS
AVDD
TST2
TST3
TST4
TST5
O
O
I
I
O
O
I
I
I
I
015002211-E-03
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
100kΩ
Pull down
100kΩ
Pull down
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
-
-
Hi-Z
Hi-Z
Hi-Z
Hi-Z
2017/07
-8-
[AK4452]
No
.
26
27
Pin Name
TST6
TST7
I/O
Function
PD Status
I
I
Test Pin. This pin must be connected to AVSS.
Hi-Z
Test Pin. This pin must be connected to AVSS.
Hi-Z
Internal LDO Enable Pin.
28 LDOE
I
Hi-Z
“L”: Disable, “H”: Enable
29 TVDD
Digital Power Supply Pin, 3.0V3.6V
-
Digital Ground Pin
30 DVSS
-
(LDOE pin = “H”)
O LDO Output Pin
This pin should be connected to DVSS with 1.0µF.
31 VDD18
(Note 4)
(LDOE pin = “L”)
I
1.8V Power Input Pin
Power-Down & Reset Pin
32 PDN
I
When “L”, the AK4452 is powered-down and the control
Hi-Z
registers are reset to default state.
Note 2. All input pins except internal pull-up/down pins must not be allowed to float.
Note 3. PCM mode and DSD mode are controlled by registers. Daisy Chain mode is controlled by both
registers and pins.
Note 4. This pin outputs DVSS when the LDOE pin = “H” and Hi-z when the LDOE pin = “L”.
■ Handling of Unused Pin
The unused I/O pins must be connected appropriately.
Classification Pin Name
Setting
Analog
AOUTL1P/N, AOUTR1P/N
These pins must be open.
Digital
TDMO1, DZF
This pin must be open.
015002211-E-03
2017/07
-9-
[AK4452]
6. Absolute Maximum Ratings
(AVSS =DVSS =0V; Note 5)
Parameter
Symbol
Min.
0.3
Power Supplies: Analog
AVDD
Digital
TVDD
0.3
|AVSS DVSS|
GND
Input Current, Any Pin Except Supplies
IIN
Digital Input Voltage
VIND
0.3
Ambient Temperature (Power applied)
When the back tab is connected to VSS
Ta
40
When the back tab is open
Ta
40
Storage Temperature
Tstg
65
Note 5. All voltages with respect to ground.
Note 6. AVSS and DVSS must be connected to the same analog ground plane.
Max.
6.0
4.0
0.3
10
TVDD+0.3
Unit
V
V
V
mA
V
105
85
150
C
C
C
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
7. Recommended Operation Conditions
(AVSS =DVSS =0V; Note 5)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Analog
AVDD
3.0
5.0
5.5
V
(LDOE pin= “L”) (Note 7)
Power Supplies
I/O buffer
TVDD
VDD18
1.8
3.6
V
Digital
VDD18
1.7
1.8
1.98
V
(LDOE pin = “H”)(Note 8)
I/O buffer
TVDD
3.0
3.3
3.6
V
Voltage Reference
“H” voltage reference “L”
VREFH1
AVDD0.5
AVDD
V
voltage reference
VREFL1
AVSS
V
Note 7. When the LDOE pin = “L” VDD18 must be powered up either at the same time or after TVDD is
powered up. The power up sequence between AVDD and TVDD or AVDD and VDD18 is not critical.
Note 8. When LDOE pin = “H”, the internal LDO supplies 1.8V (typ). The power up sequences between
AVDD and TVDD, AVDD and VDD18 are not critical.
* AKM assumes no responsibility for the usage beyond the conditions in this data sheet.
015002211-E-03
2017/07
- 10 -
[AK4452]
8. Electrical Characteristics
■ Analog Characteristics
(1) AVDD = 5.0V
(Ta=25C: TVDD=3.3V, AVDD=5.0V: AVSS= DVSS=0V: VREFH1=AVDD, VREFL1= AVSS:
fs=44.1kHz: BICK=64fs: Signal Frequency=1kHz: 24-bit Input Data: RL 2k: measurement bandwidth =
20Hz ~ 20kHz: External Circuit: (Figure 80), unless otherwise specified.)
Parameter
Min.
Typ.
Max.
Unit
Resolution
32
bit
Dynamic Characteristics
(Note 9)
0dBFS
fs=44.1kHz
-107
-100
dB
THD+N
-52
dB
BW=20kHz
60dBFS
0dBFS
fs=96kHz
-104
dB
-48
dB
BW=40kHz
60dBFS
0dBFS
fs=192kHz
-104
dB
BW=40kHz
60dBFS
-48
dB
-44
dB
BW=80kHz
60dBFS
Dynamic Range (60dBFS with A-weighted)
(Note 10)
110
115
dB
S/N (A-weighted)
(Note 11)
110
115
dB
Interchannel Isolation (1kHz)
100
110
dB
DC Accuracy
Interchannel Gain Mismatch
0
0.3
dB
Gain Drift
(Note 12)
20
ppm/C
Output Voltage
(Note 13)
2.65
2.8
2.95
Vpp
Load Resistance
(Note 14)
2
k
30
pF
Load Capacitance
(Note 14)
Power Supplies
Power Supply Current
Normal operation (PDN pin = “H”)
AVDD
TVDD (fs = 44.1kHz)
TVDD (fs = 96kHz)
TVDD (fs = 192kHz)
Power down (PDN pin = “L”)
AVDD+TVDD
-
8
3
5
7
11
4
7
10
mA
mA
mA
mA
-
1
100
A
(Note 15)
015002211-E-03
2017/07
- 11 -
[AK4452]
(2) AVDD = 3.3V
(Ta=25°C: TVDD=3.3V, AVDD=3.3V: AVSS= DVSS=0V: VREFH1=AVDD, VREFL1= AVSS:
fs=44.1kHz: BICK=64fs: Signal Frequency=1kHz: 24-bit Input Data: RL 2k: measurement bandwidth =
20Hz ~ 20kHz: External Circuit: (Figure 80), unless otherwise specified.)
Parameter
Min.
Typ.
Max.
Unit
Resolution
32
bit
Dynamic Characteristics
(Note 9)
0dBFS
fs=44.1kHz
dB
-93
-86
THD+N
-48
BW=20kHz
dB
60dBFS
0dBFS
fs=96kHz
dB
-92
-45
BW=40kHz
dB
60dBFS
0dBFS
fs=192kHz
dB
-92
-45
BW=40kHz
60dBFS
dB
-41
BW=80kHz
dB
60dBFS
Dynamic Range(60dBFS with A-weighted)
(Note 10)
106
111
dB
S/N (A-weighted)
(Note 11)
106
111
dB
Inter channel Isolation (1kHz)
100
110
dB
DC Accuracy
Inter channel Gain Mismatch
0
0.3
dB
Gain Drift
(Note 12)
20
ppm/°C
Output Voltage
(Note 13)
Vpp
1.66
1.85
2.04
Load Resistance
(Note 14)
2
k
Load Capacitance
(Note 14)
30
pF
Power Supplies
Power Supply Current
Normal operation
(PDN pin = “H”)
AVDD
6
mA
TVDD (fs = 44.1kHz)
3
mA
TVDD (fs = 96kHz)
5
mA
TVDD (fs = 192kHz)
7
mA
Power down (PDN pin = “L”)
(Note 15)
AVDD+TVDD
1
100
A
Note 9. Measured by Audio Precision, System Two. Averaging mode.
Note 10. Figure 80 External LPF Circuit Example 1. 100dB for 16-bit data.
Note 11. Figure 80 External LPF Circuit Example 1. S/N does not depend on input data size.
Note 12. The voltage on (VREFH1 VREFL1) is held +5V externally.
Note 13. The full scale voltage when applying a 1kHz sine wave (0dB) in PCM mode, or when applying a
1kHz sine wave (25~75% duty) in DSD mode. Output voltage scales with the voltage of (VREFH1
VREFL1).
DAC: AOUT (typ.@0dB) = (AOUT+) (AOUT) = 2.8Vpp (VREFH1 VREFL1)/5
Note 14. Regarding Load Resistance, AC load is 2k (min) with a DC cut capacitor (Figure 80). DC load is 2
k (min) without a DC cut capacitor (Figure 80). The load resistance value is with respect to ground.
Analog characteristics are sensitive to capacitive load that is connected to the output pin. Therefore
the capacitive load must be minimized.
Note 15. In the power down mode. All other digital input pins including clock pins (MCLK, BICK and LRCK)
are held DVSS.
015002211-E-03
2017/07
- 12 -
[AK4452]
■ Sharp Roll-Off Filter Characteristics
Sharp Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF,
SLOW bit = “0”, SD bit=“0”)
Parameter
Symbol
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
20.0
Pass band
(Note 16)
3.0dB
PB
21.5
Pass band Ripple
PR
-0.0032
0.0032
Stop band
(Note 16)
SB
24.1
Stop band Attenuation
(Note 18)
SA
80
Group Delay
(Note 17)
26.8
GD
Frequency Response (Note 18) 0.07dB
0
20.0
Digital Filter + SCF
(Note 18)
Frequency Response: 0 20.0kHz
-0.2
0.1
Unit
kHz
kHz
dB
kHz
dB
1/fs
kHz
dB
Sharp Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF, SLOW bit = “0”,
SD bit=“0”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
43.5
kHz
Pass band
(Note 16)
3.0dB
PB
46.8
kHz
Pass band Ripple
PR
-0.0032
0.0032
dB
Stop band
(Note 16)
SB
52.5
kHz
Stop band Attenuation
(Note 18)
SA
80
dB
Group Delay
(Note 17)
GD
26.8
1/fs
Frequency Response (Note 18) 0.07dB
0
43.5
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 40.0kHz
-0.3
0.1
dB
Sharp Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF, SLOW bit = “0”,
SD bit=“0”)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
0.05dB
PB
0
87.0
kHz
Pass band
(Note 16)
3.0dB
PB
93.6
kHz
Pass band Ripple
PR
-0.0032
0.0032
dB
Stop band
(Note 16)
SB
105
kHz
Stop band Attenuation
(Note 18)
SA
80
dB
Group Delay
(Note 17)
26.8
GD
1/fs
Frequency Response (Note 18) 0.07dB
0
87.0
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 80.0kHz
-1
0.1
dB
Note 16. The pass band and stop band frequencies scale with fs. For example, PB=0.4535×fs, SB=0.546×fs.
Note 17. The calculating delay time which occurred by digital filtering. This time is from setting the
16/20/24/32bit data of both channels to input register to the output of analog signal.
Note 18. The output level is assumed as 0dB when inputting a 1kHz 0dB sine wave.
*Digital filter characteristics are based on simulation results.
015002211-E-03
2017/07
- 13 -
[AK4452]
Figure 2. Sharp Roll-off Filter Frequency Response
Figure 3. Sharp Roll-off Filter Passband Ripple
015002211-E-03
2017/07
- 14 -
[AK4452]
■ Slow Roll-Off Filter Characteristics
Slow Roll-Off Filter Characteristics (fs = 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = “1”, SD bit=“0”)
Parameter
Symbol
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
8.1
Pass band
(Note 19)
3.0dB
PB
18.2
Pass band Ripple
PR
-0.043
0.043
Stop band
(Note 19)
SB
39.2
Stop band Attenuation
(Note 18)
SA
73
Group Delay
(Note 17)
6.3
GD
Frequency Response (Note 18)
0.05dB
0
8.1
Digital Filter + SCF
(Note 18)
Frequency Response: 0 20.0kHz
-5
0.1
Unit
kHz
kHz
dB
kHz
dB
1/fs
kHz
dB
Slow Roll-Off Filter Characteristics (fs = 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = “1”,
SD bit=“0”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
17.7
kHz
Pass band
(Note 19)
3.0dB
PB
39.5
kHz
Pass band Ripple
PR
-0.043
0.043
dB
Stop band
(Note 19)
SB
85.3
kHz
Stop band Attenuation
(Note 18)
SA
73
dB
Group Delay
(Note 17)
GD
6.3
1/fs
Frequency Response (Note 18)
0.05dB
PB
0
17.7
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 40.0kHz
-5
0.1
dB
Slow Roll-Off Filter Characteristics (fs = 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = “1”,
SD bit=“0”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
35.5
kHz
Pass band
(Note 19)
3.0dB
PB
79.0
kHz
Pass band Ripple
PR
-0.043
0.043
dB
Stop band
(Note 19)
SB
171
kHz
Stop band Attenuation
(Note 18)
SA
73
dB
Group Delay
(Note 17)
GD
6.3
1/fs
Frequency Response (Note 18)
0.05dB
PB
0
35.5
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 80.0kHz
-5
0.1
dB
Note 19. The pass band and stop band frequencies scale with fs. For example, PB=0.185×fs, SB=0.888×fs.
015002211-E-03
2017/07
- 15 -
[AK4452]
Figure 4. Slow Roll-off Filter Frequency Response
Figure 5. Slow Roll-off Filter Passband Ripple
015002211-E-03
2017/07
- 16 -
[AK4452]
■ Short Delay Sharp Roll-Off Filter Characteristics
Short Delay Sharp Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = “0”, SD bit=“1”)
Parameter
Symbol
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
20.0
Pass band
(Note 16)
3.0dB
PB
21.5
Pass band Ripple
PR
-0.0031
0.0031
Stop band
(Note 16)
SB
24.1
Stop band Attenuation
(Note 18)
SA
80
Group Delay
(Note 17)
5.8
GD
Frequency Response (Note 18)
0.07dB
0
20.0
Digital Filter + SCF
(Note 18)
Frequency Response: 0 20.0kHz
-0.2
0.1
Unit
kHz
kHz
dB
kHz
dB
1/fs
kHz
dB
Short Delay Sharp Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = “0”,
SD bit=“1”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
43.5
kHz
Pass band
(Note 16)
3.0dB
PB
46.8
kHz
Pass band Ripple
PR
-0.0031
0.0031
dB
Stop band
(Note 16)
SB
52.5
kHz
Stop band Attenuation
(Note 18)
SA
80
dB
Group Delay
(Note 17)
GD
5.8
1/fs
Frequency Response (Note 18)
0.07dB
0
43.5
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 40.0kHz
-0.3
0.1
dB
Short Delay Sharp Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = “0”,
SD bit=“1”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
87.0
kHz
Pass band
(Note 16)
3.0dB
93.6
PB
kHz
Pass band Ripple
PR
-0.0031
0.0031
dB
Stop band
(Note 16)
SB
105
kHz
Stop band Attenuation
(Note 18)
SA
80
dB
Group Delay
(Note 17)
5.8
GD
1/fs
Frequency Response (Note 18) 0.07dB
0
87.0
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 80.0kHz
-1
0.1
dB
015002211-E-03
2017/07
- 17 -
[AK4452]
Figure 6. Short delay Sharp Roll-off Filter Frequency Response
Figure 7. Short delay Sharp Roll-off Filter Passband Ripple
015002211-E-03
2017/07
- 18 -
[AK4452]
■ Short Delay Slow Roll-Off Filter Characteristics
Short Delay Slow Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = “1”, SD bit=“1”)
Parameter
Symbol
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
11.1
Pass band
(Note 20)
3.0dB
PB
19.4
Pass band Ripple
PR
-0.05
0.05
Stop band
(Note 20)
SB
38.1
Stop band Attenuation
(Note 18)
SA
82
Group Delay
(Note 17)
GD
4.8
Frequency Response (Note 18) 0.05dB
0
11.1
Digital Filter + SCF
(Note 18)
Frequency Response: 0 20.0kHz
-5
0.1
Unit
kHz
kHz
dB
kHz
dB
1/fs
kHz
dB
Short Delay Slow Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = “1”,
SD bit=“1”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
24.2
kHz
Pass band
(Note 20)
3.0dB
42.1
PB
kHz
Pass band Ripple
PR
-0.05
0.05
dB
Stop band
(Note 20)
SB
83.0
kHz
Stop band Attenuation
(Note 18)
SA
82
dB
Group Delay
(Note 17)
4.8
GD
1/fs
Frequency Response (Note 18) 0.05dB
0
24.2
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 40.0kHz
-5
0.1
dB
Short Delay Slow Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = “1”,
SD bit=“1”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
48.4
kHz
Pass band
(Note 20)
3.0dB
PB
84.3
kHz
Pass band Ripple
PR
-0.05
0.05
dB
Stop band
(Note 20)
SB
165.9
kHz
Stop band Attenuation
(Note 18)
SA
82
dB
Group Delay
(Note 17)
GD
4.8
1/fs
Frequency Response (Note 18) 0.05dB
0
48.4
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 80.0kHz
-5
0.1
dB
Note 20. The pass band and stop band frequencies scale with fs. For example, PB=0.252×fs, SB=0.864×fs.
015002211-E-03
2017/07
- 19 -
[AK4452]
Figure 8. Short Delay Slow Roll-off Filter Frequency Response
Figure 9. Short Delay Slow Roll-off Filter Passband Ripple
015002211-E-03
2017/07
- 20 -
[AK4452]
■ DSD Mode Characteristics
(1) DSDF bit= “0”
(Ta=-40 105°C: AVDD=3.0 5.5V, TVDD=1.7 3.6V: fs=44.1kHz: D/P bit= “1”, DSDF bit= “0”)
Parameter
Min.
Typ.
Max.
Unit
Digital Filter Response
DSDSEL[1:0]
20kHz
-0.8
“00”
50kHz
-5.5
dB
Frequency
100kHz
-19.9
Response
40kHz
-0.8
(Note 21)
“01””
200kHz
-5.5
dB
400kHz
-19.9
80kHz
-0.8
“10”
400kHz
-5.5
dB
800kHz
-19.9
(2) DSDF bit= “1”
(Ta=-40 105C: AVDD=3.0 5.5V, TVDD=1.7 3.6V: fs=44.1kHz: D/P bit=“1”, DSDF bit= “1”)
Parameter
Min.
Typ.
Max.
Unit
Digital Filter Response
DSDSEL[1:0]
20kHz
-0.2
“00”
100kHz
-6.3
dB
Frequency
200kHz
-23.7
Response
40kHz
-0.2
(Note 21)
“01””
200kHz
-6.3
dB
400kHz
-23.7
80kHz
-0.2
“10”
400kHz
-6.3
dB
800kHz
-23.7
Note 21. In DSD mode, the signal level is ranging from 25% to 75%. Peak levels of DSD signal above this duty
are not recommended by SACD format book (Scarlet Book).
Note 22. It is assumed that the output level is 0dB when the input signal is 1kHz and the duty range is between
25 ~ 75%.The output level is assumed as 0dB when applying a 1kHz sine wave in 25~ 75% duty.
*Digital filter characteristics are based on simulation results.
■ DC Characteristics
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V)
Parameter
Symbol
TVDD=1.7 3.0V
High-Level Input Voltage
VIH
Low-Level Input Voltage
VIL
TVDD=3.0V 3.6V
High-Level Input Voltage
VIH
Low-Level Input Voltage
VIL
High-Level Output Voltage
(TDMO1, DZF pins: Iout=-100µA)
VOH
Low-Level Output Voltage
(excpt SDA pin : Iout= 100µA)
VOL
(SDA pin, 2.0V TVDD 3.6V: Iout= 3mA)
VOL
(SDA pin, 1.7V TVDD 2.0V: Iout= 3mA)
VOL
Input Leakage Current
Iin
015002211-E-03
Min.
Typ.
Max.
Unit
80%TVDD
-
-
20%TVDD
V
V
70%TVDD
-
-
30%TVDD
V
V
TVDD0.5
-
-
V
-
-
0.5
0.4
20%TVDD
10
V
V
V
A
-
2017/07
- 21 -
[AK4452]
■ Switching Characteristics
(Ta=-40 105°C: AVDD=3.0 5.5V, TVDD=1.7 3.6V, CL=20pF)
Parameter
Symbol
Min.
Master Clock Timing
2.048
Frequency
fCLK
45
Duty Cycle
dCLK
Minimum Pulse Width
9.155
tCLKH
tCLKL
9.155
LRCK Frequency
(Note 23)
Normal Mode (TDM1-0 bits = “00”)
Normal Speed Mode
fsn
8
Double Speed Mode
fsd
54
Quad Speed Mode
fsq
108
Oct speed mode
fso
Hex speed mode
fsh
Duty Cycle
Duty
45
TDM128 mode (TDM1-0 bits = “01”)
Normal Speed Mode
fsn
8
Double Speed Mode
fsd
54
Quad Speed Mode
fsq
108
High time
tLRH
1/128fs
Low time
tLRL
1/128fs
TDM256 mode (TDM1-0 bits = “10”)
Normal Speed Mode High time
fsn
8
Double Speed Mode
fsd
54
High time
tLRH
1/256fs
Low time
tLRL
1/256fs
TDM512 mode (TDM1-0 bits = “11”)
Normal Speed Mode
fsn
8
High time
tLRH
1/512fs
Low time
tLRL
1/512fs
PCM Audio Interface Timing
Normal Mode (TDM1-0 bits = “00”)
BICK Period
Normal Speed Mode
tBCK
1/256fsn
Double Speed Mode
tBCK
1/128fsd
Quad Speed Mode
tBCK
1/64fsq
Oct speed mode
tBCK
1/64fso
Hex speed mode
tBCK
1/64fsh
BICK Pulse Width Low
tBCKL
9
BICK Pulse Width High
tBCKH
9
BICK “” to LRCK Edge (Note 24)
tBLR
5
tLRB
5
LRCK Edge to BICK “” (Note 24)
tSDH
5
SDTI1 Hold Time
tSDS
5
SDTI1 Setup Time
015002211-E-03
Typ.
Max.
Unit
49.152
55
MHz
%
ns
ns
54
108
216
kHz
kHz
kHz
kHz
kHz
%
384
768
55
54
108
216
kHz
kHz
kHz
nsec
ns
54
108
kHz
kHz
nsec
nsec
54
kHz
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
2017/07
- 22 -
[AK4452]
Parameter
TDM128 mode (TDM1-0 bits = “01”)
BICK Period
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
BICK Pulse Width Low
BICK Pulse Width High
BICK “” to LRCK Edge (Note 24)
LRCK Edge to BICK “” (Note 24)
SDTI1 Hold Time
SDTI1 Setup Time
TDM256 mode (TDM1-0 bits = “10”)
BICK Period
Normal Speed Mode
Double Speed Mode (Note 25)
BICK Pulse Width Low
BICK Pulse Width High
BICK “” to LRCK Edge (Note 24)
LRCK Edge to BICK “” (Note 24)
TDMO1 Setup time BICK “”
TDMO1 Hold time BICK “”(Note 27)
SDTI1 Hold Time
SDTI1 Setup Time
TDM512 mode (TDM1-0 bits = “11”)
BICK Period
Normal Speed Mode (Note 26)
BICK Pulse Width Low
BICK Pulse Width High
BICK “” to LRCK Edge (Note 24)
LRCK Edge to BICK “” (Note 24)
TDMO1 Setup time BICK “”
TDMO1 Hold time BICK “” (Note 27)
SDTI1 Hold Time
SDTI1 Setup Time
Symbol
Min.
tBCK
tBCK
tBCK
tBCKL
tBCKH
tBLR
tLRB
tSDH
tSDS
1/128fsn
1/128fsd
1/128fsq
14
14
14
14
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
tBCK
tBCK
tBCKL
tBCKH
tBLR
tLRB
tBSS
tBSH
tSDH
tSDS
1/256fsn
1/256fsd
14
14
14
14
5
5
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
tBCK
tBCKL
tBCKH
tBLR
tLRB
tBSS
tBSH
tSDH
tSDS
1/512fsn
14
14
14
14
5
5
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
015002211-E-03
Typ.
Max.
Unit
2017/07
- 23 -
[AK4452]
Parameter
DSD Audio Interface Timing
(64 mode, DSDSEL 1-0 bits = “00”)
DCLK Period
DCLK Pulse Width Low
DCLK Pulse Width High
DCLK Edge to DSDL/R (Note 28)
(128 mode, DSDSEL 1-0 bits = “01”)
DCLK Period
DCLK Pulse Width Low
DCLK Pulse Width High
DCLK Edge to DSDL/R (Note 28)
Symbol
Min.
tDCK
tDCKL
tDCKH
tDDD
144
144
20
tDCK
tDCKL
tDCKH
tDDD
72
72
10
Typ.
Max.
Unit
20
nsec
nsec
nsec
nsec
10
nsec
nsec
nsec
nsec
1/64fs
1/128fs
(256 mode, DSDSEL 1-0 bits = “10”)
DCLK Period
tDCK
1/256fs
nsec
DCLK Pulse Width Low
tDCKL
36
nsec
DCLK Pulse Width High
tDCKH
36
nsec
DCLK Edge to DSDL/R (Note 28)
tDDD
5
5
nsec
Note 23. When the 1152fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK4452 should be
reset by the PDN pin or RSTN bit.
Note 24. BICK rising edge must not occur at the same time as LRCK edge.
Note 25. fsd (max) = 96kHz when TVDD < 3.0V in Daisy Chain mode.
Note 26. fsn (max) = 48kHz when TVDD < 3.0V in Daisy Chain mode.
Note 27. tBSH (min) = 4 nsec when TVDD > 2.6V and the LDOE pin = “L”.
Note 28. DSD data transmitting device must meet this time.
tDDD is defined from a falling edge of DCLK “↓” to a DSDL/R edge when DCKB bit = “0” and it
is defined from a rising edge of DCLK “↑” to a DSDL/R edge when DCKB bit = “1”
015002211-E-03
2017/07
- 24 -
[AK4452]
(Ta=-40 105°C: AVDD=3.0 5.5V, TVDD=1.7 3.6V)
Parameter
Symbol
Min.
Typ.
Control Interface Timing (3-wire Serial mode):
CCLK Period
200
tCCK
CCLK Pulse Width Low
80
tCCKL
Pulse Width High
80
tCCKH
CDTI Setup Time
40
tCDS
CDTI Hold Time
40
tCDH
CSN “H” Time
150
tCSW
50
CSN “” to CCLK “”
tCSS
50
tCSH
CCLK “” to CSN “”
Control Interface Timing (I2C Bus mode):
SCL Clock Frequency
fSCL
Bus Free Time Between Transmissions
tBUF
1.3
Start Condition Hold Time (prior to first clock pulse)
tHD:STA
0.6
Clock Low Time
tLOW
1.3
Clock High Time
tHIGH
0.6
Setup Time for Repeated Start Condition
tSU:STA
0.6
SDA Hold Time from SCL Falling
(Note 29)
tHD:DAT
0
SDA Setup Time from SCL Rising
tSU:DAT
0.1
Rise Time of Both SDA and SCL Lines
tR
Fall Time of Both SDA and SCL Lines
tF
Setup Time for Stop Condition
tSU:STO
0.6
Pulse Width of Spike Noise Suppressed by Input Filter
tSP
0
Capacitive load on bus
Cb
Power-down & Reset Timing
(Note 30)
PDN Accept Pulse Width
tAPD
150
PDN Reject Pulse Width
tRPD
Note 29. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.
Note 30.The AK4452 can be reset by bringing the PDN pin to “L”.
Note 31. I2C is a trademark of NXP B.V.
015002211-E-03
Max.
Unit
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
400
1.0
0.3
50
400
kHz
sec
sec
sec
sec
sec
sec
sec
sec
sec
nsec
pF
30
nsec
nsec
2017/07
- 25 -
[AK4452]
■ Timing Diagram
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
dCLK=tCLKH x fCLK, tCLKL x fCLK
1/fs
VIH
LRCK
VIL
tLRH
tLRL
Duty=tLRH x fs, tLRL x fs
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 10. Clock Timing
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSS
tBSH
TDMO
50%TVDD
tSDS
tSDH
VIH
SDTI
VIL
Figure 11. Audio Interface Timing (PCM Mode)
015002211-E-03
2017/07
- 26 -
[AK4452]
tDCK
tDCKL
tDCKH
VIH
DCLK
VIL
tDDD
VIH
DSDL1
DSDR1
VIL
tDDD
VIH
DSDL1
DSDR1
VIL
Figure 12. Audio Serial Interface Timing (DSD Normal Mode, DCKB bit = “0”)
tDCK
tDCKL
tDCKH
VIH
DCLK
VIL
tDDD
tDDD
VIH
DSDL1
DSDR1
VIL
tDDD
tDDD
VIH
DSDL1
DSDR1
VIL
Figure 13. Audio Serial Interface Timing (DSD Phase Modulation Mode, DCKB bit = “0”)
015002211-E-03
2017/07
- 27 -
[AK4452]
VIH
CSN
VIL
tCSS
tCCKL tCCKH
VIH
CCLK
VIL
tCDS
CDTI
C1
tCDH
C0
R/W
VIH
A4
VIL
Figure 14. WRITE Command Input Timing (3-wire Serial Mode)
tCSW
VIH
CSN
VIL
tCSH
VIH
CCLK
CDTI
VIL
D3
D2
D1
D0
VIH
VIL
Figure 15. WRITE Data Input Timing (3-wire Serial Mode)
015002211-E-03
2017/07
- 28 -
[AK4452]
VIH
SDA
VIL
tLOW
tBUF
tR
tHIGH
tF
tSP
VIH
SCL
VIL
tHD:STA
Stop
tHD:DAT
Start
tSU:DAT
tSU:STA
tSU:STO
Start
Stop
Figure 16. I2C Bus mode Timing
tAPD
tRPD
PDN
VIL
Figure 17. Power-down & Reset Timing
015002211-E-03
2017/07
- 29 -
[AK4452]
9. Functional Descriptions
■ D/A Conversion Mode (PCM mode, DSD mode)
The AK4452 can perform D/A conversion for either PCM data or DSD data. The DP bit controls PCM/DSD
mode. When DSD mode, DSD data can be input from DCLK, DSDL and DSDR pins. When PCM mode, PCM
data can be input from BICK, LRCK and SDTI pins. When PCM/DSD mode is changed by DP bit, the
AK4452 should be reset by RSTN bit. It takes about 2/fs to 3/fs to change the mode. Only PCM data is
supported in parallel mode.
DP bit
Interface
0
PCM
1
DSD
Table 1. PCM/DSD Mode Control
■ System Clock
[1] PCM Mode
The external clocks, which are required to operate the AK4452, are MCLK, BICK and LRCK. MCLK should
be synchronized with LRCK but the phase is not critical. The MCLK is used to operate the digital interpolation
filter and the delta - sigma modulator.
There are two methods to set MCLK frequency. In Manual Setting Mode (ACKS bit= “0”: Default), the
sampling speed is set by the DFS0, DFS1 (Table 2) bits. The frequency of MCLK at each sampling speed is set
automatically. When reset is released (PDN pin = “↑”), the AK4452 is in Manual Setting Mode. In Auto
Setting Mode (ACKS bit= “1”), as MCLK frequency is detected automatically (Table 5) and the internal
master clock attains the appropriate frequency (Table 6, Table 7), so it is not necessary to set DFS bits.
015002211-E-03
2017/07
- 30 -
[AK4452]
1. Manual Setting Mode (ACKS bit = “0”)
MCLK frequency is detected automatically and the sampling rate is set by DFS2-0 bits (Table 2). The MCLK
frequency corresponding to each sampling speed should be provided externally (Table 3, Table 4).
The AK4452 is set to Manual Setting Mode at power-up (PDN pin = “L” →“H”). When DFS2-0 bits are
changed, the AK4452 should be reset by RSTN bit.
DFS2
0
0
DFS1
0
0
DFS0
0
1
0
1
0
0
1
1
1
1
1
0
0
1
1
LRCK
Fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384kHz
768kHz
LRCK
fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384kHz
768kHz
Sampling Rate (fs)
Normal Speed Mode
8kHz 54kHz
Double Speed Mode
54kHz 108kHz
Quad Speed Mode
(default)
120kHz 216kHz
1
Reserved
(*)
0
Oct Speed Mode
384kHz
1
Hex Speed Mode
768kHz
0
Reserved
(* Shift to 384kHz)
1
Reserved
(* Shift to 768kHz)
Table 2. Sampling Speed (Manual Setting Mode)
MCLK(MHz)
16fs
32fs
48fs
64fs
96fs
128fs
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
22.5792
N/A
N/A
N/A
N/A
N/A
24.5760
N/A
12.288 18.432 24.576 36.864 49.152
12.288 24.576 36.864 49.152
N/A
N/A
Table 3. System Clock Example (Manual Setting Mode)
Sampling
Speed
Normal
Double
Quad
Quad
Oct
Hex
MCLK(MHz)
192fs
256fs
384fs
512fs
768fs
1024fs
1152fs
N/A
8.1920
12.2880 16.3840 24.5760 36.8640 36.8640
N/A
11.2896 16.9344 22.5792 33.8688
N/A
N/A
N/A
12.2880 18.4320 24.5760 36.8640
N/A
N/A
N/A
22.5792 33.8688 45.1584
N/A
N/A
N/A
N/A
24.5760 36.8640 49.152
N/A
N/A
N/A
33.8688 45.1584
N/A
N/A
N/A
N/A
N/A
36.8640
49.152
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Table 4. System Clock Example (Manual Setting Mode)
015002211-E-03
Sampling
Speed
Normal
Double
Quad
Quad
Oct
Hex
2017/07
- 31 -
[AK4452]
2. Auto Setting Mode (ACKS bit = “1”)
MCLK frequency and the sampling speed are detected automatically (Table 5) and DFS2-0 bits are ignored.
The MCLK frequency corresponding to each sampling speed should be provided externally (Table 6, Table 7).
MCLK
Sampling Speed
1152fs
Normal (fs32kHz)
512fs/256fs 768fs/384fs
Normal
256fs
384fs
Double
128fs
192fs
Quad
64fs
96fs
Oct
32fs
48fs
Hex
Table 5. Sampling Speed (Auto Setting Mode)
LRCK
fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384kHz
768kHz
LRCK
fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384kHz
768kHz
MCLK (MHz)
32fs
48fs
64fs
96fs
128fs
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
22.5792
N/A
N/A
N/A
N/A
24.5760
N/A
N/A
24.576
36.864
N/A
24.576
36.864
N/A
N/A
N/A
Table 6. System Clock Example (Auto Setting Mode)
MCLK(MHz)
192fs
256fs
384fs
512fs
768fs
1152fs
N/A
(8.1920*) (12.2880*) 16.3840 24.5760
36.8640
N/A
(11.2896*) (16.9344*) 22.5792 33.8688
N/A
N/A
(12.2880*) (18.4320*) 24.5760 36.8640
N/A
N/A
22.5792
33.8688
N/A
N/A
N/A
N/A
24.5760
36.8640
N/A
N/A
N/A
33.8688
N/A
N/A
N/A
N/A
N/A
36.8640
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Table 7. System Clock Example (Auto Setting Mode)
Sampling
Speed
Normal
Double
Quad
Quad
Oct
Hex
Sampling
Speed
Normal
(Double*)
Double
Quad
Quad
Oct
Hex
MCLK= 256fs/384fs supports sampling rate of 8kHz~96kHz (Table 8). However, when the sampling rate is
8kHz~48kHz, DR and S/N will degrade by approximately 3dB as compared to when MCLK= 512fs/768fs.
ACKS bit
MCLK
DR,S/N
0
256fs/384fs/512fs/768fs
115dB
1
256fs/384fs
112dB
1
512fs/768fs
115dB
Table 8. Relationship of DR, S/N and MCLK frequency (fs = 44.1kHz)
015002211-E-03
2017/07
- 32 -
[AK4452]
[2] DSD mode (Serial Control mode only)
The AK4452 is capable to playback DSD data. The external clocks, which are required to operate the AK4452,
are MCLK and DCLK. MCLK should be synchronized with DCLK but the phase is not critical. The frequency
of MCLK is set by DCKS bit. (Table 9)
After exiting reset (PDN pin = “L” → “H”, RSTN bit= “0” → “1”) upon power-up, the AK4452 is in
power-down state until MCLK and DCLK are input.
DCKS bit
0
1
MCLK Frequency DCLK Frequency
512fs
64fs/128fs/256fs
768fs
64fs/128fs/256fs
Table 9. System Clock (DSD Mode)
(default)
The AK4452 supports 64fs, 128fs and 256fs data stream (fs= 32kHz, 44.1kHz, 48kHz). DSDSEL1-0 bits
control this setting. (Table 10)
DSDSEL1
DSDSEL0
0
0
1
0
1
0
1
1
DSD data stream
fs=32kHz
fs=44.1kHz
2.048MHz
2.8224MHz
4.096MHz
5.6448MHz
8.192MHz
11.2896MHz
Reserved
Reserved
(8.192MHz)
(11.2896MHz)
Table 10. DSD Data Stream Select
fs=48kHz
3.072MHz
6.144MHz
12.288MHz
Reserved
(12.288MHz)
(default)
DSDD bit selects DSD playback mode (Table 11). When DSDD bit= “1”, the output volume control is not
available and the cut off filter value is fixed to 100kHz.
DSDD bit
Mode
0
Full function
(default)
1
Volume pass
Table 11. DSD Playback Mode Select
The cut off filter characteristic in DSD mode can be selected by DSDF bit. (Table 12)
DSDF bit
Cut Off Filter
0
50kHz
(default)
1
100kHz
Table 12. DSD Filter Select
015002211-E-03
2017/07
- 33 -
[AK4452]
■ Audio Interface Format
The AK4452 supports both PCM and DSD formats for digital input signal. Mode settings are available by the
pins (TDM1-0 pins, DIF pin and DCHAIN pin) and registers (TDM1-0 bits, DIF2-0 bits, SDS2-0 bits and
DCHAIN bit). The RSTN bit should be toggled in case these format setting bits are changed during operation.
[1] PCM Mode
Normal Mode (TDM1-0 bits=“00”)
Two channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Eight data formats are
supported and selected by the DIF2-0 bits as shown in Table 13. In all formats the serial data is MSB first, 2's
compliment format and is latched on the rising edge of BICK. Mode 2 can be used in 16-bit and 20-bit MSB
justified and Mode 6 can be used in 16-bit, 20-bit and 24-bit MSB justified formats by zeroing the unused
LSBs.
TDM128 Mode (TDM1-0 bits=“01”)
Four channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. BICK is fixed to 128fs. Six data formats are supported and selected by the DIF2-0 bits as shown
in Table 13. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge
of BICK.
TDM256 Mode (TDM1-0 bits=“10”)
Eight channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. BICK is fixed to 256fs. Six data formats are supported and selected by the DIF2-0 bits as shown
in Table 13. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge
of BICK.
TDM512 Mode (TDM1-0 bits=“11”)
Sixteen channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. BICK is fixed to 512fs. Six data formats are supported and selected by the DIF2-0 bits as shown
in Table 13. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge
of BICK.
015002211-E-03
2017/07
- 34 -
[AK4452]
Mode
0
1
2
3
4
5
6
7
Normal
(Note 32)
TDM128
TDM256
TDM512
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
TDM1
TDM0
0
0
0
1
1
0
1
1
DIF2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DIF1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DIF0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SDTI Format
LRCK BICK
16-bit LSB justified
H/L
32fs
20-bit LSB justified
H/L
40fs
24-bit MSB justified
H/L
48fs
2
24-bit I S compatible
L/H
48fs
24-bit LSB justified
H/L
48fs
32-bit LSB justified
H/L
64fs
32-bit MSB justified
H/L
64fs
32-bit I2S compatible
L/H
64fs
N/A
128fs
N/A
128fs
24-bit MSB justified
128fs
24-bit I2S compatible
128fs
24-bit LSB justified
128fs
32-bit LSB justified
128fs
32-bit MSB justified
128fs
32-bit I2S compatible
128fs
N/A
256fs
N/A
256fs
24-bit MSB justified
256fs
24-bit I2S compatible
256fs
24-bit LSB justified
256fs
32-bit LSB justified
256fs
32-bit MSB justified
256fs
32-bit I2S compatible
256fs
N/A
512fs
N/A
512fs
24-bit MSB justified
512fs
24-bit I2S compatible
512fs
24-bit LSB justified
512fs
32-bit LSB justified
512fs
32-bit MSB justified
512fs
32-bit I2S compatible
512fs
(Shaded settings are not available)
Table 13. Audio Interface Format
Note 32. BICK that is input to each channel must be longer than the bit length of setting format.
015002211-E-03
2017/07
- 35 -
[AK4452]
LRCK
0
1
10
11
12
13
14
15
0
1
10
11
12
13
14
15
0
1
BICK
(32fs)
SDTI1
Mode 0
15
14
6
5
1
0
4
14
3
15
2
16
1
17
0
31
15
14
0
6
5
4
14
1
3
15
2
16
1
17
0
31
15
14
0
1
BICK
(64fs)
SDTI1
Mode 0
Don’t care
15
14
0
Don’t care
15
14
0
15:MSB, 0:LSB
Lch Data
Rch Data
Figure 18. Mode 0 Timing
LRCK
0
1
8
9
10
11
12
31
0
1
8
9
10
11
12
31
0
1
0
1
BICK
(64fs)
SDTI1
Mode 1
Don’t care
19
0
Don’t care
19
0
Don’t care
19
0
19
0
19:MSB, 0:LSB
SDTI1
Mode 4
Don’t care
23
22
21
20
23
22
20
21
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 19. Mode 1/4 Timing
LRCK
0
1
2
22
23
24
30
31
0
1
2
22
23
24
30
31
BICK
(64fs)
SDTI1
23
22
1
0
Don’t care
23
22
1
0
Don’t care
23
22
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 20. Mode 2 Timing
015002211-E-03
2017/07
- 36 -
[AK4452]
LRCK
0
1
2
3
23
24
25
31
0
1
2
3
23
24
25
31
0
1
BICK
(64fs)
SDTI1
23
0
1
22
Don’t care
23
22
0
1
23
Don’t care
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 21. Mode 3 Timing
LRCK
0
1
2
22
23
24
30
31
0
1
2
22
23
24
30
31
0
1
BICK
(64fs)
SDTI1
Mode 5,6
31
30
1
0
31
30
0
1
31
30
32:MSB, 0:LSB
Lch Data
Rch Data
Figure 22. Mode 5/6 Timing
LRCK
0
1
2
3
23
24
25
31
0
1
0
31
2
3
23
24
25
31
0
1
0
31
BICK
(64fs)
SDTI1
31
30
1
30
1
30
32:MSB, 0:LSB
Lch Data
Rch Data
Figure 23. Mode 7 Timing
015002211-E-03
2017/07
- 37 -
[AK4452]
128 BICK
LRCK
BICK(128fs)
SDTI1
Mode8
23 22
SDTI1
Mode11,12
31 30
0
23 22
0
0 31 30
23 22
23 22
0
0 31 30
0
0 31 30
23 22
0 31 30
2
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
Figure 24. Mode 8/11/12 Timing
128 BICK
LRCK
BICK(128fs)
SDTI1
Mode9
23 22
SDTI1
Mode13
31 30
0
0
23 22
0
23 22
0 31 30
23 22
0 31 30
L1
R1
32 BICK
32 BICK
23
0
0 31 30
2
0 31 30
L2
R2
32 BICK
32 BICK
Figure 25. Mode 9/13 Timing
128 BICK
LRCK
BICK(128fs)
SDTI1
23 22
0
23 22
0
23 22
0
0
23 22
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23
Figure 26. Mode 10 Timing
015002211-E-03
2017/07
- 38 -
[AK4452]
256 BICK
LRCK
BICK (256fs)
SDTI1
Mode14
SDTI1
Mode17,18
23 22
0
31 30
23 22
0
23 22
0 31 30
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0 31 30
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
23
Figure 27. Mode 14/17/18 Timing
256 BICK
LRCK
BICK (256fs)
SDTI1
Mode15
SDTI1
Mode19
23
0
23
31 30
0
23
0 31 30
0
23
0 31 30
0
23
0 31 30
0
23
0 31 30
0
0 31 30
0
0 31 30
0
0 31 30
23
0 31
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
Figure 28. Mode 15/19 Timing
256 BICK
LRCK
BICK(256fs)
SDTI1
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
23
Figure 29. Mode 16 Timing
015002211-E-03
2017/07
- 39 -
[AK4452]
512BICK
LRCK
BICK(512fs)
SDTI1
Mode8
SDTI1
Mode11,12
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23 22
0
23 22
0
23 22
23
0
2
31 22
0 31 22
0 31 22
R1
L1
0 31 22
0 31 22
R2
L2
0 31 22
0 31 22
R3
L3
0 31 22
31
0
R4
L4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 30. Mode 20/23/24 Timing
512BICK
LRCK
BICK(512fs)
SDTI1
Mode21
SDTI1
Mode25
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
23
0
2
31 22
0 31 22
0 31 22
R1
L1
0 31 22
0 31 22
R2
L2
0 31 22
0 31 22
R3
L3
0 31 22
31
0
R4
L4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 31. Mode 21/25 Timing
512BICK
LRCK
BICK(512fs)
SDTI1
Mode22
23 22
L1
0
23 22
2
R1
0
23 22
L2
0
23 22
R2
0
23 22
L3
0
23 22
R3
0
23 22
L4
0
23 22
23
0
R4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 32. Mode 22 Timing
015002211-E-03
2017/07
- 40 -
[AK4452]
[1]-1. Data Select
One data cycle of SDTI1 for each format are defined as below. SDS2-0 bits control playback channel of each
DAC.
LRCK
L1
SDTI1
R1
Figure 33. Data Slot in Normal Mode
128 BICK
LRCK
L1
SDTI1
R1
L2
R2
Figure 34. Data Slot in TDM128 Mode
256 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
Figure 35. Data Slot in TDM256 Mode
512 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
L5 R5
L6
R6
L7
R7
L8
R8
Figure 36. Data Slot in TDM512 Mode
015002211-E-03
2017/07
- 41 -
[AK4452]
SDS2
SDS1
SDS0
*
*
*
*
0
0
*
0
1
DAC
Lch Rch
L1
R1
L1
R1
L2
R2
0
0
0
0
0
0
1
1
0
1
0
1
L1
L2
L3
L4
R1
R2
R3
R4
0
0
0
0
TDM512
1
1
1
1
(*: Do not care)
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
L1
L2
L3
L4
L5
L6
L7
L8
R1
R2
R3
R4
R5
R6
R7
R8
Normal
TDM128
TDM256
Table 14. Data Select
015002211-E-03
2017/07
- 42 -
[AK4452]
[1]-2. Daisy Chain
AK4452 is available for Daisy Chain structure. Set DCHAIN bit to “1” or DCHAIN pin to “H” to enable Daisy
Chain mode. Daisy Chain supports TDM512/256 mode.
(1)TDM512 mode
Figure 37 shows example of TDM512 mode Daisy Chain structure (TDM1-0 bits= “11” ). 16ch data is input to
the second AK4452’s SDTI1 pin from a DSP. Connect the second AK4452’s TDMO1 pin to the first
AK4452’s SDTI1 pin.
Figure 38 shows data I/O example of TDM512 mode. SDTI1 (L8, R8) data is the input for the DAC of the
second AK4452, and the second AK4452 outputs the data from TDMO1 by shifting 2ch. The first AK4452
accepts SDTI1 (L7, R7) data as input data of DAC. DIF2-0 bits setting of both first AK4452 and the second
AK4452 must be the same.
TDMO1
SDTI1
TDMO1
SDTI1
Second
AK4452
First
AK4452
DSP
Figure 37. Daisy Chain (TDM512/256 Mode)
512 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
L6
R6
L7
R7
L8
R8
Second AK4452
TDMO1
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
L6
R6
L7
R7
First AK4452
Figure 38. Daisy Chain (TDM512 Mode)
015002211-E-03
2017/07
- 43 -
[AK4452]
(2)TDM256 mode
Figure 37 shows example of TDM256 mode Daisy Chain structure (TDM1-0 bits= “10” ). 8ch data is input to
the second AK4452’s SDTI1 pin from a DSP. Connect the second AK4452’s TDMO1 pin to the first
AK4452’s SDTI1 pin.
Figure 39 shows data I/O example of TDM256 mode. SDTI1 (L4, R4) data is the input for the DAC of the
second AK4452, and the second AK4452 outputs the data from TDMO1 by shifting 2ch. The first AK4452
accepts SDTI1 (L3, R3) data as input data of DAC. DIF2-0 bits setting of both first AK4452 and the second
AK4452 must be the same.
256 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
Second AK4452
TDMO1
L1
L2
R1
R2
L3
R3
First AK4452
Figure 39. Daisy Chain (TDM256 Mode)
015002211-E-03
2017/07
- 44 -
[AK4452]
[2] DSD Mode
2ch Data is shifted in via the DSDL1 and DSDR1 pins using DCLK inputs. DSD data is supported by both
Normal mode (Figure 40) and Phase Modulation mode (Figure 41). Input data is clocked in on a rising or
falling edge of DCLK that is set by DCKB bit.
The frequency of DCLK is variable at 64fs, 128fs and 256fs by setting DSDSEL1-0 bits.
DCLK
(DCKB bit=”0”)
DSDL,DSDR
D0
D1
D2
D3
Figure 40. DSD Mode Timing (Normal Mode)
DCLK
(DCKB bit=”0”)
DSDL,DSDR
D0
D1
D1
D2
D2
D3
Figure 41. DSD Mode Timing (Phase Modulation Mode)
015002211-E-03
2017/07
- 45 -
[AK4452]
■ D/A Conversion Mode (PCM Mode, DSD Mode) Switching Timing
RSTN bit
5/fs
D/A Mode
PCM Mode
DSD Mode
0
D/A Data
PCM Data
DSD Data
Figure 42. D/A Mode Switching Timing (PCM to DSD)
RSTN bit
D/A Mode
DSD Mode
PCM Mode
5/fs
D/A Data
DSD Data
PCM Data
Figure 43. D/A Mode Switching Timing (DSD to PCM)
Note 33. The signal range is defined as 25% ~ 75% duty ratios in DSD mode. DSD signal must not go beyond
this duty range at the SACD format book (Scarlet Book).
015002211-E-03
2017/07
- 46 -
[AK4452]
■ Digital Filter (PCM mode)
Four digital filters are available for playback, providing a choice of different sound colors. These digital filters
are selected by SD bit, SLOW bit and SSLOW bit.
SSLOW
0
0
0
0
1
SD bit
0
0
1
1
*
SLOW bit
Mode
0
Sharp roll-off filter
1
Slow roll-off filter
0
Short delay Sharp roll-off filter
1
Short delay Slow roll-off filter
*
Super Slow Roll-off Mode
Table 15. Digital Filter Setting (*: don’t care)
(default)
The slowest frequency characteristics setting is when SSLOW bit = “1”.
■ De-emphasis Filter (PCM mode)
A digital de-emphasis filter is available for 32kHz, 44.1kHz or 48kHz sampling rates (tc = 50/15µs) and is
enabled or disabled with DEM11-10 bits (DEM bits).
DEM11-10 bits control de-emphasis mode of DAC. DEM bits settings are invalid in DSD mode. This mode is
only valid in PCM Normal Speed Mode.
DEM11
DEM10
Mode
0
0
44.1kHz
0
1
OFF
1
0
48kHz
1
1
32kHz
Table 16. De-emphasis Control
015002211-E-03
(default)
2017/07
- 47 -
[AK4452]
■ Output Volume (PCM mode, DSD mode)
The AK4452 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each
DAC can be set by ATT7-0 bits (register 03-04H), respectively (Table 17). Input data is attenuated from 0dB
to -127dB including Mute. The transition between set values is a soft transition, thus no switching noise is
occurred.
ATT7-0bits
Attenuation Level
(register03-04H)
FFH
+0dB
(default)
FEH
-0.5dB
FDH
-1.0dB
:
:
:
:
02H
-126.5dB
01H
-127.0dB
00H
MUTE (-∞)
Table 17. Attenuation level of Digital Attenuator
Transition time between set values of ATL/R7-0 bits can be selected by the ATS1-0 bits (Table 18). The
transition between set values is a soft transition in Mode0/1/2/3 eliminating switching noise in the transition.
The register settings are maintained when switching the mode between PCM and DSD modes.
Mode
ATS1
ATS0
ATT speed
(default)
0
0
0
4080/fs
1
0
1
2040/fs
2
1
0
510/fs
3
1
1
255/fs
Table 18. Transition Time between Set Values of ATT7-0 bits
The transition between set values is a soft transition of 4080 levels in mode 0. It takes 4080/fs (92.5ms
@fs=44.1kHz) from FFH to 00H. If the PDN pin goes to “L”, ATT7-0 bits are initialized to FFH.
If the digital volume is changed during reset, the volume will be changed to the setting value after releasing the
reset. If the volume is changed in 5/fs after releasing a reset, the volume is changed immediately without soft
transition.
In DSD mode, the digital volume is set to MUTE by setting ATT7-0 bits = “02H” or “01H”.
015002211-E-03
2017/07
- 48 -
[AK4452]
■ Out of Band Noise Reduction Filter (PCM mode, DSD mode)
The AK4452 has an out of band noise reduction filter that can change frequency response. This FIR filter
attenuates out of band noise and may reduce degradation of the analog characteristics caused by a switching
regulator, etc. Best performance should be achieved by clean linear regulated AVDD/VREF power supplies
and the default setting of the FIR2-0 bits. These conditions are included in the Analog Characteristics specs.
FIR2-0 bits set the frequency for noise attenuation. The filter characteristics will differ in DSD direct mode
compared with other modes (Table 19).
FIR2-0 FIR filter
bits
Mode
000
0
001
1
010
2
011
3
100
4
101
5
110
6
111
7
FIR filter
Except DSD direct mode
DSD direct mode
1/4*[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 1/2*[1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (default)
1/4*[1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1] 1/2*[0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
1/4*[1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1] 1/2*[0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]
1/4*[1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1] 1/2*[0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0]
1/4*[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1] 1/2*[0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0]
1/4*[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1] 1/2*[0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0]
1/4*[1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1] 1/2*[0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0]
1/4*[1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1] 1/2*[0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0]
Table 19. FIR Filter Setting
015002211-E-03
2017/07
- 49 -
[AK4452]
Figure 44. Mode0 FIR Filter (Except DSD direct mode)
Figure 45. Mode1 FIR Filter (Except DSD direct mode)
015002211-E-03
2017/07
- 50 -
[AK4452]
Figure 46. Mode2 FIR Filter (Except DSD direct mode)
Figure 47. Mode3 FIR Filter (Except DSD direct mode)
Figure 48. Mode4 FIR Filter (Except DSD direct mode)
015002211-E-03
2017/07
- 51 -
[AK4452]
Figure 49. Mode5 FIR Filter (Except DSD direct mode)
Figure 50. Mode6 FIR Filter (Except DSD direct mode)
Figure 51. Mode7 FIR Filter (Except DSD direct mode)
015002211-E-03
2017/07
- 52 -
[AK4452]
Figure 52. Mode0 FIR Filter (DSD direct mode)
Figure 53. Mode1 FIR Filter (DSD direct mode)
Figure 54. Mode2 FIR Filter (DSD direct mode)
015002211-E-03
2017/07
- 53 -
[AK4452]
Figure 55. Mode3 FIR Filter (DSD direct mode)
Figure 56. Mode4 FIR Filter (DSD direct mode)
Figure 57. Mode5 FIR Filter (DSD direct mode)
015002211-E-03
2017/07
- 54 -
[AK4452]
Figure 58. Mode6 FIR Filter (DSD direct mode)
Figure 59. Mode7 FIR Filter (Except DSD direct mode)
015002211-E-03
2017/07
- 55 -
[AK4452]
■ Zero Detection (PCM mode, DSD mode)
When zero detection function is enabled, the DZF pin goes to “H” if the input data at each channel is
continuously zeros for 8192 LRCK cycles. Zero detection channels (AOUTL1N/P and AOUTR1N/P pins) can
be selected by 08H registers (L1 bit, R1 bit). The DZF pin immediately returns to “L” if the input data of each
channel is not zero. If the RSTN bit is “0”, the DZF pins of both channels go to “H”. The DZF pin of both
channels go to “L” after 4 ~ 5/fs when RSTN bit returns to “1”. The DZFB bit can invert the polarity of the
DZF pin. If all channels are disabled, the DZF pin outputs “Not zero”. Zero detection function is disabled when
DSDD bit = “1”.
DZFB bit
Data
DZF pin
Not zero
L
0
Zero detect
H
Not zero
H
1
Zero detect
L
Not zero: One of the zero detection channels set by L1 bit and R1 bit does not detect zero.
Zero detect: All zero detection channels set by L1 bit and R1 bit detect zero.
Table 20. DZF Pin Function
■ LR Channel Output Signal Select (PCM mode, DSD mode)
Select output signal combination of L and R channels by this function.
Input and output signal combination of the AK4452 can be set by MONO1 bit and SELLR1 bit. The output
signal phase of DAC is controlled by INVL and INVR bits. With these settings, sixteen output signal
combinations are available. These settings are available for any audio format.
MONO1 bit
SELLR1 bit
0
0
0
1
1
0
1
1
INVL1 bit
INVR1 bit
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
Table 21. Output Select for DAC
015002211-E-03
L1ch Out
R1ch Out
L1ch In
L1ch In Invert
L1ch In
L1ch In Invert
R1ch In
R1ch In Invert
R1ch In
R1ch In Invert
L1ch In
L1ch In Invert
L1ch In
L1ch In Invert
R1ch In
R1ch In Invert
R1ch In
R1ch In Invert
R1ch In
R1ch In
R1ch In Invert
R1ch In Invert
L1ch In
L1ch In
L1ch In Invert
L1ch In Invert
L1ch In
L1ch In
L1ch In Invert
L1ch In Invert
R1ch In
R1ch In
R1ch In Invert
R1ch In Invert
2017/07
- 56 -
[AK4452]
■ Sound Quality Adjustment (PCM mode, DSD mode)
The sound quality of the AK4452 can be controlled by SC1-0 bits. The analog characteristics are guaranteed
when Setting 1. However, they are not guaranteed in Setting 2 and 3.
SC1
0
0
1
1
SC0
0
1
0
1
Sound Mode
Analog internal current, normal (Setting1)
Analog internal current, maximum (Setting2)
Analog internal current, minimum (Setting3)
Reserved
Table 22. Sound Quality Select Mode
015002211-E-03
(default)
2017/07
- 57 -
[AK4452]
■ DSD Full Scale (FS) Signal Detection Function
The AK4452 has a full scale signal detection function for each channel in DSD mode. When the input data of
each channel (DSDL1, DSDR1) is continuously “0” (-FS) or “1” (+FS) for 2048 cycles, the AK4452 detects a
full scale signal and outputs “1” on the DML1 and DMR1 bits. The output data is muted if a full scale signal is
detected. When DSDD bit = “0”, the output data is changed in soft transition, and the output data is changed
without soft transition when DSDD bit = “1”. A recovering condition to normal operation mode from full scale
detection status is selected by DMC bit if DDM bit = “1”.
When DMC bit = “0”, the AK4452 will return to normal operation automatically by inputting a normal signal.
When DMC bit = “1”, the AK4452 will return to normal operation mode by writing “1” to DMRE bit.
DSDD bit
Mode
Status after Detection
0
Normal path
DSD Mute
(default)
1
Volume pass
PD
Table 23. DSD Mode and The Device Status after Full Scale Detection (DDM bit= “0”)
2048fs
DSD Error
(DDR or DDLbit)
DSD Data
DSD Data
DSD Data (FS or -FS )
DSD Data
AOUT
Figure 60. Analog Output Waveform when DSD FS is Detected (DSDD bit= “1”)
2048fs
DSD Error
(DDR or DDLbit)
DSD Data
DSD Data
DSD Data (FS or -FS )
DSD Data
AOUT
Figure 61. Analog Output Waveform when DSD FS is Detected (DSDD bit= “0”)
015002211-E-03
2017/07
- 58 -
[AK4452]
■ Soft Mute Operation (PCM mode, DSD mode)
The soft mute operation is performed at digital domain. When the SMUTE pin goes to “H” or set SMUTE bit
to “1”, the output signal is attenuated by during ATT_DATA ATT transition time from the current ATT
level. When the SMUTE pin is returned to “L” or the SMUTE bit is returned to “0”, the mute is cancelled and
the output attenuation gradually changes to the ATT level during ATT_DATA ATT transition time. If the
soft mute is cancelled before attenuating , the attenuation is discontinued and returned to ATT level by the
same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission.
SMUTE pin or
SMUTE bit
(1)
(1)
ATT_Level
(3)
Attenuation
-
GD
(2)
GD
(2)
AOUT
DZF pin
(4)
8192/fs
Notes:
(1) ATT_DATA ATT transition time. For example, this time is 4080LRCK cycles (1020/fs) at
ATT_DATA=255 in Normal Speed Mode.
(2) The analog output corresponding to the digital input has group delay (GD).
(3) If the soft mute is cancelled before attenuating after starting the operation, the attenuation is
discontinued and returned to ATT level by the same cycle.
(4) When the input data for a zero detection channel is continuously zeros for 8192 LRCK cycles, the DZF
pin goes to “H”. The DZF pin immediately returns to “L” if input data are not zero.
Figure 62. Soft Mute Function
015002211-E-03
2017/07
- 59 -
[AK4452]
■ Error Detection
Three types of error can be detected in I2C mode when the LDOE pin = “H”. (Table 24) When the error is
detected, all circuits are powered-down and the analog outputs become floating (Hi-Z) state. In I2C mode, the
AK4452 does not generate acknowledge (ACK) in error status. Once the error is detected the AK4452 does not
return to normal operation automatically even if the error condition is removed so restart the AK4452 by the
PDN pin.
No
Error
Error Condition
1
Internal Reference Voltage Error
Internal reference voltage is not powered up.
2
LDO Over Voltage Detection
LDO voltage > 2.2 ~ 2.5V
3
LDO Over Current Detection
LDO current < 40 ~ 110mA
Table 24. Error Detection
In I2C mode, the AK4452 does not generate acknowledge (ACK) in error status.
■ System Reset
The AK4452should be reset once by bringing the PDN pin = “L” upon power-up. In PCM (DSD) mode, the
AK4452 exits this system reset (power-down mode) by MCLK and LRCK (DCLK) after the PDN pin = “H”.
The AK4452 detects a rising edge of MCLK first, and then the analog block exits power-down mode by a
rising edge of LRCK (DCLK). The digital block exits power-down mode after the internal counter counts
MCLK for 4/fs.
015002211-E-03
2017/07
- 60 -
[AK4452]
■ Power Down Function
The AK4452 is placed in power-down mode by bringing the PDN pin “L” and the analog outputs become
floating (Hi-Z) state. Power-up and power-down timings are shown in Figure 63.
Power
PDN pin
(1)
VDD18 pin
(2)
Internal PDN
Internal
State
Normal Operation (register write and DAC input are available)
DAC In
(Digital)
“0”data
“0”data
GD
(4)
DAC Out
(Analog)
Clock In
Reset
(3)
(5)
GD
(5)
(4)
Don’t care
MCLK,LRCK,BICK
(7)
DZF
External
Mute
(6)
Mute ON
Mute ON
Notes:
(1) After AVDD and TVDD are powered-up, the PDN pin should be “L” for 150ns.
(2) After PDN pin = “H”, the internal LDO power-up if the LDOE pin = “H”. The internal circuits will be
powered up after shutdown switch is ON in the end of a counter by the internal oscillator
(10ms(max)). If the LDOE pin = “L”, the shutdown switch is activated after the AK4452 is powered
up. The internal circuits will be powered up in 1msec (max) after the activation of the shutdown
switch.
During this period, digital output and digital in/output pins may output an instantaneous pulse (max.
1us). Therefore, referring the output of digital pins and data transmission with a device on the same
3-wire serial/I2C bus as the AK4452 should be avoided in this period to prevent system errors.
(3) The analog output corresponding to digital input has group delay (GD).
(4) Analog outputs are floating (Hi-Z) in power down mode.
(5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input.
(6) Mute the analog output externally if click noise (5) adversely affect system performance
The timing example is shown in this figure.
(7) The DZF pin is “L” in the internal power-down mode.
Figure 63. Power down/up Sequence Example
015002211-E-03
2017/07
- 61 -
[AK4452]
■ Power Off and Reset Functions
RSTN
PW1
1
1
0
0
0
1
0
1
DAC
Register
Digital
OFF
Hold
Off
ON
Hold
On
OFF
Hold
Off
ON
Hold
Off
Table 25. Power Off and Reset Function
Analog Output
DAC
Hi-Z
normal
Hi-Z
VREFH/2
(1) Power OFF Function 1 (PW1 bit)
The DAC can be powered down immediately by setting PW1 bit to “0”. In this time, all circuits except
registers are powered down and the analog output goes to floating state (Hi-z). Figure 64 shows a timing
example of power-on and power-down.
PW1 bit
Internal
State
Normal Operation
Power-off
D/A In
(Digital)
“0” data
GD
D/A Out
(Analog)
(1)
GD
(3)
Clock In
(2)
(3)
(1)
Don’t care
MCLK, BICK, LRCK
DZF
External
MUTE
Normal Operation
(5)
(4)
Mute ON
Notes:
(1) The analog output corresponding to digital input has group delay (GD).
(2) Analog outputs are floating (Hi-Z) in power down mode.
(3) Small pop noise occurs at the edges(“ ”) of the internal timing of PW1 bit. This noise is output even
if “0” data is input.
(4) Mute the analog output externally if click noise (3) adversely affect system performance.
(5) The DZF pin outputs “L”, in power down mode (PW1 bit = “0”).
Figure 64. Power-off/on Sequence Example
015002211-E-03
2017/07
- 62 -
[AK4452]
(2) Reset Function (RSTN bit)
The DAC can be reset by setting RSTN bit to “0” but the internal registers are not initialized. In this time, the
corresponding analog outputs go to VREFH/2 and the DZF pin outputs “H” if clocks (MCLK, BICK and
LRCK) are input. Figure 65 shows an example of reset sequence by RSTN bit.
RSTN bit
3~4/fs (6)
2~3/fs (5)
Internal
RSTN bit
Internal
State
Normal Operation
D/A In
(Digital)
“0” data
(1)
D/A Out
(Analog)
Normal Operation
Digital Block Power-down
GD
GD
(3)
Clock In
(2)
(3)
(1)
Don’t care
BICK
2/fs(4)
DZF
Notes:
(1) The analog output corresponding to digital input has group delay (GD).
(2) Analog outputs are floating (Hi-Z) in power down mode.
(3) Small pop noise occurs at the edges(“ ”) of the internal timing of RSTN bit. This noise is output
even if “0” data is input.
(4) The DZF pin goes to “H” on the falling edge of RSTN bit and goes to “L” in 2/fs after a rising edge of
the internal RSTN.
(5) There is a delay, 3~4/fs from RSTN bit “0” to the internal RSTN bit “0”, and 2~3/fs from RSTN bit “1”
to the internal RSTN bit “1”.
Figure 65. Reset Sequence Example 1
Note: When using both reset (RSTN bit = “0”) and DAC power-off bits (PW1 bit), power-off bits should be set
to “0” before RSTN bit.
015002211-E-03
2017/07
- 63 -
[AK4452]
(3) Reset Function (MCLK Stop)
When the MCLK stops for more than 10us during operation (PDN pin = “H”), the AK4452 is placed in reset
state and the analog output goes to floating state (Hi-Z). When the MCLK is restarted, reset state is released
and the AK4452 returns to normal operation mode. Zero detection function is disabled while the MCLK is
stopped. Figure 66 shows a reset sequence by stopping the MCLK.
PDN pin
RSTN bit
(1)
Internal
State
Power-down
D/A In
(Digital)
Power-down
Normal Operation
(2)
GD
(4)
Hi-Z
(2)
(4)
(4)
Clock In
MCLK Stop
MCLK
External
MUTE
Normal Operation
(3)
GD
D/A Out
(Analog)
Digital Circuit Power-down
(5)
(5)
(5)
Notes:
(1) After the AK4452 is powered-up, the PDN pin should be “L” for 150ns.
(2) The analog output corresponding to digital input has group delay (GD).
(3) The digital data input can be stopped. Click noise after MCLK is input again can be reduced by
inputting “0” data during this period.
(4) Click noise occurs within 3 ~ 4LRCK from the riding edge (“↑”) of the PDN pin or MCLK inputs. This
noise is output even if “0” data is input.
(5) Mute the analog output externally if click noise (4) adversely affect system performance.
Figure 66. Reset Sequence Example 2
015002211-E-03
2017/07
- 64 -
[AK4452]
■ Clock Synchronization and BICK Edge Detection Functions
● Synchronization Function (Analog Output Phase Synchronization)
This function synchronizes analog output phase by suppressing the phase difference of the AK4452 and other
AKM devices with synchronization function to within 3/256fs. Analog output phase synchronization function
becomes valid when input data at all channels are continuously “0” for 8192 times if SYNCE bit is set to “1”
during operation in PCM mode or when RSTN bit is set to “0”.
Example) In the case of using the AK4452 with the AK4458 (Figure 67)
The AK4452 and the AK4458 have synchronization function. The output phase difference between the
AK4452’s output (AOUT1LP/N_2, AOUT1RP/N_2) and the AK4458’s output (AOUT1-4LP/N_8,
AOUT1-4RP/N_8) will be within 3/256fs.
DSP
AK4452
MCLK
LRCK
MCLK
LRCK
AOUT1LP/N
AOUT1RP/N
AOUT1LP/N_2
AOUT1RP/N_2
AK4458
MCLK
LRCK
AOUT1LP/N
AOUT1RP/N
AOUT1LP/N_8
AOUT1RP/N_8
AOUT4LP/N
AOUT4RP/N
AOUT4LP/N_8
AOUT4RP/N_8
Figure 67. System Example of Clock Synchronization Function
015002211-E-03
2017/07
- 65 -
[AK4452]
■ Parallel Mode
Parallel mode is available by setting the I2C pin = “H”, and the PS pin = “H”. Audio interface format of the
parallel mode is controlled by TDM1-0 pins and DIF pin (Table 26). Daisy Chain mode is also available by
setting the DCHAIN pin = “H”. In parallel mode, the clock setting mode is always in auto setting mode
(ACKS mode is enabled and fixed internally).
Zero detection function is not available in parallel mode. All functions controlled exclusively by Serial mode
are only available in their default register settings.
TDM1 pin
0
0
0
0
1
1
1
1
TDM0 pin
DIF pin
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
Table 26. Parallel Mode
Mode
Mode6 (Table 13)
Mode7 (Table 13)
Mode12 (Table 13)
Mode13 (Table 13)
Mode18 (Table 13)
Mode19 (Table 13)
Mode24 (Table 13)
Mode25 (Table 13)
■ Serial Control Interface
The AK4452’s functions are controlled through registers. The registers may be written by two types of control
modes. The internal registers are controlled in 3-wire serial control mode when the I2C pin = “L”, and in I2C
bus control mode when the I2C pin = “H” and the PS pin = “L”.
015002211-E-03
2017/07
- 66 -
[AK4452]
(1) 3-wire Serial Control Mode (I2C pin = “L”)
The internal registers may be written through the 3-wire µP interface pins (CSN, CCLK and CDTI). The
data on this interface consists of a 2-bit Chip address, Read/Write (1bit, Fixed to “1”, Write only),
Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in
on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is
latched after a low-to-high transition of CSN. The clock speed of CCLK is 5MHz (max).
The internal registers are initialized by setting the PDN pin = “L”. In serial mode, an internal timing
circuit is reset by setting RSTN bit = “0” but register values are not initialized.
CSN
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CCLK
CDTI
C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
C1-C0: Chip Address (C1= CAD1 pin, C0= CAD0 pin)
R/W:
Read/Write (Fixed to “1”, Write only)
A4-A0: Register Address
D7-D0: Control Data
Figure 68. 3-wire Serial Control I/F Timing
* The AK4452 does not support read commands in 3wire serial control mode.
* When the AK4452 is in power down mode (PDN pin = “L”), writing into the control registers is
prohibited.
* The control data cannot be written when the CCLK rising edge is 15 times or less or 17 times or more
during CSN is “L”.
015002211-E-03
2017/07
- 67 -
[AK4452]
(2) I2C-bus Control Mode (I2C pin = “H”)
The AK4452 supports the fast-mode I2C-bus (max: 400kHz, Ver1.0).
1. WRITE Operations
Figure 69 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by a START
condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition
(Figure 75). After the START condition, a slave address is sent. This address is 7 bits long followed by the
eighth bit that is a data direction bit (R/W). The most significant five bits of the slave address are fixed as
“00100”. The next bits are CAD1-0 (device address bits). This bits identifies the specific device on the bus.
The hard-wired input pins (CAD1-0 pins) set these device address bit (Figure 70). If the slave address matches
that of the AK4452, the AK4452 generates an acknowledge and the operation is executed. The master must
generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock
pulse (Figure 76). R/W bit = “1” indicates that the read operation is to be executed. “0” indicates that the write
operation is to be executed.
The second byte consists of the control register address of the AK4452. The format is MSB first, and those
most significant 3-bits are fixed to zeros (Figure 71). The data after the second byte contains control data. The
format is MSB first, 8bits (Figure 72). The AK4452 generates an acknowledge after each byte is received. Data
transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the
SDA line while SCL is HIGH defines STOP condition (Figure 75).
The AK4452 can perform more than one byte write operation per sequence. After receipt of the third byte the
AK4452 generates an acknowledge and awaits the next data. The master can transmit more than one byte
instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the
internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next
address. If the address exceeds 14H prior to generating a stop condition, the address counter will “roll over” to
00H and the previous data will be overwritten.
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of
the data line can only change when the clock signal on the SCL line is LOW (Figure 77) except for the START
and STOP conditions.
S
T
A
R
T
SDA
S
T
O
P
R/W="0"
Slav e
S Address
Sub
Address(n)
A
C
K
Data(n)
A
C
K
Data(n+1)
A
C
K
Data(n+x)
A
C
K
A
C
K
P
A
C
K
Figure 69. Data Transfer Sequence at the I2C-Bus Mode
0
0
1
0
0
CAD1
CAD0
R/W
(These CAD1-0 should match with CAD1-0 pins)
Figure 70. The First Byte
0
0
0
A4
A3
A2
A1
A0
D1
D0
Figure 71. The Second Byte
D7
D6
D5
D4
D3
D2
Figure 72. Byte Structure After The Second Byte
015002211-E-03
2017/07
- 68 -
[AK4452]
2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK4452. After transmission of data, the master can read
the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of
the first data word. After receiving each data packet the internal 6-bit address counter is incremented by one,
and the next data is automatically taken into the next address. If the address exceeds 14H prior to generating
stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out.
The AK4452 supports two basic read operations: Current Address Read and Random Address Read.
2-1. Current Address Read
The AK4452 contains an internal address counter that maintains the address of the last word accessed,
incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next
CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with
R/W bit “1”, the AK4452 generates an acknowledge, transmits 1-byte of data to the address set by the internal
address counter and increments the internal address counter by 1. If the master does not generate an
acknowledge but generates a stop condition instead, the AK4452 ceases transmission.
S
T
A
R
T
SDA
S
T
O
P
R/W="1"
Slave
S Address
Data(n)
Data(n+1)
MA
AC
SK
T
E
R
A
C
K
Data(n+2)
MA
AC
SK
T
E
R
Data(n+x)
MA
AC
SK
T
E
R
MA
AC
SK
T
E
R
P
MN
AA
SC
T
EK
R
Figure 73. Current Address Read
2-2. Random Address Read
The random read operation allows the master to access any memory location at random. Prior to issuing a slave
address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a
start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is
acknowledged, the master immediately reissues the start request and the slave address with the R/W bit =“1”.
The AK4452 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1.
If the master does not generate an acknowledge but generates a stop condition instead, the AK4452 ceases
transmission.
S
T
A
R
T
SDA
S
T
A
R
T
R/W="0"
Slave
S Address
Sub
Address(n)
A
C
K
Slave
S Address
A
C
K
S
T
O
P
R/W="1"
Data(n)
A
C
K
Data(n+1)
MA
AC
S K
T
E
R
Data(n+x)
MA
AC
S
T K
E
R
MA
AC
S
T K
E
R
P
MN
A A
S
T C
E K
R
Figure 74. Random Address Read
015002211-E-03
2017/07
- 69 -
[AK4452]
SDA
SCL
S
P
start condition
stop condition
Figure 75. START and STOP Conditions
DATA
OUTPUT BY
TRANSMITTER
not acknowledge
DATA
OUTPUT BY
RECEIVER
acknowledge
SCL FROM
MASTER
2
1
8
9
S
clock pulse for
acknowledgement
START
CONDITION
Figure 76. Acknowledge on the I2C-Bus
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Figure 77. Bit Transfer on the I2C-Bus
015002211-E-03
2017/07
- 70 -
[AK4452]
■ Function List
Available functions are different in PCM mode and in DSD mode.
Function
Default
Address
Bit
Attenuation Level
0dB
03-04H
ATT7-0
Audio Data Interface Modes
32bit MSB justified
00H
DIF2-0
Data Zero Detect Enable
Disable
08H
L1/R1
Minimum delay Filter Enable
SD
Slow Roll-off Filter Enable
Sharp roll-off filter
01-02H
SLOW
Short delay Filter Enable
De-emphasis Response
OFF
01H
DEM1-0
Soft Mute Enable
Normal Operation
01H
SMUTE
DSD/PCM Mode Select
PCM mode
02H
D/P
Master Clock Frequency Select
512fs
02H
DCKS
at DSD mode
MONO mode Stereo mode
Stereo
02H
MONO
select
Inverting Enable of DZF
“H” active
02H
DZFB
The data selection of L channel
02H,05H
R channel
SELLR1
and R channel
0DH
The data selection of DAC
Normal
0A-0BH
SDS1/2
Data Invert Mode
OFF
05H
INVL1/R1
Clock Synchronization
Enable
07H
SYNCE
Table 27. Function List (Y: Available, -: Not available)
015002211-E-03
PCM
Y
Y
Y
Y
Y
Y
Y
Y
Y
DSD
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
2017/07
- 71 -
[AK4452]
■ Register Map
Addr
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
Register Name
Control 1
Control 2
Control 3
L1ch ATT
R1ch ATT
Control 4
DSD1
Control 5
Sound Control
DSD2
Control 6
Control 7
Control 8
Reserved
Reserved
Reserved
Reserved
D7
ACKS
0
DP
ATT7
ATT7
INVL1
DDM
0
L1
0
TDM1
ATS1
0
0
0
1
1
D6
0
0
0
ATT6
ATT6
INVR1
DML1
0
R1
0
TDM0
ATS0
0
0
1
1
1
D5
0
SD
DCKS
ATT5
ATT5
0
DMR1
0
0
0
SDS1
0
0
0
0
1
1
D4
0
DFS1
DCKB
ATT4
ATT4
0
DMC
0
0
0
SDS2
SDS0
0
0
1
1
1
D3
DIF2
DFS0
MONO1
ATT3
ATT3
0
DMRE
0
0
0
1
1
0
0
0
1
1
D2
DIF1
DEM11
DZFB
ATT2
ATT2
0
0
0
0
0
PW1
1
FIR2
0
0
1
1
D1
DIF0
DEM10
SELLR1
ATT1
ATT1
DFS2
DSDD
1
SC1
DSDF
0
DCHAIN
FIR1
0
0
1
1
D0
RSTN
SMUTE
SLOW
ATT0
ATT0
SSLOW
DSDSEL0
SYNCE
SC0
DSDSEL1
1
0
FIR0
0
0
1
1
Note 34. Data must not be written into addresses from 11H to 1FH.
Note 35. When the PDN pin is set to “L”, all registers are initialized to their default values.
Note 36. When RSTN bit is set to “0”, only the internal timing circuit is reset but register values are not
initialized.
015002211-E-03
2017/07
- 72 -
[AK4452]
■ Register Definitions
Addr Register Name
00H Control 1
R/W
Default
D7
ACKS
R/W
0
D6
0
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
DIF2
R/W
1
D2
DIF1
R/W
1
D1
DIF0
R/W
0
D0
RSTN
R/W
0
RSTN: Internal Timing Reset
0: Reset (default)
Internal clock timings are reset, but all other registers are not reset to their default value and R/W
access is still allowed.
1: Normal Operation
DIF2-0: Audio Data Interface Modes (Table 13)
Default value is “110” (Mode 6: 32-bit MSB justified).
ACKS: Master Clock Frequency Auto Setting Mode Enable (PCM only)
0: Disable : Manual Setting Mode (default)
1: Enable : Auto Setting Mode
When ACKS bit = “1”, the sampling frequency and MCLK frequency are detected automatically.
Addr Register Name
01H Control 2
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
SD
R/W
1
D4
DFS1
R/W
0
D3
DFS0
R/W
0
D2
DEM11
R/W
0
D1
DEM10
R/W
1
D0
SMUTE
R/W
0
SMUTE: Soft Mute Enable.
0: Normal Operation (default)
1: DAC outputs soft-muted.
DEM11-0: DAC1 De-emphasis Response (Table 16)
Default value is “01” (OFF).
DFS1-0: Sampling Speed Control (Table 2)
Default value is “00” (Normal Speed). See also register address 05H for DFS2.
A click noise occurs when switching DFS2-0 bits setting.
SD: Short delay Filter Enable. (Table 12)
0: Sharp roll-off filter
1: Short delay filter (default)
015002211-E-03
2017/07
- 73 -
[AK4452]
Addr Register Name
02H Control 3
R/W
Default
D7
DP
R/W
0
D6
0
R
0
D5
DCKS
R/W
0
D4
DCKB
R/W
0
D3
MONO1
R/W
0
D2
DZFB
R/W
0
D1
SELLR1
R/W
0
D0
SLOW
R/W
0
SLOW: Slow Roll-off Filter Enable. (Table 12)
0: Sharp roll-off filter (default)
1: Slow roll-off filter
SELLR1: The data selection of DAC1 L channel and R channel, when MONO mode (Table 21)
0: All channel output L channel data. (default)
1: All channel output R channel data.
Settings of MONO1 bit, INVL1 bit and INVR1 bit should also be considered when setting this bit.
DZFB: Inverting Enable of DZF (Table 20)
0: DZF pin goes “H” at Zero Detection (default)
1: DZF pin goes “L” at Zero Detection
MONO1: DAC1 enters monaural output mode when MONO bit = “1”. (Table 21)
0: Stereo mode (default)
1: MONO mode
DCKB: Polarity of DCLK (DSD Only)
0: DSD data is output from DCLK falling edge. (default)
1: DSD data is output from DCLK rising edge.
DCKS: Master Clock Frequency Select at DSD mode (DSD only)
0: 512fs (default)
1: 768fs
DP:
DSD/PCM Mode Select
0: PCM Mode (default)
1: DSD Mode
The AK4452 must be reset by RSTN bit when changing DP bit setting.
Addr Register Name
03H L1ch ATT
04H R1ch ATT
R/W
Default
D7
ATT7
ATT7
R/W
1
D6
ATT6
ATT6
R/W
1
D5
ATT5
ATT5
R/W
1
D4
ATT4
ATT4
R/W
1
D3
ATT3
ATT3
R/W
1
D2
ATT2
ATT2
R/W
1
D1
ATT1
ATT1
R/W
1
D0
ATT0
ATT0
R/W
1
ATT7-0: Attenuation Level (Table 17)
Initial value is “FF” (0dB)
015002211-E-03
2017/07
- 74 -
[AK4452]
Addr Register Name
05H Control 4
R/W
Default
D7
INVL1
R/W
0
D6
INVR1
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
DFS2
R/W
0
D0
SSLOW
R/W
0
SSLOW: Digital Filter Bypass Mode Enable (Table 15)
0: Enable digital filter selected by SD and SLOW bits (default)
1: Super Slow Roll-off Mode
DFS2: Sampling Speed Control (Table 2)
Default value is “0” (Normal Speed). See also register address 01H for DFS1-0.
A click noise occurs when switching DFS2-0 bits setting.
INVL1: AOUTL1 Output Phase Inverting Bit
INVR1: AOUTR1 Output Phase Inverting Bit
0: Normal (default)
1: Inverted
015002211-E-03
2017/07
- 75 -
[AK4452]
Addr Register Name
06H DSD1
R/W
Default
D7
DDM
R/W
0
D6
DML1
R/W
0
D5
DMR1
R/W
0
D4
DMC
R/W
0
D3
DMRE
R/W
0
D2
0
R/W
0
D1
DSDD
R/W
0
D0
DSDSEL0
R/W
0
DSDSEL1-0: DSD sampling speed control (Table 10)
Default value is “00”.
DSDD: DSD play back path control (Table 11)
Default value is “0”.
DMRE: DSD mute release
0: Hold (default)
1: Mute Release
This register is only valid when DDM bit = “1” and DMC bit = “1”. It releases a mute state
when DSD data is muted by DDM and DMC bits.
DMC: DSD mute control
0: Auto Return (default)
1: Mute Hold
This register is only valid when DDM bit = “1”. It selects the process when DSD data level
drops under full scale while DSD data is muted by DDM bit.
DMR1/DML1
This register output detection flag when the signal level of the DSDR1/L1 pin is full scale.
DDM: DSD data mute
0: Disable (default)
1: Enable
The AK4452 has a function that mutes the output when DSD data is all “1” or “0” for 2048
samplings (1/fs). This register controls the DSD mute function.
015002211-E-03
2017/07
- 76 -
[AK4452]
Addr Register Name
07H Control 5
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
1
R/W
1
D0
SYNCE
R/W
1
D6
R1
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
SC1
R/W
0
D0
SC0
R/W
0
SYNCE: SYNC Mode Enable
0: SYNC Mode Disable
1: SYNC Mode Enable (default)
Addr Register Name
08H Sound Control
R/W
Default
D7
L1
R/W
0
SC1-0: Sound Control (Table 22)
Default value is “00”.
L1, R1: Zero Detect Flag Enable Bit for the DZF pin
0: Disable (default)
1: Enable
015002211-E-03
2017/07
- 77 -
[AK4452]
Addr Register Name
09H DSD2
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
DSDF
R/W
0
D4
SDS2
R/W
0
D3
1
R/W
1
D2
PW1
R/W
1
D1
0
R/W
0
D0
DSDSEL1
R/W
0
DSDSEL1-0: DSD Sampling Speed Control (Table 10)
Default value is “00”.
DSDF: DSD Filter Select (Table 12)
Default value is “0”.
Addr Register Name
0AH Control 6
R/W
Default
D7
TDM1
R/W
0
D6
TDM0
R/W
0
D5
SDS1
R/W
0
D0
1
R/W
1
PW1: Power Down control for DAC
PW1: Power management for DAC
0: DAC power OFF
1: DAC power ON (default)
SDS2-0: DAC Data Select
0: Normal Operation
1: Output Other Slot Data (Table 14)
Default value is “000”.
TDM1-0: TDM Mode Select (Table 13)
Default value is “00”.
015002211-E-03
2017/07
- 78 -
[AK4452]
Addr Register Name
0BH Control 7
R/W
Default
D7
ATS1
R/W
0
D6
ATS0
R/W
0
D5
0
R/W
0
D4
SDS0
R/W
0
D3
1
R/W
1
D2
1
R/W
1
D1
DCHAIN
R/W
0
D0
0
R/W
0
D3
0
R/W
0
D2
FIR2
R/W
0
D1
FIR1
R/W
0
D0
FIR0
R/W
0
DCHAIN: Daisy Chain Mode Enable
0: Daisy Chain Mode Disable (default)
1: Daisy Chain Mode Enable
SDS2-0: DAC Data Select
0: Normal Operation
1: Output Other Slot Data (Table 14)
ATS1-0: DAC Digital attenuator transition time setting (Table 18)
Default value is “00”.
Addr Register Name
0CH Control 8
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
0
R/W
0
D4
0
R/W
0
FIR2-0: FIR Filter Control (Table 19)
Default value is “000”.
015002211-E-03
2017/07
- 79 -
[AK4452]
10. Recommended External Circuits
■ Typical Connection Diagram
Figure 78 and Figure 79 show system connection diagram, and Figure 80 shows the analog output circuit
example.
(1) LDOE pin = “H”, I2C-bus Control Mode(I2C pin = “H”)
4
SDTI1
5
TST1
6
TDMO1
7
DZF
8
CAD1
Analog 5.0V
TST5 25
TST6 26
Analog 5.0V
TST7 27
LDOE 28
LRCK
TVDD 29
3
DVSS 30
PDN 32
BICK
10u
+
0.1u
TST4 24
TST2 22
AVDD 21
AVSS 20
0.1u
+
10u
AOUTR1P 19
AOUTR1N 18
VREFH1
17
N
15 AOUT1LN
VREFL1
16
13 I2C
14 AOUT1LP
12 PS
11 CAD0_I2C
AK4452VN
TST3 23
10 SCL
Micro-
MCLK
2
9 SDA
DSP
1
1u
+
VDD18 31
Digital 3.3V
Analog
Ground
R1ch
Mute
R1ch Out
L1ch
LPF
L1ch
Mute
L1ch Out
0.1u
Controller
Digital
Ground
R1ch
LPF
+
Electrolytic Capacitor
Ceramic Capacitor
Notes:
- Chip Address = “00”. BICK = 64fs, LRCK = fs
- Power lines of AVDD and VREFH1 should be distributed separately from LDO and etc. while keeping low
impedance. If it is not possible, it is recommended to connect a LPF composed by a 10Ω resistor and a
220uF capacitor between VREFL1 and VREFH1.
- DVSS and AVSS must be connected to the same potential.
- All digital input pins should not be allowed to float.
Figure 78. Typical Connection Diagram (AVDD=5V, TVDD=3.3V)
015002211-E-03
2017/07
- 80 -
[AK4452]
(2) LDOE pin = “L”, I2C-bus Control Mode(I2C pin = “H”)
Digital 3.3V
Digital 1.8V
Analog 5.0V
Analog 5.0V
LRCK
4
SDTI1
5
TST1
6
TDMO1
7
DZF
8
CAD1
TST5 25
TST7 27
TST6 26
TST4 24
TST2 22
AVDD 21
AVSS 20
0.1u
+
10u
AOUTR1P 19
AOUTR1N 18
VREFH1
17
N
15 AOUT1LN
VREFL1
16
13 I2C
14 AOUT1LP
12 PS
11 CAD0_I2C
AK4452VN
TST3 23
10 SCL
Micro-
LDOE 28
3
TVDD 29
BICK
DVSS 30
PDN 32
MCLK
2
9 SDA
DSP
1
VDD18 31
10u
+
1u 0.1u
+
Analog
Ground
R1ch
Mute
R1ch Out
L1ch
LPF
L1ch
Mute
L1ch Out
0.1u
Controller
Digital
Ground
R1ch
LPF
+
Electrolytic Capacitor
Ceramic Capacitor
Notes:
- Chip Address = “00”. BICK = 64fs, LRCK = fs
- Power lines of AVDD and VREFH1 should be distributed separately from LDO and etc. while keeping low
impedance. If it is not possible, it is recommended to connect a LPF composed by a 10Ω resistor and a
220uF capacitor between VREFL1 and VREFH1.
- DVSS and AVSS must be connected to the same potential.
- All digital input pins should not be allowed to float.
Figure 79. Typical Connection Diagram (AVDD=5V, TVDD=3.3V, VDD18=1.8V)
015002211-E-03
2017/07
- 81 -
[AK4452]
1. Grounding and Power Supply Decoupling
To minimize coupling by digital noise, decoupling capacitors should be connected to AVDD and TVDD
respectively. AVDD are supplied from the analog supply of the system and TVDD is supplied from the digital
supply of the system. DVSS and AVSS must be connected to the same potential. Decoupling
capacitors especially small ceramic capacitors for high frequency should be placed as near as possible to the
supply pin.
2. Voltage Reference
The differential voltage between the VREFH1 pin and the VREFL1 pin sets the analog output range. The
VREFH1 pin is normally connected to AVDD, and the VREFL1 pin is normally connected to AVSS. VREFH1
and VREFL1 should be connected with a 0.1µF ceramic capacitor as near as possible to the pin to eliminate the
effects of high frequency noise. All signals, especially clocks, should be kept away from the VREFH1 and
VREFL1 pins in order to avoid unwanted noise coupling into the AK4452.
015002211-E-03
2017/07
- 82 -
[AK4452]
3. Analog Outputs
The analog outputs are full differential outputs and 2.8Vpp (typ, VREFH1 VREFL1 = 5V) centered around
VREFH/2. The differential outputs are summed externally, adding voltage VAOUT is calculated as (AOUT+)
(AOUT). If the summing gain is 1, the output range is 5.6Vpp (typ, VREFH1 VREFL1= 5V). The bias
voltage of the external summing circuit is supplied externally. PCM input data format is 2's complement. The
output voltage (VAOUT) is a positive full scale for 7FFFFFH (@24bit) and a negative full scale for 800000H
(@24bit). The ideal VAOUT is 0V for 000000H(@24bit).
The output level is determined by the 1-bit signal duty ratio in DSD input mode. The output level is positive full
scale when the duty is 100% (all “1”) and the output level is negative full scale when the duty is 0% (all “0”). In
ideal case, a 0V voltage is output when the input signal duty is 50%.
The internal switched - capacitor filters attenuate the noise generated by the delta -sigma modulator beyond the
audio pass band. Figure 80 shows an example of differential outputs and LPF circuit example by a single
op-amp.
AK4452
R1
AOUT-
3.9k
R2
4.7k
150
470p
+Vop
AOUT+
3.9n
R1
3.9k
4.7k
Analog
Out
150
470p
-Vop
Figure 80. External LPF Circuit Example 1 for PCM (fc = 99.0kHz, Q=0.680)
R1
R2
GAIN(dB)
DC Load (MAX)
3.3k
3.9k
3.9k
4.3k
4.7k
3.3k
4.7k
5.6k
6.8k
8.2k
0
1.620665 3.142468 3.980809 4.83432
3.8k
4.0k
3.5k
3.6k
3.6k
Table 28. External LPF Circuit Example 1 for PCM
5.6k
12.0k
6.619864
3.8k
Frequency Response
Gain
20kHz
0.036dB
40kHz
0.225dB
80kHz
1.855dB
Table 29. Frequency Response of External LPF Circuit Example 1 for PCM
015002211-E-03
2017/07
- 83 -
[AK4452]
11. Package
■ Outline Dimensions
32-pin QFN (Unit: mm)
■ Material & Lead finish
Package molding compound:
Lead frame material:
Lead frame surface treatment:
Epoxy, Halogen (bromine and chlorine) free
Cu
Solder (Pb free) plate
015002211-E-03
2017/07
- 84 -
[AK4452]
■ Marking
4452
XXXX
1
1) Pin #1 indication
2) Date Code: XXXX (4 digits)
3) Marking Code: 4452
12. Revision History
Date (Y/M/D) Revision
15/02/23
00
15/03/21
01
15/08/26
02
Reason
Page
First Edition
Description 9
Addition
10
Error
Correction
Description
Addition
Error
Correction
Contents
76
■ Handling of Unused Pin
TDMO1 was added.
Note 7: A description was added.
“at the same time”
Figure 70 was changed.
77
Figure 71 was added.
13, 15
13 to 16
Sharp Roll-Off Filter, fs=44.1kHz, DF + SCF, FR: 0
~ 20kHz, max=0.1dB
Short Delay Sharp Roll-Off Filter, fs=96kHz, DF +
SCF, FR: 0 ~ 40kHz, max=0.1dB
Description of Pass band spec of -3.0dB was added.
13 to 16
Frequency Response of -3.0(-6.0)dB was deleted.
27
[Table 3] 384kHz, 128fs
49.152 was added.
Figure 52 and Figure 53 was changed.
13, 15
Description
Addition
Description
Delete
Description
Addition
Description
Change
Description
Addition
53
56
■ Power Down Function
Description (2) was changed.
015002211-E-03
2017/07
- 85 -
[AK4452]
Date (Y/M/D) Revision
Reason
Error
Correction
Page
62
63
68
17/07/11
03
Description
Delete
Description
Addition
13
14
16
18
20
32
49
57
Contents
C1-C0: Chip Address
C1= CAD0 pin → CAD1 pin
The most significant [remove “seven”] [add
“five”] bits of the slave address
Correct default value = 0 on table and description.
Clarify description
Note 17 (It is the pass band gain amplitude of …)
was deleted.
Figure 2 and Figure 3 were added.
Figure 4 and Figure 5 were added.
Figure 6 and Figure 7 were added.
Figure 8 and Figure 9 were added.
Table 7 was changed.
■ Out of Band Noise Reduction Filter
Description was changed.
■ Sound Quality Adjustment
Table 22 was changed
015002211-E-03
2017/07
- 86 -
[AK4452]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application of
AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM
or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application
examples of AKM Products. AKM neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of AKM or any third party with respect to the
information in this document. You are fully responsible for use of such information contained in this
document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY
LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH
INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact, including
but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry,
medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
signaling equipment, equipment used to control combustions or explosions, safety devices, elevators
and escalators, devices related to electric power, and equipment used in finance-related fields. Do not
use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible
for complying with safety standards and for providing adequate designs and safeguards for your
hardware, software and systems which minimize risk and avoid situations in which a malfunction or
failure of the Product could cause loss of human life, bodily injury or damage to property, including
data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or related
technology or any information contained in this document, you should comply with the applicable
export control laws and regulations and follow the procedures required by such laws and regulations.
The Products and related technology may not be used for or incorporated into any products or systems
whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth
in this document shall immediately void any warranty granted by AKM for the Product and shall not
create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of AKM.
015002211-E-03
2017/07
- 87 -